REDACTED

Salem Area Study 2020

1

001

Version History

REV	DATE	Description	Prepared	Reviewed
0	9/1/2020	Final for NHPUC Filing	ControlPoint Technologies	Liberty Utilities

Table of Contents

1.0	EXECUTIVE SUMMARY	8
2.0	INTRODUCTION	9
2.1	Purpose	9
2.2	PROBLEM	
3.0	BACKGROUND	.10
3.1	GEOGRAPHIC SCOPE	.10
3.2	ELECTRICAL SCOPE	
3.3	LOAD AND LOAD FORECAST	
3.4	MODELING AND CRITERIA	
3.5	ACTIVE & COMPLETED PROJECTS	
4.0	PROBLEM IDENTIFICATION	.17
4.1	THERMAL LOADING – EXISTING VIOLATIONS	
	.1.1 Normal Configuration – based on 2019 peak loads	
-	.1.2 N-1 Contingency & Load-At-Risk	
4.2	THERMAL LOADING – PREDICTED VIOLATIONS	
	.2.1 Normal Configuration	
4 4.3	.2.2 N-1 Contingency & Load at Risk Asset Condition	
4.3		
4.3.		
4.3.		
4.4	POWER QUALITY & VOLTAGE PERFORMANCE	.25
4	.4.1 Supply System Loss Comparison	
4	.4.2 13.2 kV Distribution System Loss Comparison	
-	.4.3 Power Quality – Existing Violations	
4	.4.4 Power Quality – Proposed Plans	26
5.0	PLAN DEVELOPMENT	. 27
5.1	PLAN SUMMARY	.27
6.0	PLAN CONSIDERATIONS AND COMPARISONS	. 29
6.1	PLAN ONE	. 30
6	.1.1 System Performance	30
6	.1.2 Operability	
-	1.3 Future Growth / Expansion Opportunities	
	.1.4 Capacity Provided	
-	.1.5 Economic Comparison	
	.1.6 Other Considerations	
6.2		
-	2.1 System Performance	
-	.2.2 Operability	
	.2.3 Future Growth / Expansion Opportunities	
-	.2.5 Economic Comparison	
	2.6 Other Considerations	
6.3		
6	3.1 System Performance	34

(6.3.2	Operability	34
(6.3.3	Future Growth / Expansion Opportunities	35
(6.3.4	Capacity Provided	35
(6.3.5	Economic Comparison	35
(6.3.6	Other Considerations	35
6.4	PL.	AN FOUR	
(6.4.1	System Performance	36
(6.4.2	Operability	36
(6.4.3	Future Growth / Expansion Opportunities	36
(6.4.4	Capacity Provided	36
(6.4.5	Economic Comparison	36
(6.4.6	Other Considerations	37
6.5	PL	AN FIVE	
(6.5.1	System Performance	37
(6.5.2	Operability	38
(6.5.3	Future Growth / Expansion Opportunities	38
(6.5.4	Capacity Provided	38
(6.5.5	Economic Comparison	
(6.5.6	Other Considerations	
6.6	PL	AN SIX	
(6.6.1	System Performance	
(6.6.2	Operability	
(6.6.3	Future Growth / Expansion Opportunities	40
(6.6.4	Capacity Provided	40
(6.6.5	Economic Comparison	40
(6.6.6	Other Considerations	40
6.7	PL	AN SEVEN	41
(6.7.1	System Performance	41
(6.7.2	Operability	42
(6.7.3	Future Growth / Expansion Opportunities	42
(6.7.4	Capacity Provided	42
(6.7.5	Economic Comparison	42
(6.7.6	Other Considerations	43
7.0	отн	ER PLAN CONSIDERATIONS AND COMPARISONS	44
7.1		N-WIRES ALTERNATIVES CONSIDERATIONS	
8.0	CON	CLUSIONS AND RECOMMENDATIONS	45
9.0	APP	ENDICES	47
9.1	Δp	PENDIX A – SYSTEM ONE LINES	47
9.2		PENDIX B – ASSET CONDITION DOCUMENTS	
9.3		PENDIX C – AREA LOADING ANALYSIS	
9.4		PENDIX D – MWHR SUMMARY	
9.5		PENDIX E – SPICKET RIVER BACKUP ANALYSIS	
9.6	AP	PENDIX F – 22.8 KV VOLTAGE ANALYSIS	132
9.7	АР	PENDIX G – COMPARISON OF PLANS – COST VS ADDED CAPACITY	133
9.8	Ap	PENDIX H – COMPARABLE PAST STUDIES TO SALEM	134
10.0	ANN	EX LIST	135
		- National Grid Internal Strategy Document Distribution Substation Transformers Revise	
		2009	• • •
		– 10L1 Testing & Maintenance Report: United Power Group - August 2014	
	CA D	1011 resting a maintenance report. Onitea rower Group - August 2014	

Annex C – 10L4 Testing & Maintenance Report: United Power Group - September 2014	135
Annex D – 9L3 Testing & Maintenance Report: United Power Group - August 2014	.135
Annex E – 2020 Dissolved Gas Analysis: Weidmann	135
Annex F – Liberty Utilities Electrical Substation Clearances Standard - Doc. # ENG-SUB006 – August 2020	.135

<u>Figures</u>

FIGURE 1 SALEM, NH GEOGRAPHICAL MAP	10
FIGURE 2 SALEM 22.8 KV SUPPLY SYSTEM	47
FIGURE 3 SALEM 13.2 KV TIE MAP (ALTERNATE)	48
FIGURE 4 SALEM 13.2KV DISTRIBUTION SYSTEM	49
FIGURE 5 ALTERNATIVE #1 GOLDEN ROCK SUBSTATION 115KV/13.2KV EXPANSION - ONE LINE	50
FIGURE 6 ALTERNATE #1 - BARRON AVE STATION - ONE LINE	51
FIGURE 7 ALTERNATE #1 SALEM DEPOT STATION - ONE LINE	52
FIGURE 8 ALTERNATE #1 SPICKET RIVER STATION - ONE LINE	53
FIGURE 9 ALTERNATE #1 13.2KV OVERVIEW ONE LINE	54
FIGURE 10 ALTERNATIVE #2 GOLDEN ROCK SUBSTATION 115KV/13.2KV EXPANSION - ONE LINE	55
FIGURE 11 ALTERNATE #2 22.8 KV OVERVIEW ONE LINE	56
FIGURE 12 ALTERNATE #2 BARRON AVE STATION REBUILD - ONE LINE	57
FIGURE 13 ALTERNATE #2 SALEM DEPOT STATION REBUILD - ONE LINE	58
FIGURE 14 ALTERNATIVE #3 GOLDEN ROCK SUBSTATION 115KV/13.2KV EXPANSION - ONE LINE	59
FIGURE 15 ALTERNATIVE #3 22.8 KV OVERVIEW ONE LINE	60
FIGURE 16 ALTERNATE #3 BARRON AVE STATION REBUILD – ONE LINE	61
FIGURE 17 ALTERNATIVE #3 SALEM DEPOT REBUILD - ONE LINE	62
FIGURE 18 ALTERNATIVE #4 22.8 KV OVERVIEW ONE LINE	63
FIGURE 19 ALTERNATE #4 GOLDEN ROCK SUBSTATION 115KV/22.8KV EXPANSION – ONE LINE	64
FIGURE 20 ALTERNATE #4 BARRON AVE STATION REBUILD – ONE LINE	65
FIGURE 21 ALTERNATE #4 SALEM DEPOT STATION REBUILD – ONE LINE	66
FIGURE 22 ALTERNATIVE #5 - 22.8 KV OVERVIEW ONE LINE	67
FIGURE 23 ALTERNATE #5 GOLDEN ROCK SUBSTATION 115KV/22.8KV EXPANSION – ONE LINE	68
FIGURE 24 ALTERNATE #5 BARRON AVE STATION REBUILD – ONE LINE	69
FIGURE 25 ALTERNATE #5 SALEM DEPOT STATION REBUILD – ONE LINE	70
FIGURE 26 ALTERNATIVE #5 NEW 22.8 KV/13.2KV TUSCAN VILLAGE SUBSTATION ONE LINE	71
FIGURE 27 ALTERNATIVE #6 13.2KV OVERVIEW ONE LINE	72
FIGURE 28 ALTERNATE #6 GOLDEN ROCK SUBSTATION 115KV/13,2KV EXPANSION PHASE ONE - ONE LINE	73
FIGURE 29 ALTERNATE #6 FEEDER 19L4 – ONE LINE	
FIGURE 30 ALTERNATE #6 FEEDER 19L6 - ONE LINE	75
FIGURE 31 ALTERNATE #6 FEEDER 19L8 - ONE LINE	76
FIGURE 32 ALTERNATIVE #6 ROCKINGHAM SUBSTATION 115kV/13.2kV PHASE TWO - ONE LINE	77
FIGURE 33 PROPOSED PLAN #6 115KV ROUTE	78
FIGURE 34 ALTERNATE #6 NEW ROCKINGHAM STATION - FEEDER 21L1 - ONE LINE	79
FIGURE 35 ALTERNATE #6 NEW ROCKINGHAM STATION – FEEDER 21L5 - ONE LINE	80
FIGURE 36 ALTERNATE #6 NEW ROCKINGHAM STATION – FEEDER 21L6 - ONE LINE	81
FIGURE 37 ALTERNATE #6 NEW ROCKINGHAM STATION – FEEDER 21L7 & 21L8 - ONE LINE	82
FIGURE 38 ALTERNATIVE #7 GOLDEN ROCK SUBSTATION 115KV/13.2KV EXPANSION – ONE LINE	83
FIGURE 39 ALTERNATE #7 BARRON AVE 10L1 – ONE LINE	84
FIGURE 40 ALTERNATE #7 GOLDEN ROCK 19L4 – ONE LINE	85
FIGURE 41 ALTERNATE #7 GOLDEN ROCK 19L6 - ONE LINE	86
FIGURE 42 ALTERNATE #7 OLDE TROLLEY 18L2 AND 18L4 – ONE LINE	87
FIGURE 43 ALTERNATE #7 PELHAM 14L4 AND 14L6 – ONE LINE	88
FIGURE 44 ALTERNATIVE #7 SPICKET RIVER 13L3 - ONE LINE	89

FIGURE 45 BARRON AVE CONCEPTUAL STATION EQUIPMENT LAYOUT	90
FIGURE 46 SALEM DEPOT CONCEPTUAL STATION EQUIPMENT LAYOUT	91
FIGURE 47 BARRON AVE SITE LAYOUT	92
FIGURE 48 SALEM DEPOT SITE LAYOUT	93
FIGURE 49 BARRON AVE 10L1 CLEARANCE SKETCH	94
FIGURE 50 BARRON AVE 10L2 CLEARANCE SKETCH	95
FIGURE 51 BARRON AVE 10L4 CLEARANCE SKETCH	96
FIGURE 52 SALEM DEPOT 9L1 CLEARANCE SKETCH	97
FIGURE 53 SALEM DEPOT 9L2 CLEARANCE SKETCH	98
FIGURE 54 SALEM DEPOT 9L3 CLEARANCE SKETCH	99
FIGURE 55: VOLTAGE PERFORMANCE DURING 13L1 CONTINGENCY (LOW VOLTAGE <0.95 PER-UNIT SHOWN IN RED)	131

<u>Tables</u>

TABLE 1: SALEM AREA ELECTRIC SYSTEM	11
TABLE 2 SALEM AREA 2019 PEAK LOADS	
TABLE 3 LUNH 2020-2036 90/10 SEASONAL PEAK FORECAST	13
TABLE 4 SALEM AREA SPOT LOADS	-
TABLE 5 TUSCAN VILLAGE DIVERSIFIED LOADS	14
TABLE 6 LIBERTY UTILITIES PLANNING CRITERIA	16
TABLE 7 13.2 KV FEEDER LOSSES BY ALTERNATIVE	25
TABLE 8: PLAN COMPARISON MATRIX	44
TABLE 9 BASE CASE - NORMAL CONFIGURATION – 13.2 KV FEEDER LOADING	100
TABLE 10 BASE CASE - NORMAL CONFIGURATION - TRANSFORMER LOADING	101
TABLE 11 BASE CASE 2019 SUPPLY LINE NORMAL LOADING	
TABLE 12 BASE CASE 2019 TRANSFORMER CONTINGENCY LOADING	102
TABLE 13 BASE CASE 2019 SUPPLY LINE CONTINGENCY LOADS	
TABLE 14 BASE CASE (W/ GOLDEN ROCK 13.2 KV) FEEDER NORMAL LOADING	103
TABLE 15 BASE CASE (W/ GOLDEN ROCK 13.2 KV) TRANSFORMER NORMAL LOADS	104
TABLE 16 BASE CASE (W/ GOLDEN ROCK 13.2 KV) SUPPLY LINE NORMAL LOADING	
TABLE 17 BASE CASE (W/ GOLDEN ROCK 13.2 KV) TRANSFORMER CONTINGENCY LOADING	105
TABLE 18 BASE CASE (W/ GOLDEN ROCK 13.2 KV) SUPPLY LINE CONTINGENCY LOADING	106
TABLE 19 ALT #1 FEEDER NORMAL LOADING	107
TABLE 20 ALT #1 TRANSFORMER NORMAL LOADING	108
TABLE 21 ALT #1 SUPPLY LINE NORMAL LOADING	108
TABLE 22 ALT #1 TRANSFORMER CONTINGENCY LOADING	109
TABLE 23 ALT #1 SUPPLY LINE CONTINGENCY LOADING	109
TABLE 24 ALT #2 FEEDER NORMAL LOADING	110
TABLE 25 ALT #2 TRANSFORMER NORMAL LOADING	111
TABLE 26 ALT #2 SUPPLY LINE NORMAL LOADING	111
TABLE 27 ALT #2 TRANSFORMER CONTINGENCY LOADING	112
TABLE 28 ALT #2 SUPPLY LINE CONTINGENCY LOADING	112
TABLE 29 ALT #3 FEEDER NORMAL LOADING	113
TABLE 30 ALT #3 TRANSFORMER NORMAL LOADING	114
TABLE 31 ALT #3 SUPPLY LINE NORMAL LOADING	114
TABLE 32 ALT #3 TRANSFORMER CONTINGENCY LOADING	115
TABLE 33 ALT #3 SUPPLY LINE CONTINGENCY LOADING	115
TABLE 34 ALT #4 FEEDER NORMAL LOADING	116
TABLE 35 ALT #4 TRANSFORMER NORMAL LOADING	117
TABLE 36 ALT #4 SUPPLY LINES NORMAL LOADING	117
TABLE 37 ALT #4 TRANSFORMER CONTINGENCY LOADING	118
TABLE 38 ALT #4 SUPPLY LINE CONTINGENCY LOADING	119

TABLE 39 ALT #5 FEEDER NORMAL LOADING	120
TABLE 40 ALT #5 TRANSFORMER NORMAL LOADING	121
TABLE 41 ALT #5 SUPPLY LINE NORMAL LOADING	121
TABLE 42 ALT #5 TRANSFORMER CONTINGENCY LOADING	122
TABLE 43 ALT #5 SUPPLY LINE CONTINGENCY LOADING	123
TABLE 44 ALT #6 FEEDER NORMAL LOADING	124
TABLE 45 ALT #6 TRANSFORMER NORMAL LOADING	
TABLE 46 ALT #6 SUPPLY LINE NORMAL LOADING	
TABLE 47 ALT #6 TRANSFORMER CONTINGENCY LOADING	126
TABLE 48 ALT #6 SUPPLY LINE CONTINGENCY LOADING	126
TABLE 49 ALT #7 FEEDER NORMAL LOADING	127
TABLE 50 ALT #7 TRANSFORMER NORMAL LOADING	128
TABLE 51 ALT # 7 SUPPLY LINE NORMAL LOADING	
TABLE 52 ALT #7 TRANSFORMER CONTINGENCY LOADING	129
TABLE 53 ALT #7 SUPPLY LINE CONTINGENCY LOADING	129
TABLE 54 2022 PREDICTED CONTINGENCY N-1 PROBLEMS	130
TABLE 55 COMPARISON OF PLANS – COST VS ADDED CAPACITY	133

1.0 Executive Summary

ControlPoint Technologies with the assistance of Liberty Utilities completed the Salem, NH distribution planning study for 2020. The revised Liberty Utilities Distribution Planning Criteria¹ was used to determine any Electric Supply System upgrades required to meet existing and future capacity requirements. The study focused on the distribution requirements needed to supply the proposed 13.5-18.5-megawatt (MW) (See Table 5) Tuscan Village business park development located at the former Rockingham Park Track. The study also focused on addressing asset concerns at Barron Ave Substation and Salem Depot Substation. The recommended solution would address Distribution Planning Criteria violations at Golden Rock Substation and Spicket River Substation while integrating system operation and maintenance enhancements in an economically responsible manner.

This study is a revision of the 2016 Salem Area Study performed by ControlPoint. The Study's main objective is to review prudency of the 115kV Rockingham supply alternative (Plan 6) and to compare with New Hampshire Public Utilities Commission (NHPUC) Staff's recommended alternative, which further relies on the 22.8kV sub-transmission system supply and existing 13.2kV distribution substations as an overall solution to address the area's deficiencies (Plan 1). Additional 22.8 kV alternatives were also evaluated for comparison.

As described in this report, there exists multiple alternatives for addressing the problems identified in the area. These plans resolved the issues with differing effectiveness and with differing costs. The plans that involve investing and relying on the 22.8 kV system were shown to be similar or more costly than the recommended plan.

The major components of the recommended plan are focused on upgrading the source of supply to the 13.2 kV distribution system from a 22.8kV/13.2 modular substation-based system to a 115kV/13.2kV bulk substation-based system. This shift towards a 115kV based bulk system has been utilized in Liberty's rebuild of Pelham Substation, Michael Ave Substation and Mt Support Substation. See Appendix H – Comparable Past Studies to Salem for details.

Thus far, Liberty and National Grid have completed the work listed below related to the preferred 115kV alternative²:

 Phase 1 - Installation of a 115/13.2 kV - 33/44/55 MVA transformer, a 115kV in-line breaker and two 13.2kV feeders at the Golden Rock Substation and the offload of Barron Avenue Substation was completed in 2019³. Extension of Pelham 14L4 was completed in 2018 to provide temporary load relief and system capacity in the Salem Area. This temporary transfer of approximately 7 MVA enables Liberty to

¹ As approved under Order No. 26,376 in DE 19-064 Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities, Petition for Permanent and Temporary Rates.

² For purposes of this review, the resulting loading from the completed work below will not be included in the 2019 base case load model for Alternative #4 and #5 to allow an even comparison between alternatives.

³ The Liberty Utilities portion of the Golden Rock project has been approved by the New Hampshire Public Utilities Commission under Order No. 26,376 in DE 19-064 Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities, Petition for Permanent and Temporary Rates.

provide electric service to a portion, but not all, of Tuscan Village Development anticipated load while the Rockingham Substation is constructed. Installation of a third Golden Rock feeder to reduce load at risk at Spicket River substation is expected to be completed in 2021. Installation of a second 115kV transmission line into Golden Rock Substation is expected to be completed in 2020 by National Grid.

- Phase 2 Purchase of land within the Tuscan Village Development to construct the new Rockingham #21 Substation was completed. Liberty is in the process of finalizing engineering activities for the Transmission Line and Substation projects and ordering long lead material items. Construction of the 115kV line project will begin in the winter of 2020 and is expected to be completed in 2022. The Rockingham Substation and associated feeders are expected to be completed in 2021. The Rockingham Substation will be designed to ultimately have ten feeder positions and two capacitor bank positions. Five feeders and one capacitor bank would be supplied by each transformer. Initially, five feeders, two and three from each transformer, will be installed in 2021. These will be utilized to supply the Tuscan Village load, allow the retirement of the Salem Depot Substation and provide backup to the Spicket River Substation.
- Phase 3 Liberty has not developed any firm plans in its capital budget for Phase 3 within the 15-year planning horizon. For future reference, Phase 3 could replace the 115/22.8 kV transformer at Golden Rock with a 115/13.2kV transformer, convert the substation to a breaker and half scheme and re-purpose the 22.8 kV lines as 13.2kV feeders.

2.0 Introduction

2.1 Purpose

The purpose of this study was to resolve all identified area concerns in the Salem Area through the 15-year 2020-2036 study horizon. An in-depth review of the area was performed that included the analysis of thermal loading, voltage, reliability, asset condition, power quality, environmental, safety and voltage performance. Alternative plans were developed, which included NHPUC Staff's proposed alternative, and a preferred plan was recommended as being most prudent after detailed plan comparisons.

2.2 Problem

A study's initial system assessment is typically based on the needs identified through the problem identification process guided by the Company's Planning Criteria. In addition to the assessment performed in the 2016 version of the Study, updated system characteristics were evaluated to use 2019 loading and existing system configuration to identify a variety of normal and contingency capacity issues in the Salem Area.

A major point of concern is several existing asset condition concerns with substation equipment and layout.

Furthermore, another concern is the proposed 13.5-18.5-megawatt (MW) business park at Tuscan Village. Available capacity to supply the proposed development is not sufficient from

the existing system.

