

UES Capital Reliability Study 2020

Prepared By: T. Glueck Unitil Service Corp. 2/15/2021

Table of Contents

1	Executive Summary	3
2	Reliability Goals	
3	Outages by Cause	5
4	10 Worst Distribution Outages	
5	Subtransmission and Substation Outages	
6	Worst Performing Circuits	11
7	Tree Related Outages in Past Year (1/1/18 – 12/31/18)	16
8	Failed Equipment	18
9	Multiple Device Operations and Streets with Highest Number of Outages	20
10	Other Concerns	21
11	Recommendations	22
12	Conclusion	27

1 Executive Summary

The purpose of this document is to report on the overall reliability performance of the UES Capital system from January 1, 2019 through December 31, 2019. The scope of this report will also evaluate individual circuit reliability performance over the same time period. The outage data used in this report excludes the data in Section 5 (subtransmission and substation outages), as well as outage data from IEEE Major Event Days (MEDs). UES-Capital MEDs are listed in the table below:

Date	Type of Event	Interruptions	Customer Interruptions	Cust-Min of Interruption
6/30/19	Broken Tree	1	2,277	755,241
10/17/19	Thunderstorm	71	4,918	1,506,573

The following projects are proposed from the results of this study and are focused on improving the worst performing circuits as well as the overall UES Capital system reliability. These recommendations are provided for consideration and will be further developed with the intention to be incorporated into the 2021 budget development process.

Circuit / Line / Substation	Proposed Project	Cost (\$)
4W4	Install Recloser and Switches	\$112,083
6X3	Install Recloser	\$36,753
8X3	Install Recloser	\$42,836
Various	Fusesaver Installations	\$79,403

Note: estimates do not include general construction overheads

UES Capital SAIDI was 103.51 minutes in 2019 after removing Major Event Days. The UES Capital target was 147.45 minutes. Charts 1, 2, and 3 below show UES Capital SAIDI, SAIFI, and CAIDI, respectively, over the past five years.

Chart 1
Annual Capital SAIDI

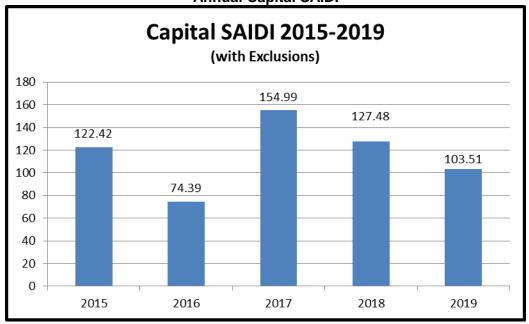
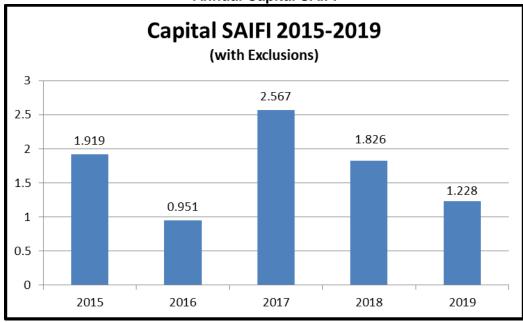
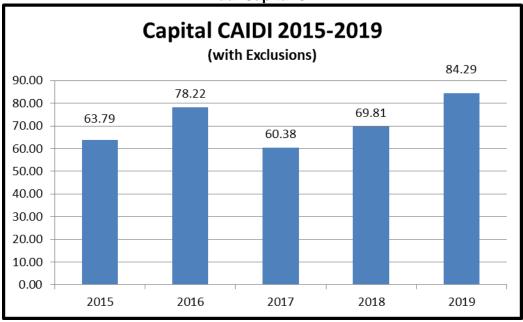




Chart 2
Annual Capital SAIFI

Chart 3 Annual Capital CAIDI

2 Reliability Benchmarks

The annual UES Capital system reliability benchmark for 2020 is set at 144 SAIDI minutes. This was developed by calculating the contribution of UES Capital to the Unitil system performance using the past five year average. The contribution factor was then set against the 2020 Unitil System goal. The 2020 Unitil System goal was developed through benchmarking the Unitil system performance with nationwide utilities.

Individual circuits will be analyzed based upon circuit SAIDI, SAIFI, and CAIDI. Analysis of individual circuits along with analysis of the entire UES Capital system is used to identify future capital improvement projects and/or operational enhancements which may be required in order to achieve and maintain these benchmarks.

3 Outages by Cause

This section provides a breakdown of all outages by cause code experienced during 2019. Charts 4, 5, and 6 show the number of interruptions, the number of customer interruptions, and total customer-minutes of interruptions due to each cause, respectively. Only the causes contributing 3% or greater of the total are labeled. Table 1 shows the number of interruptions for the top three trouble causes for the previous five years.

