VII. Schedules and Attachments

Melissa Whited, Principal Associate

Synapse Energy Economics I 485 Massachusetts Avenue, Suite 3 I Cambridge, MA 02139 I 617-453-7024 mwhited@synapse-energy.com

PROFESSIONAL EXPERIENCE

Synapse Energy Economics, Cambridge MA. Principal Associate, 2017 – present, Senior Associate, 2015 – 2017, Associate, 2012 – 2015

Consult and provide analysis of rate design proposals, alternative regulation, and other topics including distributed energy resources and electric vehicles. Develop expert witness testimony in public utility commission proceedings. Author reports on topics at the intersection of utility regulation, customer protection, and environmental impacts.

University of Wisconsin - Madison, Department of Agricultural and Applied Economics, Madison, WI. *Teaching Assistant – Environmental Economics*, 2011 – 2012

Developed teaching materials and led discussions on cost-benefit analysis, carbon taxes and cap-and-trade programs, management of renewable and non-renewable resources, and other topics.

Public Service Commission of Wisconsin, Water Division, Madison, WI. Program and Policy Analyst -Intern, Summer 2009

Researched water conservation programs nationwide to develop a proposal for Wisconsin's state conservation program. Developed spreadsheet model to calculate avoided costs of water conservation in terms of energy savings and avoided emissions.

Synapse Energy Economics, Cambridge, MA. Communications Manager, 2005 – 2008

Developed technical proposals for state and federal agencies, environmental and public interest groups, and businesses. Edited reports on energy efficiency, integrated resource planning, greenhouse gas regulations, renewable resources, and other topics.

EDUCATION

University of Wisconsin, Madison, WI Master of Arts in Agricultural and Applied Economics, 2012 Certificate in Energy Analysis and Policy National Science Foundation Fellow

University of Wisconsin, Madison, WI Master of Science in Environment and Resources, 2010 Certificate in Humans and the Global Environment Nelson Distinguished Fellowship

Southwestern University, Georgetown, TX

Bachelor of Arts in International Studies, Magna cum laude, 2003.

ADDITIONAL SKILLS

- Econometric Modeling Linear and nonlinear modeling including time-series, panel data, logit, probit, and discrete choice regression analysis
- Nonmarket Valuation Methods for Environmental Goods Hedonic valuation, travel cost method, and contingent valuation
- Cost-Benefit Analysis
- Input-Output Modeling for Regional Economic Analysis

FELLOWSHIPS AND AWARDS

- Winner, M. Jarvin Emerson Student Paper Competition, Journal of Regional Analysis and Policy, 2010
- Fellowship, National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT), University of Wisconsin Madison, 2009
- Nelson Distinguished Fellowship, University of Wisconsin Madison, 2008

PUBLICATIONS

Whited, M. 2021. *Implementing PBR with Customer Protections in North Carolina: Docket E-100, Sub 178*. Synapse Energy Economics for the Carolina Utility Customers Association.

Kallay, J., A. Napoleon, J. Hall, B. Havumaki, A. Hopkins, M. Whited, T. Woolf, J. Stevenson, R. Broderick, R. Jeffers, B. Garcia. 2021. *Regulatory Mechanisms to Enable Investments in Electric Utility Resilience*. Synapse Energy Economics for Sandia National Laboratories.

Kallay, J., A. Napoleon, B. Havumaki, J. Hall, C. Odom, A. Hopkins, M. Whited, T. Woolf, M. Chang, R. Broderick, R. Jeffers, B. Garcia. 2021. *Performance Metrics to Evaluate Utility Resilience Investments.* Synapse Energy Economics for Sandia National Laboratories.

Kallay, J., A. Hopkins, A. Napoleon, B. Havumaki, J. Hall, M. Whited, M. Chang., R. Broderick, R. Jeffers, K. Jones, M. DeMenno. 2021. *The Resilience Planning Landscape for Communities and Electric Utilities*. Synapse Energy Economics for Sandia National Laboratories.

Woolf, T., L. Schwartz, B. Havumaki, D. Bhandari, M. Whited. 2021. *Benefit-Cost Analysis for Utility-Facing Grid Modernization Investments: Trends, Challenges, and Considerations.* Prepared by Lawrence Berkeley National Laboratory and Synapse Energy Economics for the Grid Modernization Laboratory Consortium of the U.S. Department of Energy. Camp, E., B. Havumaki, T. Vitolo, M. Whited. 2020. *Future of Solar PV in the District of Columbia: Feasibility, Projections, and Rate Impacts of the District's Expanded RPS.* Synapse Energy Economics for the District of Columbia Office of the People's Counsel.

National Energy Screening Project. 2020. *National Standard Practice Manual for Benefit-Cost Analysis of Distributed Energy Resources*. E4TheFuture, Synapse Energy Economics, Energy Futures Group, ICF, Pace Energy and Climate Center, Schiller Consulting, Smart Electric Power Alliance.

Whited, M., J. Frost, B. Havumaki. 2020. *Best Practices for Commercial and Industrial EV Rates*. A guide prepared by Synapse Energy Economics for Natural Resources Defense Council.

Knight, P., E. Camp, D. Bhandari, J. Hall, M. Whited, B. Havumaki, A. Allison, N. Peluso, T. Woolf. 2019. *Making Electric Vehicles Work for Utility Customers: A Policy Handbook for Consumer Advocates.* Synapse Energy Economics for the Energy Foundation.

White, D., K. Takahashi, M. Whited, S. Kwok, D. Bhandari. 2019. *Memphis and Tennessee Valley Authority: Risk Analysis of Future TVA Rates for Memphis*. Synapse Energy Economics for Friends of the Earth.

Whited, M., B. Havumaki. 2019. *GD2019 04 M: DC DOEE Comments Responding to Notice of Inquiry.* Synapse Energy Economics for the District of Columbia Department of Energy and Environment.

Whited, Melissa. 2019. *DCG Comments on Technical Conference III Regarding F.C. 1156*. Synapse Energy Economics for the District of Columbia Department of Energy and Environment.

Whited, M., C. Roberto. 2019. *Multi-Year Rate Plans: Core Elements and Case Studies*. Synapse Energy Economics for Maryland PC51 and Case 9618.

Knight, P., E. Camp, C. Odom, E. Malone, M. Whited, J. Hall. 2019. *Exploring Equity in Residential Solar: A preliminary examination of who is installing solar in the Commonwealth of Massachusetts*. Synapse Energy Economics.

Hopkins, A. S., K. Takahashi, D. Glick, M. Whited. 2018. *Decarbonization of Heating Energy Use in California Buildings: Technology, Markets, Impacts, and Policy Solutions.* Synapse Energy Economics for the Natural Resources Defense Council.

Whited, M., J. Kallay, D. Bhandari, B. Havumaki. 2018. *Driving Transportation Electrification Forward in Pennsylvania: Considerations for Effective Transportation Electrification Ratemaking*. Synapse Energy Economics for Natural Resources Defense Council.

Hall, J., J. Kallay, A. Napoleon, K. Takahashi, M. Whited. 2018. *Locational and Temporal Values of Energy Efficiency and other DERs to Transmission and Distribution Systems.* Synapse Energy Economics.

Woolf, T., J. Hall, M. Whited. 2018. *Earnings Adjustment Mechanisms to Support New York REV Goals: Outcome-Based, Program-Based, and Action-Based Options*. Synapse Energy Economics for Advanced Energy Economy Institute. Whited, M., A. Allison, R. Wilson. 2018. *Driving Transportation Electrification Forward in New York: Considerations for Effective Transportation Electrification Rate Design.* Synapse Energy Economics on behalf of the Natural Resources Defense Council.

Allison, A. and M. Whited. 2018. "Electric Vehicles Still Not Crashing the Grid: Updates from California." Synapse Energy Economics on behalf of the Natural Resources Defense Council.

Fisher, J., M. Whited, T. Woolf, D. Goldberg. 2018. *Utility Investments for Market Transformation: How Utilities Can Help Achieve Energy Policy Goals.* Synapse Energy Economics for Energy Foundation.

Whited, M., T. Woolf. 2018. *Electricity Prices in the Tennessee Valley: Are customers being treated fairly?* Synapse Energy Economics for the Southern Alliance for Clean Energy.

Woolf, T., A. Hopkins, M. Whited, K. Takahashi, A. Napoleon. 2018. *Review of New Brunswick Power's 2018/2019 Rate Case Application*. In the Matter of the New Brunswick Power Corporation and Section 103(1) of the Electricity Act Matter No. 375. Synapse Energy Economics for the New Brunswick Energy and Utilities Board Staff.

Whited, M., T. Vitolo. 2017. Reply comments in District of Columbia Public Service Commission Formal Case No. 1130: *Reply Comments of the Office of the People's Counsel for the District of Columbia Regarding Pepco's Comments on the Office of the People's Counsel's Value of Solar Study.* Synapse Energy Economics. July 24, 2017.

Whited, M., A. Horowitz, T. Vitolo, W. Ong, T. Woolf. 2017. *Distributed Solar in the District of Columbia: Policy Options, Potential, Value of Solar, and Cost-Shifting*. Synapse Energy Economics for the Office of the People's Counsel for the District of Columbia.

Whited, M., E. Malone, T. Vitolo. 2016. *Rate Impacts on Customers of Maryland's Electric Cooperatives: Impacts on SMECO and Choptank Customers*. Synapse Energy Economics for Maryland Public Service Commission.

Woolf, T., M. Whited, P. Knight, T. Vitolo, K. Takahashi. 2016. *Show Me the Numbers: A Framework for Balanced Distributed Solar Policies*. Synapse Energy Economics for Consumers Union.

Whited, M., T. Woolf, J. Daniel. 2016. *Caught in a Fix: The Problem with Fixed Charges for Electricity*. Synapse Energy Economics for Consumers Union.

Lowry, M. N., T. Woolf, M. Whited, M. Makos. 2016. *Performance-Based Regulation in a High Distributed Energy Resources Future*. Pacific Economics Group Research and Synapse Energy Economics for Lawrence Berkley National Laboratory.

Woolf, T., M. Whited, A. Napoleon. 2015-2016. *Comments and Reply Comments in the New York Public Service Commission Case 14-M-0101: Reforming the Energy Vision*. Comments related to Staff's (a) a benefit-costs analysis framework white paper, (b) ratemaking and utility business models white paper, and (c) Distributed System Implementation Plan guide. Synapse Energy Economics on behalf of Natural Resources Defense Council and Pace Energy and Climate Center.

Luckow, P., B. Fagan, S. Fields, M. Whited. 2015. *Technical and Institutional Barriers to the Expansion of Wind and Solar Energy*. Synapse Energy Economics for Citizens' Climate Lobby.

Wilson, R., M. Whited, S. Jackson, B. Biewald, E. A. Stanton. 2015. *Best Practices in Planning for Clean Power Plan Compliance*. Synapse Energy Economics for the National Association of State Utility Consumer Advocates.

Whited, M., T. Woolf, A. Napoleon. 2015. *Utility Performance Incentive Mechanisms: A Handbook for Regulators*. Synapse Energy Economics for the Western Interstate Energy Board.

Stanton, E. A., S. Jackson, B. Biewald, M. Whited. 2014. *Final Report: Implications of EPA's Proposed "Clean Power Plan."* Synapse Energy Economics for the National Association of State Utility Consumer Advocates.

Peterson, P., S. Fields, M. Whited. 2014. *Balancing Market Opportunities in the West: How participation in an expanded balancing market could save customers hundreds of millions of dollars.* Synapse Energy Economics for the Western Grid Group.