3.0 Background

3.1 Geographic Scope

This study was performed on the Liberty Utilities Distribution System supplying Salem, New Hampshire. The system is confined to the City of Salem, NH with small excursions into Windham and Derry, NH and Methuen, MA. See Figure 1 below:

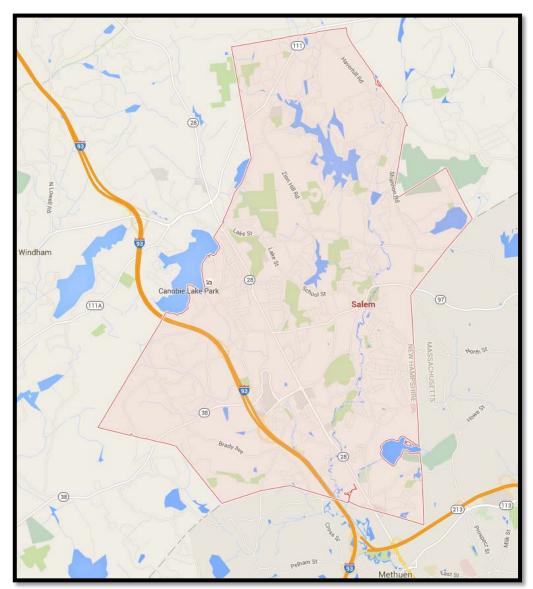


Figure 1 Salem, NH Geographical Map

3.2 Electrical Scope

Supply	Alternate Supply	Station	Feeder	Customers
2352	2393		9L1	967
2352	2393	Salem Depot 9	9L2	128
2352	2393		9L3	1,261
2393	2353 (National Grid)		10L1	813
2393	2353 (National Grid)	Barron Ave 10	10L2	884
2353 (National Grid)	2393		10L4	775
			13L1	2,081
2376 (National Grid)	2353 (National Grid) ⁴	Spicket River 13	13L2	1,899
	Gilu)		13L3	2,438
2352	2393		18L1	62
2352	2393		18L2	1,929
2393	2352	Olde Trolley 18	18L3	842
2393	2352		18L4	693
G133W	2353 & 2376	Golden Rock	2352	4,347
(National Grid)	(National Grid)	19 ⁵	2393	3,232

The Salem Area includes 115 kV, 22.8 kV, and 13.2 kV facilities interconnected through five area substations. The Table 1 below summarizes these interconnections:

Table 1: Salem Area Electric System

One 115 kV radial transmission supply line crosses the Massachusetts/New Hampshire border from Methuen, MA to feed two transformers at the Golden Rock Substation. Figure 2 in Appendix A – System One Lines shows the 22.8 kV Supply System. Figure 4 in Appendix A – System One Lines shows the 13.2 kV Distribution System.

Liberty Utilities serves 22,351 Customers in the Salem Area. In 2019, the Salem Planning Study Area generated a peak demand of 98.72 MW. The Salem area consists of approximately 13.1 miles of 22.8 kV three-phase supply line and approximately 143 miles of 13.2 kV three-phase mainline.

⁴ Approximately 5.2 miles of the 2376 is exposed to outages without any backup, with 4.3 miles in National Grid maintenance territory and 0.9 miles in Liberty Utilities territory.

⁵ Customers supplied by the 2352 and 2393 supply lines are a summation of customers supplied from the related substation transformers. These supply lines do not directly serve customers at 22.8 kV service voltage.

3.3 Load and Load Forecast

The Salem Study Area is a summer peaking area and is limited by summer equipment ratings. The study was conducted using load data beginning with the recorded 2019 peak load; refer to Table 2, below:

Station	Circuit	2019 Peak Load (Amps)	Limiting Element	SN Amps	% of SN
BARRON AVENUE 10	10L1	107	250 E Fuse	387	28%
BARRON AVENUE 10	10L2	268	4/0 CU Bus	526	51%
BARRON AVENUE 10	10L4	176	1-5/6.25 MVA Xfmr	339	52%
OLDE TROLLEY 18	18L1	133	1000 Al Cable	503	26%
OLDE TROLLEY 18	18L2	404	1000 Al Cable	503	80%
OLDE TROLLEY 18	18L3	375	336.4 AI	515	73%
OLDE TROLLEY 18	18L4	387	333 kVA Reg	516	75%
SALEM DEPOT 9	9L1	271	1-5/6.25/7 MVA Xfmr	322	84%
SALEM DEPOT 9	9L2	224	1-5/6.25/7 MVA Xfmr	322	70%
SALEM DEPOT 9	9L3	319	1-7.5/9.375 MVA Xfmr	507	63%
SPICKET RIVER 13	13L1	326	333 kVA	522	62%
SPICKET RIVER 13	13L2	290	333 kVA	522	56%
SPICKET RIVER 13	13L3	442	333 kVA	522	85%
Golden Rock	2352	776	2 X 1000 CU Cable	1376	56%
Golden Rock	2393	654	2 X 1000 CU Cable	1376	47%

Table 2 Salem Area 2019 Peak Loads

The Company developed an econometric model to forecast peak demands through 2036. The forecast model incorporates the impact of weather as well as demographic and local economic conditions on peak demands. The load was escalated through 2036 using the seasonal peak forecast under a 90/10 extreme weather scenario; refer to Table 3, below:

Year	MW	% Increase
2019	192.581	
2020	207.731	7.87%
2021	208.283	0.27%
2022	208.823	0.26%
2023	209.373	0.26%
2024	209.899	0.25%
2025	210.407	0.24%
2026	210.901	0.23%
2027	211.378	0.23%
2028	211.837	0.22%
2029	212.282	0.21%
2030	212.719	0.21%
2031	213.149	0.20%
2032	213.562	0.19%
2033	213.958	0.19%
2034	214.336	0.18%
2035	214.698	0.17%
2036	215.051	0.16%

Table 3 LUNH 2020-2036 90/10 seasonal peak forecast

The forecast model was then adjusted for spot loads to reflect new customer demands larger than 300 kilowatts ("kW"), refer to Table 4 below. The Distribution System was modeled and analyzed using the CYME application to perform the load flow analysis.

Year	Distribution Circuit	Location	Load (Amps)
2020	18L1	Rockingham Mall	65
2020	18L4	Tuscan Village Development South	274
2020	9L1	Tuscan Village Development North	174
2020	9L2	Data Center Expansion	44
2020	9L3	Commercial Development / Medical / Nursing	36
2021	18L4	Tuscan Village Development South	363

Table 4 Salem Area Spot Loads

Table 5 below tabulates detailed estimated loads for the Tuscan Village business park. This includes completed, under construction, in progress and no current tenant categories. Consistent with Company practice, anticipated kW demand represents diversified load, understanding that all loads are not active at the same time, at full power.

Tuscan Village Demand						
End Use	Diversified kW Demand	Tuscan Section	Status			
Dolben 1		North	Complete			
Blackbrook		North	Complete			
Ford		North	Complete			
Market Basket		North	Opened July 2019			
Home Sense		North	Opened Sept 2019			
Sierra		North	Awaiting opening due to covid			
MB Retail 3	71	North	No tenant due to Covid			
MB Retail 4	56	North	No tenant due to Covid			
Starbucks & Retail		North	Under Construction			
Retail 1 - 4	30	North	Under Construction			
Restaurant 1	87	North	2021			
Restaurant 2	127	North	2021			
35 N BROADWAY		North	Sal's Redevelopment - added by JR 6/3/2020			
Hanover Apts		South	In Progress			
Klemms		South	Complete			
St Lt 1		South	In Progress			
St Lt2+3 and well		South	In Progress			
OMJ Buildings		South	In Progress			
Pressed		South	In Progress			
Mass General (with Solar)		South	In Progress			
Building 100 (11.7)	245	South	In Progress			
Building 200 (15.2)	317	South	In Progress			
Building 300 (5.2)	109	South	In Progress			
Building 400 (9)	188	South	In Progress			
Building 500 (6.5)	107	South	In Progress			
Building 520 (2.1) EV	44	South	In Progress			
Building 600 w/ev (18.4)	386	South	In Progress			
Building 700 (8.1)	154	South	In Progress			
Building 800 w/ev (11.2)	235	South	In Progress			
Building 900 (1.3)	28	South	In Progress			
Building 1100 Drive (11.3)	236	South	In Progress			
Hotel/Conf/Retail	1,300	South	No tenant			
Resi Village	368	South	No tenant			
Offices Spaces	4,025	South	No tenant			
Over 55+	166	South	No tenant			
Retail	2,426	South	No tenant			
Dolben 2 (255 units)	_,	South	In Progress			
Total North	3,961		Includes Sal's Redevelopment (378kVA)			
Total South	14,494					
Total Tuscan Village	18,433					
Total Tuscan Village Completed/In- Progress	10,043		These are for secured tenants			
Total Tuscan Village without signed tenant	8,412	laga Diversified	This is an estimate based on targeted end use			

Table 5 Tuscan Village Diversified Loads

3.4 Modeling and Criteria

CYME models were created for the Salem area 13.2 kV distribution system. PSS/e models were created for the 22.8 kV supply system. Transformers, supply lines, and distribution circuits were evaluated and modeled for each year thru 2036. The peak load and the available tie capacity for each component of the system was determined. Contingencies for the loss of a major component of the electrical system (N-1) were developed, and the system consequences reviewed.

As the Golden Rock 19L6 and 19L8 13.2 kV feeders were new additions to the area, energized in December 2019, the original 2019 base models did not include the feeders. Area load was allocated under the prior system configuration before the installation of the 19L6 and 19L8. Subsequently, the system model was reconfigured to depict 19L6 and 19L8 as planned. It should be noted that this study would have resulted in increased loading violations if these feeders were not present.

The in-progress construction of the Tuscan Village business park was modeled for all Plans as a total load of 13.5 MW, which is a minimum expected demand, and is 5 MW or 37% lower than Liberty's expected, diversified demand for the development as proposed at 18.5 MW. See Table 5. This demand assumes a conservative 1.5 MW for the northern Tuscan parcel and 12 MW for the southern parcel. If the Tuscan Village development grows to a demand closer to what is reflected in Table 5, the overloads and voltages presented in this study worsen considerably and could result in new violations not currently identified.

Each Alternative Plan was reviewed on the 13.2 kV and 22.8 kV system.

Distribution System Ratings were used to identify any station, supply line, and distribution circuit system capacity and reliability deficiencies, as applicable to Liberty Utilities Planning Criteria. The Liberty Utilities Planning Criteria has been reviewed and updated with PUC Staff input.

Condition	Sub-Transmission	Substation Transformer	Distribution Circuit		
	Loading to remain within 100% of normal rating.	Loading to remain within 100% of normal rating.	Loading to remain within 100% of normal rating.		
Normal N-1 Contingency, which results in facilities operating above their Long- Term Emergency (LTE) rating but below their Short-Term Emergency (STE) rating.	Voltage at customer meter to remain within acceptable range.	Voltage at customer meter to remain within acceptable range.	Voltage at customer meter to remain within acceptable range.		
	Circuit phasing is to remain balanced.	Circuit phasing is to remain balanced.	Circuit phasing is to remain balanced.		
	Load must be transferred to other supply lines in the area to within their LTE rating. Repairs are expected to be made within 24 hours. Evaluate alternatives if more than <u>120 MWhr</u> of load at risk results following post-contingency switching.	Load must be transferred to nearby transformer to within their LTE rating. Repairs or installation of Mobile Transformer expected to take place within 24 hours. For transformers larger than 10 MVA nameplate, evaluate alternatives if more than <u>180 MWhr</u> of load at risk results following post-contingency switching.	Load must be transferred to nearby feeder to within their LTE rating. Repairs expected to be made within 24 hours. Evaluate alternatives if more than <u>16 MWhr</u> of load at risk results following post. (Guideline)		
N-1 Contingency, which results in facilities operating above their Short-Term Emergency (STE) rating.	As Needed - Typically 15 min for OH conductors and 24 hours for UG cables.	Loads must be reduced within 15 minutes to operate within their LTE rating.	As Needed - Typically 15 min for OH conductors and 1-24 hours for UG cables.		

Table 6 Liberty Utilities Planning Criteria

3.5 Active & Completed Projects

Installation of a 115 kV/13.2 kV - 33/44/55 MVA transformer, a 115kV in-line breaker and two 13.2kV feeders at the Golden Rock Substation and the offload of Barron Avenue Substation was completed in December 2019 (Barron Ave Substation modular feeders will remain available for emergency use throughout construction of the recommended plan).

• An extension of Pelham 14L4 was completed in 2018 to provide temporary load relief and system capacity in the Salem Area. This temporary solution enables Liberty to

provide electric service to a portion, but not all, of Tuscan Village Development anticipated load while the Rockingham Substation is constructed.

• Installation of the third Golden Rock feeder to reduce load at risk at Spicket River substation is expected to be completed in 2020. Installation of a second 115kV at Golden Rock is expected to be completed in 2020.

4.0 Problem Identification

4.1 Thermal Loading – Existing Violations

Existing system analysis reviewed two base cases, one being the 2019 peak case, without a new 115 kV / 22.8 kV supply transformer at Golden Rock. A second base case was also reviewed, as the recent addition of a 115 kV / 22.8 kV supply transformer at Golden Rock with three distribution feeders is needed to adequately reflect the Salem Area system modifications that have been approved by the NHPUC. Analysis results in this section represent the 2019 peak base case.

4.1.1 Normal Configuration – based on 2019 peak loads

4.1.1.1 Sub-Transmission System

Analysis resulted in no violations.

4.1.1.2 Transformers

Analysis resulted in no violations.

4.1.1.3 Feeders

The 13.2 kV distribution system supplies the peak load demand with no violations. However, to accommodate this loading the feeder 14L4 supplied from the Pelham Substation has been temporarily placed in an abnormal configuration. It is supplying load transferred from Salem to allow for the Tuscan Village increasing load.

4.1.2 N-1 Contingency & Load-At-Risk

4.1.2.1 Sub-Transmission System

Base Case 22.8 kV Analysis determined that the 22.8 kV supply system is nearing Summer Emergency limits in certain first contingency scenarios, refer to Appendix C – Area Loading Analysis, Table 13. As a result, no additional load should be added to the Salem 22.8 kV system, and no future load growth can occur without future overloads.

The Spicket River No.13 Station is currently supplied at 22.8 kV by the 2376 circuit from the National Grid Ward Hill Substation in Methuen, MA.

The 2376 circuit ties with the 2353 circuit, which also originates from Ward Hill, via a pole mounted recloser loop scheme. The tie is located in the Spicket River Massachusetts Right of Way. Downstream of the 2376/2353 tie, the 2376 continues for 4.3 miles in National Grid territory crossing into New Hampshire and continuing 0.9 miles to the Spicket River No. 13 Substation. Approximately 5.2 miles of the 2376 is exposed to outages without any backup, with 4.3 miles in National Grid maintenance territory and 0.9 miles in Liberty Utilities territory.

The loss of the 22.8 kV source for an outage on the 5.2-mile section would require the Spicket River circuits to be backed up by existing distribution circuit ties, however area feeders are not positioned geographically to resupply the Spicket River distribution feeders. To resolve low voltage issues during contingency, even cascading load does not re-supply Spicket River in all scenarios. While analysis shows that Spicket River distribution feeders can be partially re-supplied via distribution ties to avoid exceeding MWHr criteria, a minimum of fifteen switching steps would be required for partial re-supply; presenting operability challenges. Appendix E – Spicket River Backup Analysis for details.

Liberty Utilities relies on the Transmission provider to expedite repairs should an outage related problem occur anywhere along the 4.2 miles of transmission owned 2376 sub-transmission line downstream of the 2376/2353 tie. Loss of the 23 kV sub-transmission supply circuit to the Spicket River No.13 Station could cause Liberty Utilities to have up to 226 MWHrs of load at risk, after restorative switching occurs and for an assumed repair time of 12 hours. This violates Liberty's planning criteria of 120 MWhrs. In 2021 an express feeder 19L4 will be installed from the Golden Rock Substation to Spicket River to reduce the load at risk to below 120 MWhrs.

4.1.2.2 Transformers

The Golden Rock Station is currently supplied radially from National Grid's G133 115 kV line which originates in West Methuen Station in MA. The station is backed up by National Grid's 22.8 kV lines 2376 and 2353 which originate in Methuen and West Methuen Stations in MA. Liberty Utilities relies on the Transmission provider to expedite repairs should an outage related problem occur on the 115 kV line or on the substation transformer. Loss of either could cause Liberty Utilities to have up to 300 MWHrs of load at risk, after restorative switching occurs and for an assumed repair time of 24 hours. This violates Liberty's planning criteria of 180 MWhrs. In 2021, a new 115kV transmission line will be installed from Methuen to Salem NH to resolve the load at risk related to the loss of the 115 kV transmission line. This however does not address the load at risk issue with the loss of the 115-22.8 kV transformer at Golden Rock. See Appendix D – MWHr Summary for details.

4.1.2.3 Feeders

Analysis resulted in no violations.

4.2 Thermal Loading – Predicted Violations

System analysis for this section reviewed two base cases, one being the 2019 peak case, without a new 115 kV / 22.8 kV supply transformer at Golden Rock. A second base case was also reviewed, as the recent addition of a 115 kV / 22.8 kV supply transformer at Golden Rock with three distribution feeders is needed to adequately reflect the Salem Area system modifications that have been approved by the NHPUC. Analysis results in this section represent the 2022 Base Case with Tuscan Village development, and the recent addition of a 115 kV / 22.8 kV supply transformer at Golden Rock in-service.

4.2.1 Normal Configuration

4.2.1.1 Sub-Transmission System

Analysis resulted in no violations.

4.2.1.2 Transformers

Analysis resulted in the following violations:

• Salem Depot 9L1 Feeder at 99% in 2022, up to 102% in 2036

Loading percentages are versus Summer Normal Ratings. See Appendix C – Area Loading Analysis, Table 15. It is assumed that the predicted demand for the Tuscan Village Development would normally be supplied by the 9L1 and 18L4 feeders. The 14L4 feeder has been extended from Pelham NH to Salem NH to provide temporary load relief on the 18L4 feeder to allow Tuscan Village to grow as the recommended solution is implemented. Until the recommended solution is implemented, the development will not be able to fully expand to its final configuration due to the lack of capacity of the distribution system.

4.2.1.3 Feeders

Analysis resulted in the following violations:

• Salem Depot 9L1 Feeder at 99% in 2022, up to 102% in 2036

Loading percentages are versus Summer Normal Ratings. See Appendix C – Area Loading Analysis, Table 14.

4.2.2 N-1 Contingency & Load at Risk

4.2.2.1 Sub-Transmission System

The Salem 22.8 kV distribution system was originally designed as a dual fed and redundant system with automatic transfer schemes at the substations. If loading exceeds the emergency rating on the adjacent line, steps need to be taken to block transfer at substation which could potentially result in prolonged outages to avoid overload and damage to equipment. While some overloads may not result in excess of 120 MWHr criteria, all supply line overloads are prevented, as they could constitute a conductor sag hazard or could cause permanent damage to equipment. Once an interruption occurs, there are several steps that are taken to ensure that the load can be strategically and safely be placed back in service to within ratings of the equipment. This could result in many customer outages of long duration.

Analysis resulted in the following predicted violations:

- 2352 overloads:
 - \circ Golden Rock to Barron Ave Tap at 99% in 2022, up to 102% in 2036
 - Olde Trolley Tap to Olde Trolley at 104% in 2022, up to 107% in 2036
- 2393 overloads:
 - Golden Rock to Barron Ave Tap at 99% in 2022, up to 102% in 2036
 - Barron Ave Tap to Olde Trolley Tap at 115% in 2022, up to 118% in 2036
 - Olde Trolley Tap to Olde Trolley at 104% in 2022, up to 107% in 2036
- 2353 MECo to Golden Rock at 142% in 2022, up to 149% in 2036.

Loading percentages are versus Summer Emergency Ratings. See Appendix C – Area Loading Analysis, Table 18.

4.2.2.2 Transformers

Analysis resulted in the following violations:

- Salem Depot 9L1 Transformer at 119% in 2022, up to 123% in 2036
- Salem Depot 9L2 Transformer at 131% in 2022, up to 135% in 2036
- Salem Depot 9L3 Transformer at 104% in 2022, up to 107% in 2036
- Olde Trolley 18L1 Transformer at 98% in 2022, up to 101% in 2036
- Olde Trolley 18L2 Transformer at 98% in 2022, up to 101% in 2036
- Olde Trolley 18L3 Transformer at 97% in 2022, up to 100% in 2036
- Olde Trolley 18L4 Transformer at 97% in 2022, up to 100% in 2036

Loading percentages are versus Summer Emergency Ratings. See Appendix C – Area Loading Analysis, Table 17).

4.2.2.3 Feeders

Analysis resulted in the following Year 2022 violations:

- Spicket River 13L2 Feeder has a MWHr violation at 17.5 MWHrs
- Olde Trolley 18L3 Feeder has a MWHr violation at 23.5 MWHrs
- Olde Trolley 18L4 Feeder has a MWHr violation at 23.4 MWHrs

4.3 Asset Condition

ControlPoint and Liberty Utilities' Engineering and Substation teams reviewed asset conditions within the Study Area. The evaluation included the following:

- 1. Site visits to all Salem area Stations.
- 2. Review of past condition assessment reports provided to Liberty Utilities by National Grid and by United Power Group, Inc in 2014.
- 3. Review National Grid Internal Strategy Document Distribution Substation Transformers Revised Strategy – October 2009.
- 4. Recent DGA Tests for available transformers at Barron Ave and Salem Depot.
- 5. Consultation with Liberty Utilities' Operations and Control Center personnel
- 6. Walkthrough of the area substations with PUC Staff. This walkthrough was performed in June 2020 with PUC Staff to visit all of the Salem Area substations to discuss benefits of the 115kV sourced substations and drawbacks and limitations of the existing 23kV sourced substations. Preliminary findings of the Salem Area Study was provided for discussion.

Field reviews assessed the feasibility of adding additional modular feeder positions at each substation and upgrading existing equipment. Asset condition concerns were found at Barron Ave and Salem Depot Substations and are documented below.