Chart 4
Number of Interruptions by Cause

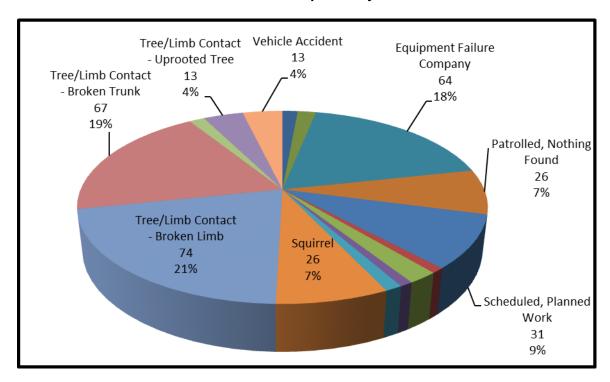


Chart 5
Number of Customer Interrupted by Cause

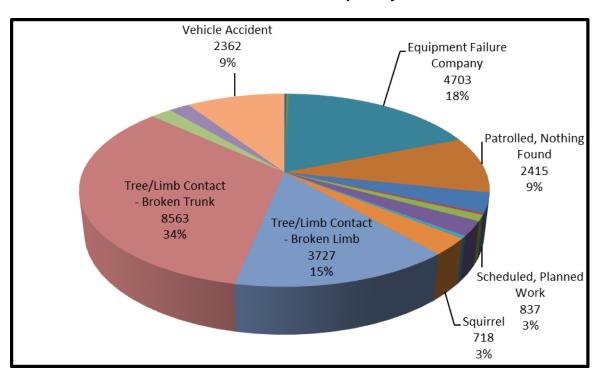


Chart 6
Percent of Customer-Minutes of Interruption by Cause

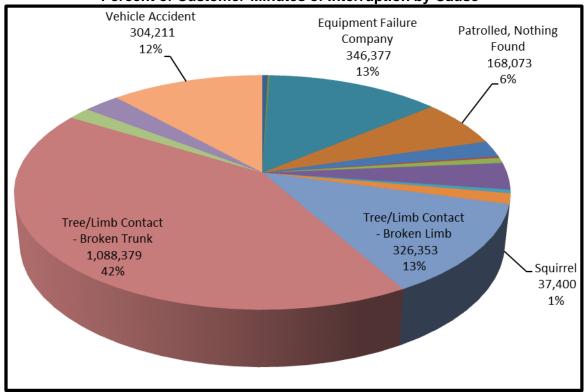


Table 1
Five-Year History of the Number of
Interruptions for the Worst Three Trouble Causes

Year	Tree/Limb Contact - Broken Limb	Tree/Limb Contact - Broken Trunk	Equipment Failure Company
2015	134	44	47
2016	117	34	52
2017	86	37	49
2018	134	102	68
2019	74	67	64

4 10 Worst Distribution Outages

The ten worst distribution outages ranked by customer-minutes of interruption during the time period from January 1, 2019 through December 31, 2019 are summarized in Table 2 below.

Table 2
Worst Ten Distribution Outages

Circuit	Description (Date/Cause)	No. of Customers Affected	No. of Customer Minutes	Capital SAIDI (min.)	Capital SAIFI
C2H2	01/01/2019 Tree/Limb Contact - Broken Trunk	1,065	209,267	6.86	0.035
C8X3	03/23/2019 Tree/Limb Contact - Broken Trunk	1,591	171,324	5.62	0.052
C2H2	04/03/2019 Tree/Limb Contact - Broken Trunk	1,066	151,819	4.98	0.035
C6X3	02/09/2019 Tree/Limb Contact - Broken Trunk	1,111	139,912	4.59	0.036
C13W2	06/27/2019 Vehicle Accident	987	115,528	3.79	0.032
C13W3	02/08/2019 Other	596	94,764	3.11	0.020
C13W3	11/19/2019 Vehicle Accident	511	88,659	2.91	0.017
C8X5	01/21/2019 Patrolled, Nothing Found	822	78,597	2.58	0.027
C8X5	C8X5 08/03/2019 Equipment Failure Company		66,080	2.17	0.027
C13W3	11/01/2019 Tree/Limb Contact - Broken Trunk	333	47,752	1.57	0.011

Note: This table does not include outages that occurred at substations or on the subtransmission system, scheduled/planned work outages, or outages that occurred during excludable events.

5 Subtransmission and Substation Outages

This section describes the contribution of sub-transmission line and substation outages on the UES Capital system.

All substation and sub-transmission outages ranked by customer-minutes of interruption during the time period from January 1, 2019 through December 31, 2019 are summarized in Table 3 below.

Table 4 shows the circuits that have been affected by sub-transmission line and substation outages. The table illustrates the contribution of customer minutes of interruption for each circuit affected.

In aggregate, sub-transmission line and substation outages accounted for 24% of the total customer-minutes of interruption for UES Capital.

Table 3
Subtransmission and Substation Outages

Trouble Location	Description (Date/Cause)	No. Customers Affected	No. of Customer Minutes	UES CAPITAL SAIDI (min)	UES Capital SAIFI	No. Times on List (past 4 yrs)
C374	06/11/2019 Tree/Limb Contact - Broken Trunk	3,711	283,047	9.32	0.122	0
C37	01/01/2019 Tree/Limb Contact - Uprooted Tree	3,261	97,764	3.22	0.107	1
C34	02/09/2019 Tree/Limb Contact - Broken Trunk	1,704	80,146	2.64	0.056	3
C38	09/20/2019 Equipment Failure Company	880	57,742	1.90	0.029	1