Woolf, T., M. Whited, E. Malone, T. Vitolo, R. Hornby. 2014. *Benefit-Cost Analysis for Distributed Energy Resources: A Framework for Accounting for All Relevant Costs and Benefits.* Synapse Energy Economics for the Advanced Energy Economy Institute.

Peterson, P., M. Whited, S. Fields. 2014. *Synapse Comments on FAST Proposals in ERCOT*. Synapse Energy Economics for Sierra Club.

Hornby, R., N. Brockway, M. Whited, S. Fields. 2014. *Time-Varying Rates in the District of Columbia*. Synapse Energy Economics for the Office of the People's Counsel for the District of Columbia, submitted to Public Service Commission of the District of Columbia in Formal Case No. 1114.

Peterson, P., M. Whited, S. Fields. 2014. *Demonstrating Resource Adequacy in ERCOT: Revisiting the ERCOT Capacity, Demand and Reserves Forecasts*. Synapse Energy Economics for Sierra Club – Lone Star Chapter.

Stanton, E. A., M. Whited, F. Ackerman. 2014. *Estimating the Cost of Saved Energy in Utility Efficiency Programs.* Synapse Energy Economics for the U.S Environmental Protection Agency.

Ackerman, F., M. Whited, P. Knight. 2014. "Would banning atrazine benefit farmers?" *International Journal of Occupational and Environmental Health* 20 (1): 61–70.

Ackerman, F., M. Whited, P. Knight. 2013. *Atrazine: Consider the Alternatives*. Synapse Energy Economics for Natural Resources Defense Council (NRDC).

Whited, M., F. Ackerman, S. Jackson. 2013. *Water Constraints on Energy Production: Altering our Current Collision Course.* Synapse Energy Economics for Civil Society Institute.

Whited, M. 2013. *Water Constraints on Energy Production: Altering our Current Collision Course – Policy Brief.* Synapse Energy Economics for Civil Society Institute.

Hurley, D., P. Peterson, M. Whited. 2013. *Demand Response as a Power System Resource: Program Designs, Performance, and Lessons Learned in the United States.* Synapse Energy Economics for Regulatory Assistance Project.

Whited, M., D. White, S. Jackson, P. Knight, E.A. Stanton. 2013. *Declining Markets for Montana Coal*. Synapse Energy Economics for Northern Plains Resource Council.

Woolf, T., M. Whited, T. Vitolo, K. Takahashi, D. White. 2012. *Indian Point Energy Center Replacement Analysis: A Plan for Replacing the Nuclear Plant with Clean, Sustainable, Energy Resources.* Synapse Energy Economics for National Resources Defense Council and Riverkeeper.

Whited, M., K. Charipar, G. Brown. *Demand Response Potential in Wisconsin*. Nelson Institute for Environmental Studies, Energy Analysis & Policy Capstone for the Wisconsin Public Service Commission.

Whited, M. 2010. "Economic Impacts of Irrigation Water Transfers in Uvalde County, Texas." *Journal of Regional Analysis and Policy* 40 (2): 160–170.

Grabow, M., M. Hahn and M. Whited. 2010. *Valuing Bicycling's Economic and Health Impacts in Wisconsin*. Nelson Institute for Environmental Studies, Center for Sustainability and the Global Environment (SAGE) for State Representative Spencer Black.

Whited, M., D. Bernhardt, R. Deitchman, C. Fuchsteiner, M. Kirby, M. Krueger, S. Locke, M. Mcmillen, H.
Moussavi, T. Robinson, E. Schmitz, Z. Schuster, R. Smail, E. Stone, S. Van Egeren, H. Yoshida, Z. Zopp.
2009. *Implementing the Great Lakes Compact: Wisconsin Conservation and Efficiency Measures Report*.
Department of Urban and Regional Planning, University of Wisconsin-Madison, Extension Report 2009-01.

Whited, M. 2009. 2009 Wisconsin Water Fact Sheet. Public Service Commission of Wisconsin.

Whited, M. 2003. Gender, Water, and Trade. International Gender and Trade Network Washington, DC.

TESTIMONY AND COMMENTS

Nova Scotia Utility and Review Board (Matter No. M10176): Direct testimony of Melissa Whited regarding Nova Scotia Power Inc.'s proposed Smart Grid Nova Scotia Solar Garden Rider. On behalf of Counsel to the Nova Scotia Utility and Review Board. August 18, 2021.

Colorado Public Utilities Commission (Proceeding No. 20AL-0432E): Answer testimony of Melissa Whited regarding inclining block rates. On behalf of Energy Outreach Colorado. March 8, 2021.

Maryland Public Service Commission (Case No. 9655): Direct and surrebuttal testimony of Melissa Whited regarding Pepco's proposed multi-year plan and performance incentive mechanisms. On behalf of Maryland Office of People's Counsel. March 3, 2021.

Nova Scotia Utility and Review Board (Matter No. M09777): Direct testimony of Melissa Whited regarding Nova Scotia Power Inc.'s proposed time-varying pricing tariff application. On behalf of Counsel to the Nova Scotia Utility and Review Board. February 24, 2021.

Georgia Public Service Commission (Docket No. 42516): Direct testimony of Melissa Whited and Ben Havumaki regarding Georgia Power's proposal to increase the customer charge for residential customers. On behalf of the Sierra Club. October 17, 2019.

Maine Public Utilities Commission (Docket No. 2018-00171): Direct testimony of Melissa Whited regarding utility incentives for non-wires alternatives. On behalf of Maine Office of the Public Advocate. December 17, 2018.

Rhode Island Public Utilities Commission (Docket No. 4780): Direct testimony of Tim Woolf and Melissa Whited regarding National Grid's Power Sector Transformation proposals. On behalf of the Rhode Island Division of Public Utilities and Carriers. April 28, 2018.

Rhode Island Public Utilities Commission (Docket No. 4770): Direct testimony of Tim Woolf and Melissa Whited regarding National Grid's proposed performance incentive mechanisms, benefit-cost analyses, and request for recovery of costs for its Advanced Metering Functionality study and distributed energy resources enablement investments. On behalf of the Rhode Island Division of Public Utilities and Carriers. April 6, 2018.

Rhode Island Public Utilities Commission (Docket No. 4783): Direct testimony of Tim Woolf and Melissa Whited regarding National Grid's Advanced Metering Functionality Pilot. On behalf of the Rhode Island Division of Public Utilities and Carriers. February 22, 2018.

Virginia State Corporation Commission (Case No. PUR-2017-00044): Direct testimony of Melissa Whited regarding Rappahannock Electric Cooperative's proposed increases to fixed charges for residential customers and small business customers. On behalf of Sierra Club. September 19, 2017.

California Public Utilities Commission (Application 17-01-020, 17-01-021, and 17-01-022): Joint opening testimony with Max Baumhefner and Katherine Stainken on fast charging infrastructure and rates; joint opening testimony with Max Baumhefner and Joel Espino on medium and heavy-duty and fleet charging infrastructure and commercial EV rates; joint opening testimony with Max Baumhefner and Chris King on residential charging infrastructure and rates. Rebuttal testimony on public fast charging rate design, commercial EV rate design, and residential EV rate design. On behalf of Natural Resources Defense Council, the Greenlining Institute, Plug In America, the Coalition of California Utility Employees, Sierra Club, and the Environmental Defense Fund. July 25, August 1, August 7, and September 5, 2017.

New York Public Service Commission (Case 17-E-0238): Direct and rebuttal testimony of Tim Woolf and Melissa Whited regarding Earnings Adjustment Mechanisms proposed by National Grid. On behalf of Advanced Energy Economy Institute. August 25 and September 15, 2017.

Utah Public Service Commission (Docket No. 14-035-114): Direct testimony of Melissa Whited regarding Pacificorp's proposed rates for customers with distributed generation. On behalf of Utah Clean Energy. June 8, 2017.

Texas Public Utilities Commission (SOAH Docket No. 473-17-1764, PUC Docket No. 46449): Crossrebuttal testimony evaluating Southwestern Electric Power Company's proposed revisions to its Distributed Renewable Generation tariff. On behalf of Sierra Club and Dr. Lawrence Brough. May 19, 2017.

Massachusetts Department of Public Utilities (Docket No. 17-05): Direct and surrebuttal testimony of Tim Woolf and Melissa Whited regarding performance-based regulation, the monthly minimum reliability contribution, storage pilots, and rate design in Eversource's petition for approval of rate increases and a performance-based ratemaking mechanism. On behalf of Sunrun and the Energy Freedom Coalition of America, LLC. April 28, 2017 and May 26, 2017.

Public Utilities Commission of Hawaii (Docket No. 2015-0170): Direct testimony regarding Hawaiian Electric Light Company's proposed performance incentive mechanisms. On behalf of the Division of Consumer Advocacy. April 28, 2017.

Massachusetts Department of Public Utilities (Docket No. 15-155): Joint direct and rebuttal testimony with T. Woolf regarding National Grid's rate design proposal. On behalf of Energy Freedom Coalition of America, LLC. March 18, 2016 and April 28, 2016.

Federal Energy Regulatory Commission (Docket No. EC13-93-000): Affidavit regarding potential market power resulting from the acquisition of Ameren generation by Dynegy. On behalf of Sierra Club. August 16, 2013.

Wisconsin Senate Committee on Clean Energy: Joint testimony with M. Grabow regarding the importance of clean transportation to Wisconsin's public health and economy. February 2010.

TESTIMONY ASSISTANCE

Colorado Public Utilities Commission (Proceeding No. 16AL-0048E): Answer testimony of Tim Woolf regarding Public Service Company of Colorado's rate design proposal. On behalf of Energy Outreach Colorado. June 6, 2016.

Nevada Public Utilities Commission (Docket Nos. 15-07041 and 15-07042): Direct testimony on NV Energy's application for approval of a cost of service study and net metering tariffs. On behalf of The Alliance for Solar Choice. October 27, 2015.

Missouri Public Service Commission (Case No. ER-2014-0370): Direct and surrebuttal testimony on the topic of Kansas City Power and Light's rate design proposal. On behalf of Sierra Club. April 16, 2015 and June 5, 2015.

Wisconsin Public Service Commission (Docket No. 05-UR-107): Direct and surrebuttal testimony of Rick Hornby regarding Wisconsin Electric Power Company rate case. On behalf of The Alliance for Solar Choice. August 28, 2014 and September 22, 2014.

Maine Public Utilities Commission (Docket No. 2013-00519): Direct testimony of Richard Hornby and Martin R. Cohen on GridSolar's smart grid coordinator petition. On behalf of the Maine Office of the Public Advocate. August 28, 2014.

Maine Public Utilities Commission (Docket No. 2013-00168): Direct and surrebuttal testimony of Tim Woolf regarding Central Maine Power's request for an alternative rate plan. December 12, 2013 and March 21, 2014.

Massachusetts Department of Public Utilities (Docket No. 14-04): Comments of Massachusetts Department of Energy Resources on investigation into time varying rates. On behalf of the Massachusetts Department of Energy Resources. March 10, 2014.

State of Nevada, Public Utilities Commission of Nevada (Docket No. 13-07021): Direct testimony of Frank Ackerman regarding the proposed merger of NV Energy, Inc. and MidAmerican Energy Holdings Company. On behalf of the Sierra Club. October 24, 2013.

PRESENTATIONS

Whited, M. 2021. "Evolution of Net Metering in Hawaii." Presentation to the NARUC Winter Policy Summit. February 4.

Biewald, B., M. Whited. "Evaluating and Shaping the Impacts of EVs on Customers: Tools for Consumer Advocates." Presentation at the NASUCA Mid-Year Meeting, June 19, 2019.