4.3.1 Barron Ave Substation

The following is a list of asset condition concerns at Barron Ave Substation:

- The substation was originally constructed in early 1960s
- In 2009, the 10L1 supply transformer was deemed in "need of replacement" by 2014 due to "combustible gasses present"⁶
- The 10L1 Transformer bushings are showing signs of deterioration.⁷
- In 2009, the 10L4 supply transformer was deemed in "need of replacement" by 2025 due to "combustible gasses present"⁸

⁶ Annex A - National Grid Internal Strategy Document Distribution Substation Transformers Revised Strategy – October 2009

⁷ Annex B – 10L1 Testing & Maintenance Report: United Power Group - August 2014

⁸ Annex A - National Grid Internal Strategy Document Distribution Substation Transformers Revised

- The 10L4 Transformer bushings are showing signs of deterioration and are leaking oil around the bottom valve.⁹
- The 10L1 recloser has a McGraw-Edison Form 3 Control, which uses cartridges to select a limited number of protection curves. The device is obsolete, so finding a reliable source for new cartridges or parts is difficult. Other area utilities are actively retiring Form 3s because of its shortcomings with protection coordination and parts availability.
- Circuit Regulator Contacts are nearing end of useful life. The internal contacts are not a regular maintenance items, typical practice would be to replace the units entirely.
- Height to live parts inside the substation is below minimum height clearance requirements for a modern substation (See Appendix B – Asset Condition Documents, Figure 49, Figure 50, and Figure 51). Space is limited for new equipment access for installation & maintenance. Maintenance work near live parts requires extra time and/or outages to be able to maintain worker safety. The load growth in the area will further strain the equipment and will limit the ability of the Company to re-supply the load from alternate supplies to perform maintenance and/or emergency restorations.
- Recent Dissolved Gas Analysis (DGA) tests from April 2020 concluded that 10L1 and 10L2 transformers are both showing elevated levels of carbon monoxide and/or carbon dioxide, indicating signs of overheated cellulose insulation.¹⁰
- System Control has multiple concerns with operating the facilities at Barron Ave Station. Lack of monitoring and remote control of the equipment is a major concern. It is difficult to react efficiently while being forced to rely on customer calls for outages. Additional safety concerns exist given the lack of ability to remotely deenergize facilities quickly in emergency situations.

4.3.2 Salem Depot Substation

The following is a list of asset condition concerns at Salem Depot Substation:

- The substation was originally constructed in 1950s
- The existing 9L1 and 9L2 Breaker Positions and bus are constructed on Wood Pole Structures with limited clearance. The concern with wood pole structures is they lose their structural integrity over time. This deterioration causes equipment and brackets containing equipment to not function as designed and could lead to catastrophic equipment failure and faults during operation. In addition, maintenance work near live parts requires extra time and/or outages to be able to maintain worker safety. The added load growth will limit the ability of the Company to resupply load from alternate supplies to perform maintenance and/or emergency restorations.
- Both the 9L1 and 9L2 transformers contain Polychlorinated Biphenyl (PCB) oil. The 9L1 contains 690 gallons of PCB oil. The 9L2 transformer contains 1,010 gallons of PCB oil. PCB oil is a widely recognized environmental risk.

Strategy – October 2009

⁹ Annex C – 10L4 Testing & Maintenance Report: United Power Group - September 2014

¹⁰ Annex E – 2020 Dissolved Gas Analysis: Weidmann

- Height to live parts inside the substation is below minimum height clearance requirements for a modern substation (See Appendix B – Asset Condition Documents, Figure 52, Figure 53, and Figure 54).
- 9L1 has shown previous history of combustible gas over 1,000 (μ L/L). In 2009 it was recommended to be replaced by 2014.¹¹
- 9L2 has shown previous history of combustible gas over 1,000 (µL/L). In 2009 it
 was recommended to be replaced by 2014. Recent tests indicate an immediate
 risk of failure.¹²
- 9L3 has shown previous history of elevated combustible gas. In 2009 it was recommended to be replaced by 2025.¹³
- 9L1 and 9L2 Circuit Regulator Contacts are nearing end of useful life. Typical practice would be to replace the units entirely.
- The existing bus structure configuration for two of the existing feeders greatly restricts the ability to upgrade/replace the existing transformers and require a complete rebuild.
- The 9L3 Transformer 9T3's H3 bushing is showing signs of deterioration.¹⁴
- System Control has multiple concerns with operating the facilities at Salem Depot Station. Lack of monitoring and remote control of the equipment is a major concern. It is difficult to react efficiently while being forced to rely on customer calls for outages. Additional safety concerns exist given the lack of ability to remotely deenergize facilities quickly in emergency situations.

4.3.3 New 22.8 / 13.2 kV Substation Construction Feasibility

It is expected per the Asset Condition Review performed by ControlPoint that any new feeder additions or equipment replacements at either Barron Ave or Salem Depot Substations will trigger significant modifications and the need for complete rebuild of the substations to ensure proper OSHA/NESC clearances for worker safety, and conformance with Company requirements for SCADA, GridMod, communications, and other monitoring and control protocols.

Safety concerns with improper clearances would require large portions of the substation to be de-energized and re-supplied from alternate feeds while the modifications are made. The load growth in the area will prevent these planned outages from taking place and could impact the Company's ability to modify these substations and meet customer expectations of electric service in a timely manner.

Conceptual designs were developed as a part of the review to approximate the required footprint needed to rebuild Barron Ave and Salem Depot Substations. The conceptual designs account for the space needed for incoming 22.8 kV supply lines, 22.8 kV protective devices, supply transformers, 13.2 kV breakers, circuit regulators

¹² Annex E – 2020 Dissolved Gas Analysis: Weidmann

Barron Ave 10L2 - Test Report # ¹³ Annex A - National Grid Internal Strategy Document Distribution Substation Transformers Revised Strategy – October 2009

¹¹ Annex A - National Grid Internal Strategy Document Distribution Substation Transformers Revised Strategy – October 2009

¹⁴ Annex D – 9L3 Testing & Maintenance Report: United Power Group - August 2014

and space to accommodate maintenance for each modular feeder position. See Appendix B – Asset Condition Documents, Figure 45 and Figure 46 for conceptual equipment layouts, and Figure 47 and Figure 48 for site layout sketches. Please note that the substation designs are conceptual, meant only to approximate required space for new facilities.

At Barron Ave Substation, the space for a substation rebuild to accommodate an anticipated (4) four 13.2 kV feeders is limited by the existing parcel. The Spicket River travels along the southern border of the parcel, Public Way limits the northern border, and the Salem Rail Trail limits the eastern border.

A rebuild of the substation would require much of the existing infrastructure to be temporarily moved or taken out of service to make room for new construction. Operating the system with these facilities unavailable presents many challenges. With the existing off-schedule equipment, construction would be limited to light loading periods, and additional outages could prove difficult to restore. Care would need to be taken to avoid environmental concerns associated with temporary or permanent construction in the vicinity of Spicket River. Integrating adequate access to the equipment for operation and maintenance, expanding the station footprint, adding a control house, developing feeder getaway routes, all present challenges.

Salem Depot Substation also has space constraints for additions or rebuild of the substation. To get an anticipated five (5) 13.2 kV feeders served from Salem Depot, the required substation footprint challenges the limits of the parcel. A rebuild of the substation would require much of the existing infrastructure to be temporarily moved or taken out of service to make room for new construction. Operating the system with these facilities unavailable presents many challenges. With the existing off-schedule equipment, additional outages could prove difficult to restore. Integrating adequate access to the equipment for operation and maintenance, expanding the station footprint, adding a control house, developing feeder getaway routes, all present challenges.

At Salem Depot Substation, purchase of the parcels adjacent to the existing substation parcel was investigated. The property owner of the nearby residential property was not interested in selling. When contacted, the now vacant lot which previously held a restaurant was not interested in selling. Since then, the restaurant is no longer operating due to fire damage.

4.4 Power Quality & Voltage Performance

4.4.1 Supply System Loss Comparison

Each of the studied supply system configurations was evaluated for performance from a system losses perspective. These values represent losses on the supply system, including supply transformers, with proposed Tuscan Village load. See Section 3.4 for configuration descriptions.

- Supply Configuration #1 (@ 22.8 kV): Area losses: 2.1 + j26.9 MVA = 26.98 MVA
- Supply Configuration #2 (@ 115 kV): Area losses: 1.0 + j15.4 MVA = 15.43 MVA

Results show that the options utilizing a 115 kV supply system would have approximately half the kW supply losses when compared to a 22.8 kV supply system. Under a 115kV supply configuration, Liberty's distribution customers could save up to \$761,813 annually. With regards to energy service, customers could save up to \$623,633 annually. This reflects transmission savings.

4.4.213.2 kV Distribution System Loss Comparison

Each of the studied distribution system configurations was evaluated for performance from a system losses perspective. These values represent losses on the primary (13.2 kV) lines only, with proposed Tuscan Village load.

Alt # 1 Feeder	Alt # 1 Feeder kW	Alt # 2 Feeder	Alt # 2 Feeder kW	Alt # 3 Feeder	Alt # 3 Feeder kW	Alt # 4 Feeder	Alt # 4 Feeder kW	Alt # 5 Feeder	Alt # 5 Feeder kW	Alt # 6 Feeder	Alt # 6 Feeder kW	Alt # 7 Feeder	Alt # 7 Feeder kW
	Losses												
10L1	110.55	10L1	132.17	10L1	157.74	10L1	8.17	10L1	8.24	21L1	46.23	10L1	51.58
10L2	31.55	10L2	156.07	10L2	57.75	10L2	150.35	10L2	149.90	21L5	127.82	10L2	19.50
10L4	40.01	10L4	33.86	10L4	33.86	10L4	40.01	10L4	40.03	13L1	196.33	10L4	33.84
13L1	206.79	13L1	194.34	13L1	41.11	10L5	40.88	21L11	23.18	13L2	95.54	13L1	195.38
13L2	114.89	13L2	95.55	13L2	20.11	13L1	22.26	13L1	41.11	13L3	93.59	13L2	94.44
13L3	79.22	13L3	96.92	13L3	9.94	13L2	23.59	13L2	23.31	18L1	7.06	13L3	91.90
18L1	5.79	18L1	7.01	18L1	192.02	13L3	5.79	13L3	25.18	18L2	35.43	18L1	7.01
18L2	0.02	18L2	2.82	18L2	7.06	14L4	123.17	14L4	262.18	18L3	109.96	18L2	78.56
18L3	118.16	18L3	110.14	18L3	2.82	18L1	108.8	18L1	7.06	18L4	123.94	18L3	108.79
18L4	3.26	18L4	10.55	18L4	108.79	18L2	3.31	18L2	124.55	21L6	45.27	18L4	48.07
9L1	29.06	9L1	29.06	9L1	10.55	18L3	294.01	18L3	108.79	21L7	7.95	9L1	27.28
9L2	26.53	9L2	35.84	9L2	10.14	18L4	6.09	18L4	3.31	21L8	31.22	9L2	35.84
9L3	76.50	9L3	106.51	9L3	35.84	9L1	9.68	9L1	9.69	19L4	13.14	9L3	104.70
19L4	8.34	19L4	13.14	19L4	106.51	9L2	35.83	9L2	35.84	19L6	48.27	19L4	98.87
19L6	3.23	19L6	60.11	19L6	13.14	9L3	106.51	9L3	106.51	19L8	50.78	19L6	1.64
19L8	388.96	19L8	205.17	19L8	310.16	9L4	49.47	21L9	317.47	14L4	3.71	14L6	112.50
14L4	486.26	14L4	192.02	14L4	205.17	9L5	334.24	21L10	43.63			14L4	401.91
				10L5	33.06								
				9L4	0.08								
				9L5	334.24								
Alt # 1 Total Losses	1,729.12	Alt # 2 Total Losses	1,481.28	Alt # 3 Total Losses	1,690.09	Alt # 4 Total Losses	1,362.16	Alt # 5 Total Losses	1,329.98	Alt # 6 Total Losses	1,036.24	Alt # 7 Total Losses	1,511.81

Table 7 13.2 kV Feeder Losses by Alternative

4.4.3 Power Quality – Existing Violations

4.4.3.1 Normal Configuration

22.8 kV Sub Transmission System

Olde Trolley 23 kV bus at .9411 per-unit and Salem Depot 23 kV bus at .9328 per-unit.

Feeders

Analysis resulted in no violations.

4.4.3.2 N-1 Contingency

Sub Transmission System

Olde Trolley 23 kV bus at .87171 per-unit for either 2352 or Golden Rock 115/23 kV transformer out-of-service.

Salem Depot 23 kV bus at .86229 per-unit for either 2352 or Golden Rock 115/23 kV transformer out-of-service.

Feeders

Voltage violations exist during 13L1 contingency. Refer to Appendix C – Area Loading Analysis, Figure 55.

4.4.4 Power Quality – Proposed Plans

Analysis of multiple Alternative Plans resulted in the following remaining voltage violations. See Appendix F – 22.8 kV Voltage Analysis for details.

Alternative Plan 3 analysis resulted in the following voltage violations during contingency:

- Salem Depot 23 kV bus at .9375 per-unit. Olde Trolley 23 kV bus at .9471 perunit during normal operating conditions.
- Olde Trolley 23 kV bus at .87857 per-unit for 2352 and Golden Rock 115/23 kV transformer out-of-service.
- Salem Depot 23 kV bus at .8676 per-unit for 2352 and Golden Rock 115/23 kV transformer out-of-service.

Alternative Plan 5 analysis resulted in the following voltage violations during contingency:

 Salem Depot 23 kV bus at .87524 per-unit for 2352 out-of-service. Rockingham 23 kV bus at .88188 per-unit for 2352 or second new line out-ofservice.

Alternative Plan 7 analysis resulted in the following voltage violations during contingency:

- Olde Trolley 23 kV bus at .89932 per-unit for Golden Rock 115/23 kV transformer out-of-service.
- Salem Depot 23 kV bus at .89206 per-unit for Golden Rock 115/23 kV transformer out-of-service.

5.0 Plan Development

After identifying all existing and anticipated problems with the Salem Area, plans were developed to address system deficiencies.

Plan One through Plan Five focused on alternatives that made attempts to utilize and invest in the 22.8 kV system to address area issues. Plan Six was very similar to the 2016 Study recommended plan, utilizing the new Golden Rock Substation's 115kV/13.2kV transformer and proposed Rockingham Station's two 115 kV / 13.2 kV transformers to provide area load relief and support retirement of deteriorating 22.8 kV assets. Plan Seven utilizes the new Golden Rock Station 115kV/13.2kV transformer along with the existing 22.8kV/13.2kV modular feeders and installs an additional new 13.2 kV feeder circuit from Pelham Station #14 to offload Olde Trolley Station load.

It should be noted that Plans Four and Five are no longer feasible given the recent installation of a 115kV / 13.2kV transformer at Golden Rock Substation, which has been approved by NHPUC Staff. The installation of a 115kV / 13.2kV transformer at Golden Rock, common in Plans One, Two, Three, Six, and Seven of this study, provides much needed load relief to the 13.2 kV system in the area, and allows load to be transferred from the 22.8 kV supply system that without it, has existing first contingency MWHr violations. Plans Four and Five were developed for this study as a hindsight review to compare Plan 6 to Plans Four and Five, which are focused on expanding the 22.8 kV Sub-transmission system in the area.

Plans One through Three, and Plan Seven rely on an adequate supply from the *existing* 22.8 kV supply system to satisfy the area needs. The 22.8 kV supply system capabilities were analyzed in parallel with the distribution study. See Section 6.0 and Appendix C – Area Loading Analysis for details.

5.1 Plan Summary

- Plan One NH PUC Staff Recommended Plan Install a second 115 kV transmission line into Golden Rock Station supplying a new 115 kV/13.2 kV, 33/44/55 MVA, substation transformer with up to four (4) new circuit positions. Install three 13.2 kV feeders at Golden Rock Substation to reduce Spicket River Station load at risk, supply Tuscan Village and support system contingencies. Add four 2,500 kVA generators to provide additional non-wires contingency support. This plan is estimated at \$11,410,000. (See Figure 5,Figure 6,Figure 7,Figure 8,Figure 9).
- Plan Two Install a second 115 kV transmission line into Golden Rock Station supplying

a new 115 kV/13.2 kV, 33/44/55 MVA, substation transformer with up to four (4) new circuit positions. Install three 13.2 kV feeders at Golden Rock Substation to reduce Spicket River Station load at risk supply Tuscan Village and support system contingencies. Rebuild Barron Ave and Salem Depot Substations to resolve issues with equipment condition. <u>This plan is estimated at \$24,000,000.</u> (See Figure 10,Figure 11,Figure 12,Figure 13).

- Plan Three Install a second 115 kV transmission line into Golden Rock Station supplying a new 115 kV/13.2 kV, 33/44/55 MVA, substation transformer with up to four (4) new circuit positions. Install three 13.2 kV feeders at Golden Rock Substation to reduce Spicket River Station load at risk, supply Tuscan Village and support system contingencies. Install one new feeder at Barron Ave and two new feeders at Salem Depot substations to supply Tuscan Village and support system contingencies. Rebuild remaining modular feeder at Barron Ave and Salem Depot Stations to resolve issues with equipment condition. This plan is estimated at \$35,310,000. (See Figure 14, Figure 15, Figure 16, Figure 17)
- Plan Four Install a second 115 kV transmission line into Golden Rock Station supplying a new 115 kV/22.8 kV, 33/44/55 MVA, substation transformer with four (4) new circuit positions. From the Golden Rock Substation, install one new double circuit 22.8 kV pole line along the 22.8 kV Right of Way. Install one new 13.2kV modular feeder at Barron Ave and two new 13.2kV modular feeders at Salem Depot substations to supply Tuscan Village and support system contingencies. Rebuild remaining modular feeder at Depot Ave and Salem Depot Stations to resolve issues with equipment condition. <u>This plan is estimated at \$33,940,000.</u> (See Figure 18, Figure 19, Figure 20, Figure 21)
- Plan Five Install a second 115 kV transmission line into Golden Rock Station supplying a new 115 kV/22.8 kV, 33/44/55 MVA, substation transformer with up to four (4) new circuit positions. From the Golden Rock Substation, install two new double circuits 22.8 kV pole line along the 22.8 kV Right of Way. Rebuild Barron Ave and Salem Depot Stations to resolve issues with equipment condition. Install a 22.8/13.2 kV Substation with three modular feeders at Tuscan Village. <u>This plan is estimated at \$33,150,000.</u> (See Figure 22,Figure 23,Figure 24,Figure 25,Figure 26)
- Plan Six Install a second 115 kV transmission line into Golden Rock Station supplying a new 115 kV/13.2 kV, 33/44/55 MVA, substation transformer with up to four (4) new circuit positions. Install three 13.2 kV feeders at Golden Rock Substation to reduce Spicket River Station load at risk and retire the Barron Ave Substation. Install two 115 kV transmission lines into Rockingham Station supplying two new 115 kV/13.2 kV, 33/44/55 MVA, substation transformers with up to five (5) new circuit positions each. Install five 13.2 kV feeders at Rockingham Substation to supply Tuscan Village, support system contingencies and retire Salem Depot Substation. <u>This plan is estimated at \$35,490,000</u>. (See Figure 27, Figure 28,Figure 29,Figure 30,Figure 31,Figure 32,Figure 33, Figure 34, Figure 35,Figure 36,Figure 37, and Figure 37)
- Plan Seven Installs a 115 kV transmission line into Golden Rock Station supplying a new 115 kV/13.2 kV, 33/44/55 MVA, substation transformer with up to four (4) new circuit positions. Install two 13.2 kV feeders at Golden Rock Substation to reduce

Spicket River Station load at risk and support system contingencies. Add a second 13.2 kV feeder 14L5 from the Pelham 115kV/13.2kV Station to off load the Olde Trolley 22.8kV/13.2kV Station to supply Tuscan Village and support system contingencies. Rebuild Barron Ave and Salem Depot Substations to resolve issues with equipment condition. This plan is estimated at \$25,100,000. (See Figure 38,Figure 39,Figure 40,Figure 41,Figure 42,Figure 43,Figure 44)

6.0 Plan Considerations and Comparisons

The effectiveness of each plan to address the identified system deficiencies, including asset conditions, and meet company strategies are evaluated based on System Performance, Operability, Future Growth/Expansion Opportunities, Cost and Reserve Capacity Provided.

System Performance is evaluated based on the plan's potential to deliver reliable power to customers. In general, new supply sources should be located as close as possible to the load centers to minimize line losses, maintain voltages within limits and to minimize exposure of circuits to outages. Densely populated feeders and longer feeders experience more losses, have a higher rate of interruption and impact to system reliability. In addition, long feeders pose a challenge in maintaining nominal voltages within acceptable range. Each plan is evaluated on its ability to maintain nominal voltage within +/- 5% of nominal voltage during peak loading conditions and customer exposure to interruptions.

Operability is evaluated based on how the plan impacts the safe and efficient operation of the electric system. It evaluates how the plan's proposed additions affects the safety of field personnel and utility workers operating the electric distribution system and how it improves the ease of operation. Operability is also evaluated on how the plan aligns with the Company's strategy to be local and responsive to the needs of our customers and to reduce the reliance on the transmission provider. It is based on the plan's ability to meet the company's distribution planning criteria which represents the capability of the distribution system to provide reliable power during system intact conditions and first contingency conditions. It also represents the ability for the company to appropriately manage day-to-day contingency and storm operating risks given the company's resource base.

Future Growth is evaluated based on the plan's potential to enable future infrastructure additions and provide for expansion opportunities. For example, a plan that installs a substation nearest the load centers and has room for expansion, has better growth opportunities than a plan that installs a substation with a smaller footprint, away from the load centers.

Capacity provided is evaluated based on the plan's amount of reserve capacity gained for distribution feeders, substation transformers and supply lines beyond the present distribution system capabilities. Capacity provided is analyzed by determining the ratio of reserve capacity gained per dollar invested.

Each plan specifies capacity in two classes; Total MVA capacity and Firm MVA capacity. Total MVA capacity can be defined in this study as overall capacity made available. Firm MVA capacity gives a measure of the ability of the Plan to continue to provide capacity in absence of one major component. Total MVA capacity is often never fully available or utilized, as excess capacity always needs to be available for contingency scenarios. For example, a double-ended substation containing two supply transformers, each rated at 50 MVA thermal, would provide

100 MVA of Total MVA capacity, and 50 MVA of Firm MVA capacity. To responsibly plan for first contingency (i.e. bus, transformer, or supply failure), the loading on the substation should not be designed to serve much more than the Firm capacity, 50 MVA in this example, during normal peak conditions, so that capacity can be available in a first contingency scenario. The geographical location and ratings of feeders can also limit the available or utilized capacity of a transformer.

