DE 23-092 Attachment 1 Page 1 of 24

UES Capital

Reliability Study

2023

Prepared By: T. Vrettos Unitil Service Corp. 10/31/2023

Table of Contents

1	Executive Summary	1
2	Reliability Goals	3
3	Outages by Cause	3
4	10 Worst Distribution Outages	6
5	Subtransmission and Substation Outages	7
6	Worst Performing Circuits	8
7	Tree Related Outages in Past Year (1/1/22 – 12/31/22)	13
8	Failed Equipment	18
9	Multiple Device Operations and Streets with Highest Number of Outages	17
10	Other Concerns	17
11	Recommendations	18
12	Conclusion	22

1 Executive Summary

The purpose of this document is to report on the overall reliability performance of the UES Capital system from January 1, 2022 through December 31, 2022. The scope of this report will also evaluate individual circuit reliability performance over the same time period. The outage data used in this report excludes outages that occurred during IEEE Major Event Days (MEDs). The UES-Capital 2022 MEDs are listed in the table below.

Date	Type of Event	No. of Interruptions	Customer Interruptions	Cust-Min of Interruption
7/12/2022	IEEE MED	14	11	459,833
12/23/2022	IEEE MED	260	26,688	9,804,038

The following projects are proposed from the results of this study and are focused on improving the worst performing circuits as well as the overall UES Capital system reliability. These recommendations are provided for consideration and will be further developed with the intention to be incorporated into the 2023 budget development process.

Circuit / Line / Substation	Proposed Project	Cost (\$)
13W1	13W1 Mainline Spacer Cable Installation	\$560,037
13W3	Reconductor Daniel Webster Highway	\$1,056,337
13W3	N. Water Street and Rabbit Road Spacer Cable Installation	\$1,457,712
18W2	Create a Circuit Tie on White Rock Hill Rd	\$312,467

Note: estimates do not include general construction overheads

The 2022 annual UES Capital system reliability benchmark was 133.12 minutes, after removing Major Event Days. The UES Capital SAIDI performance in 2022 was 62.17 minutes. Charts 1, 2, and 3 below show UES Capital SAIDI, SAIFI, and CAIDI, respectively, over the past five years.

Chart 1 Annual Capital SAIDI

Chart 2 Annual Capital SAIFI

Chart 3

2 Reliability Benchmarks

The new annual UES Capital system reliability benchmark for 2023 is set at 110.98 SAIDI minutes. This was developed by calculating the typical contribution of UES Capital reliability performance to the Unitil system performance using the past five vear average. The contribution factor was then set against the 2022 Unitil System goal. The 2022 Unitil System goal was developed through benchmarking the Unitil system performance with nationwide utilities.

Individual circuits will be analyzed based upon circuit SAIDI, SAIFI, and CAIDI. Analysis of individual circuits along with analysis of the entire UES Capital system is used to identify future capital improvement projects and/or operational enhancements which may be required in order to achieve and maintain these benchmarks.

3 Outages by Cause

This section provides a breakdown of all outages by cause code experienced during 2022. Charts 4, 5, and 6 show the number of interruptions, the number of customer interruptions, and total customer-minutes of interruption due to each cause, respectively. Only the causes contributing 5% or greater of the total are labeled. Table 1 shows the number of interruptions for the top three trouble causes for the previous five years.

Chart 5 Number of Customers Interrupted by Cause

Chart 6 Percent of Customer-Minutes of Interruption by Cause

Table 1Five-Year History of the Number ofInterruptions for the Worst Three Trouble Causes

Year	Tree/Limb Contact - Broken Trunk	Tree/Limb Contact - Broken Limb	Equipment Failure Company
2022	76	68	54
2021	99	62	54
2020	93	133	64
2019	67	74	64
2018	102	134	68

4 10 Worst Distribution Outages

The ten worst distribution outages ranked by customer-minutes of interruption during the time period from January 1, 2022 through December 31, 2022 are summarized in Table 2 below.

	10151	en Bistribation	Odlageo		
<u>Circuit</u>	Description (Date/Cause)	Customer Interruptions	<u>Cust-Min of</u> Interruption	<u>Capital</u> <u>SAIDI</u>	<u>Capital</u> <u>SAIFI</u>
C18W2	3/9/2022 Vehicle Accident	951	229,066	244.21	1.014
C2H2	3/12/2022 Equipment Failure Company	1,067	129,107	121.00	1.000
C13W3	2/16/2022 Tree/Limb Contact – Broken Trunk	1,642	127,171	77.50	1.001
C8X3	8/2/2022 Equipment Failure Company	240	64,880	22.00	0.081
C13W3	8/8/2022 Tree/Limb Contact – Broken Limb	211	46,472	28.32	0.129
C22W3	8/5/2022 Tree/Limb Contact – Broken Trunk	381	44,234	28.93	0.249
C8H1	8/31/2022 Scheduled, Planned Work	303	43,935	70.64	0.487
C13W1	4/28/2022 Tree/Limb Contact – Broken Trunk	502	43,615	86.88	1.000
C8X3	3/8/2022 Equipment Failure Company	113	29,041	9.85	0.038
C8X3	12/3/2022 Tree/Limb Contact – Broken Trunk	152	28,879	9.79	0.052

Table 2Worst Ten Distribution Outages

Note: This table does not include outages that occurred at substations or on the subtransmission system, scheduled/planned work outages, or outages that occurred during IEEE MEDs.

5 Subtransmission and Substation Outages

This section describes the contribution of sub-transmission line and substation outages on the UES Capital system.

All substation and sub-transmission outages ranked by customer-minutes of interruption during the time period from January 1, 2022 through December 31, 2022 are summarized in Table 3 below.

Table 4 shows the circuits that have been affected by sub-transmission line and substation outages. The table illustrates the contribution of customer minutes of interruption for each circuit affected.

In aggregate, sub-transmission line and substation outages accounted for 12% of the total customer-minutes of interruption for UES Capital.

Trouble Location	Description (Date/Cause)	Customer Interruptions	Cust-Min of Interruption	Capital SAIDI	Capital SAIFI	No. Times on List (past 4 yrs)
375 Line	05/17/2022 Tree Limb Contact	1,526	77,007	50.46	1.000	0
34 Line	07/18/2022 Lightning Strike	1,994	149,883	75.55	1.005	3

Table 3Subtransmission and Substation Outages

Contribution of Subtransmission and Substation Outages									
Circuit	Trouble Location	Cust-Min of Interruption	% of Total Circuit Minutes	Circuit SAIDI Contribution	Number of Events				
C16X4	375 Line	27,648	74%	48.17	1				
C16H3	375 Line	29,760	100%	47.92	1				
C16H1	375 Line	14,496	41%	47.84	1				
C16X6	375 Line	48	100%	48.00	1				
C375X1	375 Line	288	100%	48.00	1				
C16X5	375 Line	4,767	100%	227.00	1				
C21W1A	34 Line	20,025	100%	77.92	1				
C2H4	34 Line	6,900	56%	75.00	1				
C33X4	34 Line	5,250	38%	75.00	1				
C2H1	34 Line	36,539	96%	75.65	1				

 Table 4

 Contribution of Subtransmission and Substation Outages

Circuit	Trouble Location	Cust-Min of Interruption	% of Total Circuit Minutes	Circuit SAIDI Contribution	Number of Events
C34X4	34 Line	94	>99%	1.34	1
C33X5	34 Line	225	100%	75.00	1
C2H2	34 Line	80,025	38%	75.00	1
C34X2	34 Line	675	100%	75.00	1
C33X6	34 Line	75	100%	75.00	1
C33X3	34 Line	75	100%	75.00	1

6 Worst Performing Circuits

This section compares the reliability of the worst performing circuits using various performance measures. All circuit reliability data presented in this section includes sub-transmission or substation supply outages unless noted otherwise.