Whited, M. 2019. "Performance Incentive Mechanisms." Presentation to the 2019 Pennsylvania Public Utility Law Conference, Harrisburg, PA. May 31.

Whited, M. 2018. "Smart Non-Residential Rate Design: Designing for the Future." Presentation to the NARUC Annual Meeting, Orlando, FL. November 11.

Whited, M. 2016. "Energy Policy for the Future: Trends and Overview." Presentation to the National Conference of State Legislators' Capitol Forum, Washington, DC, December 8.

Whited, M. 2016. "Ratemaking for the Future: Trends and Considerations." Presentation to the Midwest Governors' Association, St. Paul, MN, July 14.

Whited, M. 2016. "Performance Based Regulation." Presentation to the NARUC Rate Design Subcommittee. September 12.

Whited, M. 2016. "Demand Charges: Impacts and Alternatives (A Skeptic's View)." EUCI 2nd Annual Residential Demand Charges Summit, Phoenix, AZ, June 7.

Whited, M. 2016. "Performance Incentive Mechanisms." Presentation to the National Governors Association, Wisconsin Workshop, Madison WI, March 29.

Whited, M., T. Woolf. 2016. "Caught in a Fix: The Problem with Fixed Charges for Electricity." Webinar presentation sponsored by Consumers Union, February.

Whited, M. 2015. "Performance Incentive Mechanisms." Presentation to the National Governors Association, Learning Lab on New Utility Business Models & the Electricity Market Structures of the Future, Boston, MA, July 28. Whited, M. 2015. "Rate Design: Options for Addressing NEM Impacts." Presentation to the Utah Net Energy Metering Workgroup, Workshop 4, Salt Lake City, UT, July 8.

Whited, M. 2015. "Performance Incentive Mechanisms." Presentation to the e21 Initiative, St. Paul, MN, May 29.

Whited, M., F. Ackerman. 2013. "Water Constraints on Energy Production: Altering our Current Collision Course." Webinar presentation sponsored by Civil Society Institute, September 12.

Whited, M., G. Brown, K. Charipar. 2011. "Electricity Demand Response Programs and Potential in Wisconsin." Presentation to the Wisconsin Public Service Commission, April.

Whited, M. 2010. "Economic Impact of Irrigation Water Transfers in Uvalde County, Texas." Presentation at the Mid-Continent Regional Science Association's 41st Annual Conference/IMPLAN National User's 8th Biennial Conference in St. Louis, MO, June

Whited, M., M. Grabow, M. Hahn.2009. "Valuing Bicycling's Economic and Health Impacts in Wisconsin." Presentation before the Governor's Coordinating Council on Bicycling, December.

Whited, M., D. Sheard. 2009. "Water Conservation Initiatives in Wisconsin." Presentation before the Waukesha County Water Conservation Coalition Municipal Water Conservation Subgroup, July.

Resume updated November 2021

Ben Havumaki, Senior Associate

Synapse Energy Economics I 485 Massachusetts Avenue, Suite 3 I Cambridge, MA 02139 I 617-453-7055 bhavumaki@synapse-energy.com

PROFESSIONAL EXPERIENCE

Synapse Energy Economics, Inc., Cambridge, MA. *Senior Associate,* June 2021 – Present; *Associate,* July 2018 – June 2021.

- Provides research, analysis, and consulting services, frequently in the context of regulated proceedings, with expertise in the following topic areas:
 - <u>Rate design and performance-based regulation</u>: Evaluates utility proposals and formulates new recommendations based on best practices and informed by innovative emerging models. Evaluates rate designs for consistency with policy goals using quantitative modeling and jurisdictional data. Provides expert testimony and other formal input in the context of regulated proceedings.
 - <u>Benefit-cost analysis</u>: Evaluates utility BCAs with reference to best practices, including emerging standards for grid modernization and distributed energy resources. Engaged in the development of new BCA practices in the arenas of grid modernization and resilience.
 - <u>Macroeconomic analysis</u>: Uses the IMPLAN model in conjunction with primary research and analysis and core economic principles to evaluate the GDP, job, and income implications of major grid changes.
- Contributing author to reports covering a range of topics including plant decommissioning, transportation electrification, energy storage and other new technologies, and growth in solar photovoltaic (PV) adoption.

University of Massachusetts Boston, MA. Graduate Teaching and Research Assistant, 2017 – 2018

- Led ecosystem-valuation workshops for EPA-funded initiative to shape resilience policymaking in the Great Bay region of New Hampshire.
- Served as a teaching assistant in graduate econometrics course and undergraduate macroeconomics and urban economics courses.

Notre Dame Education Center and Jewish Vocational Service Boston, MA. Math Instructor, 2012 – 2017

• Taught foundational math to adult learners and standard high school math curriculum to students in non-traditional school program.

The City of New York New York, NY. Senior Investigator, 2007 – 2010

• Investigated complaints against officers of the New York City Police Department and issued disciplinary recommendations in formal reports to the agency board.

EDUCATION

University of Massachusetts, Boston, Boston, MA Master of Arts in Applied Economics, 2018 *Recipient of the Arthur MacEwan Award for Excellence in Political Economy*

McGill University, Montreal, Quebec Bachelor of Arts in History, 2007

PUBLICATIONS

Takahashi, K., T. Woolf, B. Havumaki, D. White, D. Goldberg, S. Kwok, A. Takasugi. 2021. *Missed Opportunities: The Impacts of Recent Policies on Energy Efficiency Programs in Midwestern States.* Synapse Energy Economics for the Midwest Energy Efficiency Alliance.

Kallay, J., A. Napoleon, J. Hall, B. Havumaki, A. Hopkins, M. Whited, T. Woolf, J. Stevenson, R. Broderick, R. Jeffers, B. Garcia. 2021. *Regulatory Mechanisms to Enable Investments in Electric Utility Resilience*. Synapse Energy Economics for Sandia National Laboratories.

Kallay, J., S. Letendre, T. Woolf, B. Havumaki, S. Kwok, A. Hopkins, R. Broderick, R. Jeffers, K. Jones, M. DeMenno. 2021. *Application of a Standard Approach to Benefit-Cost Analysis for Electric Grid Resilience Investments*. Synapse Energy Economics for Sandia National Laboratories.

Kallay, J., A. Napoleon, B. Havumaki, J. Hall, C. Odom, A. Hopkins, M. Whited, T. Woolf, M. Chang, R. Broderick, R. Jeffers, B. Garcia. 2021. *Performance Metrics to Evaluate Utility Resilience Investments.* Synapse Energy Economics for Sandia National Laboratories.

Woolf, T., D Bhandari, C. Lane, J. Frost, B. Havumaki, S. Letendre, C. Odom. 2021. *Benefit-Cost Analysis of the Rhode Island Community Remote Net Metering Program.* Synapse Energy Economics for the Rhode Island Division of Public Utilities and Carriers.

Woolf, T., B. Havumaki, S. Letendre, C. Odom, J. Hall. 2021. *Macroeconomic Impacts of the Rhode Island Community Remote Net Metering Program.* Synapse Energy Economics for the Rhode Island Division of Public Utilities and Carriers.

Kallay, J., A. Hopkins, A. Napoleon, B. Havumaki, J. Hall, M. Whited, M. Chang., R. Broderick, R. Jeffers, K. Jones, M. DeMenno. 2021. *The Resilience Planning Landscape for Communities and Electric Utilities*. Synapse Energy Economics for Sandia National Laboratories.

Woolf, T., L. Schwartz, B. Havumaki, D. Bhandari, M. Whited. 2021. *Benefit-Cost Analysis for Utility-Facing Grid Modernization Investments: Trends, Challenges, and Considerations.* Prepared by Lawrence Berkeley National Laboratory and Synapse Energy Economics for the Grid Modernization Laboratory Consortium of the U.S. Department of Energy. Letendre, S., E. Camp, J. Hall, B. Havumaki, A. Hopkins, C. Odom, S. Hackel, M. Koolbeck, M. Lord, L. Shaver, X. Zhou. 2020. *Energy Storage in Iowa: Market Analysis and Potential Economic Impact.* Prepared by Synapse Energy Economics and Slipstream for Iowa Economic Development Authority.

Camp, E., B. Havumaki, T. Vitolo, M. Whited. 2020. *Future of Solar PV in the District of Columbia: Feasibility, Projections, and Rate Impacts of the District's Expanded RPS.* Synapse Energy Economics for the District of Columbia Office of the People's Counsel.

Whited, M., J. Frost, B. Havumaki. 2020. *Best Practices for Commercial and Industrial EV Rates*. A guide prepared by Synapse Energy Economics for Natural Resources Defense Council.

Knight, P., E. Camp, D. Bhandari, J. Hall, M. Whited, B. Havumaki, A. Allison, N. Peluso, T. Woolf. 2019. *Making Electric Vehicles Work for Utility Customers: A Policy Handbook for Consumer Advocates.* Synapse Energy Economics for the Energy Foundation.

Camp, E., A. Hopkins, D. Bhandari, N. Garner, A. Allison, N. Peluso, B. Havumaki, D. Glick. 2019. *The Future of Energy Storage in Colorado: Opportunities, Barriers, Analysis, and Policy Recommendations.* Synapse Energy Office for the Colorado Energy Office.

Napoleon, A., B. Havumaki, D. Bhandari, T. Woolf. 2019. *Review of New Brunswick Power's Application for Approval of an Advanced Metering Infrastructure Capital Project: In the Matter of the New Brunswick Power Corporation and Section 107 of the Electricity Act; Matter No. 452.* Synapse Energy Economics for the New Brunswick Energy and Utilities Board Staff.

Whited, M., B. Havumaki. 2019. *GD2019 04 M: DC DOEE Comments Responding to Notice of Inquiry*. Synapse Energy Economics for the District of Columbia Department of Energy and Environment.

Timmons, D., A.Z. Dhunny, K. Elahee, B. Havumaki, M. Howells, A. Khoodaruth, A.K. Lema-Driscoll, M.R. Lollchund, Y.K. Ramgolam, S.D.D.V. Rughooputh, D. Surroop. 2019. *Cost Minimization for Fully Renewable Electricity Systems: A Mauritius Case Study.* Energy Policy. 133, 110895.

Napoleon, A., T. Woolf, K. Takahashi, J. Kallay, B. Havumaki. 2019. *Comments in the New York Public Service Commission Case 18-M-0084: In the Matter of a Comprehensive Energy Efficiency Initiative.* Comments related to NY Utilities report regarding energy efficiency budgets and targets, collaboration, heat pump technology, and low- and moderate-income customers and requests for approval. Synapse Energy Economics on behalf of Natural Resources Defense Council.

Havumaki, B., E. Camp, B. Fagan, D. Bhandari. 2019. *Planning for the Future at the CTGS Site: Report on the Decommissioning Proposal of Maritime Electric*. Synapse Energy Economics for Carr, Stevenson, and MacKay.

Havumaki, B., J. Kallay, K. Takahashi, T. Woolf. 2019. *All-Electric Solid Oxide Fuel Cells as an Energy Efficiency Measure.* Synapse Energy Economics for Bloom Energy.

Takahashi, K., B. Havumaki, J. Kallay, T. Woolf. 2019. *Bloom Fuel Cells: A Cost-Effectiveness Brief.* Synapse Energy Economics for Bloom Energy.

Havumaki, B., T. Vitolo. 2019. *Comments to the Mississippi Public Service Commission: In response to the report of Acadian Consulting LLC.* Synapse Energy Economics for Gulf States Renewable Energy Industries Association, Sierra Club, and 25 x '25.