The effectiveness of each plan in addressing each of these areas in a cost-effective manner was evaluated.

6.1 Plan One

6.1.1 System Performance

Plan One installs a new 115 kV supply to a new 115/13.2kV transformer and three distribution feeders at the Golden Rock Substation. It adds four 2.5 MVA generators for backup power, one at Barron Ave, one at Salem Depot and two at Spicket River. This plan extends the Golden Rock 19L8 feeder and the Barron Ave 10L2 feeder approximately 2.5 miles and 1.6 miles respectively to supply the Tuscan Village Development. This results in long feeders to reach the load centers, resulting in increased kW losses. Please note that the 14L4 circuit was used during analysis to serve load planned for the 10L2 under this Plan. It is expected that kW losses shown on the 14L4 would be transferred to the extension of the 10L2.

6.1.2 Operability

Plan One does not resolve existing concerns with substation equipment at Salem Depot and Barron Ave and will further increase safety hazard risk, maintenance activities, risk of equipment failure and other concerns described in Section 4.3. Generator refueling and maintenance located at a substation that already has existing maintenance concerns also presents an operability challenge. Locating diesel fuel storage in close proximity to aging substation equipment could also prove hazardous in the event of a fire.

Strategically placed voltage support equipment such as line capacitors and regulators are required to resolve low voltage issues during a Spicket River supply contingency. Cascading load and adding voltage support results in operability challenges with partial re-supply, occupying valued resources during major outage events. Refer to Appendix E – Spicket River Backup Analysis for backup overview.

This plan is not consistent with the company's initiatives in resiliency and grid modernization and could negatively impact the Company's response to storms and emergencies. The lack of SCADA at Salem Depot and Barron Ave Substations limits visibility for emergency response. The Plan does not address any of the asset needs at those substations and limits the ability to implement any automated restoration schemes, or protection schemes related to future DER or smart grid integration.

This plan does the bare minimum to serve Tuscan Village, leaving 22.8 kV circuits mostly unavailable to re-supply Golden Rock during a contingency event. See

Appendix C – Area Loading Analysis, Table 23. This plan results in a load at risk at Golden Rock that is above the allowable per the Distribution Planning Criteria. See Appendix D – MWHr Summary. This makes outage planning longer and more difficult. It also does not reduce the reliance on the transmission provider.

6.1.3 Future Growth / Expansion Opportunities

Plan One provides limited opportunities for future expansion of the distribution system. It provides capacity to supply predicted growth in the Tuscan Village during system intact conditions but fails to adequately support the area's predicted demand during first contingency condition. This plan only provides four feeders to be used for future load growth at the Golden Rock Substation, three of which would be utilized under this plan. With no additional capacity available on the 22.8 kV sub-transmission system, future growth will require a large investment to provide additional capacity similar to what is being proposed with Plan Six.

6.1.4 Capacity Provided

Plan One provides the least capacity from all plans considered. Appendix G – Comparison of Plans – Cost vs Added Capacity shows predicted feeder capacity resulting from Plan One and how it compares with other Alternative Plans considered. It is estimated that this plan will provide a total MVA increase of 88.7 MVA and available Firm increase of 10.0 MVA.

6.1.5 Economic Comparison

Plan One is estimated at \$11,410,000¹⁵, of which \$3,500,000 has been spent to date.

When reviewing cost per MVA capacity provided, Plan One has a cost of approximately \$129,000 per MVA of total capacity provided, and It also has a cost of approximately \$1,410,000 per MVA of firm capacity provided.

Here is where this Plan compares with the other proposed Plans:

- Overall Cost: Lowest
- Cost per Total MVA Capacity: Lowest
- Cost per Firm MVA Capacity: Highest

6.1.6 Other Considerations

Alternative Plan #1 incorporates the use of "non-wires", using local diesel generation to help support contingency issues.

Alternative Plan #1 comes with unique siting challenges for diesel generation, fuel

¹⁵ It should be noted that Plan One also carries with it an estimated annual operating expense of \$200,000 per year for the proposed diesel generation.

storage, and electrical facilities to accommodate connection to the 13.2 kV distribution at each substation. While there exists adequate real estate to add diesel generators, installations at Barron Ave and Salem Depot will require modification of the substation fence to fit the new facilities. Diesel generator installation at the substations will be challenging due to its proximity to residential customers, where noise pollution will be a concern. Storage of diesel fuel and the refueling of the generator would present an environmental hazard and permitting challenge. Furthermore, wetlands just to the south (Spicket River) pose environmental concerns for any new construction at Barron Ave.

Alternative Plan #1 presents concerns with noise pollution and air pollution from burning diesel fuel. The installation includes two large tractor trailers containing the generator, fuel tank transformer and protective equipment. Barron Ave Substation will require electrical facilities to be expanded closer to the residential customer on the western parcel boundary. A Residential customer adjacent to the substation has been vocal with complaints with the Substation aesthetics, noise, and work being performed at Barron Ave.

6.2 Plan Two

6.2.1 System Performance

Plan Two installs a new 115 kV supply to a new 115/13.2kV transformer and three distribution feeders at the Golden Rock Substation. It builds on Plan One by rebuilding the existing modular feeders at Barron Ave Station and at Salem Depot Station. This plan extends the Golden Rock 19L8 feeder and the Barron Ave 10L2 feeder approximately 2.5 miles and 1.6 miles respectively to supply the Tuscan Village Development. This results in long feeders and the same system performance issues as discussed in Plan One.

6.2.2 Operability

Plan Two, with the rebuilding of the substation equipment at Salem Depot and Barron Ave, resolves the asset condition concerns. The rebuilding of these substations also improves resiliency, providing SCADA for system operators and adequate work clearances for line workers.

However, this plan lacks the necessary capacity to re-supply the Golden Rock substation during first contingency, resulting in MWHr violations that are above the allowable limit per the Planning Criteria. Refer to Appendix D – MWHr Summary. Refer to Appendix E – Spicket River Backup Analysis for backup overview. It also does not reduce the reliance on the transmission provider. Increasing modular transformer capacity while not addressing loaded supply lines will not add useable capacity to address area issues. The limitation of the 22.8 kV system to supply the increased load during contingency conditions make system restoration difficult or impossible, making this Plan impractical.

6.2.3 Future Growth / Expansion Opportunities

Similar to Plan One, Plan Two provides limited opportunities for future expansion of the distribution system. It provides capacity to supply predicted growth in the Tuscan Village during system intact conditions but fails to adequately support the area's predicted demand during first contingency condition.

This plan only provides four feeders to be used for future load growth at the Golden Rock substation, three of which would be utilized under this plan. Although Salem Depot Substation and Barron Ave Substations are rebuilt under this plan with additional feeder availability, lacking capacity available on the 22.8 kV sub-transmission system limits the overall load-carrying capability of the two substations. See Appendix C – Area Loading Analysis, Table 27 and Table 28. As a result, future growth will also require a large investment to provide additional capacity, similar to what is being proposed with Plan Six.

6.2.4 Capacity Provided

Plan Two provides the third least capacity from all plans considered. Appendix G – Comparison of Plans – Cost vs Added Capacity shows predicted feeder capacity resulting from Plan Two and how it compares with other Alternative Plans considered. It is estimated that this plan will provide a total MVA increase of 104.7 MVA and available Firm increase of 17.1 MVA.

6.2.5 Economic Comparison

Plan Two is estimated at \$24,000,000, of which \$3,500,000 has been spent to date.

When reviewing cost per MVA capacity provided, Plan One has a cost of approximately \$229,000 per MVA of total capacity provided, and It also has a cost of approximately \$1,403,000 per MVA of firm capacity provided.

Here is where this Plan compares with the other proposed Plans:

- Overall Cost: 2nd Lowest
- Cost per Total MVA Capacity: 2nd Highest
- Cost per Firm MVA Capacity: 2nd Highest

6.2.6 Other Considerations

Alternative Plans #2 and #3 (described below) each require complete rebuilds of Barron Ave and Salem Depot Substations, where Salem Depot would likely require additional real estate acquisition. Refer to Section 4.3.3 for further discussion. The land required for a Substation rebuild at Barron Ave may be available, but is limited, due to Spicket River along the southern border of the parcel, Barron Ave to the north, residential property to the west, and Salem Rail Trail to the east. To utilize the existing parcel, the existing Barron Ave facilities would require removal. This puts added stress on the other modular substation transformers and further limits the system during contingency. Wetlands concern also limits the space available at Barron Ave for a complete rebuild. To rebuild Salem Depot, additional real estate acquisition would be required on parcels just north of the Substation, where the Customer was approached by Liberty and was not interested in selling. Liberty Utilities owns a 6,100' square foot strip of land adjacent to Salem Depot on Middle Street, where could be made available for an additional feeder position, however two underground feeder getaways (9L2 and 9L3) are currently routed through the parcel, along with one overhead line (9L1) and pole mounted recloser, that would require relocation. It should be noted that these feeder relocations were not considered in the Plan (applicable to Plans 2,3,4,5,7) estimates.

6.3 Plan Three

6.3.1 System Performance

Similar to Plan Two, Plan Three installs a new 115 kV supply to a new 115/13.2 kV transformer and three distribution feeders at Golden Rock Substation. Like Plan Two, It rebuilds the existing modular feeders at Barron Ave Station and at Salem Depot Station. It builds on Plan Two by installing one new modular feeder at Barron Ave Station and two new modular feeders at Salem Depot Station.

Modeling of the 23kV system identified the following violations of the Distribution Planning Criteria related to voltage performance. Refer to Appendix F - 22.8 kV Voltage Analysis.

During normal operation, Plan 3 results in voltages as low as 0.9375 per-unit at the Salem Depot 23kV bus and 0.9471 per-unit at the Olde Trolley 23kV bus.

During contingency operation, Plan 3 results in voltages as low as 0.879 per-unit at the Olde Trolley 23kV bus for either a 2352 outage or a Golden Rock T1 transformer outage. It also results in voltages as low as 0.877 per-unit for either a 2352 outage or a Golden Rock T1 transformer outage.

6.3.2 Operability

Plan Three proposes to rebuild the substation equipment at Salem Depot and Barron Ave, resolving the asset condition concerns. Refer to Section 4.3.3 for further discussion. This plan is consistent with the company's initiatives in resiliency and available capacity but still has shortcomings due to lack of supply capacity during contingencies. This plan lacks the necessary capacity to re-supply the Golden Rock substation during first contingency, resulting in MWHr violations that are above the allowable limit per the Planning Criteria. Refer to Appendix D – MWHr Summary. It also does not reduce the reliance on the transmission provider. This plan is not sustainable due to the existing 22.8 kV sub-transmission system's lack of capacity with no available source to supply it. See Appendix C – Area Loading Analysis, Table 33. The limitation of the 22.8 kV system to supply the increased load make this Plan impractical.

6.3.3 Future Growth / Expansion Opportunities

Plan Three does not provide for future capacity additions, as substations are expanded to their maximum footprint. The ultimate design of five feeders from the Salem Depot Substation, four feeders from Barron Ave coupled with the opportunity to install an additional four feeders from the Golden Rock substation adds adequate capacity on the 13.2 kV system. However, as stated for Plan Two, increasing modular transformer capacity while not addressing loaded supply lines will not add useable capacity to address area issues. There is no capacity available to support the installed capacity from the 22.8 kV sub-transmission system and as such this Plan is not viable. See Appendix C – Area Loading Analysis, Table 33.

To accommodate any future expansion or growth, a plan such as Plan Six will be required.

6.3.4 Capacity Provided

Plan Three provides the fourth least capacity from all plans considered. Appendix G – Comparison of Plans – Cost vs Added Capacity shows predicted feeder capacity resulting from Plan Three and how it compares with other Alternative Plans considered. It is estimated that this plan will provide a total MVA increase of 146.9 MVA and available Firm increase of 60.3 MVA. Lack of capacity provided by this plan on the 22.8 kV system makes this Plan not viable.

6.3.5 Economic Comparison

Plan Three is estimated at \$35,310,000, of which \$3,500,000 has been spent to date.

When reviewing cost per MVA capacity provided, Plan Three has a cost of approximately \$240,000 per MVA of total capacity provided, and It also has a cost of approximately \$586,000 per MVA of firm capacity provided.

Here is where this Plan compares with the other proposed Plans:

- Overall Cost: 2nd Highest
- Cost per Total MVA Capacity: Highest
- Cost per Firm MVA Capacity: 4th Highest

6.3.6 Other Considerations

Plan Three has the same siting concerns as discussed in Plan Two.

035

6.4 Plan Four

This plan review was for comparison only and is not feasible. See Section 5.0.

6.4.1 System Performance

Plan Four installs a new 115 kV supply to a new 115/22.8 kV transformer and one 22.8 kV feeder at Golden Rock Substation. It rebuilds the existing modular feeders at Barron Ave Station and at Salem Depot Station. It also installs one new modular feeder at Barron Ave Station and two new modular feeders at Salem Depot Station. This plan extends the Barron Ave 10L2 feeder approximately 1.6 miles to supply the Tuscan Village Development. Reliability concerns posed by aging and obsolete equipment is mitigated by the replacement of the aging equipment at Salem Depot and Barron Ave Substations.

6.4.2 Operability

Plan Four has operability required to operate the system. It rebuilds two substations with six 23/13.2kV transformers, eliminating aging equipment, maintenance and operating concerns. Adds three additional modular feeders one at Barron Ave and two at Salem Depot. Refer to Section 4.3.3 for further discussion. This plan provides capacity to allow future distribution automation further improving operability of the system and storm response. The added capacity allows Liberty to re-supply the Spicket River and Golden Rock substations during first contingency condition.

6.4.3 Future Growth / Expansion Opportunities

Plan Four provides for future capacity additions in an area expected to experience significant growth. The ultimate design of five feeders from the Salem Depot Substation, four feeders from Barron Ave coupled with the additional four feeders at the Golden Rock substation adds adequate capacity on the 22.8 kV system to support the additional modular feeders. It should be noted that Barron Ave and Salem Depot Substations would be expanded to their maximum footprint after addition of the new modular feeder positions.

6.4.4 Capacity Provided

Plan Four provides the second most capacity from all plans considered. Appendix G – Comparison of Plans – Cost vs Added Capacity shows predicted feeder capacity resulting from Plan Four and how it compares with other Alternative Plans considered. It is estimated that this plan will provide a total MVA increase of 152.1 MVA and available Firm increase of 108.1 MVA.

6.4.5 Economic Comparison

Plan Four is estimated at \$33,940,000, of which \$0 has been spent to date.

When reviewing cost per MVA capacity provided, Plan Three has a cost of

approximately \$223,000 per MVA of total capacity provided, and It also has a cost of approximately \$314,000 per MVA of firm capacity provided.

Here is where this Plan compares with the other proposed Plans:

- Overall Cost: 3rd Highest
- Cost per Total MVA Capacity: 3rd Highest
- Cost per Firm MVA Capacity: 6th Highest

6.4.6 Other Considerations

Due to asset concerns and the need for complete substation rebuilds at Barron Ave and Salem Depot to implement a 22.8 kV-based solution, the considerations described for Plan Two are also associated with Alternatives #4 and #5. Alternative #4 also requires new 22.8 kV supply lines, however existing right-of-way corridors are expected to be adequate for the new lines. Permits for new pole locations and vegetation management would be necessary to implement Alternative #4.

Plan Four shifts the demand further out towards the end of the 23kV system which could require additional infrastructure improvements not identified in this study. At a minimum it would require replacement of two 22.8 kV line reclosers rated at 1,000 Amps continuous operating current to handle contingency power flows. A detailed protection study would be required to determine if overcurrent pickups could be increased and still achieve proper coordination among devices at Golden Rock Substation, 22.8 kV line reclosers, and Salem Depot Substation, which, based on past review may not be achievable.

6.5 Plan Five

This plan review was for comparison only and is not feasible. See Section 5.0.

6.5.1 System Performance

Plan Five installs a new 115 kV supply to a new 115/22.8 kV transformer and one 22.8 kV feeder at Golden Rock Substation. It rebuilds the existing modular feeders at Barron Ave Station and at Salem Depot Station. It installs a new 22.8/13.2 kV Tuscan Village Substation with three 13.2kV modular feeders with space for a fourth feeder. Being located centrally in the town of Salem, results in shorter feeders to supply load from Rockingham Substation and flexibility to support other parts of the study area during first contingency conditions. Shorter feeders consist of fewer elements that can fail and typically have fewer outages and less losses. Reliability concerns posed by aging and obsolete equipment is mitigated by the replacement of the aging Salem Depot and Barron Ave.

This plan results in facilities that can maintain adequate voltage on all distribution feeders during system intact and first contingency conditions but cannot maintain adequate voltages on the 23kV system during contingency conditions.

During contingency operation, Plan 5 results in voltages as low as 0.875 per-unit at the Salem Depot 23kV bus for a 2352 outage. It also results in voltages as low as 0.88 per-unit at the Rockingham 23kV bus for a Line #2 outage. Refer to Appendix F – 22.8 kV Voltage Analysis.

6.5.2 Operability

Plan Five has operability required to operate the system. It rebuilds two substations with six 23/13.2kV transformers, eliminating aging equipment, maintenance and operating concerns. Refer to Section 4.3.3 for further discussion. Adds a new substation with three additional modular feeders close to the load center. This plan provides capacity to allow future distribution automation further improving operability of the system and storm response. The added capacity allows Liberty to re-supply the Spicket River and Golden Rock substations during first contingency condition.

6.5.3 Future Growth / Expansion Opportunities

Plan Five provides for future capacity additions in an area expected to experience significant growth. The ultimate design of three updated feeders at the Salem Depot Substation, three updated feeders from Barron Ave coupled three new 22.8/13.2 kV modular feeder at the new Tuscan Village Station with the additional four feeders at the Golden Rock substation adds adequate capacity on the 22.8 kV system to support the additional modular feeders, although somewhat limited by the 23kV voltage performance.

6.5.4 Capacity Provided

Similar to Plan Four, Plan Five provides the second most capacity from all plans considered. However, it has 14.4 MVA less Firm capacity added. Appendix G – Comparison of Plans – Cost vs Added Capacity shows predicted feeder capacity resulting from Plan Five and how it compares with other Alternative Plans considered. It is estimated that this plan will provide a total MVA increase of 152.1 MVA and available Firm increase of 93.7 MVA.

6.5.5 Economic Comparison

Plan Four is estimated at \$33,150,000, of which \$1,500,000 has been spent to date.

When reviewing cost per MVA capacity provided, Plan Three has a cost of approximately \$218,000 per MVA of total capacity provided, and It also has a cost of approximately \$354,000 per MVA of firm capacity provided.

Here is where this Plan compares with the other proposed Plans:

- Overall Cost: 4th Highest
- Cost per Total MVA Capacity: 4th Highest
- Cost per Firm MVA Capacity: 5th Highest

6.5.6 Other Considerations

Alternative #5 requires the same considerations as Alternatives #2 through #4, with the addition of a new substation at Tuscan Village, which will require real estate acquisition and environmental permitting. Liberty has purchased the land required for a proposed Rockingham Substation.

Plan Five also has the same concerns as Plan Four regarding system demand being shifted further out the 22.8 kV system and even more so with Plan 5. Like Plan Four this would require an additional protection study to determine required infrastructure improvements and if adequate coordination can be achieved.

6.6 Plan Six

6.6.1 System Performance

Plan Six installs a new 115/13.2kV Rockingham substation at the load center in the Tuscan Village Development. Being located centrally in the town of Salem, results in shorter feeders to supply load from Rockingham Substation and flexibility to support other parts of the study area during first contingency conditions. Shorter feeders consist of fewer elements that can fail and typically have fewer outages and less losses. Refer to Section 4.4 for loss comparison. This plan results in facilities that can maintain adequate voltage on all distribution feeders during system intact and first contingency conditions. Reliability concerns posed by aging and obsolete equipment is mitigated by the retirement of the aging Salem Depot and Barron Ave Substations, and the installation a more modern and robust Rockingham substation.

6.6.2 Operability

Plan Six has the best operability over the other plans. It retires two substations including six 23/13.2kV transformers, with aging, maintenance and operating concerns. This plan provides capacity to allow future distribution automation further improving operability of the system and storm response. The added capacity allows Liberty to re-supply the Spicket River and Golden Rock substations during first contingency condition resulting in the plan that most reduces the reliance in the transmission provider.

The breaker-and-a-half substation design proposed for Rockingham Substation is commonly used by utilities for new substations because it is easy to expand, provides high reliability, and allows flexibility in operation, allowing for breaker, bus, or transformer maintenance without taking an outage. This new substation would also meet Liberty Standards for SCADA, which provides valuable data for system operators and engineering.

Alternative Plan Six, compared to other Plans, installs three new supply transformers. Plans Two through Five, and Seven, invest in the limited 22.8 kV system that utilize up to nine supply transformers that require regular maintenance.

6.6.3 Future Growth / Expansion Opportunities

Plan Six provides for future capacity additions in an area expected to experience significant growth. The ultimate design of ten feeders from the Rockingham Substation coupled with the opportunity to install an additional four feeders from the Golden Rock substation makes this plan the most attractive from a future growth standpoint. At Tuscan Village, there still exist empty lots with unsecured tenants, which present the potential for future high energy applications. Possible development on these lots presents future load growth that needs to be planned for. Tuscan Village will also attract "spill-over" growth from neighboring businesses given its economic effect and strategic location in the study area.

In addition to the available capacity for additional feeders to be installed at the Rockingham station, this plan provides a path for re-purposing the 22.8 kV distribution system from Golden Rock as 13.2kV to allow for an additional four distribution feeders beyond the planning horizon.

6.6.4 Capacity Provided

Plan Six provides the most capacity from all plans considered.