6.1 Worst Performing Circuits in Past Year (1/1/22 – 12/31/22)

A summary of the worst performing circuits during the time period between January 1, 2022 and December 31, 2022 is included in the tables below.

Table 5 shows the ten worst circuits ranked by the total number of Customer-Minutes of interruption. The SAIFI and CAIDI for each circuit are also listed in this table.

Table 6 provides detail on the major causes of the outages on each of these circuits. Customer-Minutes of interruption are given for the six most prevalent causes during 2022.

Circuits having one outage contributing more than 80% of the Customer-Minutes of interruption were excluded from this analysis.

			<u> </u>				
Circuit	Customer Interruptions (CI)	Worst Event (% of CI)	Cust-Min of Interruption (CMI)	Worst Event (% of CMI)	SAIDI	SAIFI	CAIDI
C8X3	3,589	7%	363,942	18%	123.41	1.217	101.4
C13W3	2,700	61%	269,480	47%	164.22	1.645	99.81
C13W1	742	68%	71,215	61%	141.86	1.478	95.98
C22W3	684	56%	69,514	64%	45.46	0.447	101.63
C4X1	806	50%	68,582	32%	33.83	0.398	85.09
C7W4	1,484	32%	62,305	31%	76.35	1.819	41.98
C13W2	618	36%	56,431	16%	57.17	0.626	91.33
C15W1	655	33%	48,058	28%	47.82	0.652	73.37
C16H1	606	50%	35,616	59%	117.54	2.000	58.77
C6X3	252	31%	33,953	36%	30.40	0.226	134.73

Table 5Worst Performing Circuits Ranked by Customer-Minutes

Note: all percentages and indices are calculated on a circuit basis

		Customer – Minutes of Interruption / # of Outages										
Circuit	Tree/Limb Contact - Broken Trunk	Equipment Failure Company	Tree/Limb Contact - Broken Limb	Vehicle Accident	Lightning Strike	Scheduled, Planned Work						
C8X3	75,033 / 15	145,901 / 17	62,147 / 14	8,269 / 1	164 / 1	0/0						
C13W3	181,112 / 16	3,450 / 1	57,209 / 11	4,579 / 1	0/0	0 / 0						
C13W1	53,400 / 7	15,729 / 7	2,014 / 4	0/0	0/0	360 / 1						
C22W3	55,232 / 5	144 / 2	7,614 / 6	0/0	0 / 0	1,555 / 1						
C4X1	47,480 / 8	4,164 / 1	13,295 / 4	0/0	0/0	1,161 / 1						
C7W4	43,244 / 3	6,005 / 2	10,878 / 1	0/0	0 / 0	1,200 / 1						
C13W2	5,209 / 3	25,441 / 5	7,190 / 2	0/0	9,002 / 1	0 / 0						
C15W1	26,145 / 3	830 / 1	12,042 / 2	8,400 / 1	261 / 1	227 / 1						
C16H1	0 / 0	0 / 0	14,496 / 1	0 / 0	0 / 0	0 / 0						
C6X3	16,075 / 2	480 / 1	12,075 / 1	5,323 / 1	0 / 0	0 / 0						

Table 6Circuit Interruption Analysis by Cause

6.2 Worst Performing Circuits of the Past Five Years (2018 – 2022)

The annual performance of the ten worst circuits in terms of circuit SAIDI and SAIFI for each of the past five years is shown in the tables below. Table 7 lists the ten worst performing circuits ranked by SAIDI and Table 8 lists the ten worst performing circuits ranked by SAIFI. Table 9 lists the ten worst performing circuits ranked by SAIFI over the past five years.

The data used in this analysis includes all system outages except those outages that occurred during IEEE major event days.

The data used in this analysis includes all distribution circuits except those that do not have an interrupting device, e.g. fuse or recloser, at their tap location.

	202	22	202	21	202	20	201	9	201	8
Circuit Ranking (1 = worst)	Circuit	SAIDI								
1	C17X1	510	C14X3	613.00	C4W3	243.64	C2H2	467.50	C13W3	532.47
2	C37X2	295.9	C18W2	322.92	C13W1	198.35	C8X5	256.74	C13W2	327.56
3	C18W2	262.37	C13W3	220.50	C7W3	197.61	C13W3	214.08	C15W2	268.14
4	C16X5	227	C37X1	211.71	C4X1	154.72	C6X3	166.25	C22W3	242.20
5	C374X1	202.28	C13W1	178.93	C15W1	135.00	C8X3	141.38	C21W1A	166.74
6	C33X4	198.82	C15W1	139.86	C22W1	133.56	C13W2	134.14	C8X3	164.27
7	C2H2	198.59	C4W3	130.19	C13W2	129.10	C18W2	121.03	C13W1	155.29
8	C13W3	164.22	C8X5	125.24	C13W3	115.33	C15W1	118.34	C7W3	142.86
9	C13W1	141.86	C8X3	83.85	C34X2	111.11	C37X1	117.78	C38	128.52
10	C2H4	135.05	C1H3	79.97	C37X1	102.09	C13W1	108.30	C2H4	87.85

Table 7 Circuit SAIDI

	202	22	202	1	20	20	201	9	201	8
Circuit Ranking (1 = worst)	Circuit	SAIFI								
1	C33X4	2.129	C18W2	3.946	C4W3	3.933	C2H2	3.664	C13W2	6.694
2	C2H2	2.025	C13W3	3.258	C7W3	2.685	C8X5	3.388	C13W1	5.818
3	C2H4	2	C13W1	3.082	C22W1	2.612	C18W2	1.778	C13W3	5.267
4	C16H1	2	C37X1	3.071	C13W2	2.483	C13W3	1.641	C16H3	4.693
5	C7X1	2	C14X3	2.000	C4X1	2.458	C37X1	1.506	C18W2	4.131
6	C1X7P	1.875	C15W1	1.515	C16X4	2.359	C3H3	1.383	C8H2	3.122
7	C7W4	1.819	C15W2	1.500	C13W1	2.219	C8X3	1.365	C8X3	3.108
8	C13W3	1.645	C13W2	1.455	C1H1	2.199	C15W2	1.350	C17X1	3.000
9	C13W1	1.478	C4W3	1.451	C37X1	1.568	C13W2	1.335	C396X2	3.000
10	C18W2	1.319	C21W1P	1.199	C15W2	1.228	C6X3	1.294	C37X1	2.770