Whited, M., J. Kallay, D. Bhandari, B. Havumaki. 2018. *Driving Transportation Electrification Forward in Pennsylvania: Considerations for Effective Transportation Electrification Ratemaking*. Synapse Energy Economics for Natural Resources Defense Council.

Havumaki, B. 2018. *Hydropower in the Decarbonized Mauritian Grid: A Prospective Study*. Master's Thesis.

Havumaki, B., G. Mavrommati, C. Makriyannis. 2018. *World Bank Water Management, Sanitation, and Conservation Projects in Developing Countries: A Guide to Cost-Benefit Analysis.* Report for the World Bank.

TESTIMONY

Hawaii Public Utilities Commission (Docket No. 2018-0088): Panel testimony by Ben Havumaki regarding performance incentive mechanisms. On behalf of the Division of Consumer Advocacy, Department of Commerce and Consumer Affairs. September 21, 2020.

Georgia Public Service Commission (Docket No. 42516): Direct Testimony of Melissa Whited and Ben Havumaki. On behalf of Sierra Club. October 17, 2019.

Resume updated August 2021

State of New Hampshire Public Utilities Commission Concord

Report of Proposed Rate Changes (\$000)

Ur	nitil I	Energy	Systems,	Inc.
-				

Tariff No. 3

Date Filed: April 2, 2021 Effective Date: May 2, 2021

(A) Class of Service	(B) Effect of Proposed	(C) Average Number of	(D) Annual kWh	(E) Annual kW / kVA	(F) Annual Distribution Charge Revenue	(G) Total Revenue Under Present	(H) Proposed Distribution	(I) Annual Distribution Charge Revenue	(J) % Change Distribution Only	(K) Change in Reconciling Mechanism Revenue	(L) Total Revenue Under Proposed	(M) Proposed Change	(N) Percent Change
	<u>Change</u>	Customers	<u>Sales</u>	<u>Sales</u>	Under Present Rates	Rates	<u>Change</u>	Under Proposed Rates	<u>Revenue</u>			Revenue	<u>Revenue</u>
Domestic D	Increase	67,940	515,968,592		\$31,582	\$102,471	\$9,445	\$41,027	29.91%	-\$1,175	\$110,741	\$8,270	8.1%
General Service - G2	Increase	10,559	312,134,498	1,234,532	\$16,655	\$57,627	\$1,715	\$18,371	10.30%	-\$711	\$58,631	\$1,004	1.7%
G2 - kWh Meter	Increase	379	438,744		\$87	\$145	\$9	\$96	10.33%	-\$1	\$153	\$8	5.5%
G2 - Quick Recovery Water Heat and/or Space Heat	Increase	257	4,483,579		\$174	\$763	\$18	\$192	10.33%	-\$10	\$771	\$8	1.0%
Subtotal G2	Increase	11,195	317,056,821	1,234,532	\$16,916	\$58,535	\$1,742	\$18,659	10.30%	-\$722	\$59,555	\$1,020	1.7%
Large General Service G1	Increase	168	319,767,459	1,000,283	\$7,736	\$49,323	\$801	\$8,537	10.35%	-\$728	\$49,395	\$73	0.1%
Outdoor Lighting OL	Increase	1,549	7,625,729		\$1,815	\$2,816	\$0	\$1,815	0.02%	-\$17	\$2,799	(\$17)	(0.6%)
Total	Increase	80,852	1,160,418,601	2,234,816	\$58,050	\$213,145	\$11,989	\$70,038	20.65%	-\$2,643	\$222,491	\$9,346	4.4%

(G) Present rates including delivery and default service rates effective December 1, 2020. Assumes all customers take default energy service. G1 default service rate of \$0.08581 (avg Dec '20 - Apr '21) used for G1.
 (H) Total amount differs from revenue deficiency in RevReq-1 by \$3k due to rounding.

(H) Class proportion of proposed changes in EDC and SBC.
 (G) Column G + Column H + Column K.
 (H) Column L - Column G

(I) Column M / Column G

Signed by: /s/ Robert B Hevert Title: Sr. Vice President

11.2 Distribution Classification

The classification of distribution infrastructure has been one of the most controversial elements of utility cost allocation for more than a half-century. Bonbright devoted an entire section to a discussion of why none of the methods then commonly used was defensible

none of the methods then commonly used was defensible (1961, pp. 347-368). In any case, traditional methods have divided up distribution costs as either demand-related or customer-related, but newly evolving methods can fairly allocate a substantial portion of these costs on an energy basis.

Distribution equipment can be usefully divided into three groups:

- Shared distribution plant, in which each item serves multiple customers, including substations and almost all spans of primary lines.
- Customer-related distribution plant that serves only one customer, particularly traditional meters used solely for billing.
- A group of equipment that may serve one customer in some cases or many customers in others, including transformers, secondary lines and service drops.
- 140 Alternatively, all service drops may be treated as customer-related and the sharing of service drops can be reflected in the allocation factor. As discussed in Section 5.2, treating multifamily housing as a separate class facilitates crediting those customers with the savings from shared service drops, among other factors.
- 141 The Arkansas Public Service Commission found that "accounts 364-368 should be allocated to the customer classes using a 100% demand methodology and ... that [large industrial consumer parties] do not provide sufficient evidence to warrant a determination that these accounts reflect a customer component necessary for allocation purposes" (2013, p. 126).
- 142 California classifies all lines (accounts 364 through 367) as demandrelated for the calculation of marginal costs, while classifying transformers (Account 368) as customer-related with different costs per customer for each customer class, reflecting the demands of the various classes.
- 143 In 2018, the state utility commission affirmed a decision by an administrative law judge that rejected the **zero-intercept approach** and classified FERC accounts 364 through 368 as 100% demand-related (Colorado Public Utilities Commission, 2018, p. 16).
- 144 "As it has in the past, ... the [Illinois Commerce] Commission rejects the minimum distribution or zero-intercept approach for purposes of allocating distribution costs between the customer and demand functions in this case. In our view, the coincident peak method is consistent with the fact that distribution systems are designed primarily to serve electric demand. The Commission believes that attempts to separate the costs of connecting customers to the electric distribution system from the

Newly evolving methods can fairly allocate a substantial portion of distribution costs on an energy basis.

The basic customer method for classification counts only customer-specific plant as customer-related and the entire shared distribution network as demand- or energyrelated. For relatively dense service territories, in cities and suburbs, this would be only the traditional meter and a portion of service drop costs.¹⁴⁰ For very thinly settled territories, particularly rural cooperatives, customer-specific plant may include some portion of transformer costs and the percentage of the primary system that consists of line extensions to individual customers. Many jurisdictions have mandated or accepted the basic customer classification approach, sometimes including a portion of transformers in the customer cost. These jurisdictions include Arkansas,¹⁴¹ California,¹⁴² Colorado,¹⁴³ Illinois,¹⁴⁴ Iowa,¹⁴⁵ Massachusetts,¹⁴⁶ Texas¹⁴⁷ and Washington.¹⁴⁸

The basic customer method for classification is by far the most equitable solution for the vast majority of utilities.

costs of serving their demand remain problematic" (Illinois Commerce Commission, 2008, p. 208).

- 145 According to 199 lowa Administrative Code 20.10(2)e, "customer cost component estimates or allocations shall include only costs of the distribution system from and including transformers, meters and associated customer service expenses." This means that all of accounts 364 through 367 are demand-related. Under this provision, the lowa Utilities Board classifies the cost of 10 kVA per transformer as customer-related but reduces the cost that is assigned to residential and small commercial customers to reflect the sharing of transformers by multiple customers.
- 146 "Plant items classified as customer costs included only meters, a portion of services, street lighting plant, and a portion of labor-related general plant" (La Capra, 1992, p. 15). See also Gorman, 2018, pp. 13-15.
- 147 Texas has explicitly adopted the basic customer approach for the purposes of rate design: "Specifically, the customer charge shall be comprised of costs that vary by customer such as metering, billing and customer service" (Public Utility Commission of Texas, 2000, pp. 5-6). But it has followed this rule in practice for cost allocation as well.
- 148 "The Commission finds that the Basic Customer method represents a reasonable approach. This method should be used to analyze distribution costs, regardless of the presence or absence of a decoupling mechanism. We agree with Commission Staff that proponents of the Minimum System approach have once again failed to answer criticisms that have led us to reject this approach in the past. We direct the parties not to propose the Minimum System approach in the future unless technological changes in the utility industry emerge, justifying revised proposals" (Washington Utilities and Transportation Commission, 1993, p. 11).

For certain rural utilities, this may be reasonable under the conceptual view that the size of distribution components (e.g., the diameter of conductors or the capacity of transformers) is load-related, but the number and length of some types of equipment is customer-related. In some rural service territories, the basic customer cost may require nearly a mile of distribution line along the public way as essentially an extended service drop.

However, more general attempts by utilities to include a far greater portion of shared distribution system costs as customer-related are frequently unfair and wholly unjustified. These methods include straight fixed/variable approaches where all distribution costs are treated as customer-related (analogous to the misuse of the concept of fixed costs in classifying generation discussed in Section 9.1) and the more nuanced minimum system and zero-intercept approaches included in the 1992 NARUC cost allocation manual.

The minimum system method attempts to calculate the cost (in constant dollars) if the utility's installed units (transformers, poles, feet of conductors, etc.) were each the minimum-sized unit of that type of equipment that would ever be used on the system. The analysis asks: How much would it have cost to install the same number of units (poles, feet of conductors, transformers) but with the size of the units installed limited to the current minimum unit normally installed? This minimum system cost is then designated as customer-related, and the remaining system cost is designated as demand-related. The ratio of the costs of the minimum system to the actual system (in the same year's dollars) produces a percentage of plant that is claimed to be customer-related.

This minimum system analysis does not provide a reliable basis for classifying distribution investment and vastly overstates the portion of distribution that is customer-related. Specifically, it is unrealistic to suppose that the mileage of the shared distribution system and the number of physical units are customer-related and that only the size of the components is demand-related, for at least eight reasons.

Much of the cost of a distribution system is required to Τ. cover an area and is not sensitive to either load or customer number. The distribution system is built to cover an area because the total load that the utility expects to serve will justify the expansion into that area. Serving many customers in one multifamily building is no more expensive than serving one commercial customer of the same size, other than metering. The shared distribution cost of serving a geographical area for a given load is roughly the same whether that load is from concentrated commercial or dispersed residential customers along a circuit of equivalent length and hence does not vary with customer number.¹⁴⁹ Bonbright found that there is "a very weak correlation between the area (or the mileage) of a distribution system and the number of customers served by the system." He concluded that "the inclusion of the costs of a minimum-sized distribution system among the customer-related costs seems ... clearly indefensible. [Cost analysts are] under impelling pressure to fudge their cost apportionments by using the category of customer costs as a dumping ground" (1961, p. 348).

^{2.} The minimum system approach erroneously assumes that the minimum system would consist of the same number of units (e.g., number of poles, feet of conductors) as the actual system. In reality, load levels help determine the number of units as well as their size. Utilities build an additional feeder along the route of an existing feeder (or even on the same poles); loop a second feeder to the end of an existing line to pick up some load from the existing line; build an additional feeder in parallel with an existing feeder to pick up the load of some of its branches; and upgrade feeders from single-phase to three-phase. As secondary load grows, the utility typically will add transformers, splitting smaller customers among the existing and new transformers.150 Some other feeder construction is designed to improve reliability (e.g., to interconnect feeders with automatic switching to reduce the number of customers affected by outages and outage duration).

¹⁴⁹ As noted above, for some rural utilities, particularly cooperatives that extend distribution without requiring that the extension be profitable, a portion of the distribution system may effectively be customer-specific.