Appendix G – Comparison of Plans – Cost vs Added Capacity shows predicted feeder capacity resulting from the Alternative Plans. It is estimated that this Plan will provide a total MVA increase of 177.7 MVA and available Firm increase of 142.3 MVA, even with the retirement of Barron Ave and Salem Depot Substations. After installing the six 13.2kV feeders at Rockingham Substation to resolve predicted deficiencies, Liberty will have the ability to install as required, the remaining four 13.2kV distribution feeders to address future capacity, reliability and asset condition deficiencies for many years to come.

6.6.5 Economic Comparison

Plan Four is estimated at \$34,900,000, of which \$5,000,000 has been spent to date.

When reviewing cost per MVA capacity provided, Plan Three has a cost of approximately \$196,000 per MVA of total capacity provided, and It also has a cost of approximately \$245,000 per MVA of firm capacity provided.

Here is where this Plan compares with the other proposed Plans:

- Overall Cost: Highest
- Cost per Total MVA Capacity: 6th Highest
- Cost per Firm MVA Capacity: Lowest

6.6.6 Other Considerations

Alternative #6 utilizes the existing 22.8 kV right-of-way that parallels Route 28 to extend 115kV lines approximately 2.25 miles up to a proposed substation near Rockingham Park Boulevard. This 115kV line extension has already undergone several key approvals, including a NPCC-approved E1 exclusion afforded by the approved BES Definition. Also, ISO-New England determined no significant adverse

effect identified with regard to the PPA - Rockingham project. This complex construction will also require DOT Permitting and traffic management, environmental review, town permits, and aerial easements.

Liberty has purchased the land required for the proposed Rockingham Substation.

Alternative #6 proposes new 115 kV infrastructure, which will require significantly taller structures, however with routing through a primarily commercial area, community impact is expected to be the least of all alternatives. Largest impacts may be aerial easements, construction of footings for structures, and construction at roadway crossings that could disrupt traffic. Additional lines across the street from residences on Duffy Ave may cause complaints. Some construction may temporarily disrupt use of a portion of the Salem Rail Trail.

6.7 Plan Seven

6.7.1 System Performance

Plan Seven installs a new 115 kV supply to a new 115/13.2 kV transformer and two distribution feeders at Golden Rock Substation and installs a new 13.2 kV feeder (14L5) from the rebuilt Pelham Substation. The new 13.2 kV feeder 14L5 along with the 14L4 from Pelham Station will be used to unload the Olde Trolley feeders 18L2 and 18L4. These two feeders (14L4 and 14L5) are approximately 3.4 miles long and will be on the same structures increasing the vulnerability to a hit by auto event to a significant portion of the system. In some areas three feeders (14L3, 14L4 and 14L5) will be on the same structures further increasing the vulnerability to a hit by auto event to a significant D – MWHr Summary contains MWHr totals for losses of multiple circuits in such a scenario.

Similar to Plans One and Two, this plan lacks the necessary capacity and voltage support to re-supply the Spicket River substation during the loss of supply contingency. This plan resolves the existing concerns with substation equipment at Salem Depot and Barron Ave.

This plan results in facilities that can't maintain adequate voltages on the 23kV system during contingency conditions.

During contingency operation, Plan 7 results in voltages as low as 0.899 per-unit at the Olde Trolley 23kV bus and as low as .892 per-unit at the Salem Depot 23 kV bus for a Golden Rock T1 outage. Refer to Appendix F - 22.8 kV Voltage Analysis for details.

6.7.2 Operability

Plan Seven proposes to rebuild the substation equipment at Salem Depot and Barron Ave, resolving the asset condition concerns and providing for opportunities in Grid Modernization. Refer to Section 4.3.3 for further discussion. This plan has shortcomings due to lack of supply capacity during contingencies. This plan lacks the necessary capacity to re-supply the Golden Rock substation during first contingency, resulting in MWHr violations that are above the allowable limit per the Planning Criteria. Refer to Appendix D – MWHr Summary. It does not reduce the reliance on the transmission provider. This plan is not sustainable due to the existing 22.8 kV sub-transmission system's lack of capacity with no available source to supply it. See Appendix C – Area Loading Analysis, Table 53. The limitation of the 22.8 kV system to supply the increased load make this Plan impractical.

6.7.3 Future Growth / Expansion Opportunities

Similar to Plan One and Plan Two, Plan Seven provides limited opportunities for future expansion of the distribution system. It provides capacity to supply predicted growth in the Tuscan Village during system intact conditions but fails to adequately support the area's predicted demand during first contingency condition.

This plan only provides four feeders to be used for future load growth at the Golden Rock substation, three of which would be utilized under this plan. Although Salem Depot Substation and Barron Ave Substations are rebuilt under this plan with additional feeder availability, lacking capacity available on the 22.8 kV sub-transmission system limits the overall load-carrying capability of the two substations. See Section 4.1.2.1 for violations, which are unchanged with this Plan. As a result, future growth will also require a large investment to provide additional capacity, similar to what is being proposed with Plan Six.

6.7.4 Capacity Provided

Plan Seven provides the 5th most capacity from all plans considered. Appendix G – Comparison of Plans – Cost vs Added Capacity shows predicted feeder capacity resulting from Plan Seven and how it compares with other Alternative Plans considered. It is estimated that this plan will provide a total MVA increase of 116.7 MVA and available Firm increase of 29.1 MVA.

Plan Seven leaves considerable capacity for Golden Rock 13.2 kV feeders to offload the 22.8 kV supply system, however in contingency scenarios such as loss of the Golden Rock 115 kV / 13.2 kV supply transformer, capacity limits are exceeded on the 22.8 kV supply system.

6.7.5 Economic Comparison

Plan Four is estimated at \$25,010,000, of which \$3,500,000 has been spent to date.

When reviewing cost per MVA capacity provided, Plan Three has a cost of approximately \$214,000 per MVA of total capacity provided, and

It also has a cost of approximately \$859,000 per MVA of firm capacity provided.

Here is where this Plan compares with the other proposed Plans:

- Overall Cost: 5th Highest
- Cost per Total MVA Capacity: 5th Highest
- Cost per Firm MVA Capacity: 3rd Highest

6.7.6 Other Considerations

Due to asset concerns and the need for complete substation rebuilds at Barron Ave and Salem Depot to implement a 22.8 kV-based solution, the considerations described for Plan Two are also associated with Alternatives #7.

Plan Seven extends a new feeder for approximately 3.4 miles from Pelham to Salem and will result in multiple feeders on the same structures, increasing the vulnerability to a hit by vehicle event to a significant portion of the system. Liberty Utilities is strongly against unnecessary double and triple-circuiting for this reason. An alternative would be underground construction, which is not cost effective, as the additional feeder would only be providing a limited 12 MVA of capacity into Salem for an estimated cost of \$6,800,000 See Appendix G – Comparison of Plans – Cost vs Added Capacity for a side-by-side comparison of plans that reviews cost versus added capacity. For a further comparison of the Alternative Plans, a matrix was assembled to compare each Plan's ranking in each of the criteria used to evaluate the plans. This methodology is similar to what is being used at another New Hampshire Utility. See Table 8 below:

Plan Comparison Matrix									
Evaluation Criteria	Weight Factor	Plan 1	Plan 2	Plan 3	Plan 4	Plan 5	Plan 6	Plan 7	
1- SYSTEM PERFORMANCE	20%	1	3	4	5.5	5.5	7	2	
2- OPERABILITY	25%	1	3	4	5.5	5.5	7	2	
3- FUTURE EXPANSION	10%	1	3	4	5	6	7	2	
5- CAPACITY PROVIDED	15%	1	2	4	5.5	5.5	7	3	
4- COST	30%	7	6	2	3	4	1	5	
Total		2.8	3.75	3.4	4.7	5.1	5.2	3.05	
RANK		7	4	5	3	2	1	6	

Table 8: Plan Comparison Matrix

The matrix considers the importance of each criteria, calculating a higher weight to Plans that rank higher in the most important areas.

Given this evaluation, Plans Five and Six are the highest-scoring plans. It should be noted that cost comparison may be unevenly factored in this evaluation, as several plans are relatively close in estimated cost. For example, while Plan Five is only 6% less than Plan Six, it's rank (4th) boosts it score considerably, even though the cost difference is relatively minor between the four most expensive plans.

7.0 Other Plan Considerations and Comparisons

7.1 Non-Wires Alternatives Considerations

Given the widespread loading concerns and MWHr totals, Battery Energy Storage was not found to be a cost-effective method for addressing capacity and reliability concerns in the area. Preliminary estimates at \$1.876M per MW¹⁶ (assuming 4-hour Energy/Power ratio) far exceed Cost/MVA when compared to other alternatives. Non-Wires Alternatives were only considered for Plan 1.

¹⁶ U.S. Department of Energy Hydrowires, July 2019. Energy Storage Technology and Cost Characterization Report, Table ES.1. <u>https://www.energy.gov/sites/prod/files/2019/07/f65/Storage%20Cost%20and%20Performance%20Characterization%20Report_Final.pdf</u>

8.0 Conclusions and Recommendations

The goal of system planning is to provide adequate capacity for safe, reliable, and economic service to customers with minimal impact on the environment. To achieve that goal, the distribution system is planned, measured, and operated with the objective of providing electric service to customers under system intact conditions (i.e., "normal") and first contingency conditions ("N-1"). System Planning also includes careful management of system assets; addressing asset conditions where present to avoid failures and provide a safe working environment for workers.

The seven Alternative Plans were evaluated on how they address the needs of Salem area electric supply system. Alternatives were reviewed and compared for cost-effectiveness and their ability to address system performance, operability, reliability, and future growth.

Plan One does the bare minimum to serve Tuscan Village, leaving 13.2 kV and 22.8 kV circuits mostly unavailable to re-supply during contingencies. It also has several siting and environmental concerns for diesel generation. Plan One also still leaves existing Planning Criteria violations and substation condition unresolved. For these reasons, Plan One is not recommended.

The inability to add capacity to the 22.8 kV sub transmission system effectively precludes the ability to utilize any alternatives based on any expansion or upgrade of 22.8kV/13.2kV modular feeders substations. Also refer to Section 4.3.3 for constructability challenges. For these reasons, Plans Two, Three, and Plan Seven are not recommended.

As stated in Section 5.0, Plans Four and Five were developed for this study as a hindsight review, and are not feasible or buildable. The study concludes that while these options would have been feasible if pursued, they are similar in cost to Plan Six, but do not provide the MVA capacity and ability for future growth that Plan Six provides. Plan Six also retires facilities from areas facing neighborly opposition, while Plans Four and Five expand or maintain electrical equipment closer to neighboring parcels. Plan Six installs three supply transformers to serve the area, while Plans Four and Five each install nine supply transformers. Plan Six simplifies the power delivery system in the Salem Area. Plans Four and Five conflict with Liberty's general initiative to transition towards a 115 / 13.2kV system. For these reasons, Plans Four and Five are not recommended.

Based on the comparisons of the Alternative Plans, Plan #6 is the recommended Plan. This is recommended because this provides the best solution to the identified system issues in the Salem area which include concerns with equipment condition at the Baron Ave and Salem Depot Substations and predicted overloads in the area. It is the best plan to enable Liberty to be a locally managed Company and responsive to the needs of its customers while reducing its dependence on the transmission provider. This plan best meets the Company Distribution Planning Criteria and will allow the Company to best manage its day to day, contingency, and storm operating risks given its resource base. Unlike Plans One, Two, Three and Seven, Plan Six solves all Planning Criteria violations.

The three proposed 115 kV/13.2 kV transformers (one of which has already been installed at Golden Rock) would satisfy the capacity requirements now and into the future.

45

It addresses the asset condition issues and safety risks by retiring end of life facilities. This eliminates the maintenance, environmental and community issues associated with the three modular feeders at Barron Ave Station and the three modular feeders at Salem Depot Station.

The installation of the new 115 kV/13.2 kV supply transformer design substations supports the integration of distribution automation and grid-modernization systems. These systems are designed to improve the operation of the distribution system. System reliability benefits from the automatic identification, isolation and minimizing of system outages along with speedy restoration to non-damaged sections. The robust nature of the updated system improves the ability to operate the system. Scheduled and emergency maintenance requirements can be addressed efficiently.

The cost per total MVA added for Plan Six is the second lowest and the cost per firm MVA added is the lowest. This means that this solution is cost-effective in providing reliable capacity today and for the future, for normal conditions and contingency scenarios.

9.0 Appendices

9.1 Appendix A – System One Lines

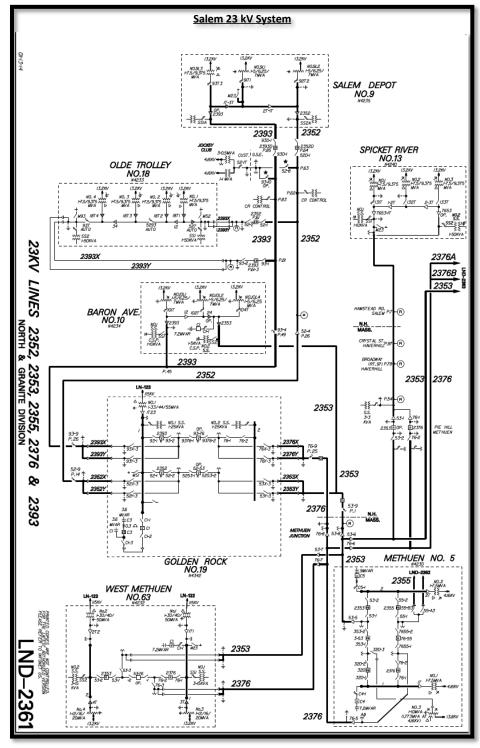


Figure 2 Salem 22.8 kV Supply System

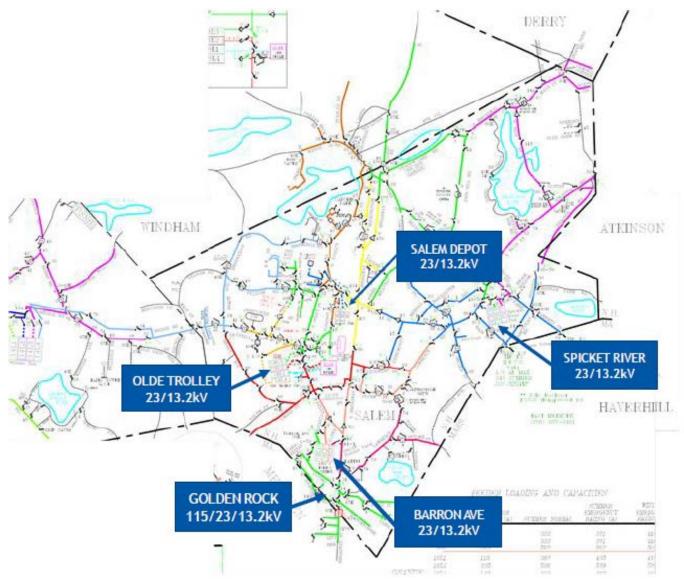
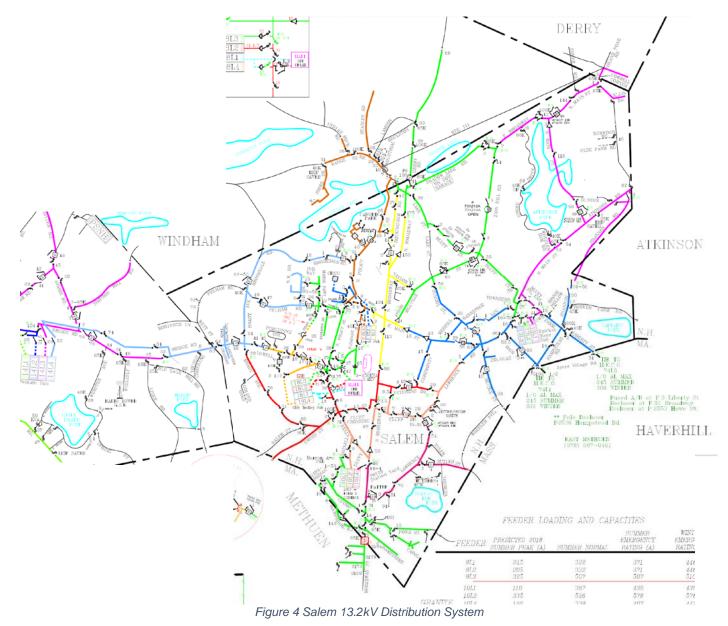



Figure 3 Salem 13.2 kV Tie Map (Alternate)

048

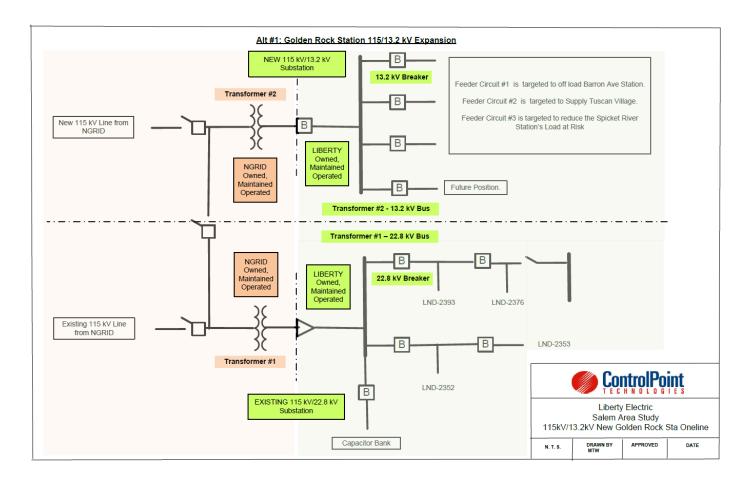
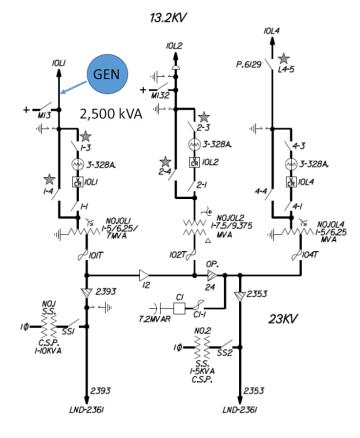



Figure 5 Alternative #1 Golden Rock Substation 115kV/13.2kV Expansion - One Line

Existing Baron Ave

Alternative #1

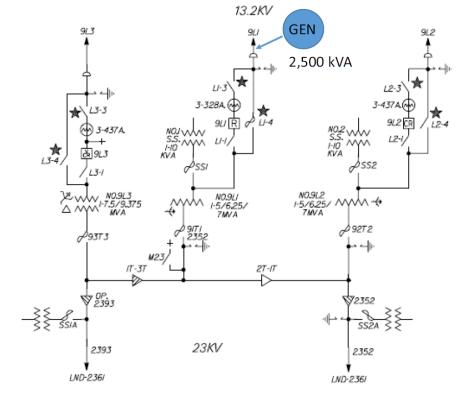

DEMARCATION LINE OF AUTHORITY
 + MOBILE SUB TAP

Figure 6 Alternate #1 - Barron Ave Station - One Line

Alternative #1 Existing Salem Depot

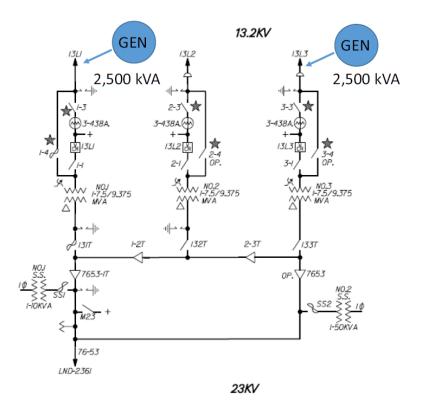

★ DEMARCATION LINE OF AUTHORITY + MOBILE SUB TAP

Figure 7 Alternate #1 Salem Depot Station - One Line

Alternative #1 Existing Spicket River

The Demarcation line of Authority

+ MOBILE SUB TAP

PRINTED COPIES ARE NOT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO INFONET US.