Table 8 Circuit SAIFI

Table 9Worst Performing Circuit past Five Years

SAIDI				SAIFI	
Circuit Ranking	Circuit	# Appearances	Circuit Ranking	Circuit	# Appearances
1	C13W3	5	1	C33X4	4
2	C13W1	5	2	C2H2	4
3	C18W2	3	3	C2H4	4
4	C37X1	3	4	C16H1	4
5	C15W1	3	5	C7X1	4
6	C8X3	3	6	C1X7P	3
7	C13W2	3	7	C7W4	2
8	C2H2	2	8	C13W3	2
9	C2H4	2	9	C13W1	2
10	C4W3	2	10	C18W2	1

6.3 System Reliability Improvements (2022 and 2023)

Vegetation management projects completed in 2022 or planned for 2023 that are expected to improve the reliability of the 2022 worst performing circuits are included in table 10 below. Table 11 below details electric system upgrades that are scheduled to be completed in 2023, or were completed in 2022, that were performed to improve system reliability.

	Table 10	
Vegetation Manage	ement Projects on Wors	st Performing Circuits

Circuit(s)	Year of Completion	Project Description
C18W2	2022	Cycle Pruning/Hazard Tree Mitigation
C8X3	2022	Cycle Pruning/Hazard Tree Mitigation
C7W4	2022	Storm Resiliency Program/Mid-Cycle Review
C4W4	2022	Hazard Tree Mitigation/Mid- Cycle Review
C22W1	2022	Mid-Cycle Review
C22W2	2022	Mid-Cycle Review
C38	2022	Mid-Cycle Review
C8X5	2022	Mid-Cycle Review
C7W3	2022/2023	Storm Resiliency Program/Forestry Reliability/Hazard Tree Mitigation/Mid- Cycle Review
C13W1	2022/2023	Hazard Tree Mitigation/Mid- Cycle Review/Forestry Reliability
C4X1	2022/2023	Hazard Tree Mitigation/Mid- Cycle Review
C13W3	2023	Cycle Pruning/Hazard Tree Mitigation
C24H1	2023	Cycle Pruning/Hazard Tree Mitigation
C24H2	2023	Cycle Pruning/Hazard Tree Mitigation
C33X4	2023	Cycle Pruning/Hazard Tree Mitigation
C34X4	2023	Cycle Pruning/Hazard Tree Mitigation

Circuit(s)	Year of Completion	Project Description
C13W2	2023	Cycle Pruning/Hazard Tree Mitigation
C15W1	2023	Hazard Tree Mitigation/Mid- Cycle Review
C15W2	2023	Hazard Tree Mitigation/Mid- Cycle Review
C22W3	2023	Hazard Tree Mitigation/Mid- Cycle Review/Forestry Reliability
C3W1	2023	Mid-Cycle Review
C3W3	2023	Mid-Cycle Review/Forestry Reliability
C7X1	2023	Mid-Cycle Review

Table 11Electric System Improvements Performed to Improve Reliability

Circuit(s)	Year of Completion	Project Description
Various	2022/2023	Install Animal Guards
13W2	2022	Reconductor 13W2 Mainline with 336 Spacer
13W1	2022	Recloser Installation
15W2	2022	Replace Direct Buried Cable
38 Line	2022	Spacer Cable Replacement
18W2	2023	Reconductor Bow Center Rd
8X3	2023	Install a Fuse Saver on Horse Corner Rd

7 Tree Related Outages in Past Year

This section summarizes the worst performing circuits by tree related outage during the time period between January 1, 2022 and December 31, 2022. This section does not include subtransmission outages.

Table 12 shows the ten worst circuits ranked by the total number of Customer-Minutes of interruption. The number of customer-interruptions and number of outages are also listed in this table.

All streets on the UES CAPITAL system with three or more tree related outages are shown in Table 13 below. The table is sorted by number of interruptions and customer-minutes of interruption.

Circuit	Customer Interruptions	Cust-Min of Interruption	No. of Interruptions
C13W3	2,615	259,979	33
C8X3	1,988	158,129	36
C22W3	607	63,177	14
C4X1	719	60,775	12
C13W1	606	55,414	11
C7W4	1,422	54,122	7
C15W1	538	38,187	7
C6X3	187	28,150	3
C4W3	114	21,414	5
C13W2	163	12,399	5

Table 12Worst Performing Circuits – Tree Related Outages

Table 13Multiple Tree Related Outages by Street

Circuit	Street, Town	No. Of Outages	Customer Interruptions	Cust-Min of Interruption
C8X3	Bear Hill Rd, Loudon	4	608	53,275
C7W4	South St, Concord	4	494	19,818
C22W3	Stickney Hill Rd, Hopkinton	4	71	4,595
C13W3	Daniel Webster Hwy, Boscawen	3	380	66,671
C22W3	Birchdale Rd, Bow	3	451	51,981
C8X3	Mountain Rd, Epsom	3	150	15,648
C4X1	Horse Hill Rd, Penacook	3	136	13,104
C4X1	West Parish Rd, Concord	3	72	11,398
C8X3	Horse Corner Rd, Chichester	3	134	8,566
C13W3	Mutton Rd, Webster	3	66	8,471

8 Failed Equipment

This section is intended to clearly show all equipment failures throughout the study period from January 1, 2022 through December 31, 2022. Chart 7 shows all equipment failures throughout the study period. Chart 8 shows each equipment failure as a percentage of the total failures within this same study period. The number of equipment failures in each of the top three categories of failed equipment for the past five years are shown below in Chart 9.

Chart 9 Annual Equipment Failures by Category (top three)

The top three equipment failures continue to be underground cables, cutouts, and polemount transformers. The polemount transformer failures, although high, do not show signs of increasing over the last 5 years and are consistent with historical failure rates. Cutout failures are trending downward as a result of the cutout replacement program

that occurred in 2018 and 2019. Operations and engineering will continue to review locations in which cable injection and replacement of direct buried cable could reduce the frequency of underground cable failures.

9 Multiple Device Operations and Streets with Highest Number of Outages

A summary of the devices that have operated four or more times from January 1, 2022 to December 31, 2022 are included in table 14 below. Refer to section 11 for project recommendations that address some of the areas identified.

A summary of the streets on the UES Capital system that had customers with 7 or more non-exclusionary outages in 2022 is included in Table 15 below. The table is sorted by circuit and then the maximum number of outages seen by a single customer on that street.