Table 4
Contribution of Subtransmission and Substation Outages

Circuit	Trouble Location	Customer- Minutes	% of Total Circuit	Circuit SAIDI	Number of
		of Interruption	Minutes	Contribution	Events
C13W2	Line 37	29,386	18%	29.80	1
C13W1	Line 37	14,708	22%	30.02	1
C37X1	Line 37	5,370	20%	29.83	1
C13W3	Line 37	48,300	12%	29.74	1
C2H2	Line 34	50,055	9%	46.96	1
C2H4	Line 34	4,324	68%	47.52	1
C2H1	Line 34	22,372	100%	46.80	1
C34X4	Line 34	105	100%	105.00	1
C33X5	Line 34	141	100%	47.00	1
C33X4	Line 34	3,055	84%	45.60	1
C33X3	Line 34	47	100%	47.00	1
C33X6	Line 34	47	100%	47.00	1
C3H3	Line 374	4,320	40%	40.37	1
C14H2	Line 374	26,640	36%	38.83	1
C18W2	Line 374	47,200	25%	40.00	1
C374X1	Line 374	240	52%	40.00	1
C14H1	Line 374	4,000	100%	40.00	1
C14X3	Line 374	240	41%	40.00	1
C3H2	Line 374	23,360	68%	39.93	1
C17X1	Line 374	40	100%	20.00	1
C396X2	Line 374	280	100%	40.00	1
C1H6	Line 374	31,711	98%	113.66	1
C3H1	Line 374	145,016	99%	291.20	1
C38	Line 38	11,707	10%	10.71	2
C24H2	Line 38	25,042	100%	66.60	1
C24H1	Line 38	20,993	100%	66.43	1

6 Worst Performing Circuits

This section compares the reliability of the worst performing circuits using various performance measures. All circuit reliability data presented in this section includes sub-transmission or substation supply outages unless noted otherwise.

6.1 Worst Performing Circuits in Past Year (1/1/19 – 12/31/19)

A summary of the worst performing circuits during the time period between January 1, 2019 and December 31, 2019 is included in the tables below.

Table 5 shows the ten worst circuits ranked by the total number of Customer-Minutes of interruption. The SAIFI and CAIDI for each circuit are also listed in this table.

Table 6 provides detail on the major causes of the outages on each of these circuits. Customer-Minutes of interruption are given for the six most prevalent causes during 2019.

Circuits having one outage contributing more than 80% of the Customer-Minutes of interruption were excluded from this analysis.

Table 5
Worst Performing Circuits Ranked by Customer-Minutes

Worst Ferforming Circuits Natiked by Customer-Williates									
Circuit	Customer Interruptions	Worst Event (% of CI)	Cust-Min of Interruption	Worst Event (% of CMI)	SAIDI	SAIFI	CAIDI		
С2Н2	3,906	27%	498,353	42%	467.50	3.664	127.59		
C8X3	3,934	40%	407,321	42%	141.38	1.365	103.54		
C13W3	2,665	22%	347,663	27%	214.08	1.641	130.46		
C8X5	2,521	33%	191,018	41%	256.74	3.388	75.77		
C6X3	1,435	77%	184,375	76%	166.25	1.294	128.48		
C18W2	2,098	56%	142,816	41%	121.03	1.778	68.07		
C15W1	1,039	25%	117,862	40%	118.34	1.043	113.44		
C38	651	15%	101,667	41%	93.02	0.596	156.17		
C7W3	603	29%	62,225	34%	68.15	0.660	103.19		
C4W4	2,730	83%	59,067	39%	25.94	1.199	21.64		

Note: all percentages and indices are calculated on a circuit basis

Table 6
Circuit Interruption Analysis by Cause

		Customer –	Minutes of Inte	erruption / # of	Outages	
Circuit	Tree/Limb Contact - Broken Trunk	Equipment Failure Company	Tree/Limb Contact - Broken Limb	Patrolled, Nothing Found	Vehicle Accident	Other
C2H2	385,121 / 3	56,655 / 1	16,902 / 1	219 / 1	21,822 / 1	0/0
C8X3	283,733 / 18	3,814 / 6	79,500 / 18	8,537 / 5	6,361 / 2	1,250 / 2
C13W3	8W3 92,147 / 9 2,550 / 4 56,881 / 12		1,366 / 2	97,370 / 5	94,764 / 1	
C8X5	2,821 / 1	66,080 / 1	41,268 / 2	78,652 / 2	0/0	0/0
C6X3	142,909 / 2	41,405 / 6	59 / 1	0/0	0/0	0/0
C18W2	18,090 / 2	6,298 / 1	9,389 / 6	60,675 / 4	0/0	0/0
C15W1	30,798 / 2	281 / 2	23,420 / 2	6,516 / 3	0/0	0/0
C38	0/0	80,515 / 4	1,564 / 3	0/0	0/0	0/0
C7W3	C7W3 43,348 / 5		5,067 / 2	1,952 / 1	0/0	0/0
C4W4	7,971 / 3	37,392 / 7	1,645 / 1	348 / 1	0/0	0/0

6.2 Worst Performing Circuits of the Past Five Years (2015 – 2019)

The annual performance of the ten worst circuits in terms of circuit SAIDI and SAIFI for each of the past five years is shown in the tables below. Table 7 lists the ten worst performing circuits ranked by SAIDI and Table 8 lists the ten worst performing circuits ranked by SAIFI. Table 9 lists the ten worst performing circuits ranked by SAIDI and SAIFI over the past five years.