01-09-14

Figure 8 Alternate #1 Spicket River Station - One Line

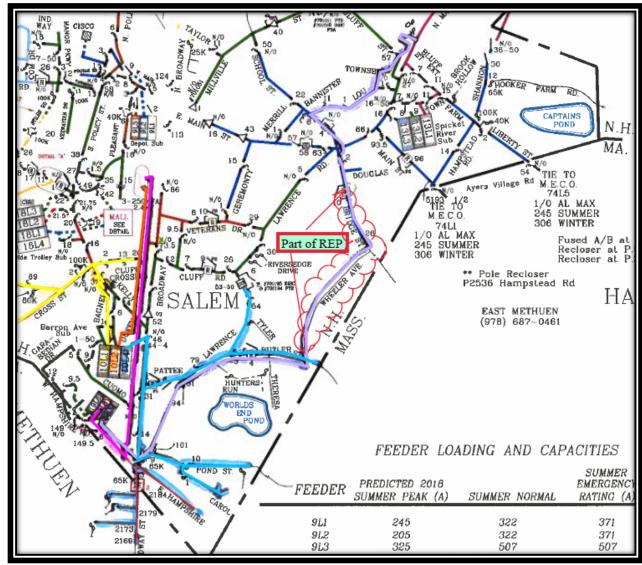


Figure 9 Alternate #1 13.2kV Overview One Line

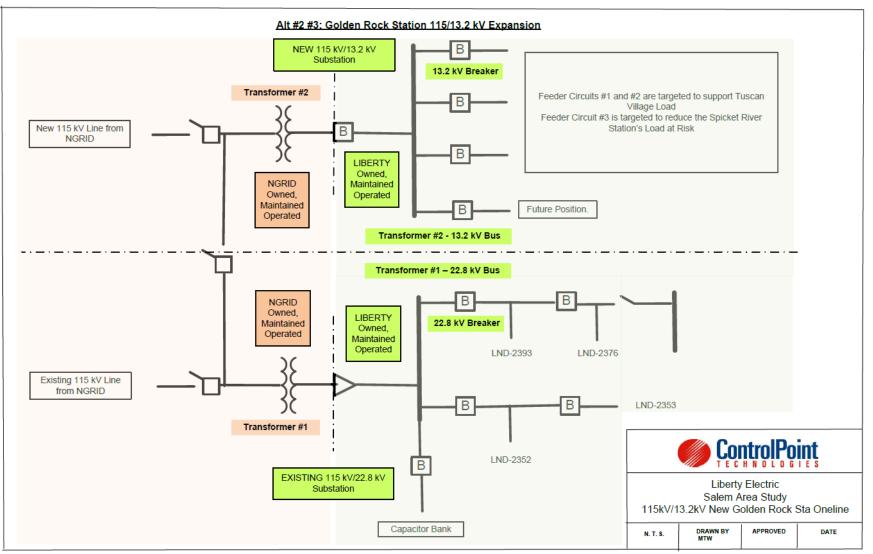


Figure 10 Alternative #2 Golden Rock Substation 115kV/13.2kV Expansion - One Line

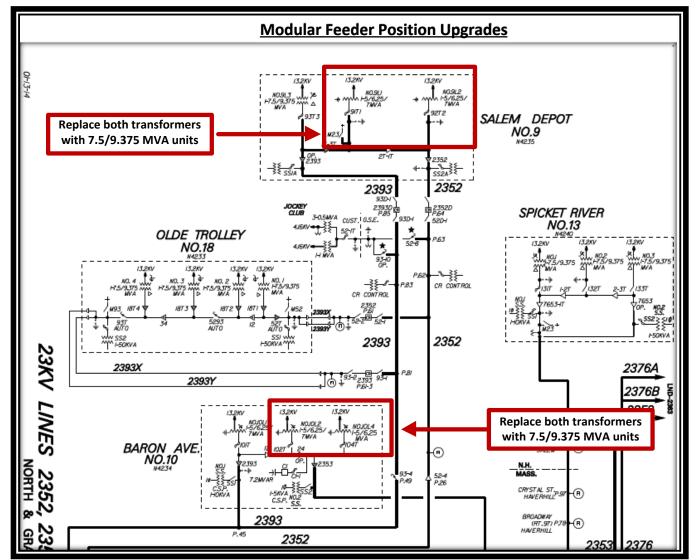
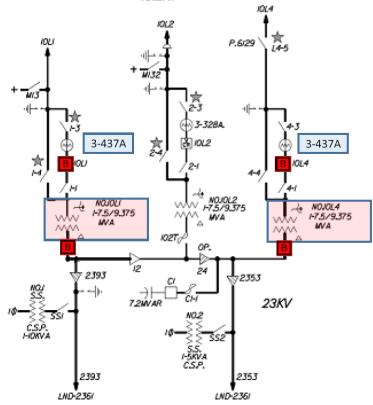



Figure 11 Alternate #2 22.8 kV Overview One Line

DEMARCATION LINE OF AUTHORITY + MOBILE SUB TAP

BARRON AVE. NO. 10 NORTH & GRANITE DIVISION		N4234			
Upgraded	Upgraded	Upgraded			
Breakers and Bus	Transformer	Regulator			

Figure 12 Alternate #2 Barron Ave Station Rebuild - One Line

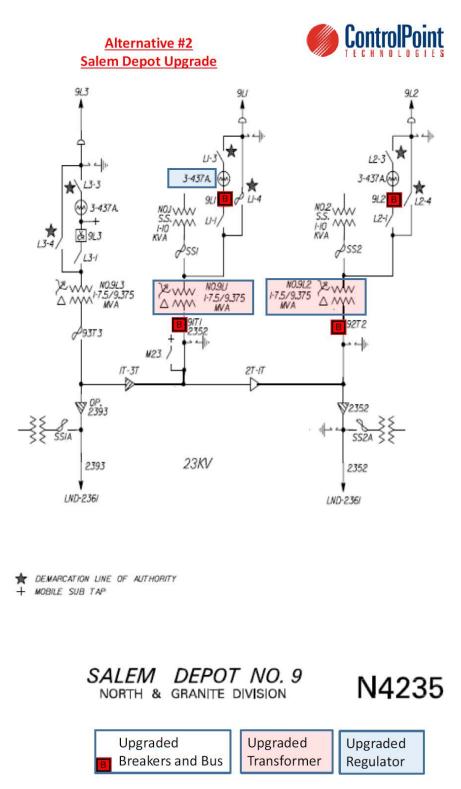


Figure 13 Alternate #2 Salem Depot Station Rebuild - One Line

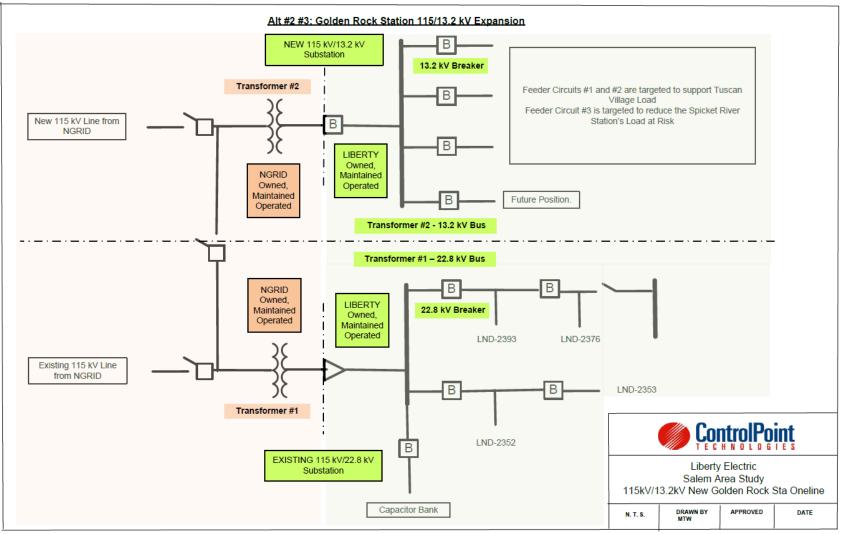


Figure 14 Alternative #3 Golden Rock Substation 115kV/13.2kV Expansion - One Line

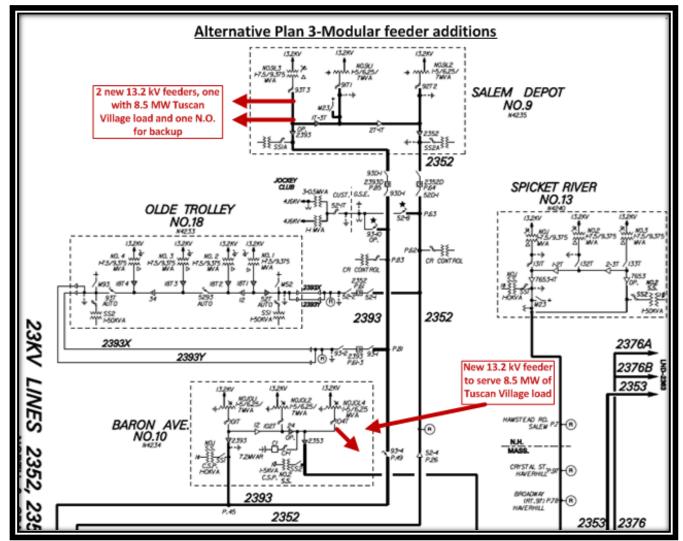
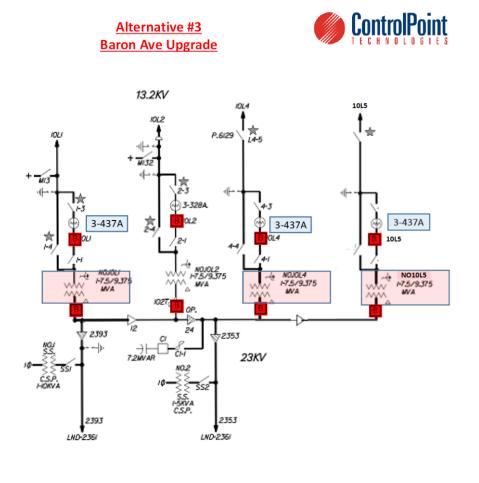



Figure 15 Alternative #3 22.8 kV Overview One Line

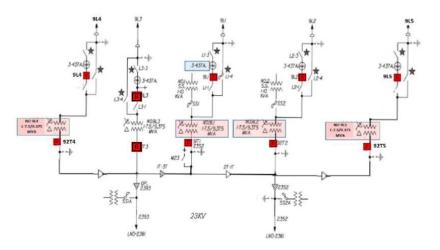

★ DEMARCATION LINE OF AUTHORITY + MOBILE SUB TAP

Figure 16 Alternate #3 Barron Ave Station Rebuild – One Line

DEMARCATION LINE OF AUTHORITY + MOBILE SUB TAP



Figure 17 Alternative #3 Salem Depot Rebuild - One Line

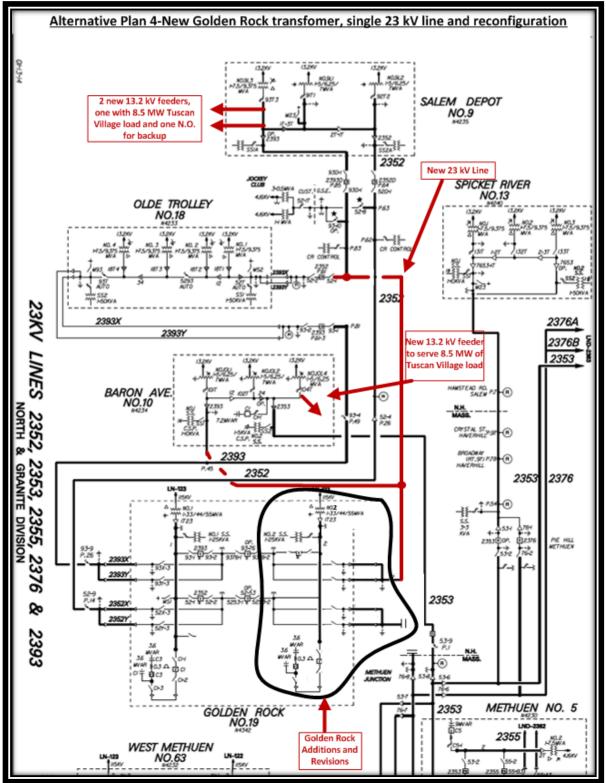
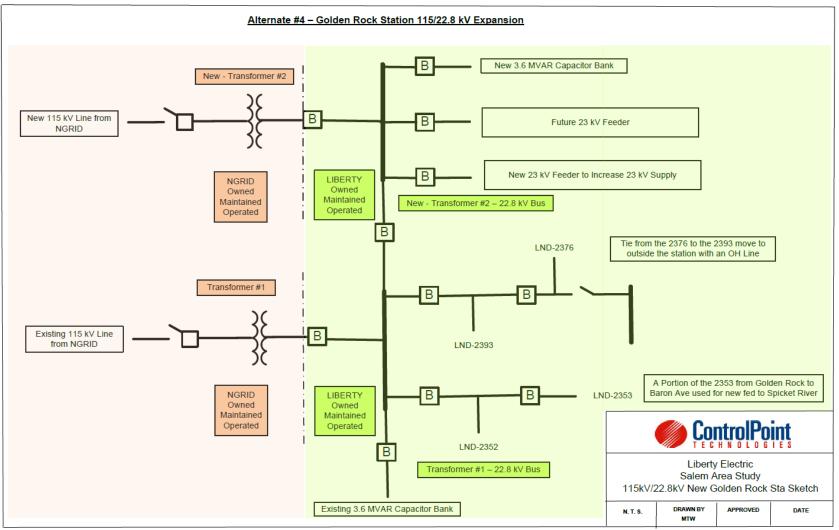
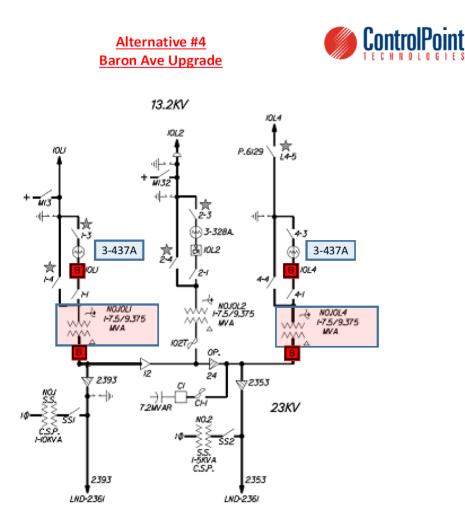
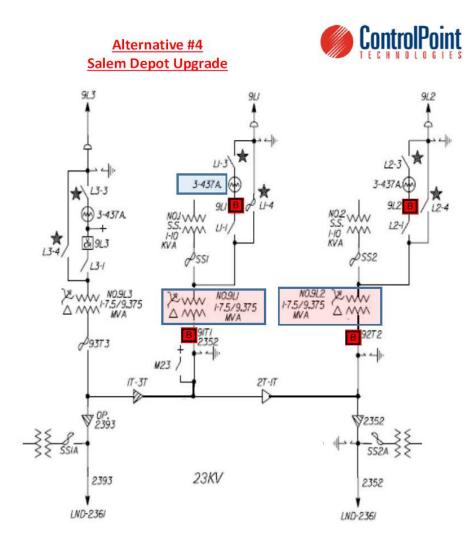


Figure 18 Alternative #4 22.8 kV Overview One Line


Figure 19 Alternate #4 Golden Rock Substation 115kV/22.8kV Expansion – One Line

★ DEMARCATION LINE OF AUTHORITY + MOBILE SUB TAP

Figure 20 Alternate #4 Barron Ave Station Rebuild – One Line

DEMARCATION LINE OF AUTHORITY + MOBILE SUB TAP

Figure 21 Alternate #4 Salem Depot Station Rebuild – One Line

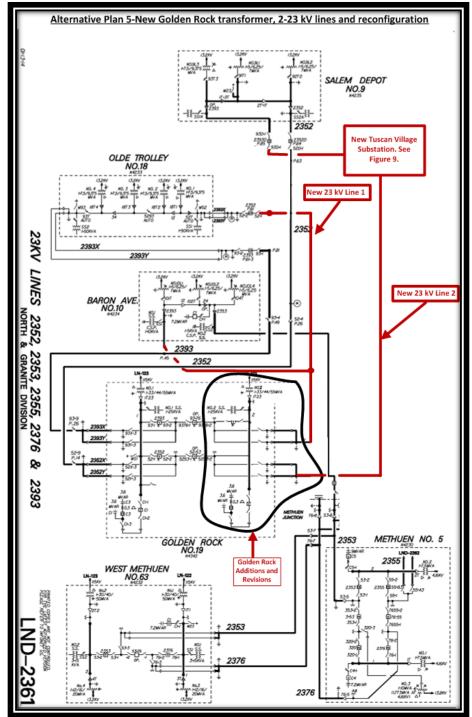


Figure 22 Alternative #5 - 22.8 kV Overview One Line

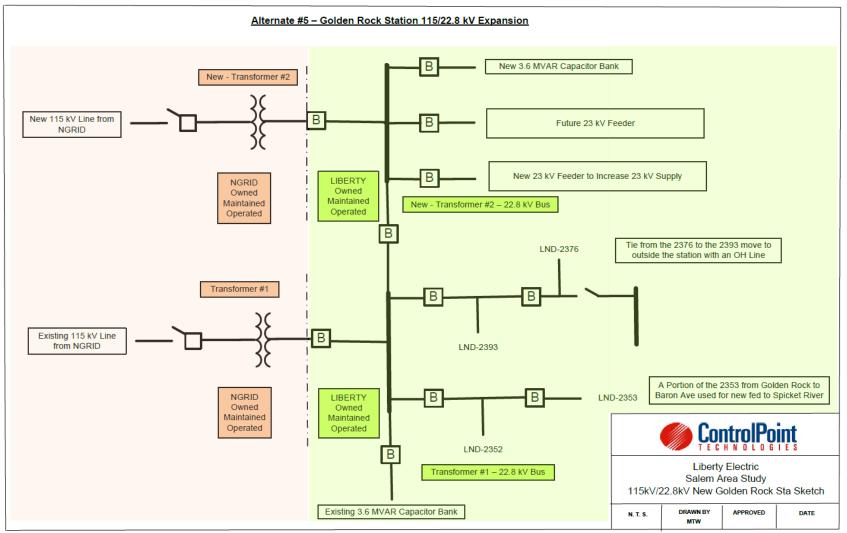
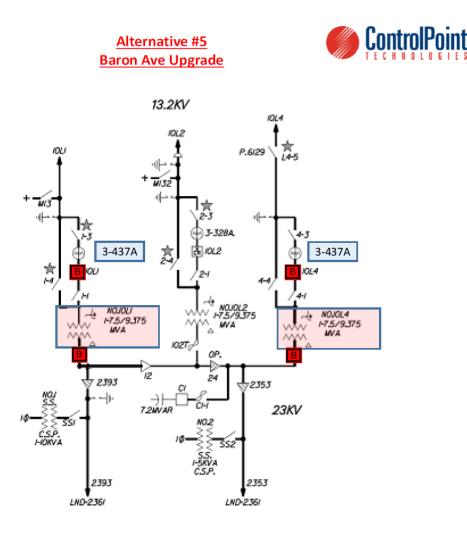



Figure 23 Alternate #5 Golden Rock Substation 115kV/22.8kV Expansion – One Line

☆ DEMARCATION LINE OF AUTHORITY + MOBILE SUB TAP

Figure 24 Alternate #5 Barron Ave Station Rebuild – One Line

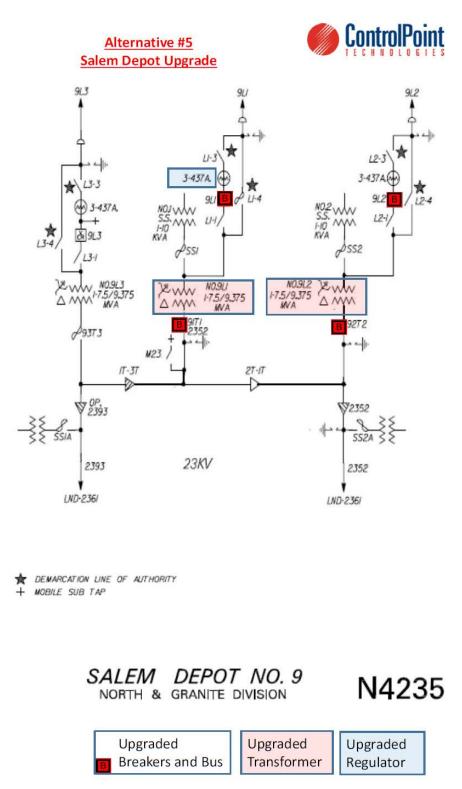
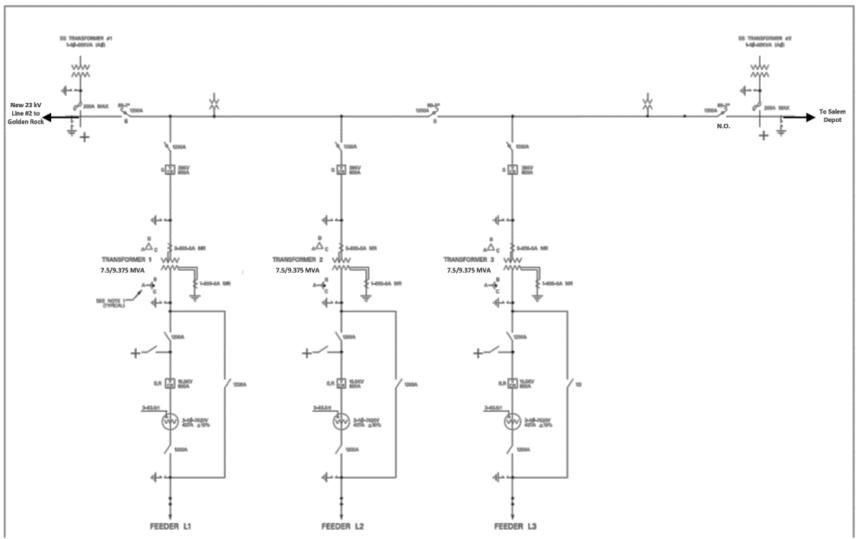