Circuit	Device	Number of Operations	Customer Minutes	Customer Interruptions	# of Times on List in Previous 4 Years	
C8X3	Fuse, Pole 2, Bear Hill Rd, Chichester	5	60,272	760	1	
C8X3	Fuse, Pole 43, Lane Rd, Chichester (Right/East Fuse)	4	9,929	92	0	
C4X1	Fuse, Pole 17, Horse Hill Rd, Penacook	4	17,268	181	0	
C8X3	Fuse, Pole 1, Mountain Rd, Epsom	4	19,218	201	1	

Table 14Multiple Device Operations

	Table 15				
	Streets with the Highest Number of Outages				
		Max Number of			
Circuit	Street	Outages Seen by a Single Customer	Number of Times on List in Previous 4 Years		
C8X3	Ferrin Rd	7	1		

7

10 Other Concerns

C8X3

This section is intended to identify other reliability concerns that would not necessarily be identified from the analysis above.

10.1 URD Cable Failure

Durgin Rd

URD cables are failing at an average rate of 13.4 failures per year over the last five years, for a total of 67 cable failures in the past five years. When a direct buried cable fails, Unitil typically excavates the area of the failure and splices in a small section of new cable into the existing cable. In these cases

2

the remaining aged cable in the area remains. Generally, cable failures in conduit result in the cable run being replaced. In recent years, projects to address direct buried cable failures have included cable injection and replacement with cable in conduit where cable injection has been deemed unfeasible. It is anticipated that additional projects for cable injection and or direct buried cable replacement will be proposed in future years.

11 Recommendations

This following section describes recommendations on circuits, sub-transmission lines and substations to improve overall system reliability. The recommendations listed below will be compared to the other proposed reliability projects on a system-wide basis. A cost benefit analysis will determine the priority ranking of projects for the 2024 capital budget. All project costs are shown without general construction overheads.

11.1. Circuit 13W1: 13W1 Spacer Cable and Tree Wire Installation

11.1.1. Identified Concerns

Circuit 13W1 was on the SAIDI worst performing circuit list 5 times in the past 5 years and was on the SAIFI worst performing circuit list 2 times in the past 5 years. It is also 5th place on the Worst Performing Circuits – Tree Related Outages list.

Broken trunks were responsible for 43,704 customer minutes of interruption in 2022.

A broken trunk on Carter Hill Road resulted in an outage to 502 customers and totaled 43,615 customer minutes of interruption. Additionally, there are large trees on both sides of Center Road that could cause damage to the three-phase line in the event of broken trunks or limbs.

11.1.2. Recommendations

11.1.2.1. 13W1 Mainline Spacer Cable Installation

Reconductor the mainline of 13W1 from pole 59 West Rd to pole 33 North West Rd with 336AI spacer cable, 052AWA messenger and 4/0ACSR neutral.

Estimated Project Cost (without construction overheads): \$560,037

Estimated Annual Savings:

Customer Minutes: 27,776

Customer Interruptions: 305

11.2. Circuit 13W3: 13W3 Spacer Cable Installation

11.2.2.1. Identified Concerns

Circuit 13W3 was on the SAIDI worst performing circuit list 5 times in the past 5 years and was on the SAIFI worst performing circuit list 2 times in the past 5 years. Additionally, it is the worst circuit on the Worst Performing Circuits – Tree Related Outages list. 13W3 is a radial circuit with no back up to adjacent circuits.

11.2.2. Recommendation

11.3.2.1. Reconductor Daniel Webster Highway

Reconductor Daniel Webster Highway from pole 187 to pole 285 with 336AI spacer cable, 052AWA messenger and 4/0ACSR neutral.

Estimated Project Cost (without construction overheads): \$1,056,337

Estimated Annual Savings:

Customer Minutes: 25,538

Customer Interruptions: 276

11.3. Circuit 13W3: Reconductoring and Creation of an Internal Circuit Tie

11.3.1. Identified Concerns

Circuit 13W3 was on the SAIDI worst performing circuit list 5 times in the past 5 years and was on the SAIFI worst performing circuit list 2 times in the past 5 years. Additionally, it is the worst circuit on the Worst Performing Circuits – Tree Related Outages list. 13W3 is a radial circuit with no back up to adjacent circuits.

11.3.2. Recommendation

11.3.2.1. N. Water Street and Rabbit Road Spacer Cable Installation

Rebuild N. Water Street and Rabbit Road from Long Street to Old Coach Road with 336AL spacer cable, 052AWA messenger and 4/0ACSR neutral. Install three microprocessor controlled reclosers and implement an auto transfer scheme. The first recloser is to be installed at P.49 Old Turnpike Rd, the second at P.1 Rabbit Rd and the third in the area of the intersection of N. Water St and Long St. Ultimately, this project is to create a loop between High St and Water St in Boscawen. It will allow for the entirety of the Webster territory or Salisbury territory to be restored after a fault on either Water St or High St, respectively. Estimated Project Cost (without construction overheads): \$1,457,712

Estimated Annual Savings:

Customer Minutes: 30,069

Customer Interruptions: 668

11.4. Circuit 18W2: Create New Tie with 22W3

11.4.1. Identified Concerns

Circuit 18W2 was on the SAIDI worst performing circuit list 3 times in the past 5 years.

There was a 2021 outage on Bow Center Rd which caused 113,901 customer minutes of interruption for 948 customers. Additionally, the southwest portion of 18W2 does not currently have a tie to an adjacent circuit and the existing 18W2 tie to 22W3 is in close proximity to Bow Bog substation.

11.4.2. Recommendations

11.4.2.1. Create a Circuit Tie on White Rock Hill Rd

Rebuild the single-phase portion of White Rock Hill Road on circuits 18W2 and 22W3 to three-phase. A new normally open tie switch will be installed along White Rock Hill Road creating a new circuit tie between 18W2 and 22W3. Replace the fuses on pole 18/104 on Bow Center Rd and the fuses on pole 122/53 on White Rock Hill Rd with solid blades.

Estimated Project Cost (without construction overheads): \$312,467

Estimated Annual Savings:

Customer Minutes: 11,168

Customer Interruptions: 8

11.5. Miscellaneous Circuit Improvements to Reduce Recurring Outages

11.5.1. Identified Concerns & Recommendations

The following concerns were identified based on a review of Tables 12 & 13 of this report; Multiple Tree Related Outages by Street and Multiple Device Operations respectively and reviewing the fault locations on the worst performing circuits.

Forestry Reviews

It is recommended that a forestry review of the areas below be performed in order to identify and address any mid-cycle growth or hazard tree problems.

- C8X3
 - Horse Corner Rd. area, Chichester
 - Bear Hill Rd, East Ricker Rd area, Loudon
 - Mountain Rd, Epsom
- C22W3
 - Stickney Hill Rd. area, Hopkinton
 - Birchdale Rd. area, Bow
- C13W3
 - Daniel Webster Hwy area Boscawen
 - Mutton Rd area, Webster
- C7W4
 - South St area, Concord
 - C4X1
 - Horse Hill Rd area, Penacook
 - West Parish Rd area, Concord

Animal Guard Installation Recommendations

It is recommended that the on-going animal guard installation program be continued in 2024. The areas identified below should be reviewed and have animal guards installed where needed.