The data used in this analysis includes all system outages except those outages that occurred during the 2016 July Wind/Thunder storm, 2017 March Windstorm, 2017 October Tropical Storm, 2018 May Windstorm, 2018 June Thunderstorm, 2019 Broken Tree, and 2019 October Thunderstorm.

The data used in this analysis includes all distribution circuits except those that do not have an interrupting device, e.g. fuse or recloser, at their tap location.

Circuit SAIDI

	201	19	201	8	201	17	201	6	20	15
Circuit Ranking (1 = worst)	Circuit	SAIDI								
1	C2H2	467.50	C13W3	532.47	C13W2	577.74	C21W1A	892.82	C21W1A	803.71
2	C8X5	256.74	C13W2	327.56	C18W2	560.64	C7W3	272.49	C34X2	399.45
3	C13W3	214.08	C15W2	268.14	C13W1	555.75	C34X2	244.80	C13W3	357.44
4	C6X3	166.25	C22W3	242.20	C13W3	496.50	C37X1	176.22	C375X1	318.05
5	C8X3	141.38	C21W1A	166.74	C396X2	454.70	C18W2	155.42	C14H2	288.10
6	C13W2	134.14	C8X3	164.27	C17X1	410.37	C15W1	147.96	C16X4	281.37
7	C18W2	121.03	C13W1	155.29	С16Н3	403.03	C4X1	146.38	C16H1	281.30
8	C15W1	118.34	C7W3	142.86	C8X3	326.03	C13W1	140.76	C7W3	281.18
9	C37X1	117.78	C38	128.52	C33X4	246.98	C22W3	136.51	С16Н3	280.82
10	C13W1	108.30	C2H4	87.85	C8H2	246.67	C13W3	117.09	C16X5	280.05

Table 8 Circuit SAIFI

					il cuit SAII					
	201	19	20	18	20 ⁻	17	201	6	20	15
Circuit Ranking (1 = worst)	Circuit	SAIDI	Circuit	SAIDI	Circuit	SAIDI	Circuit	SAIDI	Circuit	SAIDI
1	C2H2	3.664	C13W2	6.694	C21W1A	3.993	C21W1A	6.356	C24H1	7.143
2	C8X5	3.388	C13W1	5.818	C37X1	2.418	C16X4	5.023	C24H2	6.987
3	C18W2	1.778	C13W3	5.267	C18W2	1.995	C16H1	5.020	C15W2	6.597
4	C13W3	1.641	C16H3	4.693	C15W1	1.938	C16X5	5.000	C22W3	5.832
5	C37X1	1.506	C18W2	4.131	C13W1	1.785	C16X6	5.000	C3H1	4.251
6	СЗНЗ	1.383	C8H2	3.122	C1X7P	1.778	C375X1	5.000	C22W1	4.034
7	C8X3	1.365	C8X3	3.108	C4X1	1.738	C16H3	4.998	C38W	4.022
8	C15W2	1.350	C17X1	3.000	C22W3	1.509	C7W3	4.850	C22W2	4.000
9	C13W2	1.335	C396X2	3.000	C7W3	1.396	C13W3	4.567	C7W3	3.982
10	C6X3	1.294	C37X1	2.770	C13W3	1.348	C18W2	4.127	C14X3	3.500

Table 9
Worst Performing Circuit past Five Years

	SAIDI	r criorining one		SAIFI			
Circuit Ranking	Circuit	# Appearances	Circuit Ranking	Circuit	# Appearances		
1	C13W3	5	1	C18W2	4		
2	C21W1A	3	2	C21W1A	2		
3	C13W2	3	3	C13W3	4		
4	C18W2	3	4	C37X1	3		
5	C34X2	2	5	C13W1	2		
6	C13W1	4	6	C13W2	2		
7	C7W3	3	7	C15W2	2		
8	C8X3	3	8	C16H3	2		
9	C2H2	1	9	C22W3	2		
10	C22W3	2	10	C24H1	1		

6.3 System Reliability Improvements (2019 and 2020)

Vegetation management projects completed in 2019 or planned for 2020 that are expected to improve the reliability of the 2019 worst performing circuits are included in table 10 below. Table 11 below details electric system upgrades that are scheduled to be completed in 2020, or were completed in 2019, that were performed to improve system reliability.

Table 10 Vegetation Management Projects on Worst Performing Circuits

Year of Circuit(s) Completion		Project Description		
C13W1	2019	Planned Cycle Pruning/ Planned Hazard Tree Mitigation		
C22W1	2019	Planned Cycle Pruning		
C22W2	2019	Planned Cycle Pruning		
C38	2019	Planned Cycle Pruning		
C4W4	2019	Planned Cycle Pruning/ Planned Hazard Tree Mitigation		
C4X1	2019	Planned Cycle Pruning/ Planned Hazard Tree Mitigation		
C7W4	2019	Planned Cycle Pruning		
C8H1	2019	Planned Cycle Pruning		
C8H2	2019	Planned Cycle Pruning		
C8X5	2019	Planned Cycle Pruning		