¹⁵⁰ Adding transformers also reduces the length of the secondary lines from the transformers to the customers, reducing losses, voltage drop or the required gauge of the secondary lines.

- 3. Load can determine the type of equipment installed as well. When load increases, electric distribution systems are often relocated from overhead to underground (which is more expensive) because the weight of lines required to meet load makes overhead service infeasible. Voltages may also be increased to carry more load, requiring early replacement of some equipment with more expensive equipment (e.g., new transformers, increased insulation, higher poles to accommodate higher voltage or additional circuits). Thus, a portion of the extra costs of moving equipment underground or of newer equipment may be driven in part by load.
- 4. The "minimum system" would still meet a large portion of the average residential customer's demand requirements. Using a minimum system approach requires reducing the demand measure for each class or otherwise crediting the classes with many customers for the load-carrying capability of the minimum system (Sterzinger, 1981, pp. 30-32).
- 5. Minimum system analyses tend to use the current minimum-sized unit typically installed, not the minimum size ever installed or available. The current minimum unit is sized to carry expected demand for a large percentage of customers or situations. As demand has risen over time, so has the minimum size of equipment installed. In fact, utilities usually stop stocking some less expensive small equipment because rising demand results in very rare use of the small equipment and the cost of maintaining stock is no longer warranted.¹⁵¹ However, the transformer industry could produce truly minimum-sized utility transformers, the size of those used for cellular telephone chargers, if there were a demand for these.
- 6. Adding customers without adding peak demand or serving new areas does not require any additional poles or conductors. For example, dividing an existing home into two dwelling units increases the customer count but likely adds nothing in utility investment other than a second meter. Converting an office building from one large tenant to a dozen small offices similarly increases customer number without increasing shared distribution

costs. And the shared distribution investment on a block with four large customers is essentially the same as for a block with 20 small customers with the same load characteristics. If an additional service is added into an existing street with electrical service, there is usually no need to add poles, and it would not be reasonable to assume any pole savings if the number of customers had been half the actual number.

- 7. Most utilities limit the investment they will make for low projected sales levels, as we also discuss in Section 15.2, where we address the relationship between the utility line extension policy and the utility cost allocation methodology. The prospect of adding revenues from a few commercial customers may induce the utility to spend much more on extending the distribution system than it would invest for dozens of residential customers.
- 8. Not all of the distribution system is embedded in rates, since some customers pay for the extension of the system with **contributions in aid of construction**, as discussed in Section 15.2. Factoring in the entire length of the system, including the part paid for with these contributions, overstates the customer component of ratepayer-funded lines.

Thus, the frequent assumption that the number of feet of conductors and the number of secondary service lines is related to customer number is unrealistic. A piece of equipment (e.g., conductor, pole, service drop or meter) should be considered customer-related only if the removal of one customer eliminates the need for the unit. The number of meters and, in most cases, service drops is customer-related, while feet of conductors and number of poles are almost entirely load-related. Reducing the number of customers, without reducing area load, will only rarely affect the length of lines or the number of poles or transformers. For example, removing one customer will avoid

¹⁵¹ For example, in many cases, utilities that make an allocation based on a minimum system use 10-kVA transformers, even though they installed 3-kVA or 5-kVA transformers in the past. Some utilities also have used conductor sizes and costs significantly higher than the actual minimum conductor size and cost on their systems.

overhead distribution equipment only under several unusual circumstances.¹⁵² These circumstances represent a very small part of the shared distribution cost for the typical urban or suburban utility, particularly since many of the most remote customers for these utilities might be charged a contribution in aid of construction. These circumstances may be more prevalent for rural utilities, principally cooperatives.

The related zero-intercept method attempts to extrapolate from the cost of actual equipment (including actual minimumsized equipment) to the cost of hypothetical equipment that carries zero load. The zero-intercept method usually involves statistical regression analysis to decompose the costs of distribution equipment into customer-related costs and costs that vary with load or size of the equipment, although some utilities use labor installation costs with no equipment. The idea is that this procedure identifies the amount of equipment required to connect existing customers that is not load-related (a zero-kVA transformer, a zero-ampere conductor or a pole that is zero feet high). The zero-intercept regression analysis is so abstract that it can produce a wide range of results, which vary depending on arcane statistical methods and the choice of types of equipment to include or exclude from an equation. As a result, the zero-intercept method is even less realistic than the minimum system method.

The best practice is to determine customer-related costs using the basic customer method, then use more advanced techniques to split the remainder of shared distribution system costs as energy-related and demand-related. Energy use, especially in high-load hours and in off-peak hours on high-load days, affects distribution investment and outage costs in the following ways:

- The fundamental reason for building distribution systems is to deliver energy to customers, not simply to connect them to the grid.
- The number and extent of overloads determines the life of the insulation on lines and in transformers (in both

substations and line transformers) and hence the life of the equipment. A transformer that is very heavily loaded for a couple of hours a year and lightly loaded in other hours may last 40 years or more until the enclosure rusts away. A similar transformer subjected to the same annual peaks, but also to many smaller overloads in each year, may burn out in 20 years.

- All energy in high-load hours, and even all hours on high-load days, adds to heat buildup and results in sagging overhead lines, which often defines the thermal limit on lines; aging of insulation in underground lines and transformers; and a reduction the ability of lines and transformers to survive brief load spikes on the same day.
- Line losses depend on load in every hour (marginal line losses due to another kWh of load greatly exceed the average loss percentage in that hour, and losses at peak loads dramatically exceed average losses).¹⁵³ To the extent that a utility converts a distribution line from single-phase to three-phase, selects a larger conductor or increases primary voltage to reduce losses, the costs are primarily energy-related.
- Customers with a remote need for power only a few hours per year, such as construction sites or temporary businesses like Christmas tree lots, will often find non-utility solutions to be more economical. But when those same types of loads are located along existing distribution lines, they typically connect to utility service if the utility's connection charges are reasonable.

A portion of distribution costs can thus be classified to energy, or the demand allocation factor can be modified to reflect energy effects.

The average-and-peak method, discussed in Section 9.1 in the context of generation classification, is commonly used by natural gas utilities to classify distribution mains and other shared distribution plant.¹⁵⁴ This approach recognizes that a portion of shared distribution would be needed even if all

¹⁵² These circumstances are: (1) if the customer would have been the farthest one from the transformer along a span of secondary conductor that is not a service drop; (2) if the customer is the only one served off the last pole at the end of a radial primary feeder, a pole and a span of secondary, or a span of primary and a transformer; and (3) if several poles are required solely for that customer.

¹⁵³ For a detailed analysis of the measurement and valuation of marginal line losses, see Lazar and Baldwin (2011).

¹⁵⁴ See *Gas Distribution Rate Design Manual* from the National Association of Regulatory Utility Commissioners (1989, pp. 27-28) as well as more recent orders from the Minnesota Public Utilities Commission describing the range of states that use basic customer and average-and-peak methods for natural gas cost allocation (2016, pp. 53-54) and the Michigan Public Service Commission affirming the usage of the average-and-peak method (2017, pp. 113-114).

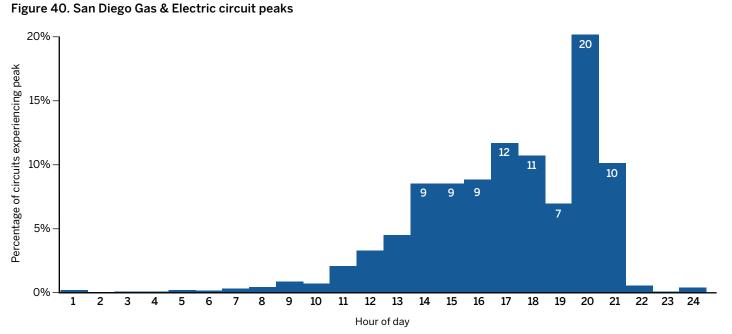
REGULATORY ASSISTANCE PROJECT (RAP)®

customers used power at a 100% load factor, while other costs are incurred to upsize the system to meet local peak demands. The same approach may have a place in electric distribution system classification and allocation, with something over half the basic infrastructure (poles, conductors, conduit and transformers) classified to energy to reflect the importance of energy use in justifying system coverage and the remainder to demand to reflect the higher cost of sizing equipment to serve a load that isn't uniform.

Nearly every electric utility has a line extension policy that dictates the circumstances under which the utility or a new customer must pay for an extension of service. Most of these provide only a very small investment by the utility in shared facilities such as circuits, if expected customer usage is very small, but much larger utility investment for large added load. Various utilities compute the allowance for line extensions in different ways, which are usually a variant of one of the following approaches:

- The credit equals a multiple of revenue. For example, Otter Tail Power Co. in Minnesota will invest up to three times the expected annual revenue, with the customer bearing any excess (Otter Tail Power Co., 2017, Section 5.04). Xcel Energy's Minnesota subsidiary uses 3.5 times expected annual revenue for nonresidential customers (Northern States Power Co.-Minnesota, 2010, Sheet 6-23). Other utilities base their credits on expected nonfuel revenue or the distribution portion of the tariff; on different periods of revenue; and on either simple total revenue or present value of revenue.155 These are clearly usage-related allowances that, in turn, determine how much cost for distribution circuits is reflected in the utility revenue requirement. Applying this logic, all shared distribution plant should thus be classified as usage-related, and none of the shared distribution system should be customer-related.
- The credit is the actual extension cost, capped at a fixed value. For example, Minnesota Power pays up to \$850 for the cost of extending lines, charges \$12 per foot for

costs over \$850 and charges actual costs for extensions over 1,000 feet (Minnesota Power, 2013, p. 6). Xcel Energy's Colorado subsidiary gives on-site construction allowances of \$1,659 for residential customers, \$2,486 for small commercial, \$735 per kW for other secondary nonresidential and \$680 per kW for primary customers (Public Service Company of Colorado, 2018, Sheet R226). The company describes these allowances as "based on two and three-quarters (2.75) times estimated annual non-fuel revenue" — a simplified version of the revenue approach.¹⁵⁶


The credit is determined by distance. Xcel Energy's Minnesota subsidiary includes the first 100 feet of line extension for a residential customer into rate base, with the customer bearing the cost for any excess length (Northern States Power Co.-Minnesota, 2010, Sheet 6-23). Green Mountain Power applies a credit equal to the cost of 100 feet of overhead service drop but no costs for poles or other equipment (Green Mountain Power, 2016, Sheet 148). The portion of the line extensions paid by the utility might be thought of as customer-related, with some caveats. First, the amount of the distribution system that was built out under this provision is almost certainly much less than 100 feet times the number of residential customers. Second, these allowances are often determined as a function of expected revenue, as in the Xcel Colorado example, and thus are usage-related.

If the line extension investment is tied to revenue (and most revenue is associated with usage-related costs, such as fuel, purchased power, generation, transmission and substations), then the resulting investment should be classified and allocated on a usage basis. The cost of service study should ensure that the costs customers prepay are netted out (including not just the costs but the footage of lines or excess costs of poles and transformers if a minimum system method is used) before classifying any distribution costs as customer-related.

¹⁵⁵ California sets electric line extension allowances at expected net distribution revenue divided by a cost of service factor of roughly 16% (California Public Utilities Commission, 2007, pp. 8-9).

¹⁵⁶ The company also has the option of applying the 2.75 multiple directly (Public Service Company of Colorado, 2018, Sheet R212).