- C8X3
 - Bear Hill Rd. area, Chichester
 - Center Hill Rd. area, Epsom
 - Connemara Dr. area, Chichester
 - Durgin Rd. area, Chichester
 - Horse Corner Rd. area, Chichester
 - Bailey Rd. area, Chichester
 - King Rd. and Canterbury Rd. area, Chichester and Loudon
 - Durgin Rd. area, Chichester
 - Highland Dr. area, Chichester
 - Colonial Dr. area, Epsom
 - Albert Nye Dr. area, Epsom (around McClary Hill)
 - Baybutt Rd., Epsom
- C13W1
 - Goodwin Rd. area, Canterbury
- C13W2
 - Academy St. area, Boscawen
 - Best Ave. area, Boscawen
 - Chandler St. area, including Hollins Ave, Boscawen
- C13W3
 - Water St. area, Boscawen
 - Keneval Ave. area, Boscawen
 - White Plains Rd. area, Webster
 - Area surrounding Walker Pond and Corser Hill, Webster

- Warner Rd. area, Salisbury
- C18W2
 - Bow Center Rd. area, Bow
 - Risingwood Dr. area, Bow

12 Conclusion

During 2022, tree related outages still present one of the largest problems in the UES-Capital System, compared to other causes. Although compared to previous years, the worst performing circuits have seen a dramatic decrease in Customer Minutes of Interruption from tree related outages. Enhanced tree trimming efforts are still being implemented, which is expected to improve reliability along the mainlines for most of the worst performing circuits identified in this study.

Due to the number of animal related outages that occur on the UES-Capital system an animal guard installation program began in 2019. This program is expected to continue in 2023. Furthermore, animal guards are continually being placed on equipment whenever an animal causes an outage. In addition, when there is an animal-related outage, any equipment in the vicinity will be checked. If nearby equipment does not have animal guards, animal guards will be installed at that location. Also, streets and circuits identified as having high numbers of animal related outages will be checked and proper animal protection will be installed where applicable.

Recommendations developed from this study are mainly focused on reducing the impact of multiple permanent outages. This report is also intended to assist Unitil Forestry in identifying areas of the system that are being frequently affected by tree related outages to allow proactive measures to be taken. In addition, new ideas and solutions to reliability problems are always being explored in an attempt to provide the most reliable service possible.

Unitil Energy Systems – Seacoast

Reliability Study 2023

~DRAFT~

Prepared By:

Jake Dusling Unitil Service Corp. August 29, 2023

Table of Contents

1	Executive Summary	. 1
2	Reliability Benchmarks	. 3
3	Outages by Cause	. 3
4	10 Worst Distribution Outages	. 5
5	Sub-transmission and Substation Outages	. 6
6	Worst Performing Circuits	. 7
6.1	Worst Performing Circuits in Past Year	. 7
6.2	Worst Performing Circuits of the Past Five Years	. 8
6.3	System Reliability Improvements	10
7	Tree Related Outages in Past Year	11
8	Failed Equipment	12
9	Multiple Device Operations and Streets with Highest Number of Outages	14
10	Recommendations	15
10.1	Circuits 6W1 and 6W2 – Construct Circuit Tie	15
10.2	Circuits 58X1 and 5X3 – Increase Circuit Tie Capacity and Reconfigure	16
10.3	Circuits 46X1 and 2X2 – Create Circuit Tie and Reconfigure	16
11	Conclusion	17

1 Executive Summary

The purpose of this document is to report on the overall reliability performance of the Unitil Energy Systems – Seacoast (UES-Seacoast) system from January 1, 2022 through December 31, 2022. The scope of this report will also evaluate individual circuit reliability performance over the same time period. The outage data used in this report excludes sub-transmission and substation outages (listed in Section 5), as well as outages during IEEE Major Event Days (MEDs). UES-Seacoast MEDs are listed in the table below:

# MEDs in Event	Dates of MEDs	Interruptions	Customer Interruptions	Cust-Min of Interruption
1	12/23/2022	147	9,565	5,944,918

The following projects are proposed from the results of this study and are focused on improving the worst performing circuits as well as the overall UES-Seacoast system reliability. These recommendations are provided for consideration and will be further developed with the intention to be incorporated into the 2024 budget development process.

Circuit / Line / Substation	Proposed Project	Cost (\$)
6W1/6W2	Construct Circuit Tie	\$1,330,000
58X1/5X3/3358	Increase Circuit Tie Capacity and Reconfigure	\$1,350,000
46X1/2X2/3346	Create Circuit Tie and Reconfigure	\$1,625,000

Note: estimates do not include general construction overheads

The 2022 annual UES-Seacoast system reliability goal was set at 121.68 SAIDI minutes, after removing exclusionary outages. UES-Seacoast's SAIDI performance in 2022 was 76.33 minutes. Charts 1, 2, and 3 below show UES-Seacoast's SAIDI, SAIFI, and CAIDI performance over the past five years.

Chart 1 Annual UES-Seacoast SAIDI

Chart 2 Annual UES-Seacoast SAIFI

Chart 3 Annual UES-Seacoast CAIDI

2 Reliability Benchmarks

The new annual UES-Seacoast system reliability benchmark for 2023 is 124.56 SAIDI minutes. This was developed by calculating the contribution of UES-Seacoast to the Unitil system performance using the past five year average. The contribution factor was then set against the 2023 Unitil system goal. The 2023 Unitil system goal was developed through benchmarking the Unitil system performance with nationwide utilities.

Individual circuits will be analyzed based upon circuit SAIDI, SAIFI, and CAIDI. Analysis of individual circuits along with analysis of the entire UES-Seacoast system is used to identify future capital improvement projects and/or operational enhancements which may be required in order to achieve and maintain these goals.

3 Outages by Cause

This section provides a breakdown of all outages by cause code experienced during 2024. Charts 4, 5, and 6 list the number of interruptions, the number of customer interruptions, and total customer-minutes of interruption due to each cause respectively. Only the causes contributing 3% or greater of the total are labeled. Table 1 shows the number of interruptions for the top three trouble causes for the previous five years.

Chart 4 Number of Interruptions by Cause

Chart 5 Number of Customer Interruptions by Cause

Table 1Worst Three Trouble Causes over Past Five-YearsNumber of Interruption

	# of Interruptions Per Trouble Cause							
Year	Tree/Limb Contact - Broken Limb	Tree/Limb Contact - Broken Trunk	Equipment Failure Company					
2022	96	74	49					
2021	128	109	77					
2020	132	84	61					
2019	88	69	69					
2018	178	57	89					

4 10 Worst Distribution Outages

The ten worst distribution outages ranked by customer-minutes of interruption during the time period from January 1, 2022 through December 31, 2022 are summarized in Table 2 below.