C24H1 2019		Planned Hazard Tree		
C24H1	2019	Mitigation		
C24H2	2019	Planned Hazard Tree		
		Mitigation Planned Hazard Tree		
		Mitigation/Planned Mid-Cycle		
C18W2	2019/2020	Review/Planned Tree-Related		
		Analysis		
C6X3	2019	Planned Hazard Tree		
		Mitigation Planned Hazard Tree		
C37X1	2019	Mitigation		
		Planned Hazard Tree		
C4W3	2019/2020	Mitigation/Planned Tree-		
		Related Analysis		
		Planned Tree-Related		
C22W3	2019/2020	Analysis/ Planned Cycle Pruning/ Planned Hazard Tree		
		Mitigation		
	2019/2020	Planned Tree-Related		
C8X3		Analysis/ Planned Hazard		
		Tree Mitigation/Planned Mid- Cycle Review		
C14H1	2020	Planned Cycle Pruning		
C14111	2020	, ,		
C14H2	2020	Planned Cycle Pruning		
		Planned Cycle Pruning		
C15W1	2020	Planned Cycle Pruning		
C15W2	2020	Planned Cycle Pruning		
C1H1	2020	Planned Cycle Pruning		
C1H2	2020	Planned Cycle Pruning		
C1H3	2020	Planned Cycle Pruning		
C1H4	2020	Planned Cycle Pruning		
C1H5	2020	Planned Cycle Pruning		
C7W3	2020	Planned Cycle Pruning		
C7X1	2020	Planned Cycle Pruning		
C13W3	C13W3 2020 Planned Tree-Rela			
	_0_0	Analysis		

Table 11
Electric System Improvements Performed to Improve Reliability

Circuit(s)	Year of Completion	Project Description	
38	2019	UG Cable Injection	
13W3	2019	Hydraulic Recloser Replacement (for coordination)	
16H3	2019	UG Cable Injection	

Circuit(s)	Year of Completion	Project Description	
396X1	2019	Microprocessor Controlled Recloser Installation	
7W3	2019	Microprocessor Controlled Recloser Installation	
7W3	2019	Fusesaver Installation	
8X3 and 8X5	2019	New Circuit Tie	
VARIOUS	2019	Animal Guard Installation	
13W2	2020	Fusesaver Installation	
15W1	2020	Microprocessor Controlled Recloser Installation	
1H2 and 1H3	2020	Replace Switchgear and add Tie	
22W3	2020	Fusesaver Installation	
37X1	2020	Replace Sub-T Pole and Install Microprocessor Controlled Recloser	
6X3	2020	Microprocessor Controlled Recloser Installation	
7W3	2020	Fusesaver Installation	
8X3	2020	Fusesaver Installation	
8X3	2020	Hydraulic Recloser Replaced with Microprocessor Controlled Recloser	
8X5	2020	Microprocessor Controlled Recloser Installation	
38	2019	UG Cable Injection	

7 Tree Related Outages in Past Year (1/1/19 – 12/31/19)

This section summarizes the worst performing circuits by tree related outage during the time period between January 1, 2019 and December 31, 2019.

Table 12 shows the ten worst circuits ranked by the total number of Customer-Minutes of interruption. The number of customer-interruptions and number of outages are also listed in this table.

All streets on the UES CAPITAL system with three or more tree related outages are shown in Table 13 below. The table is sorted by number of interruptions and customer-minutes of interruption.

Table 12
Worst Performing Circuits – Tree Related Outages

Circuit	Customer- Minutes of Interruption	Number of Customers Interrupted	No. of Interruptions
C2H2	452,078	3,544	4
C8X3	365,380	3,412	40
C13W3	198,178	3,065	22
C6X3	142,969	1,155	3
C18W2	122,015	1,926	10
C15W1	C15W1 104,936		7
C13W1	63,882	801	17
C7W3	49,338	443	9
C8X5	46,285	872	4
C4W3	43,875	513	8

Table 13
Multiple Tree Related Outages by Street

Circuit	Street, Town	# Outages	Customer- Minutes of Interruption	Number of Customer Interruptions
C18W2	Putney Rd, Bow	4	9,241	118
C15W1	Oak Hill Rd, Loudon	3	30,931	195
C13W1	Morrill Rd, Canterbury	3	18,683	121
C4W4	Lakeview Dr, Concord	3	9,097	108
C8X5	North Pembroke Rd, Pembroke	3	8,621	50
C4W3	Mountain Rd, Concord	3	7,131	169
C13W3	Mutton Rd, Webster	3	6,973	66
C13W1	Kimball Pond Rd, Canterbury	3	4,762	21
C8X3	Sanborn Hill Rd North, Epsom	3	4,331	30
C13W3	Cashell Lane, Webster	3	2,531	20

8 Multiple Device Operations and Streets with Highest Number of Outages

This section is intended to clearly show all equipment failures throughout the study period from January 1, 2019 through December 31, 2019. Chart 7 shows all equipment failures throughout the study period. Chart 8 shows each equipment failure as a percentage of the total failures within this same study period. The number of equipment failures in each of the top three categories of failed equipment for the past five years are shown below in Chart 9.