150 | ELECTRIC COST ALLOCATION FOR A NEW ERA

Source: Fang, C. (2017, January 20). Direct testimony on behalf of San Diego Gas & Electric. California Public Utilities Commission Application No. 17-01-020

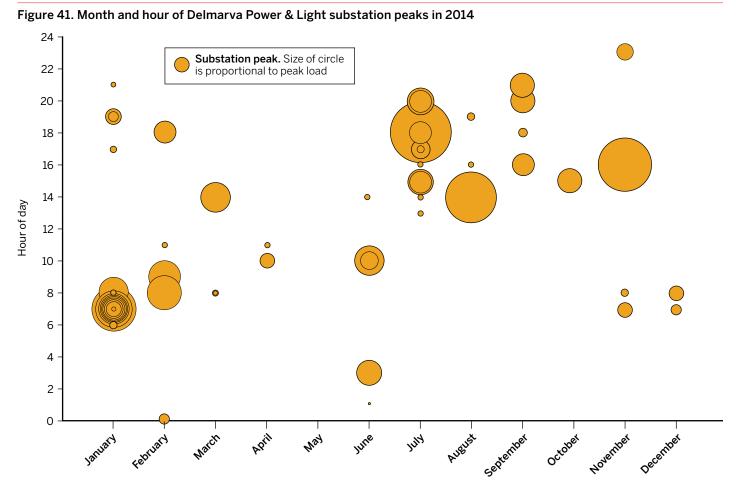
11.3 Distribution Demand Allocators

In any traditional study, a significant portion of distribution plant is classified as demand-related. A newer hourly allocation method may omit this step, assigning distribution costs to all hours when the asset (or a portion of the cost of the asset) is required for service.

For demand-related costs, class NCP is commonly, but often inappropriately, used for allocation. This allocator would be appropriate if each component overwhelmingly served a single class, if the equipment peaks occurred roughly at the time of the class peak, and if the sizing of distribution equipment were due solely to load in a single hour. But to the contrary, most substations and many feeders serve several tariffs, in different classes, and many tariff codes.¹⁵⁷

11.3.1 Primary Distribution Allocators

Customers in a single class, in different areas and served by different substations and feeders, may experience peak loads at different times. Figure 40 shows the hours when each of San Diego Gas & Electric's distribution circuits experienced peak loads (Fang, 2017, p. 21). The peaks are clustered between the early afternoon (on circuits that are mostly commercial) and the early evening (mostly residential), while other circuits experience their peaks at a wide variety of hours.


Figure 41 on the next page shows the distribution of substation peaks for Delmarva Power & Light over a period of one year (Delmarva Power & Light, 2016). The area of each bubble is proportional to the peak load on the station. Clearly, no one peak hour (or even a combination of monthly peaks) is representative of the class contribution to substation peaks.

The peaks for substations, lines and other distribution equipment do not necessarily align with the class NCPs. Indeed, even if all the major classes are summer peaking, some of the substations and feeders may be winter peaking, and vice versa. Even within a season, substation and feeder peaks will be distributed to many hours and days.

Although load levels drive distribution costs, the maximum load on each piece of equipment is not the only important load. As explained in Subsection 5.1.3, increased

¹⁵⁷ Some utilities design their substations so that each feeder is fed by a single transformer, rather than all the feeders being served by all the transformers at the substation. In those cases, the relevant loads (for timing and class mix) are at the transformer level, rather than the entire substation.

REGULATORY ASSISTANCE PROJECT (RAP)®

Source: Delmarva Power & Light. (2016, August 15). Response to the Office of the People's Counsel data request 5-11, Attachment D. Maryland Public Service Commission Case No. 9424

energy use, especially at high-load hours and prior to those hours, can also affect the sizing and service life of transformers and underground lines, which is thus driven by the energy use on the equipment in high-load periods, not just the maximum demand hour. The peak hourly capacity of a line or transformer depends on how hot the equipment is prior to the peak load, which depends in turn on the load factor in the days leading up to the peak and how many high-load hours occur prior to the peak. More frequent events of load approaching the equipment capacity, longer peaks and hotter equipment going into the peak period all contribute to faster insulation deterioration and cumulative line sag, increasing the probability of failure and accelerating aging.

Ideally, the allocators for each distribution plant type should reflect the contribution of each class to the hours when load on the substation, feeder or transformer contributes to the potential for overloads. That allocation could be constructed by assigning costs to hours or by constructing a special demand allocator for each category of distribution equipment. If a detailed allocation is too complex, the allocators for costs should still reflect the underlying reality that distribution costs are driven by load in many hours.

The resulting allocator should reflect the variety of seasons and times at which the load on this type of equipment experiences peaks. In addition, the allocator should reflect the near-peak and prepeak loads that contribute to overheating and aging of equipment. Selecting the important hours for distribution loads and the weight to be given to the prepeak loads may require some judgments. Class NCP allocators do not serve this function.

Rocky Mountain Power allocates primary distribution

on monthly coincident distribution peak, weighted by the percentage of substations peaking in each month (Steward, 2014, p. 7). Under this weighting scheme, for example:

- A small substation has as much effect on a month's weighting factor as a large substation. The month with the largest number of large substations seriously overloaded could be the highest-cost month yet may not receive the highest weight since each substation is weighted equally.
- The month's contribution to distribution demand costs is assumed to occur entirely at the hour of the monthly distribution peak, even though most of the substation capacity that peaks in the month may have peaked in a variety of different hours.
- A month would receive a weight of 100% whether each substation's maximum load was only 1 kVA more than its maximum in every other month or four times its maximum in every other month.

This approach could be improved by reflecting the capacity of the substations, the actual timing of the peak hours and the number of near-peak hours of each substation in each month. The hourly loads might be weighted by the square or some other power of load or by using a peak capacity allocation factor for the substation, to reflect the fact that the contribution to line losses and equipment life falls rapidly as load falls below peak.

Many utilities will need to develop additional information on system loads for cost allocation, as well as for planning, operational and rate design purposes. Specifically, utilities should aim to understand when each feeder and substation reaches its maximum loads and the mix of rate classes on each feeder and distribution substation.

In the absence of detailed data on the loads on line transformers, feeders and substations, utilities will be limited to cruder aggregate load data. For primary equipment, the best available proxy may be the class energy usage in the expected high-load period for the equipment, the class contribution to coincident peak or possibly class NCP, but only if that NCP is computed with respect to the peak load of the customers sharing the equipment. Although most substations and feeders serving industrial and commercial customers will also serve some residential customers, and most residential substations and feeders will have some commercial load, some percentage of distribution facilities serve a single class.

The NCP approximation is not a reasonable approximation for finer disaggregation of class loads. For example, there are many residential areas that contain a mix of single-family and multifamily housing and homes with and without electric space heating, electric water heating and solar panels. The primary distribution plant in those areas must be sized for the combined load in coincident peak periods, which may be the late afternoon summer cooling peak, the evening winter heating and lighting peak or some other time — but it will be the same time for all the customers in the area.¹⁵⁸

Many utilities have multiple tariffs or tariff codes for residential customers (e.g., heating, water heating, all-electric and solar; single-family, multifamily and public housing; low-income and standard), for commercial customers (small, medium and large; primary and secondary voltage; schools, dormitories, churches and other customer types) and for various types of industrial customers, in addition to street lighting and other services. In most cases, those subclasses will be mixed together, resulting in customers with gas and electric space heat, gas and electric water heat, and with and without solar in the same block, along with street lights. The substation and feeder will be sized for the combined load, not for the combined peak load of just the electric heat customers or the combined peak of the customers with solar panels¹⁵⁹ or the street lighting peak.

Unless there is strong geographical differentiation of the subclasses, any NCP allocator should be computed for the

¹⁵⁸ Distribution conductors and transformers have greater capacity in winter (when heat is removed quickly) than in summer; even if winter peak loads are higher, the sizing of some facilities may be driven by summer loads.

¹⁵⁹ The division of the residential class into subclasses for calculation of the class NCP has been an issue in several recent Texas cases. In Docket No. 43695, at the recommendation of the Office of Public Utility Counsel, the Public Utility Commission of Texas reversed its former method for Southwestern Public Service to use the NCP for a single residential

class (instead of separate subclasses for residential customers with and without electric heat), which reduced the costs allocated to residential customers as a whole (Public Utility Commission of Texas, 2015, pp. 12-13 and findings of fact 277A, 277B and 339A). The issue was also raised in dockets 44941 and 46831 involving El Paso Electric Co. El Paso Electric proposed separate NCP allocations for residential customers with and without solar generation, which the Office of Public Utility Counsel and solar generator representatives opposed. Both of these cases were settled and did not create a precedent.

combined load of the customer classes, with the customer class NCP assigned to rate tariffs in proportion to their estimated contribution to the customer class peak.

11.3.2 Relationship Between Line Losses and Conductor Capacity

In some situations, conductor size is determined by the economics of line losses rather than by thermal overloads or voltage drop. Even at load levels that do not threaten reliability, larger conductors may cost-effectively reduce line losses, especially in new construction.¹⁶⁰ The incremental cost of larger capacity can be entirely justified by loss reduction (which is mostly an energy-related benefit), with higher load-carrying capability as a free additional benefit.

11.3.3 Secondary Distribution Allocators

Each piece of secondary distribution equipment generally serves a smaller number of customers than a single piece of primary distribution equipment. On a radial system, a line transformer may serve a single customer (a large commercial customer or an isolated rural residence) or 100 apartments; a secondary line may serve a few customers or a dozen, depending on the density of load and construction. Older urban neighborhoods often have secondary lines that are connected to several transformers, and some older large cities such as Baltimore have full secondary networks in city centers.¹⁶¹ In contrast, a primary distribution feeder may serve thousands of customers, and a substation can serve several feeders.

Thus, loads on secondary equipment are less diversified than loads on primary equipment. Hence, cost of service studies frequently allocate secondary equipment on load measures that reflect customer loads diversified for the number of customers on each component. Utilities often use assumed diversity factors to determine the capacity required for secondary lines and transformers, for various numbers of customers. Figure 42 on the next page provides an example of the diversity curve from El Paso Electric Co. (2015, p. 24).

Even identical houses with identical equipment may routinely peak at different times, depending on household composition, work and school schedules and building orientation. The actual peak load for any particular house may occur not at typical peak conditions but because of events not correlated with loads in other houses. For example, one house may experience its maximum load when the family returns from vacation to a hot house in the summer or a very cold one in the winter, even if neither temperatures nor time of day would otherwise be consistent with an annual maximum load. The house next door may experience its maximum load after a water leak or interior painting, when the windows are open and fans, dehumidifiers and the heating or cooling system are all in use.

Accounting for diversity among different types of residential customers, the load coincidence factors would be even lower. A single transformer may serve some homes with electric heat, peaking in the winter, and some with fossil fuel heat, peaking in the summer.

The average transformer serving residential customers may serve a dozen customers, depending on the density of the service territory and the average customer NCP, which for the example in Figure 42 suggests that the customers' average contribution to the transformer peak load would be about 40% of the customers' undiversified load. Thus, the residential allocator for transformer demand would be the class NCP times 40%. Larger commercial customers generally have very little diversity at the transformer level, since each transformer (or bank of transformers) typically serves only one or a few customers.

The same factors (household composition, work and

¹⁶⁰ The same is true for increased distribution voltage. Seattle City Light upgraded its residential distribution system from 4 kV to 26 kV in the early 1980s based on analysis done in the Energy 1990 study, prepared in 1976, which focused on avoiding new baseload generation. The line losses justified the expenditure, but the result was also a dramatic increase in distribution system circuit capacity. The Energy 1990 study was discussed in detail in a meeting of the City Council Utilities Committee (Seattle Municipal Archives, 1977).