Circuit	Date/Cause	Customer Interruptions	Cust-Min of Interruption	SAIDI	SAIFI
E27X1	7/23/2022 Equipment Failure Company	699	205,028	4.26	0.015
E17W1	1/17/2022 Other – Debris (Aluminum Siding) Contact	2,029	146,494	3.04	0.042
E54X1	1/25/2022 Equipment Failure Company	1,025	135,348	2.81	0.021
E7X2	2/12/2022 Tree/Limb Contact – Broken Trunk	1,325	134,973	2.80	0.028
E19X3	7/21/2022 Lightning Strike	1,834	129,706	2.69	0.038
E23X1	6/20/2022 Vehicle Accident	517	126,648	2.63	0.011
E51X1	7/21/2022 Tree/Limb Contact – Broken Trunk	401	101,807	2.11	0.008
E22X1	2/18/2022 Tree/Limb Contact – Broken Limb	1,402	100,827	2.09	0.029
E56X1	5/25/2022 Vehicle Accident	336	95,514	1.98	0.007
E47X1	1/5/2022 Tree/Limb Contact – Broken Limb	914	81,815	1.70	0.019

Table 2Worst Ten Distribution Outages

5 Sub-transmission and Substation Outages

This section describes the contribution of sub-transmission line and substation outages on the UES-Seacoast system.

All substation and sub-transmission outages ranked by customer-minutes of interruption during the time period from January 1, 2022 through December 31, 2022 are summarized in Table 3 below.

Table 4 shows the substations that have been affected by sub-transmission line and substation outages. The table illustrates the contribution of customer minutes of interruption for each circuit affected.

In aggregate, sub-transmission line and substation outages accounted for 16% of the total customer-minutes of interruption for UES-Seacoast.

Table 3Sub-transmission and Substation Outages

Line / Substation	Date/Cause	Customer Interruptions	Cust-Min of Interruption	SAIDI	SAIFI	Number of Outages in Prior Four Years
Kingston S/S	8/22/2022 Operator Error/System Malfunctions	9,760	58,860	3.82	0.062	0
Hampton Beach S/S	6/16/2022 Equipment Failure Company	3,284	314,655	2.72	0.063	0
Hampton S/S	8/11/2022 Operator Error/System Malfunctions	2,524	220,976	4.97	0.038	0

Table 4
Affected Substations/Circuits

		Substation / Transmission Line	Customer	Cust-Min of	Number
Substation/Tap	Circuits	Outage	Interruptions	Interruption	of Events
Kingston	E22X1	Kingston S/S	1,414	8,484	1
Timberlane	E13W1, E13W3, E13X3	Kingston S/S	2,979	17,874	1
Plaistow	E5X3	Kingston S/S	794	4,764	1
Hunt Road	E56X1	Kingston S/S	714	4,284	1
Munt Hill	E28X1	Kingston S/S	515	3,090	1
Shaw's Hill	E27X1, E27X2	Kingston S/S	1,134	6,804	1
Dorre Road	E56X2	Kingston S/S	157	942	1
Hampton Beach	E3W1, E3W4	Hampton Beach S/S	3,284	314,655	1
Hampton	E2X2	Hampton S/S	2,524	220,976	1

6 Worst Performing Circuits

This section compares the reliability of the worst performing circuits using various performance measures.

6.1 Worst Performing Circuits in Past Year

A summary of the worst performing circuits during the time period between January 1, 2022 and December 32, 2021 is included in the tables below.

Table 5 shows the ten worst circuits ranked by the total number of Customer-Minutes of interruption. The SAIFI and CAIDI for each circuit are also listed in this table.

Table 6 provides detail on the major causes of the outages on each of these circuits. Customer-Minutes of interruption are given for the six most prevalent causes during 2022.

Circuits having one outage contributing more than 80% of the Customer-Minutes of interruption were excluded from this analysis.

8								
Circuit	Customer Interruptions	Worst Event (% of Cl)	Cust-Min of Interruption	Worst Event (% of CMI)	SAIDI	SAIFI	CAIDI	
E19X3	3,167	58%	292,228	44%	6.07	0.066	92.27	
E51X1	2,272	19%	282,224	36%	5.86	0.047	124.22	
E27X1	1,200	42%	247,331	55%	5.13	0.025	206.11	
E54X1	3,291	31%	246,355	55%	5.11	0.068	74.86	
E47X1	2,731	33%	222,676	37%	4.62	0.057	81.54	
E56X1	994	34%	200,086	48%	4.15	0.021	201.29	
E7X2	1,513	88%	170,635	79%	3.54	0.031	112.78	
E22X1	2,563	55%	143,339	70%	2.98	0.053	55.93	
E13W2	2,385	69%	125,854	16%	2.61	0.050	52.77	
E6W1	1,246	16%	124,551	47%	2.59	0.026	99.96	

 Table 5

 Worst Performing Circuits Ranked by Customer-Minutes

Note: all percentages and indices are calculated on a circuit basis

		Customer-Minutes of Interruption / # of Outages									
Circuit	Tree/Limb Contact - Broken Limb	Tree/Limb Contact - Broken Trunk	Vehicle Accident	Equipment Failure Company	Other	Patrolled, Nothing Found					
E19X3	15,067 / 4	19,338 / 1	67,259 / 3	6,270 / 1	0/0	0/0					
E51X1	215,781 / 8	12,177 / 1	0/0	5,889 / 7	876 / 1	43,273 / 8					
E27X1	21,442 / 5	19,674 / 2	0/0	205,256 / 2	0 / 0	195 / 2					
E54X1	65,683 / 3	556 / 1	0/0	135,534 / 2	0/0	1,921/2					
E47X1	215,814 / 5	2,277 / 2	0 / 0	1,484 / 1	0 / 0	20 / 1					
E56X1	18,162 / 3	75,109 / 1	95,514 / 1	89 / 1	0 / 0	676 / 1					
E7X2	134,973 / 1	32,555 / 2	0/0	1,211/2	0/0	291 / 1					
E22X1	102,548 / 4	15,412 / 5	23,156 / 2	1,648 / 2	0 / 0	0 / 0					
E13W2	29,739 / 8	931 / 3	54,502 / 3	1,760 / 2	0/0	16,440 / 3					
E6W1	31,640 / 4	29,595 / 3	58,819 / 1	3,303 / 1	0/0	115 / 1					

Table 6Circuit Interruption Analysis by Cause

6.2 Worst Performing Circuits of the Past Five Years

The annual performance of the ten worst circuits in terms of SAIDI and SAIFI for each of the past five years is shown in the tables below. Table 7 lists the ten worst performing circuits ranked by SAIFI and Table 8 lists the ten worst performing circuits ranked by SAIDI. Table 9 lists the ten worst circuits in terms of SAIFI and SAIDI for the past five years.

The data used in this analysis includes all system outages except those outages that occurred during the IEEE MEDs in 2018 through 2022.