Chart 7
Equipment Failure Analysis by Cause

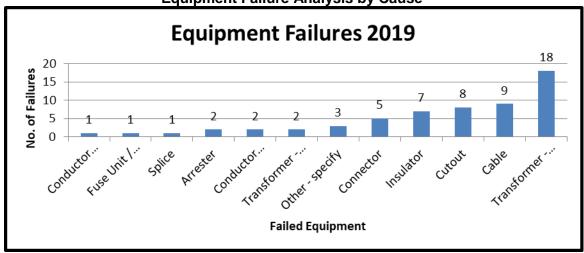
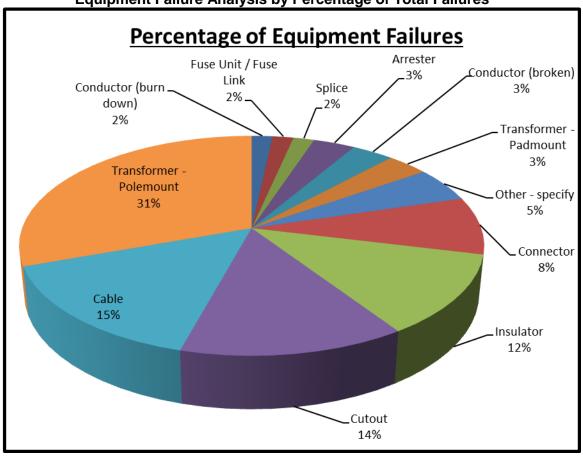
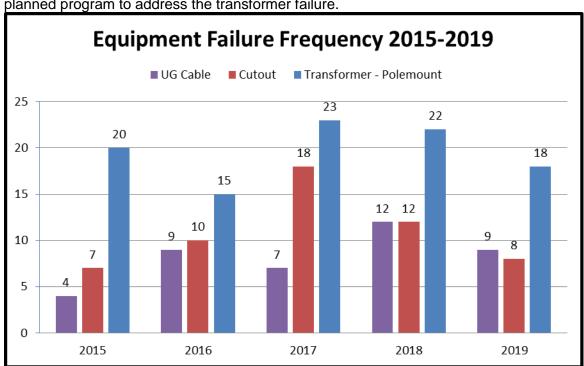




Chart 8
Equipment Failure Analysis by Percentage of Total Failures

Chart 9 Annual Equipment Failures by Category (top three)

The top three equipment failures continue to be underground cables, cutouts, and polemount transformers. Underground cable failures continue to occur, however, with the cable injection projects in 2016 and 2019, the total failures have remained low.. Two life-extending cable injections were executed in 2019. Additional cable injections and direct-buried cable replacement projects are planned for 2021-2022. Starting in 2018, any found porcelain cutouts were replaced. A budgeted porcelain cutout replacement program is planned for 2019-2021. The downtrend of cutout failures is indicative of the replacement programs. Polemount transformer failures continue to be the highest rate of failure; however the number of failures are still below industry average. There is no planned program to address the transformer failure.

9 Multiple Device Operations and Streets with Highest Number of Outages

A summary of the devices that have operated four or more times from January 1, 2019 to December 31, 2019 are included in table 14 below. Refer to section 11 for project recommendations that address some of the areas identified.

A summary of the streets on the UES Capital system that had customers with 7 or more non-exclusionary outages in 2019 is included in Table 15 below. The table is sorted by circuit and then the maximum number of outages seen by a single customer on that street.

Table 14
Multiple Device Operations

Circuit	Device	Number of Operations	Customer Minutes	Customer Interruptions	# of Times on List in Previous 4 Years
C15W1	Fuse, Pole 25, Mountain Rd, Concord	4	60,473	473	1
C18W2	Fuse, Pole 50, Putney Rd, Bow	4	9,655	132	0

Table 15
Streets with the Highest Number of Outages

Circuit	Street	Max Number of Outages Seen by a Single Customer	Number of Times on List in Previous 4 Years
C18W2	Putney Rd	9	0
C18W2	Blevens Dr	9	0
C2H2	Penacook St	9	0
C4W4	District 5 Rd	9	0
C13W3	White Plains Rd	8	1
C8X3	Philbrick Rd	7	0

10 Other Concerns

This section is intended to identify other reliability concerns that would not necessarily be identified from the analysis above.

10.1 13.8kV Underground Electric System Improvements

There are condition concerns in the 13.8kV Concord Downtown Underground. Portions of the cable have been replaced due to faults. There is historical evidence of connector failure as well. Transformers with primary switches are still in the process of being installed in place of the existing transformers. By the end of 2020, 18 of 21 transformers will have switches in them. A 2021 budget project will also create a loop out of manhole 25, allowing for additional restoration switching. A project in 2019 combined with the completion of the Gulf St conversion project creates a back up to restore the downtown underground. This is expected to reduce outage duration and allow time for condition-based replacement as opposed to a quick fix to restore customers quickly.

10.2 URD Cable Failure

URD cables are failing at an average rate of 8.2 failures per year over the last five years, for a total of 41 cable failures in five years. When a direct buried cable fails, Unitil splices in a small section of new cable into the existing cable. Generally, cable failures in conduit result in cable replacement. The remaining aged cable in the area is still susceptible to failure. In recent years, projects to address direct buried cable failures have included cable injection

and replacement with conduit. Projects for rejuvenation and replacement with conduit were completed in 2019 and further proposed for the 2021 budget.