Figure 25 Alternate #5 Salem Depot Station Rebuild – One Line

Alternative Plan 5-New Tuscan Village Substation

Figure 26 Alternative #5 New 22.8 kV/13.2kV Tuscan Village Substation One Line

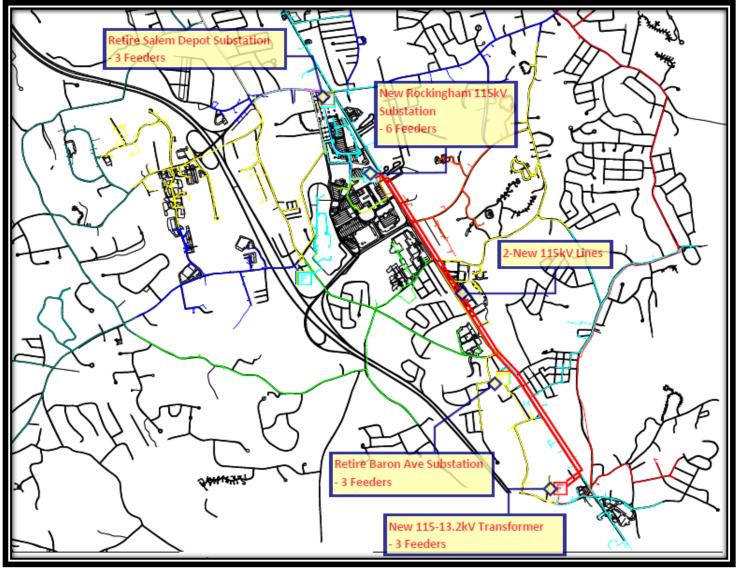


Figure 27 Alternative #6 13.2kV Overview One Line

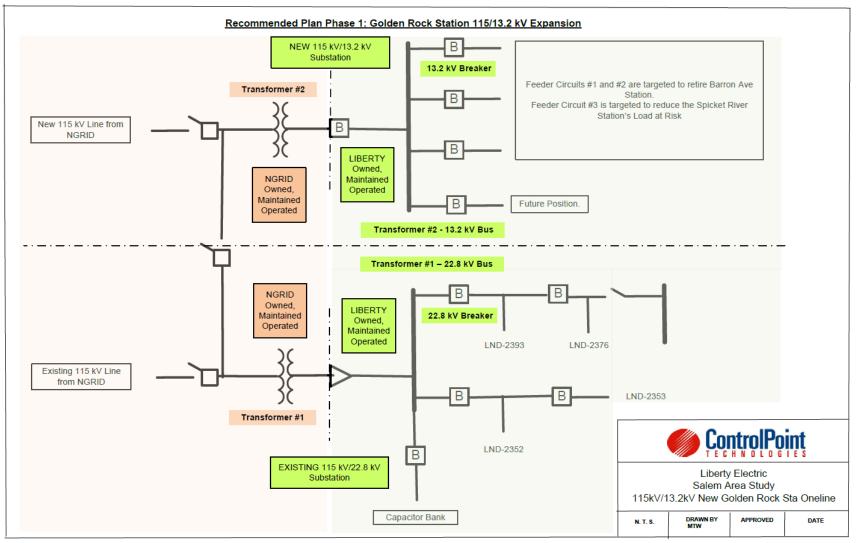


Figure 28 Alternate #6 Golden Rock Substation 115kV/13,2kV Expansion Phase One - One Line

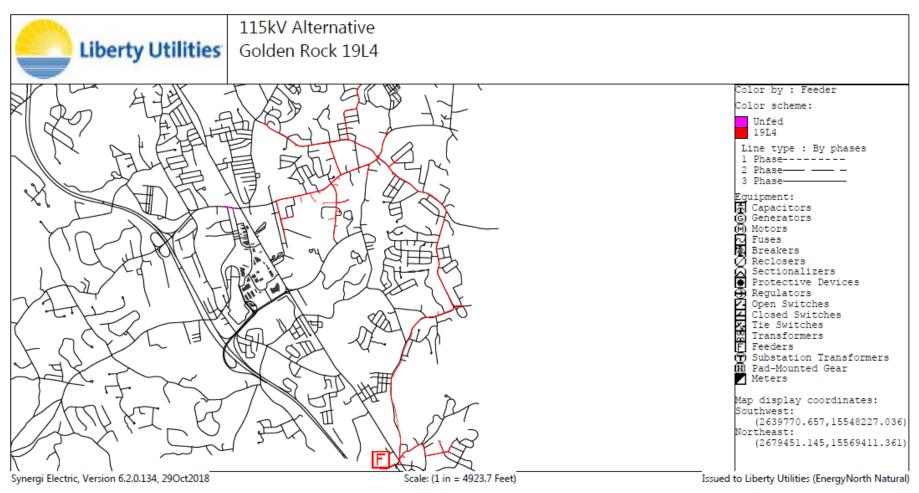


Figure 29 Alternate #6 Feeder 19L4 - One Line

074

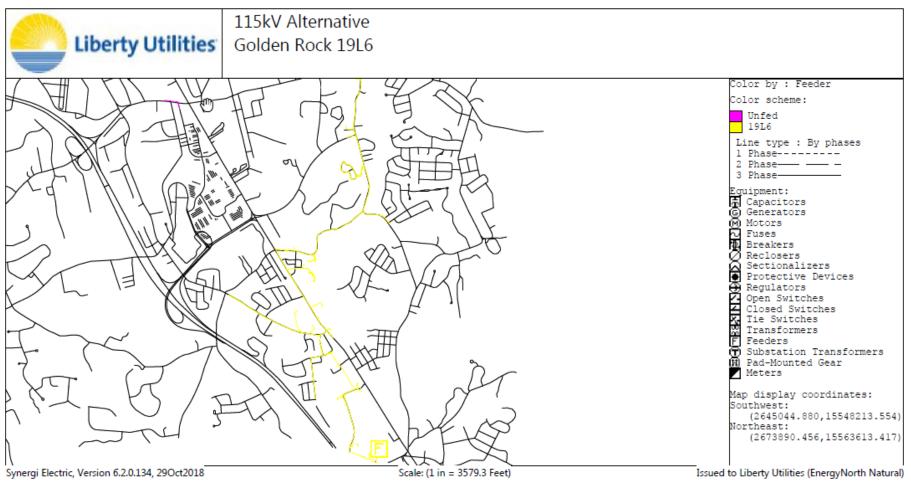
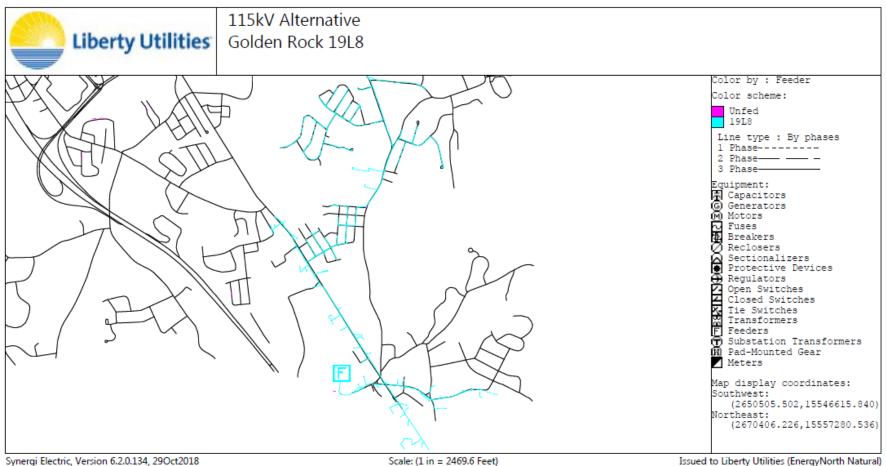



Figure 30 Alternate #6 Feeder 19L6 - One Line

Synergi Electric, Version 6.2.0.134, 29Oct2018

Figure 31 Alternate #6 Feeder 19L8 - One Line

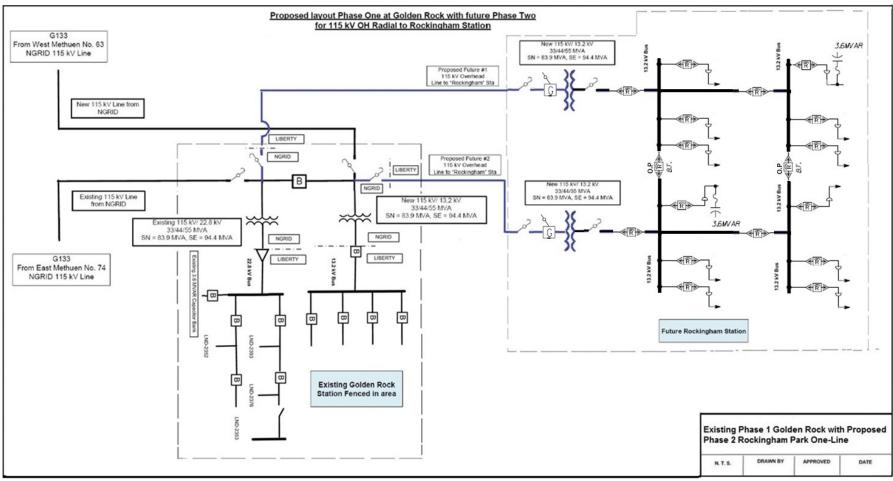


Figure 32 Alternative #6 Rockingham Substation 115kV/13.2kV Phase Two - One Line

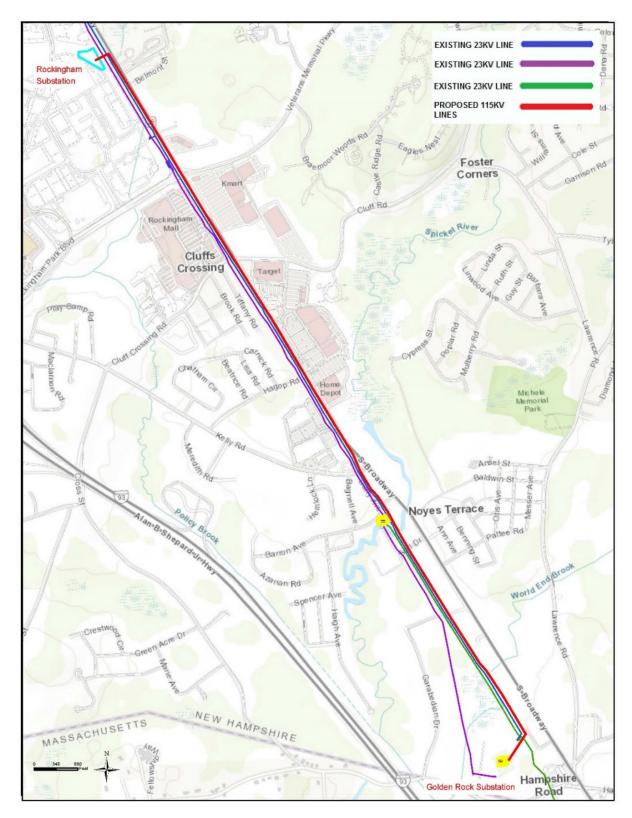


Figure 33 Proposed Plan #6 115kV Route

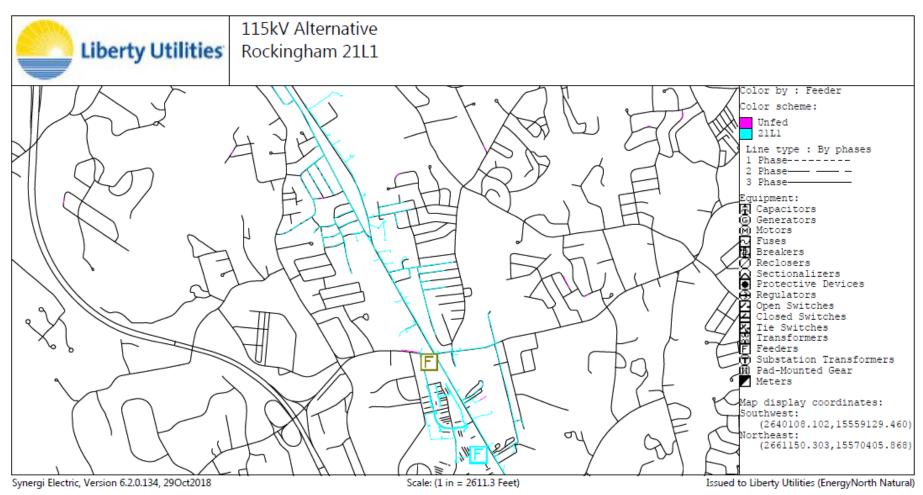


Figure 34 Alternate #6 New Rockingham Station - Feeder 21L1 - One Line

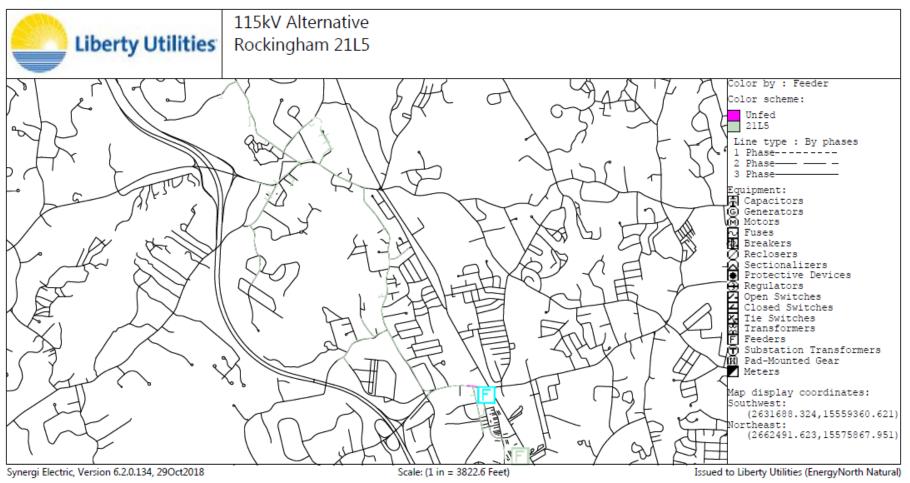


Figure 35 Alternate #6 New Rockingham Station – Feeder 21L5 - One Line

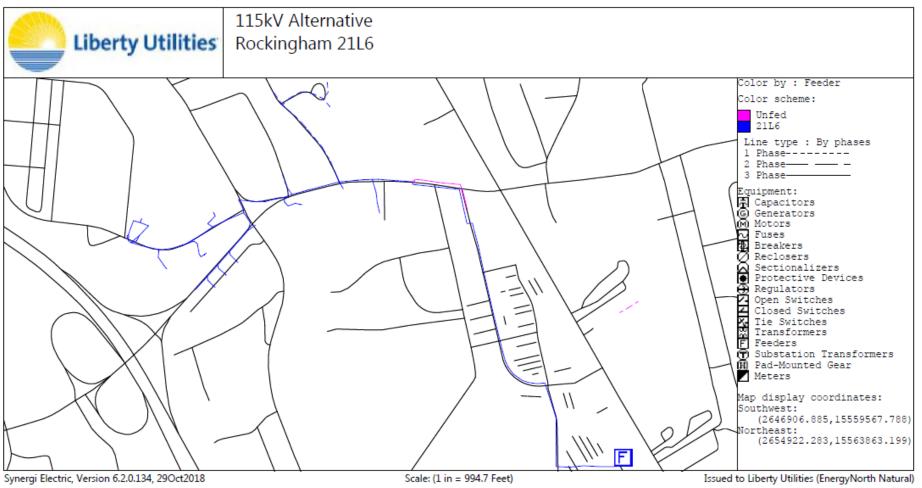
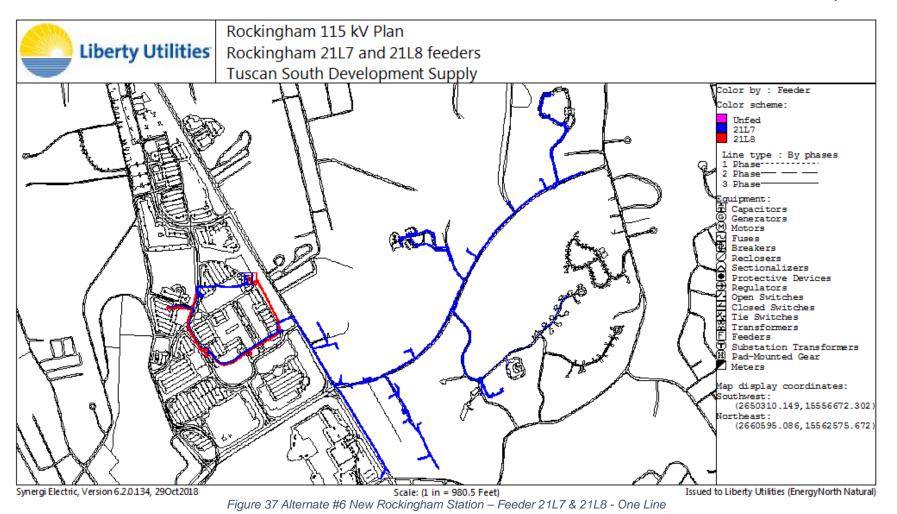



Figure 36 Alternate #6 New Rockingham Station – Feeder 21L6 - One Line

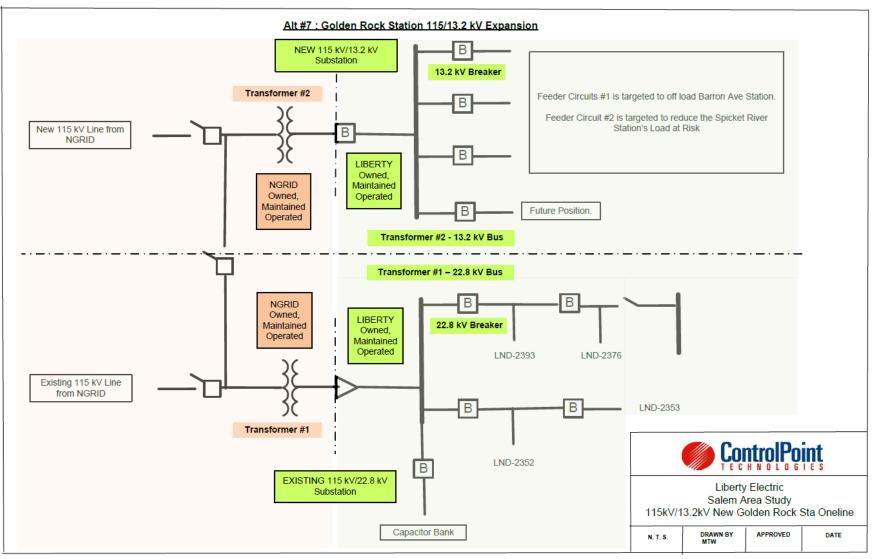


Figure 38 Alternative #7 Golden Rock Substation 115kV/13.2kV Expansion – One Line