Circuit Ranking	20	22	202	21	202	20	20	19	20	18
(1=worst)	Circuit	SAIFI								
1	E54X1	3.217	E21W1	4.395	E15X1	3.597	E3W1	2.062	E7W1	6.569
2	E22X1	2.811	E15X1	3.587	E21W1	2.924	E6W1	1.991	E6W1	3.257
3	E2H1	2.000	E23X1	3.148	E51X1	2.486	E22X1	1.758	E54X2	2.949
4	E27X1	1.719	E59X1	2.473	E6W2	2.103	E51X1	1.693	E21W1	2.519
5	E47X1	1.634	E27X1	2.384	E13X3	2.000	E23X1	1.677	E6W2	2.334
6	E13W2	1.457	E6W1	2.256	E19H1	2.000	E11X1	1.356	E54X1	2.115
7	E6W1	1.418	E54X1	2.154	E17W2	1.518	E21W1	1.290	E21W2	2.053
8	E56X1	1.396	E22X1	1.957	E6W1	1.505	E18X1	1.261	E13W2	1.777
9	E13W1	1.193	E18X1	1.718	E56X1	1.484	E17W2	0.998	E43X1	1.465
10	E51X1	1.153	E7X2	1.467	E2H1	1.223	E6W2	0.901	E22X1	1.458

Table 7 Circuit SAIFI

Table 8 Circuit SAIDI

Circuit	2022		2021		2020		2019		2018	
(1=worst)	Circuit	SAIDI								
1	E27X1	354.34	E21W1	517.49	E51X1	370.76	E6W1	459.13	E7W1	520.93
2	E56X1	281.02	E15X1	387.02	E13X3	335.64	E51X1	354.92	E54X2	338.40
3	E54X1	240.82	E22X1	371.47	E15X1	283.77	E21W1	176.68	E21W1	285.58
4	E2H1	239.32	E23X1	303.66	E21W1	240.24	E22X1	170.09	E54X1	221.90
5	E23X1	152.95	E27X1	283.93	E6W2	225.28	E11X1	167.39	E22X1	209.94
6	E51X1	143.30	E59X1	258.19	E21W2	219.48	E15X1	116.15	E6W1	205.87
7	E6W1	141.70	E27X2	218.64	E6W1	166.78	E17W2	115.43	E13W2	196.23
8	E47X1	133.26	E47X1	182.46	E22X2	154.73	E13W1	113.6	E2H1	192.59
9	E3W4	109.60	E54X1	172.53	E22X1	153.40	E23X1	112.91	E23X1	176.73
10	E22X1	107.30	E6W1	148.90	E19H1	147.89	E6W2	93.03	E58X1	167.86

	SAIFI		SAIDI				
Circuit Ranking (1=worst)	Circuit	# of Times in Worst 10	Circuit Ranking (1=worst)	Circuit	# of Times in Worst 10		
1	E54X1	3	1	E27X1	2		
2	E22X1	4	2	E56X1	1		
3	E2H1	2	3	E54X1	3		
4	E27X1	2	4	E2H1	2		
5	E47X1	1	5	E23X1	4		
6	E13W2	2	6	E51X1	3		
7	E6W1	5	7	E6W1	5		
8	E56X1	2	8	E47X1	2		
9	E13W1	1	9	E3W4	1		
10	E51X1	3	10	E22X1	5		

Table 9Worst Performing Circuits in Past Five Years

6.3 System Reliability Improvements

Vegetation management projects completed in 2022 or planned for 2023 that are expected to improve the reliability of the 2022 worst performing circuits are included in Table 10 below. Table 11 below details electric system upgrades scheduled to be completed in 2023 or completed in 2022 to improve system reliability of the 2022 worst performing circuits.

Table 10Vegetation Management Projects Worst Performing Circuits

Circuit(s)	Year of Completion	Project Description
E19X3	2023	Reliability Pruning
E51X1	2023	Storm Resiliency Pruning
	2022	Reliability Pruning
E27X1	2023	Hazard Tree Mitigation Cycle Pruning
E54X1	2022	Hazard Tree Mitigation Cycle Pruning
E47X1	2022	Mid-Cycle Pruning Reliability Pruning
E56X1	2022	Hazard Tree Mitigation Cycle Pruning
E7X2	2022	Hazard Tree Mitigation Mid-Cycle Pruning
E13W2	2023	Storm Resiliency Pruning Hazard Tree Mitigation Cycle Pruning

Circuit(s)	Year of Completion	Project Description
E22X1	2023	Hazard Tree Mitigation Mid-Cycle Pruning
E6W1	2023	Hazard Tree Mitigation Mid-Cycle Pruning
E2H1	2023	Hazard Tree Mitigation Cycle Pruning
E12)//1	2022	Mid-Cycle Pruning
EISWI	2023	Reliability Pruning
E23X1	2023	Hazard Tree Mitigation Mid-Cycle Pruning

Table 11Electric System Improvements Performed to Improve Reliability

Circuit(s)	Year of Completion	Project Description
E51X1	2022	Install Sectionalizers
E27X1	2024	Convert to 34.5kV, Install Reclosers and Implement Auto- Restoration Scheme with 23X1
E22X1	2023	Install Reclosers and Implement Auto-Restoration Scheme with 54X2
	2022	Install FuseSavers
E23X1	2024	Convert to 34.5kV, Install Reclosers and Implement Auto- Restoration Scheme with 27X1

7 Tree Related Outages in Past Year

This section summarizes the worst performing circuits by tree related outage during the time period between January 1, 2022 and December 31, 2022.

Table 12 shows the ten worst circuits ranked by the total number of Customer-Minutes of interruption. The number of customer-interruptions and number of outages are also listed in this table.

All streets on the UES-Seacoast system with three or more tree related outages are shown in Table 13 below. The table is sorted by number of interruptions and customer-minutes of interruption.

Table 13 indicates that there were thirteen streets that experienced three or more tree related outages in 2022. It is recommended that a forestry review of the areas identified in Table 13 be performed in 2023 in order to identify and address any growth or hazard tree problems.

Circuit	Customer Minutes of Interruption	Number of Customers Interrupted	No. of Interruptions
E51X1	227,957	1,434	14
E47X1	220,739	2,705	10
E7X2	168,276	1,491	4
E22X1	117,960	1,506	9
E56X1	96,456	583	8
E13W1	67,035	1,243	8
E54X1	66,396	1,034	5
E6W1	61,408	951	8
E43X1	59,345	1,431	11
E15X1	52,177	212	4

Table 12Worst Performing Circuits – Tree Related Outages

Table 13Multiple Tree Related Outages by Street

Circuit(s)	Street, Town	# Outages	Customer- Minutes of Interruption	Number of Customer Interruptions
E28X1	Exeter Road, Hampton Falls	6	3,241	24
E56X1	Hunt Road, Kingston	5	17,800	267
E2X3	Drinkwater Road, Hampton Falls	4	8,621	62
E23X1	Woodman Road, South Hampton	4	5,755	38
E51X1	Winnicutt Road, Stratham	3	106,692	785
E6W1	South Road, East Kingston	3	43,186	705
E13W2	Highland Road, Newton	3	17,571	179
E13W1	North Main Street, Plaistow	3	12,964	91
E6W2	Rockrimmon Road, Kingston	3	10,764	52
E19X3	Linden Street, Exeter	3	10,743	165
E13W2	Main Street, Newton	3	10,001	55
E47X1	Hersey Lane, Stratham	3	2,287	6
E6W2	North Road, Kingston	3	387	3

8 Failed Equipment

This section is intended to clearly show all equipment failures throughout the study period from January 1, 2022 through December 31, 2022. Chart 7 shows all equipment failures throughout the study period. Chart 8 shows each equipment failure as a percentage of the total failures within this same study period. The number of equipment failures in each of the top three categories of failed equipment for the past five years are shown below in Chart 9.