11 Recommendations

This following section describes recommendations on circuits, sub-transmission lines and substations to improve overall system reliability. The recommendations listed below will be compared to the other proposed reliability projects on a system-wide basis. A cost benefit analysis will determine the priority ranking of projects for the 2021 capital budget. All project costs are shown without general construction overheads.

11.1. Circuit 13W3: Create a Loop between Water St and High St

11.1.1. Identified Concerns

Circuit 13W3 had three of the worst distribution outages in 2018, including the number one worst outage. It has been on the list of worst performing circuits four out of the last five years, ranked by SAIDI and SAIFI.

11.1.2. Recommendations

Build N. Water St, Boscawen from single phase to three phase spacer cable. Extend the phases through to P.50 Old Turnpike Rd, Salisbury. Install two microprocessor reclosers and one three-phase, remote and motor operated switch. Implement an auto transfer scheme. One recloser is to be installed at P.49 Old Turnpike Rd and the other recloser is to be installed at P.1 Rabbit Rd. The switch is to be installed in the area of the intersection of N. Water St. and Long St., Boscawen. Ultimately, this project is to create a loop between High St and Water St in Boscawen. It will allow for the entirety of the Webster territory or Salisbury territory to be restored after a fault on either Water St or High St, respectively.

Estimated Project Cost (without construction overheads): \$1,200,000

Estimated Annual Savings:

Customer Minutes: 144,600 Customer Interruptions: 673

11.2. Circuit 13W3: Install a recloser at P.49 Old Turnpike Rd, Salisbury

Install a microprocessor recloser at P.49 Old Turnpike Rd, Salisbury. This project is a piece of project 11.1., but carries benefit on its own and begins working toward the full project.

Estimate Project Cost (without construction overheads): \$50,000

Estimated Annual Savings:

Customer Minutes: 1,746 Customer Interruptions: 21

11.3. Circuit 6X3: Install Recloser on Pleasant St

11.3.1. Identified Concerns

6X3 splits into two directions just outside of the substation. An electronic recloser is being installed in the easterly direction in 2020. This new recloser is to be installed in the westerly direction to protect the other half of the circuit. This recloser will limit the scale of outages on the circuit. It also will prevent the Concord Hospital from experiencing an outage from faults to the west of Langley Parkway.

11.3.2. Recommendations

Install an electronic recloser in the vicinity of Pole 83 on Pleasant St, Concord.

Estimated Project Cost (without construction overheads): \$54,439

Estimated Annual Savings:

Customer Minutes: 11,563 Customer Interruptions: 192

11.4. Circuit 2H2: Install Microprocessor Controlled Recloser

11.4.1. Identified Concern

Penacook St, Concord experienced an increased number of outages in 2019. Replacing fusing with a recloser at the intersection of Penacook St and Rumford St is expected to provide increased reliability.

11.4.2. Recommendation

Install a Recloser at P.18 Penacook St, Concord

Estimated Project Cost (without construction overheads): \$38,759

Estimated Annual Savings:

Customer Minutes of Interruption: 2,392

Customer Interruptions: 34

11.5. Circuit 13W2: Reconductor N. Main St, Boscawen with Spacer

11.5.1. Identified Concern

The master plan is to create a backup for the 37 Line, as it radially feeds the Boscawen S/S. The 13W2 circuit will be converted to 34.5kV and tie with 4X1 from Penacook. This project is expected to provide increased reliability for 13W2 right now, but also establish the back bone for even greater reliability at the sub-transmission and distribution levels.

11.5.2. Recommendation

Reconductor 13W2 mainline from the S/S, down N. Main St, Boscawen, and end at the Village St bridge in Penacook. The reconductoring and reinsulating will be done to system planning capacity and 34.5kV construction. This construction is approximately 2.5 miles of spacer cable construction.

Estimated Project Cost (without construction overheads): \$674,174

Estimated Annual Savings:

Customer Minutes of Interruption: 107,510

Customer Interruptions: 1,294

11.5.3 Alternate Option

Reconductor 13W2 mainline with fully insulated wire in open construction instead of spacer construction.

Estimated Project Cost (without construction overheads):

Estimated Annual Savings:

Customer Minutes of Interruption: 44,348

Customer Interruptions: 534

11.6 Circuit 13W1: Reconductor Morrill Rd, Canterbury

11.6.1 Identified Concern

A number of tree related outages on this single phase lateral occurred in 2018. There are limited trimming abilities in the area. Reconductoring the #6 with 1/0 ACSR fully insulated wire will reduce the number of outages. The insulation and breaking strength improve the overall reliability by being less susceptible to faults and less likely to break (compared to uninsulated, #6 Cu)

11.6.2 Recommendation

Reconductor approximately 14,000 ft of #6 Cu with 1/0 ACSR fully insulated wire on Morrill Rd, Canterbury.

Estimated Project Cost (without construction overheads): \$445,000

Estimated Annual Savings:

Customer Minutes of Interruption: 7,630

Customer Interruptions: 84

11.7 Circuit 13W3: Reconductor Long St, Webster with Spacer Cable

11.7.1 Identified Concern

The sectionalizers on P.138 Long St, Boscawen operated several times in 2018, most outages were patrolled and nothing was found.

Reconductoring approximately 1.6 miles of three phase mainline will

reduce the number of outages normally associated with trees and animals.