¹⁶¹ In high-load areas, such as city centers, utilities often operate secondary distribution networks, in which multiple primary feeders serve multiple transformers, which then feed a network of interconnected secondary

lines that feed all the customers on the network (See Behnke et al., 2005, p. 11, Figure 8). In secondary networks, the number of transformers and the investment in secondary lines are driven by the aggregate load of the entire network or large parts of the network. The loss of any one feeder and one transformer, or any one run of secondary line, will not disconnect any customer. The existence of the network, the number of transformers and the number and length of primary and secondary lines are entirely load-related. Similar arrangements, called spot networks, are used to serve individual large customer may thus have multiple transformers, providing redundant capacity.

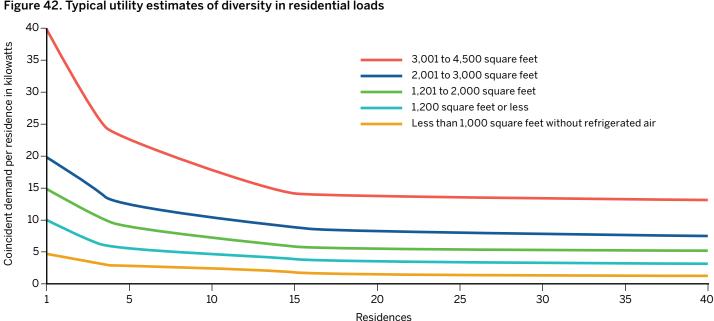


Figure 42. Typical utility estimates of diversity in residential loads

Source: El Paso Electric Co. (2015, October 29). El Paso Electric Company's Response to Office of Public Utility Counsel's Fifth Request for Information. Public Utility Commission of Texas Docket No. 44941

school schedules, unit-specific events) apply in multifamily housing as well as in single-family housing. But the effects of orientation are probably even stronger in multifamily housing than in single-family homes. For example, units on the east side of a building are likely to have summer peak loads in the morning, while those on the west side are likely to experience maximum loads in the evening and those on the south in the middle of the day.

Importantly, Figure 42 represents the diversity of similar neighboring single-family houses. Diversity is likely to be still higher for other applications, such as different types and vintages of neighboring homes, or the great variety of customers who may be served from the shared transformers and lines of a secondary network.

Until 2001, the major U.S. electric utilities were required to provide the number and capacity of transformers in service on their FERC Form 1 reports. Assuming an average of one transformer per commercial and industrial customer, these reports typically suggest a ratio ranging from 3 to more than 20 residential customers per transformer, with the lower ratios for the most rural IOUs and the highest for utilities with dense urban service territories and many multifamily consumers.¹⁶² Only about a dozen electric co-ops filed a FERC Form 1 with the transformer data in 2001, and their

ratios vary from about I transformer per residential customer for a few very rural co-ops to about 8 residential customers per transformer for Chugach Electric, which serves part of Anchorage as well as rural areas.

Utilities can often provide detailed current data from their geographic information systems. Table 30 on the next page shows Puget Sound Energy's summary of the number of transformers serving a single residential customer and the number serving multiple customers (Levin, 2017, pp. 8-9). More than 95% of customers are served by shared transformers, and those transformers serve an average of 5.3 customers. Using the method described in the previous paragraph, an estimated average of 4.9 Puget Sound Energy residential customers would share a transformer, which is close to the actual average of 4.5 customers per transformer shown in Table 30 (Levin, 2017, and additional calculations by the authors).

The customers who have their own transformer may be too far from their neighbors to share a transformer, or local load growth may have required that the utility add a transformer. In many cases, residential customers with

¹⁶² Ratios computed using Form 1, p. 429, transformer data (Federal Energy Regulatory Commission, n.d.) and 2001 numbers from utilities' federal Form 861 (U.S. Energy Information Administration, n.d.-a, file 2).

REGULATORY ASSISTANCE PROJECT (RAP)®

Table 30. Residential shared transformer example

	With multiple residences per transformer	With single residence per transformer	Total
Number of transformers	197,503	47,699	245,202
Number of customers	1,054,296	47,699	1,101,995
Customers per transformer	5.3	1	4.5

Sources: Levin, A. (2017, June 30). Prefiled response testimony on behalf of NW Energy Coalition, Renewable Northwest and Natural Resources Defense Council. Washington Utilities and Transportation Commission Docket No. UE-170033; additional calculations by the authors

individual transformers may need to pay to obtain service that is more expensive than their line extension allowances (see Section 11.2 or Section 15.2).

Small customers will have similar, but lower, diversity on secondary conductors, which generally serve multiple customers but not as many as a transformer. A transformer that serves a dozen customers may serve two of them directly without secondary lines, four customers from one stretch of secondary line and six from another stretch of secondary line running in the opposite direction or across the street.

Where no detailed data are available on the number of customers per transformer in each class, a reasonable approximation might be to allocate transformer demand costs on a simple average of class NCP and customer NCP for residential and small commercial customers and just customer NCP for larger nonresidential customers.

11.3.4 Distribution Operations and Maintenance Allocators

Distribution O&M accounts associated with a single type of equipment (FERC accounts 582, 591 and 592 for substations

and Account 595 for transformers) should be classified and allocated in the same manner as associated equipment. Other accounts serve both primary and secondary lines and service drops (accounts 583, 584, 593 and 594) or include services to a range of equipment (accounts 580 and 590). These costs normally should be classified and allocated in proportion to the plant in service, for the plant accounts they support, subfunctionalized as appropriate. For example, typical utility tree-trimming activities are almost entirely related to primary overhead lines, with very little cost driven by secondary distribution and no costs for protecting service lines (see, for example, Entergy Corp., n.d.).

11.3.5 Multifamily Housing and Distribution Allocation

One common error in distribution cost allocation is treating the residential class as if all customers were in singlefamily structures, with one service drop per customer and a relatively small number of customers on each transformer.¹⁶³ For multifamily customers, one or a few transformers may serve 100 or more customers through a single service line.¹⁶⁴ Treating multifamily customers as if they were single-family customers would overstate their contribution to distribution costs, particularly line transformers and secondary service lines.¹⁶⁵

This problem can be resolved in either of two ways. The broadest solution is to separate residential customers into two allocation classes: single-family residential and multifamily residential, as we discuss in Section 5.2.¹⁶⁶ Alternatively, the allocation of transformer and service costs to a combined residential class (as well as residential rate design) should take into account the percentage of customers who are in multifamily buildings, and only components that are not shared should be considered customer-related.

¹⁶³ One large service drop is much less expensive than the multiple drops needed to serve the same number of customers in single-customer buildings. Small commercial customers may also share service drops, although probably to a more limited extent than residential customers.

¹⁶⁴ Similarly, if the cost of service study includes any classification of shared distribution plant as customer-related (such as from a minimum system), each multifamily building should be treated as a single location, rather than a large number of dispersed customers. For utilities without remote meter reading, the labor cost for that activity per multifamily customer will be lower than for single-family customers.

¹⁶⁵ Allocating transformer costs on demand eliminates the bias for that cost category.

¹⁶⁶ If any sort of NCP allocator is used in the cost of service study, the multifamily class load generally should be combined with the load of the type of customers that tend to surround the multifamily buildings in the particular service territory, which may be single-family residential or medium commercial customers.

11.3.6 Direct Assignment of Distribution Plant

Direct cost assignment may be appropriate for equipment required for particular customers, not shared with other classes, and not double-counted in class allocation of common costs. Examples include distribution-style poles that support streetlights and are not used by any other class; the same may be true for spans of conductor to those poles. Short tap lines from a main primary voltage line to serve a single primary voltage customer's premises may be another example, as they are analogous to a secondary distribution service drop.

Beyond some limited situations, it is not practical or useful to determine which distribution equipment (such as lines and poles) was built for only one class or currently serves only one class and to ensure that the class is properly credited for not using the other distribution equipment jointly used by other classes in those locations.

11.4 Allocation Factors for Service Drops

The cost of a service drop clearly varies with a number of factors that vary by class: customer load (which affects the capacity of the service line), the distance from the distribution line to the customer, underground versus overhead service, the number of customers sharing a service (or the number of services required by a single customer) and whether customers require three-phase service.

Some utilities, including Baltimore Gas & Electric, attempt to track service line costs by class over time (Chernick, 2010, p. 7). This approach is ideal but complicated. Although assigning the costs of new and replacement service lines just requires careful cost accounting, determining the costs of services that are retired and tracking changes in the class or classes in a building (which may change over time from manufacturing to office space to mixed residential and retail) is much more complex. Other utilities allocate service lines on the sum of customer maximum demands in each class. This has the advantage of reflecting the fact that larger customers require larger (and often longer) service lines, without requiring a detailed analysis of the specific lines in use for each class.

Many utilities have performed bottom-up analyses, selecting a typical customer or an arguably representative sample of customers in each class, pricing out those customers' service lines and extrapolating to the class. Since the costs are estimated in today's dollars, the result of these studies is the ratio of each class's cost of services to the total cost, or a set of weights for service costs per customer. Either approach should reflect the sharing of services in multifamily buildings.

11.5 Classification and Allocation for Advanced Metering and Smart Grid Costs

Traditional meters are often discussed as part of the distribution system but are primarily used for billing purposes.¹⁶⁷ These meters typically record energy and, for some classes, customer NCP demand for periodic manual or remote reading and generally are classified as customer-related. Meter costs are then typically allocated on a basis that reflects the higher costs of meters for customers who take power at higher voltage or three phases, for demand-recording meters, for TOU meters and for hourly-recording energy meters. The weights may be developed from the current costs of installing the various types of meters, but as technology changes, those costs may not be representative of the costs of equipment in rates.

In many parts of the country, this traditional metering has been replaced with advanced metering infrastructure. AMI investments were funded in many cases by the American Recovery and Reinvestment Act of 2009, the economic stimulus passed during the Great Recession, but in other cases ratepayers are paying for them in full in the traditional method. In many jurisdictions, AMI has been accompanied by other complementary "smart grid"

¹⁶⁷ Some customers who are small or have extremely consistent load patterns are not metered; instead, their bills are estimated based on known load parameters. The largest group of these customers is street lighting customers, but some utilities allow unmetered loads for various small loads that can be easily estimated or nearly flat loads with very high load factors (such as traffic signals). An example of an unmetered customer from the past was a phone booth. Unmetered customers should not be allocated costs of traditional metering and meter reading.

REGULATORY ASSISTANCE PROJECT (RAP)®

Table 31. Smart grid cost classification

	Le			
Smart grid element	Equivalent cost	FERC account	Classification	Smart grid classification
Smart meters	Meters	370	Customer	Demand, energy and customer
Distribution control devices	Station equipment and devices	362, 365, 367	Demand	Demand and energy
Data collection system	Meter readers	902	Customer	Demand, energy and customer
Meter data management system	Customer accounting and general plant	903, 905, 391	Customer and overhead	Demand, energy and customer

investments. On the whole, these investments include:

- Smart meters, which are usually defined to include the ability to record and remotely report granular load data, measure voltage and power factor, and allow for remote connection and disconnection of the customer.
- Distribution system improvements, such as equipment to remotely monitor power flow on feeders and substations, open and close switches and breakers and otherwise control the distribution system.
- Voltage control equipment on substations to allow modulation of input voltage in response to measured voltage at the end of each feeder.
- Power factor control equipment to respond to signals from the meters.
- Data collection networks for the meters and line monitors.
- Advanced data processing hardware and software to handle the additional flood of data.
- Supporting overhead costs to make the new system work. The potential benefits of the smart grid, depending on how it is designed and used, include reduced costs for generation, transmission, distribution and customer service, as described in Subsection 7.I.I. A smart meter is much more than a device to measure customer usage to assure an accurate bill — it is the foundation of a system that may provide some or all of the following:
- Benefits at every level of system capacity, by enabling peak load management since the communication system can be used to control compatible end uses, and because customer response to calls for load reduction can be measured and rewarded.