Chart 7 Equipment Failure Analysis by Cause

Chart 9 Annual Equipment Failures by Category (top three)

9 Multiple Device Operations and Streets with Highest Number of Outages

A summary of the devices that have operated three or more times from January 1, 2022 to December 31, 2022 is included in Table 14 below.

The UES-Seacoast system did not have any customers with 7 or more nonexclusionary outages in 2022.

Multiple Device Operations							
Circuit	Number of Operations	Device	Customer Minutes	Customer Interruptions	# of Times on List in Previous 4 Years		
E28X1	4	Fuse, P. 108 Exeter Rd, Hampton Falls	1,038	8	0		
E6W1	3	Recloser, P. 2 South Rd, East Kingston	38,616	501	1		
E54X1	3	Recloser, P. 4-A New Boston Rd, Kingston	241,331	3,070	1		
E13W2	3	Fuse, P. 6 Highland, Newton	17,571	179	0		
E47X1	3	Fuse, P. 3 Hersey Lane, Stratham	2,287	6	0		
E47X1	3	Recloser, P. 56 Heights Rd, Stratham	213,490	2,629	0		

Table 14Multiple Device Operations

10 Recommendations

This following section describes recommendations on circuits, sub-transmission lines and substations to improve overall system reliability. The recommendations listed below will be compared to the other proposed reliability projects on a system-wide basis. A cost benefit analysis will determine the priority ranking of projects for the 2024 capital budget. All project costs are shown without general construction overheads.

10.1 Circuits 6W1 and 6W2 – Construct Circuit Tie

10.1.1 Identified Concerns

Circuit 6W1 has been one of the ten worst performing circuits in the UES-Seacoast system in terms of SAIDI and SAIFI for each of the past ten years. Additionally, the owner of a section of property along South Road on 6W1 has repeatedly refused to allow effective pruning and hazard tree mitigation, and this section has been the cause of several tree outages over the past several years.

A project to re-conductor the section of South Road with spacer has been proposed in the past, but even if the project could have been justified for reliability spending, it was impossible to construct because the level of trimming needed for the spacer cable construction wasn't achievable.

10.1.2 Recommendation

This project will consist of rebuilding and converting portions of circuit 6W1 and 6W2 from 4.16kV operation to 13.8kV to create a new circuit tie between the two circuits.

Circuits 6W1 and 6W2 along Powwow River Road and Burnt Swamp Road from pole 28 Depot Road Kingston to pole 1 South Road, South Hampton will be rebuilt and converted to three-phase 13.8kV operation.

A new normally open recloser between the circuits will be installed in the vicinity of pole 1 South Road, South Hampton. A normally closed recloser will also be installed at pole 1 South Road in South Hampton.

This project sets the stage for the installation of additional reclosers and the implementation of a future distribution automation scheme.

Customer Exposure = 771 customers

The projected average annual savings for this project is 105,000 customer minutes of interruptions and 0 customer interruptions.

Estimated Project Cost: \$1,330,000

10.2 Circuits 58X1 and 5X3 – Increase Circuit Tie Capacity and Reconfigure

10.2.1 Identified Concerns

Circuit 58X1 and Westville substation as served via the aging radial 3358 line. There is not sufficient distribution circuit tie capacity to restore circuit 58X1 and/or Westville substation for the loss of the 3358 line. Additionally, circuit 58X1 is one of the larger circuits of the UES Seacoast system, serving nearly 11.5MW of load and over 2,250 customers.

10.2.2 Recommendation

This project will consist of rebuilding and converting circuit 5X3 from Plaistow substation to the intersection of Sweet Hill Road and Pollard Road. This will allow a majority of the eastern portion of circuit 58X1 to be transferred to circuit 5X3.

To accommodate this load transfer the 5X3 regulators at Plaistow substation will be upgraded to larger units.

The larger 5X3 regulators and the installation of a new gang-operated switch on the 3358 line should provide circuit 5X3 will sufficient capacity to restore circuit 58X1 and Westville substation for the loss of the 3358 line.

Customer Exposure = 5,280 customers (3358 line)

The projected average annual savings for this project is 235,000 customer minutes of interruptions and 450 customer interruptions.

Estimated Project Cost: \$1,350,000

10.3 Circuits 46X1 and 2X2 – Create Circuit Tie and Reconfigure

10.3.1 Identified Concerns

Circuit 46X1 is served from the radial 3346 line without any distribution back-up. Additionally, the 46X1 tap stepdown transformers and structure are aging and are in need of repair and/or replacement.

Circuit 2X2 is one of the larger circuits of the UES Seacoast system, serving nearly 10MW of load and over 2,500 customers.

The circuit tie between 2X2 and circuit 18X1, which has historically allowed the circuit to back one another up is approaching its capacity. The total load and customers served between circuits 2X2 and 18X1 is approximately 23MW and 4,350 customers, respectively.

10.3.2 Recommendation

This project will consist of rebuilding and converting circuit 46X1 from Winnacunnet Road tap to the intersection of Winnacunnet Road and Landing Road. This will allow the eastern portion of circuit 2X2 to be transferred to circuit 46X1.

This project will provide sufficient circuit tie capacity to allow circuit 2X2 and 18X1 to back each other up for the foreseeable future. Additionally, this will allow the new circuit tie between circuit 2X2 and 46X1 to be utilized to restore circuit 46X1 and High Street substation for the loss of the 3346 line between the 3346 line tap and the Winnacunnet Road tap.

Customer Exposure = 3,520 customers (3346 line)

The projected average annual savings for this project is 166,000 customer minutes of interruptions and 0 customer interruptions.

Estimated Project Cost: \$1,625,000

11 Conclusion

The annual electric service reliability of the UES-Seacoast system has seen improvement in the last ten years over prior years after discounting MEDs. 2022 had the second best reliability performance on record to 2019. Much of the overall improvement in reliability can be attributed to an aggressive vegetation management program; however, the most significant risk to reliability of the electric system continues to be vegetation.

The recommendations in this report focus on creating new circuit ties to increase the flexibility of the system to facilitate quicker restoration of customers that can be isolated from faulted sections of the system. This includes upgrading portions of circuits to create back-up supply to the worst performing circuit over the past five years and radial subtransmission lines. This report is also intended to assist the Unitil Forestry group in identifying areas of the system that are being frequently affected by tree related outages to allow proactive measure to be taken.