11.7.2 Recommendation

Reconductor approximately 1.6 miles of three-phase mainline on Long St, Boscawen and Webster with 13.8kV, 336AAC spacer.

Estimated Project Cost (without construction overheads): \$533,935.83

Estimated Annual Savings:

Customer Minutes of Interruption: 23,315

Customer Interruptions: 281

11.8 Circuit 13W1: Reconductor West Rd, Canterbury and Install Recloser

11.8.1 Identified Concern

13W1 does not have a circuit tie that can back feed the circuit for restoration. This project aims to harden the stand alone system, lessen overall outage impact with an additional reclosing point, and prepare for a potential future tie, according to the master plan.

11.8.2 Recommendation

Reconductor approximately 4 miles of three phase mainline on West Rd, Canterbury with 13.8kV, 336AAC spacer.

Install a microprocessor-based recloser at P.31 North West Rd, Canterbury.

Estimated Project Cost (without construction overheads): \$750,000

Estimated Annual Savings:

Customer Minutes of Interruption: 73,583

Customer Interruptions: 886

11.9 Circuit 8X3: Install a Recloser on Dover Rd, Epsom

11.9.1 Identified Concern

8X3 does not currently have a circuit backup to restore load for an outage outside of the substation. Adding sectionalizing points will limit the impact of outages beyond the new recloser.

11.9.2 Recommendations

Install a Recloser at P.5 Dover Rd, Epsom.

Estimated Project Cost (without construction overheads): \$50,000

Estimate Annual Savings:

Customer Minutes of Interruption: 50,025

Customer Interruptions: 602

11.10 Fusesaver Installation Locations

11.10.1 Identified Concern

In an effort to continually improve upon reliability, fusesavers have been identified as capable to eliminate most momentary outages by allowing for a single trip clearing time. The following is a list of locations in which fusesavers have been identified as beneficial additions.

11.10.2 Recommendations

1) Install a fusesaver at P.8 W. Portsmouth St, Concord.

Estimated Annual Savings:

Customer Minutes of Interruption: 2,166

Customer Interruptions: 25

2) Install three fusesavers at P.1 Rocky Point Dr., Bow.

Estimated Annual Savings:

Customer Minutes of Interruption: 5,073

Customer Interruptions: 61

3) Install a fusesaver at P.62 Elm St, Boscawen.

Estimated Annual Savings:

Customer Minutes of Interruption: 4,733

Customer Interruptions: 57

4) Install a fusesaver at P.145 Old Turnpike Rd, Salisbury.

Estimated Annual Savings:

Customer Minutes of Interruption: 4,271

Customer Interruptions: 35

5) Install a fusesaver at P.50 Borough Rd, Canterbury.

Estimated Annual Savings:

Customer Minutes of Interruption: 4,200

Customer Interruptions: 20

Overall estimated project cost (without construction overheads): \$86,115

11.11. Miscellaneous Circuit Improvements to Reduce Recurring Outages

11.11.1. Identified Concerns & Recommendations

The following concerns were identified based on a review of Tables 12 & 13 of this report; Multiple Tree Related Outages by Street and Multiple Device Operations respectively.

Mid-Cycle Forestry Reviews

The areas identified below experienced three or more tree related outages in 2019. It is recommended that a forestry review of these areas be performed in 2020 in order to identify and address any mid-cycle growth or hazard tree problems.

- C13W1
 - Kimball Pond Rd, Canterbury
 - Morrill Rd, Canterbury
- C13W3
 - Mutton Rd, Webster
 - Cashell Lane, Webster
- C15W1
 - Oak Hill Rd, Concord and Loudon
- C18W2
 - o Putney Rd, Bow
- C22W3
 - Putney Rd, Bow
- C4W3
 - Mountain Rd, Concord
- C4W4
 - Lakeview Dr, Concord
- C8X3
 - Sanborn Hill Rd North, Epsom
- C8X5
 - North Pembroke Rd, Pembroke

Animal Guard Installation Recommendations

The areas identified below experienced three or more patrolled nothing found / animal outages in 2019.

Mountain Rd, Concord

12 Conclusion

During 2019, tree related outages still present one of the largest problems in the UES-Capital System, compared to other causes. Although compared to previous years, the worst performing circuits have seen a dramatic decrease in Customer Minutes of Interruption from tree related outages. Enhanced tree trimming efforts are still being implemented, which is expected to improve reliability for most of the worst performing circuits identified in this study.

The animal guard installation project was completed in 2019. In 2019, there were the fewest squirrel outages recorded in the last five years. Furthermore, animal guards are continually being placed on equipment whenever an animal causes an outage. In addition, when there is an animal-related outage, any equipment in the vicinity will be

checked. If nearby equipment does not have animal guards, the animal guards will be installed at that location. Also, all streets and circuits identified as having high numbers of animal related outages will be checked and proper animal protection will be installed where applicable.

Recommendations developed from this study are mainly focused on reducing the impact of multiple permanent outages and improving reliability of the sub transmission system. This report is also intended to assist Unitil Forestry in identifying areas of the system that are being frequently affected by tree related outages to allow proactive measures to be taken. In addition, new ideas and solutions to reliability problems are always being explored in an attempt to provide the most reliable service possible.