- Distribution line loss savings from improved power factor and phase balancing.
- Reduced energy costs due to load shifting.
- Reliability benefits, saving time and money on service restoration after outages, since the utility can determine which meters do not have power and can determine whether a customer's loss of service is due to a problem inside the premises or on the distribution system.
- Allowing utilities to determine maximum loads on individual transformers.
- Retail service benefits, by reducing meter reading costs compared with manual meter reads and even automated meter reading and by reducing the cost of disconnecting and reconnecting customers.¹⁶⁸

The installations have also been very expensive, running into the hundreds of millions of dollars for some utilities, and the cost-effectiveness of the AMI projects has been a matter of dispute in many jurisdictions. Since these new systems are much more expensive than the older metering systems and are largely justified by services other than billing, their costs must be allocated over a wider range of activities, either by functionalizing part of the costs to generation, distribution and so on or reflecting those functions in classification or the allocation factor.

Special attention must be given to matching costs and benefits associated with smart grid deployment. The expected benefits spread across the entire spectrum of utility costs, from lower labor costs for meter reading to lower energy

¹⁶⁸ The data systems can also be configured to provide systemwide Wi-Fi internet access, although they usually are not. See Burbank Water and Power (n.d.).

158 | ELECTRIC COST ALLOCATION FOR A NEW ERA

REGULATORY ASSISTANCE PROJECT (RAP)®

Table 32. Summary of distribution allocation approaches

Element	Method	Comments	Hourly allocation
Substations	FUNCTIONALIZATION: Entirely primary CLASSIFICATION: Demand and energy ALLOCATOR: Loads on substations in hours at or near peaks	Reflect effect of energy near peak and preceding peak on sizing and aging	Allocate by substation cost or capacity, then to hours that stress that substation with peak and heating
Poles	FUNCTIONALIZATION: Entirely primary CLASSIFICATION: Demand and energy* ENERGY ALLOCATOR: Energy or revenue DEMAND ALLOCATOR: Loads in hours at or near peaks	Pole costs driven by revenue expectation	As primary lines
Primary conductors	FUNCTIONALIZATION: Entirely primary CLASSIFICATION: Demand and energy* ENERGY ALLOCATOR: Energy or revenue DEMAND ALLOCATOR: Loads in hours at or near peaks	 Distribution network is installed due to revenue potential Sizing determined by loads in and near peak hours 	 Cost associated with revenue- driven line extension to all hours Cost associated with peak loads and overloads on distribution of line peaks and high-load hours
Line transformers	FUNCTIONALIZATION: Entirely secondary CLASSIFICATION: Demand and energy* ENERGY ALLOCATOR: Secondary energy DEMAND ALLOCATOR: Diversified secondary loads in peak and near-peak hours	Reflect diversity	Distribution of transformer peaks and high-load hours
Secondary conductors	FUNCTIONALIZATION: Entirely secondary CLASSIFICATION: Demand and energy* ENERGY ALLOCATOR: Energy or revenue DEMAND ALLOCATOR: Loads in hours at or near peaks	Energy is more important for underground than overhead	Distribution of line peaks and high- load hours
Meters	FUNCTIONALIZATION: Advanced metering infrastructure to generation, transmission and distribution, as well as metering ALLOCATOR FOR CUSTOMER-RELATED COSTS: Weighted customer	Allocation of generation, transmission and distribution components depends on use of advanced metering infrastructure	N/A

* Except some to customer, where a significant portion of plant serves only one customer

costs due to load shifting and line loss reduction. Legacy methods for allocating metering costs as primarily customerrelated would place the vast majority of these costs onto the residential rate class, but many of the benefits are typically shared across all rate classes. In other words, the legacy method would give commercial and industrial rate classes substantial benefits but none of the costs.

Table 31 identifies some of the key elements of smart grid cost and how these would be appropriately treated in an embedded cost of service study. These approaches match smart grid cost savings to the enabling expenditures.

11.6 Summary of Distribution Classification and Allocation Methods and Illustrative Examples

The preceding discussion identifies a variety of methods used to functionalize, classify and allocate distribution plant. Table 32 summarizes the application of some of those methods, including the hourly allocations that may be applicable for modern distribution systems with:

- A mix of centralized and distributed resources, conventional and renewable, as well as storage.
- The ability to measure hourly usage on the substations and feeders.
- The ability to estimate hourly load patterns on transformers and secondary lines.

REGULATORY ASSISTANCE PROJECT (RAP)®

	Residential	Secondary commercial	Primary industrial	Street lighting	Total
Class NCP: substation (legacy)	\$9,730,000	\$9,730,000	\$7,297,000	\$3,243,000	\$30,000,000
Average and peak	\$10,056,000	\$10,056,000	\$8,100,000	\$1,788,000	\$30,000,000
Hourly	\$9,939,000	\$10,533,000	\$9,009,000	\$519,000	\$30,000,000

Note: Numbers may not add up to total because of rounding.

Where the available data or analytical resources will not support more sophisticated analyses of distribution cost causation, the following simple rules of thumb may be helpful.

- The only costs that should be classified as customerrelated are those specific to individual customers:
 - Basic metering costs, not including the additional costs of advanced meters incurred for system benefits.
 - Service lines, adjusting for shared services in buildings with multiple tenants.
 - For very rural systems, where most transformers and large stretches of primary line serve only a single customer (and those costs are not recovered from contributions in aid of construction), a portion of transformer and primary costs.
- Other costs should be classified as a mix of energy and demand, such as using the average-and-peak allocator.
- The peak demand allocation factor should reflect the distribution of hours in which various portions of distribution system equipment experience peak or heavy loads. If the utility has data only on the time of substation peaks, the load-weighted peaks can be used to distribute the demand-related distribution costs to hours and hence to classes.

11.6.1 Illustrative Methods and Results

The following discussion and tables show illustrative methods and results for several of the key distribution accounts, focused only on the capital costs. The same principles should be applied to O&M costs and depreciation expense. These examples use inputs from tables 5, 6, 7 and 27.

Substations

Table 33 shows three methods for allocating costs of distribution substations. The first of these is a legacy method, relying solely on the class NCP at the substation level.¹⁶⁹ The second is an average-and-peak method, a weighted average between class NCP and energy usage. The third uses the hourly composite allocator, which includes higher costs for hours in which substations are highly loaded.

Primary Circuits

Distribution circuits are built where there is an expectation of significant electricity usage and must be sized to meet peak demands, including the peak hour and other high-load hours that contribute to heating of the relevant elements of the system. Table 34 on the next page illustrates the effect of four alternative methods. The first, based on the class NCP at the circuit level, again produces unreasonable results for the street lighting class. The second, the legacy minimum system method, is not recommended, as discussed above. The third and fourth use a simple (average-and-peak) and more sophisticated (hourly) approach to assigning costs based on how much each class uses the lines and how that usage correlates with high-load hours.

Transformers

Line transformers are needed to serve all secondary voltage customers, typically all residential, small general

¹⁶⁹ The street lighting class NCP occurs in the night, and street lighting is a small portion of load on any substation, so the street lighting class NCP load rarely contributes to the sizing of summer-peaking substations. The NCP method treats off-peak class loads as being as important as those that are on-peak. This is particularly inequitable for street lighting, which is nearly always a load caused by the presence of other customers who collectively justify the construction of a circuit.

160 | ELECTRIC COST ALLOCATION FOR A NEW ERA

REGULATORY ASSISTANCE PROJECT (RAP)®

	Residential	Secondary commercial	Primary industrial	Street lighting	Total
Class NCP: circuit (legacy)	\$69,565,000	\$69,565,000	\$43,478,000	\$17,391,000	\$200,000,000
Minimum system (legacy)	\$113,783,000	\$51,783,000	\$24,739,000	\$9,696,000	\$200,000,000
Average and peak	\$67,041,000	\$67,041,000	\$53,997,000	\$11,921,000	\$200,000,000
Hourly	\$66,258,000	\$70,221,000	\$60,059,000	\$3,462,000	\$200,000,000

Table 34. Illustrative allocation of primary distribution circuit costs by different methods

Note: Numbers may not add up to total because of rounding.

service and street lighting customers and often other customer classes as well. We present four methods in Table 35: two archaic and two more reflective of dynamic systems and more granular data. All of these apportion no cost to the primary voltage class, which does not use distribution transformers supplied by the utility.

The first method is to apportion transformers in proportion to the class sum of customer noncoincident peaks. This method is not recommended because it fails to recognize that there is great diversity between customers at the transformer level; as noted in Subsection 11.3.3, each transformer in an urban or suburban system may serve anywhere from five to more than 50 customers. The second is the minimum system method, also not recommended because it fails to recognize the drivers of circuit construction, as discussed in Section 11.2. The third is the weighted transformers allocation factor we derive in Section 5.3 (Table 7), weighting the number of transformers by class at 20% and the class sum of customer NCP (recognizing that the diversity is not perfect) at 80%. The last is an hourly energy method but excluding the primary voltage class of customers.

Customer-Related Costs

The final illustration shows two techniques for the apportionment of customer-related costs, based on a traditional customer count and a weighted customer count. Even for simple meters used solely for billing purposes, larger customers require different and more expensive meters. There are fewer of them per customer class, but the billing system programming costs do not vary by number of customers. In addition, a weighted customer account is also relevant to customer service, discussed in the next chapter, because the larger use customers typically have access to superior customer service through "key accounts" specialists who are trained for their needs.

	Residential	Secondary commercial	Primary industrial	Street lighting	Total
Customer NCP (legacy)	\$32,258,000	\$16,129,000	\$0	\$1,613,000	\$50,000,000
Minimum system (legacy)	\$32,461,000	\$14,773,000	\$0	\$2,766,000	\$50,000,000
Weighted transformers factor	\$29,806,000	\$14,903,000	\$0	\$5,290,000	\$50,000,000
Hourly	\$23,810,000	\$23,810,000	\$0	\$2,381,000	\$50,000,000

Table 35. Illustrative allocation of distribution line transformer costs by different methods

Note: Numbers may not add up to total because of rounding.

REGULATORY ASSISTANCE PROJECT (RAP)®

	Residential	Secondary commercial	Primary industrial	Street lighting	Total
Unweighted					
Customer count	100,000	20,000	2,000	50,000	172,000
Customer factor	58%	12%	1%	29%	100%
Customer costs	\$58,140,000	\$11,628,000	\$1,163,000	\$29,070,000	\$100,000,000
Weighted					
Weighting factor	1	3	20	0.05	
Customer count	100,000	60,000	40,000	2,500	202,500
Customer factor	49%	30%	20%	1%	100%
Customer costs	\$49,383,000	\$29,630,000	\$19,753,000	\$1,235,000	\$100,000,000

Table 36. Illustrative allocation of customer-related costs by different methods

Note: Numbers may not add up to total because of rounding.

Table 36 first shows a traditional calculation based on the actual number of customers. Then it shows an illustrative customer weighting and a simple allocation of customerrelated costs based on that weighting. Each street light is treated as a tiny fraction of one customer; although there are tens of thousands of individual lights, the bills typically include hundreds or thousands of individual lights, billed to a city, homeowners association or other responsible party.¹⁷⁰

170 In some locales, street lighting is treated as a franchise obligation of the utility and is not billed. In this situation, there are no customer service or billing and collection expenses.