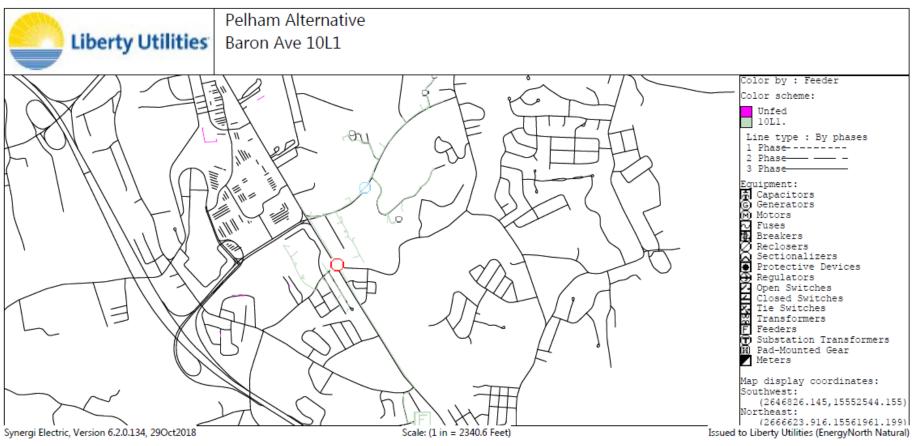


Figure 39 Alternate #7 Barron Ave 10L1 – One Line

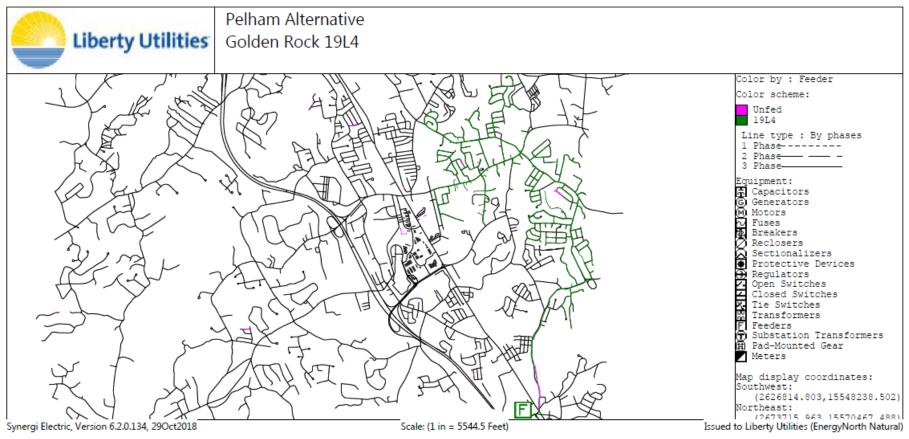


Figure 40 Alternate #7 Golden Rock 19L4 – One Line

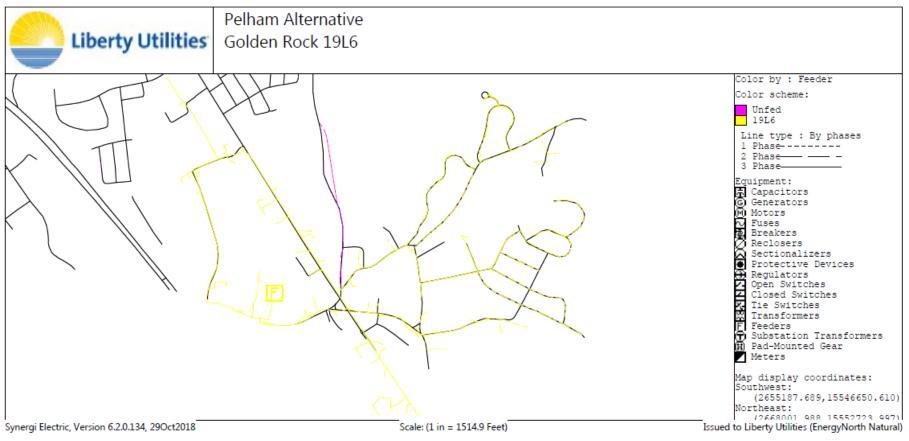


Figure 41 Alternate #7 Golden Rock 19L6 - One Line

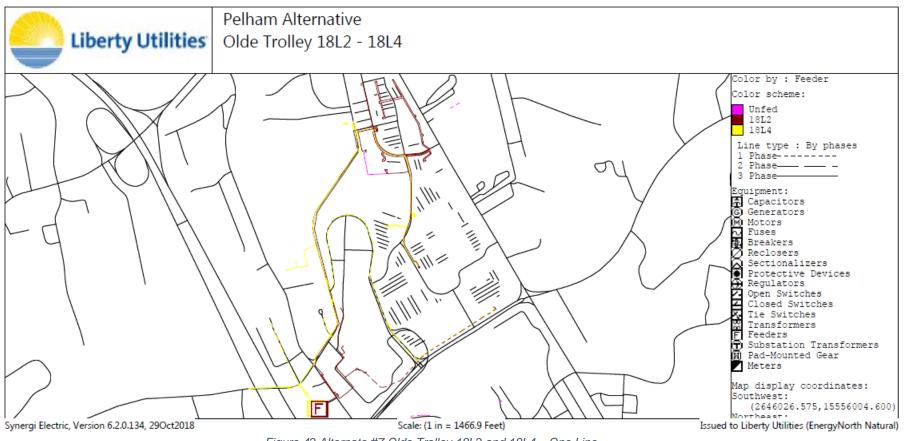


Figure 42 Alternate #7 Olde Trolley 18L2 and 18L4 - One Line

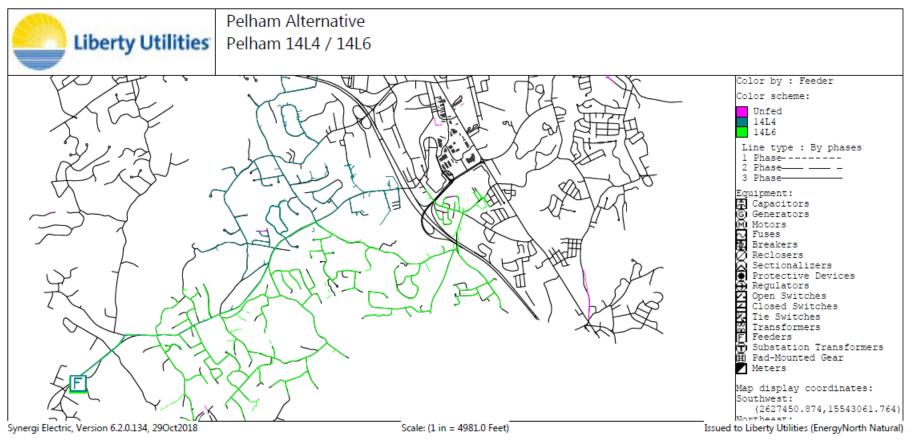
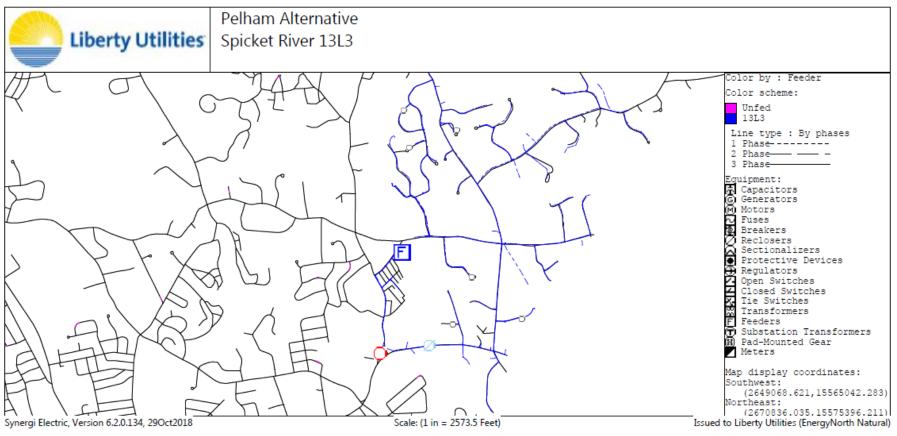
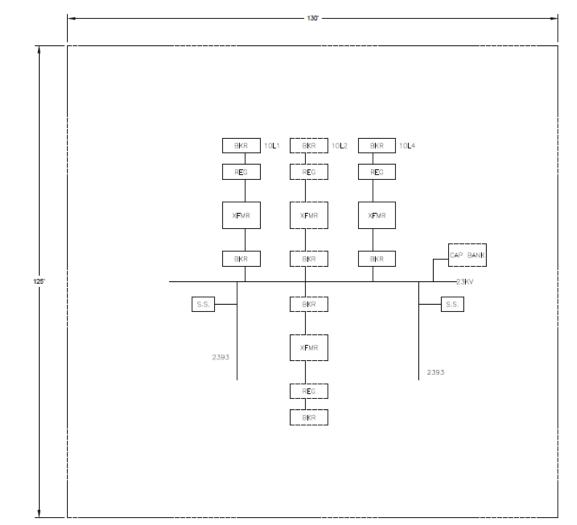
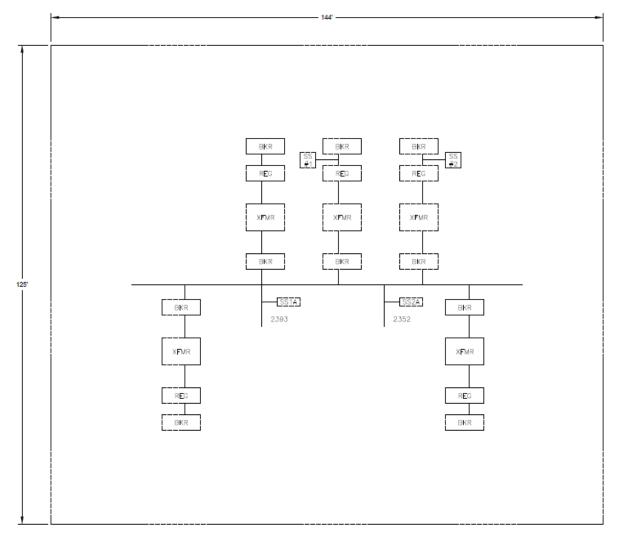


Figure 43 Alternate #7 Pelham 14L4 and 14L6 - One Line


Figure 44 Alternative #7 Spicket River 13L3 - One Line

9.2 Appendix B – Asset Condition Documents

BARON AVE

Figure 45 Barron Ave Conceptual Station Equipment Layout

salem bePort #9 Figure 46 Salem Depot Conceptual Station Equipment Layout

Figure 47 Barron Ave Site Layout

Figure 48 Salem Depot Site Layout

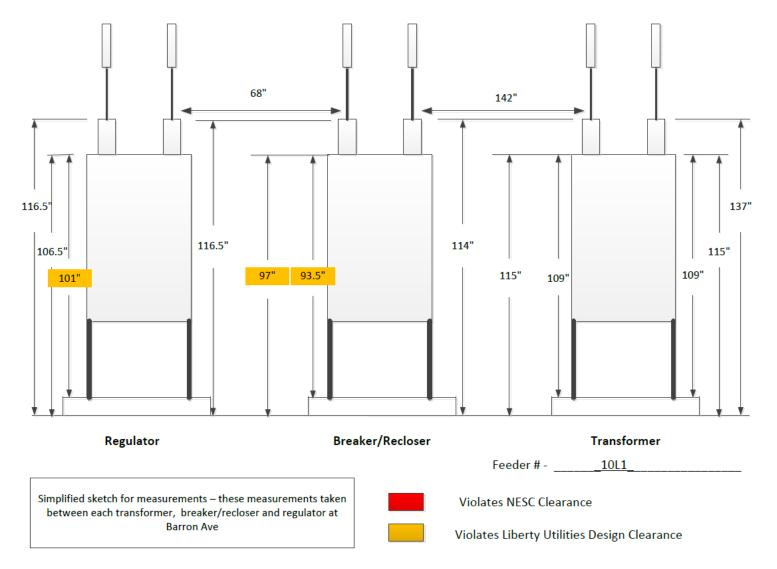


Figure 49 Barron Ave 10L1 Clearance Sketch

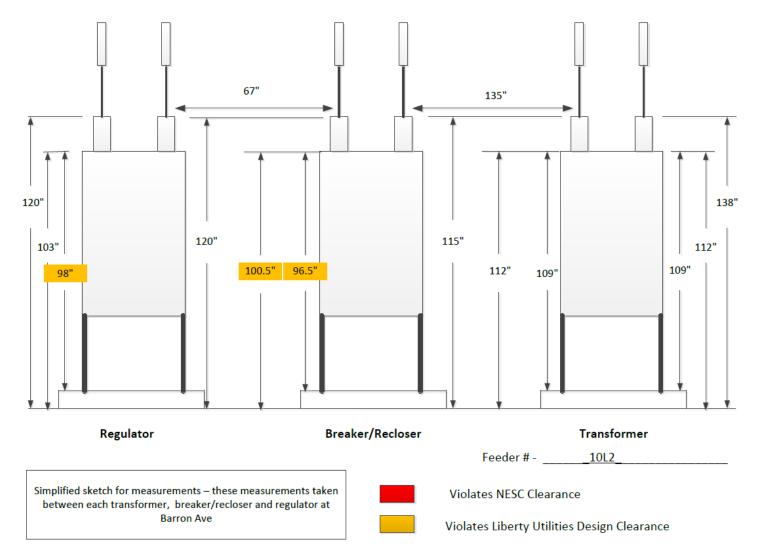


Figure 50 Barron Ave 10L2 Clearance Sketch

Figure 51 Barron Ave 10L4 Clearance Sketch

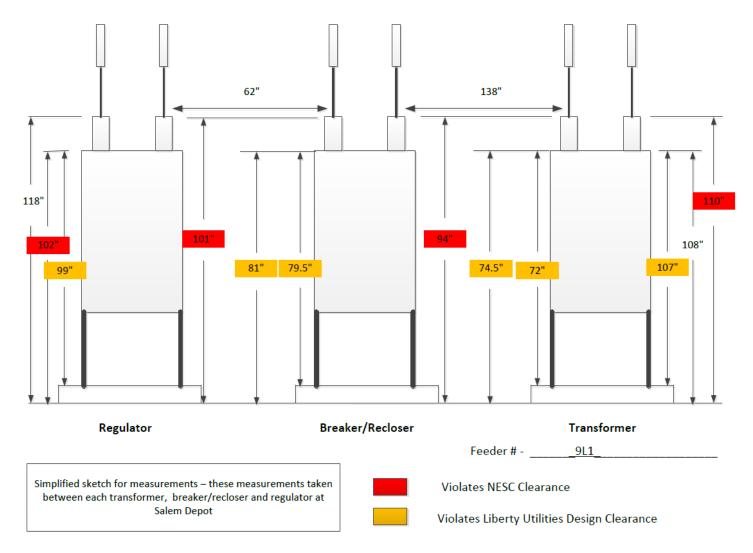


Figure 52 Salem Depot 9L1 Clearance Sketch

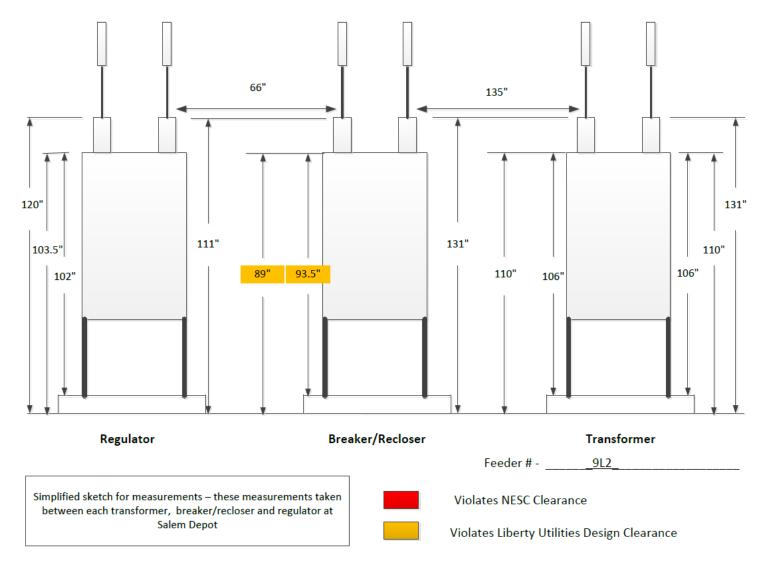


Figure 53 Salem Depot 9L2 Clearance Sketch

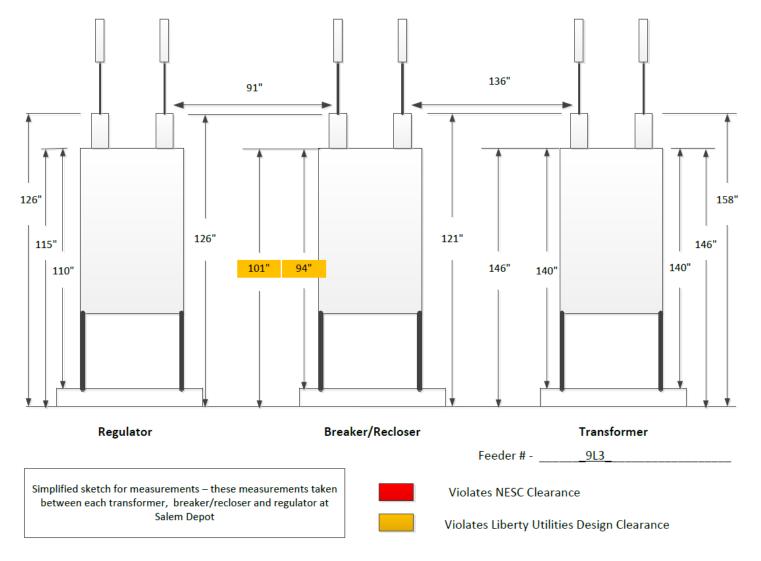


Figure 54 Salem Depot 9L3 Clearance Sketch

9.3 Appendix C – Area Loading Analysis

Base Case - 2019

Salem NH Feed	ler Analysis													
							2019			2022			2036	
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	N-1	%SN	Amps	N-1	%SN	Amps	N-1	%SN
Salem NH	BARRON AVENUE 10	13.2	10L1	387	462	107	355	28%	118	344	30%	121	341	31%
Salem NH	BARRON AVENUE 10	13.2	10L2	526	578	268	310	51%	290	288	55%	299	279	57%
Salem NH	BARRON AVENUE 10	13.2	10L4	339	339	176	163	52%	193	146	57%	198	141	59%
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	133	432	27%	221	344	44%	227	338	45%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	404	111	80%	384	131	76%	396	119	79%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	375	140	73%	346	169	67%	356	159	69%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	387	225	75%	488	124	95%	502	110	97%
Salem NH	PELHAM 14	13.2	14L4	530	589	44	545	8%	392	197	74%	404	185	76%
Salem NH	SALEM DEPOT 9	13.2	9L1	322	371	271	100	84%	470	-99	146%	484	-113	150%
Salem NH	SALEM DEPOT 9	13.2	9L2	322	371	224	147	70%	292	79	91%	301	70	93%
Salem NH	SALEM DEPOT 9	13.2	9L3	507	507	319	188	63%	391	116	77%	402	105	79%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	326	189	63%	352	163	68%	363	152	70%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	290	225	56%	316	199	61%	325	190	63%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	442	80	85%	463	59	89%	477	45	<mark>91%</mark>

Table 9 Base Case - Normal Configuration – 13.2 kV Feeder Loading

Salem NH Trans	sformer Analysis															
			System	Voltage	Maximum	Rating	(MVA)			Project	ed Load	ł				
			()	«V)			(,		2019			2022			2036	
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N- 1	%SN	MVA	N-1	% SN	MVA	N-1	% SN
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.7	91.6	56.9	34.7	72%	68.6	23.0	87%	70.6	21.0	90%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.4	10.9	2.4	8.5	26%	2.7	8.2	29%	2.8	8.1	29%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.6	14.2	6.1	8.1	45%	6.6	7.6	49%	6.8	7.4	50%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.1	10.3	4.0	6.3	44%	4.4	5.9	48%	4.5	5.8	50%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	3.0	9.9	25%	5.0	7.9	41%	5.2	7.7	42%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	9.2	3.7	75%	8.8	4.1	71%	9.0	3.9	73%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	8.6	4.4	69%	7.9	5.1	63%	8.1	4.9	65%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	8.8	4.2	71%	11.2	1.8	89%	11.5	1.5	92%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.1	6.2	3.9	84%	10.7	-0.6	146%	11.1	-1.0	150%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.2	5.1	4.1	70%	6.7	2.5	91%	6.9	2.3	93%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.6	11.6	7.3	4.3	63%	8.9	2.7	77%	9.2	2.4	79%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	7.5	6.9	52%	8.1	6.3	56%	8.3	6.1	58%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	6.6	7.8	48%	7.2	7.2	52%	7.4	7.0	53%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	10.1	4.3	73%	10.6	3.8	76%	10.9	3.5	78%

Table 10 Base Case - Normal Configuration - Transformer Loading

Salem NH Supply	/ Line Analy	vsis												
			Line S	ection			Rating (Μνδ			Project	ed Loa	id	
			Enterc	eedon			itating (201	9	202	22	2	036
Study Area	Circuit	Voltage	From	То	Limiting	Element	SN	SE	MVA	%SN	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	UG Cable	2-1000 Cu	54.8	65.4	30.9	56%	40.2	73%	41.4	75%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	OH Line	1113 ACSR	56.4	72.5	30.9	55%	40.2	71%	41.4	73%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	Recloser	800 A.	31.9	31.9	12.3	39%	13.8	43%	14.2	45%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	Relay	Relay	27.1	27.1	18.6	69%	26.4	97%	27.1	100%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	UG Cable	2-1000 Cu	54.8	65.4	26.0	47%	28.4	52%	29.2	53%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	OH Line	795 ACSR	45.2	58.2	17.4	38%	19.1	42%	19.6	43%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	UG Cable	2-500 Cu	31.9	31.9	17.4	55%	19.1	60%	19.6	62%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	Recloser	800 A.	27.1	27.1	0.0	0%	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	Relay	600 A.	23.9	23.9	4.0	17%	0.0	0%	0.0	0%
Methuen	2376	23	Meth Jnctn	Golden Rock	Relay	600 A.	23.9	23.9		0%		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	OH Line	795 AAC	35.9	40.7	24.2	67%	25.9	72%	27.3	76%

Table 11 Base Case 2019 Supply Line Normal Loading

Salem NH Trans	former Contingency Ana	alysis											
			System V	oltage (kV)	Maximum	Rating	(MVA)		Р	rojected C	ontingenc	у	
Study Area	Substation	Tranf. ID.	-			-	. ,	20	19	20	22	203	36
			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE	MVA	% SE
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.70	91.60	0.0	0%	0.0	0%	0.0	0%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.40	10.90	4.2	39%	7.0	64%	7.2	66%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.60	14.20	4.2	30%	7.0	49%	7.2	51%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.10	10.30	4.2	41%	7.0	68%	7.2	70%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	9.9	77%	11.3	88%	11.6	90%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	9.9	77%	11.3	88%	11.6	90%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	9.9	76%	11.3	87%	11.6	90%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	9.9	76%	11.3	87%	11.6	90%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.10	4.7	46%	12.0	119%	12.4	123%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.20	4.7	51%	12.0	131%	12.4	135%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.60	11.60	4.7	40%	12.0	104%	12.4	107%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	12.1	84%	13.4	93%	13.8	96%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	12.1	84%	13.4	93%	13.8	96%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	12.1	84%	13.4	93%	13.8	96%

Table 12 Base Case 2019 Transformer Contingency Loading

Salem NH Supply	Line Conti	ngency An	alysis												
			Line S	ection	Rating	(84)/ A)				Projec	ted Contin	gency			
Study Area	Circuit	Voltage	Line 3	lection	кашіў			2019			2022			2036	
Study Alea	Circuit	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	48.3	0.0	74%	59.3	0.0	91%	61.0	0.0	93%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	48.3	0.0	67%	59.3	0.0	82%	61.0	0.0	84%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	32.9	1.0	103%	33.9	2.0	106%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	26.4	0.0	97%	27.1	0.0	100%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	56.9	0.0	87%	68.6	3.2	105%	70.6	5.2	108%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	56.9	0.0	98%	68.6	10.4	118%	70.6	12.4	121%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	32.9	1.0	103%	33.9	2.0	106%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	26.4	0.0	97%	27.1	0.0	100%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	34.9	11.0	146%	44.6	20.7	187%	47.1	23.2	197%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	26.0	2.1	109%	28.4	4.5	119%	30.0	6.1	125%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	0.0	59%	25.9	0.0	64%	27.3	0.0	67%

Table 13 Base Case 2019 Supply Line Contingency Loads

Salem NH Feed	ler Analysis					D					
							2022			2036	
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	N-1	%SN	Amps	N-1	%SN
Salem NH	BARRON AVENUE 10	13.2	10L1	387	462	0	462	0%	0	462	0%
Salem NH	BARRON AVENUE 10	13.2	10L2	526	578	0	578	0%	0	578	0%
Salem NH	BARRON AVENUE 10	13.2	10L4	339	339	0	339	0%	0	339	0%
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	196	369	39%	202	363	40%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	336	179	67%	346	169	69%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	433	82	84%	446	69	87%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	480	132	93%	494	118	96%
Salem NH	PELHAM 14	13.2	14L4	530	589	292	297	55%	301	288	57%
Salem NH	SALEM DEPOT 9	13.2	9L1	322	371	320	51	99%	329	42	102%
Salem NH	SALEM DEPOT 9	13.2	9L2	322	371	242	129	75%	249	122	77%
Salem NH	SALEM DEPOT 9	13.2	9L3	507	507	386	121	76%	397	110	78%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	470	45	91%	484	31	94%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	352	163	68%	362	153	70%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	344	178	66%	354	168	68%
Salem NH	GOLDEN ROCK 19	13.2	19L4	530	589	76	513	14%	78	511	15%
Salem NH	GOLDEN ROCK 19	13.2	19L6	530	589	233	356	44%	240	349	45%
Salem NH	GOLDEN ROCK 19	13.2	19L8	530	589	212	377	40%	218	371	41%

Base Case - Golden Rock 115 / 13.2 kV in Service

Table 14 Base Case (w/ Golden Rock 13.2 kV) Feeder Normal Loading

			System	Voltage	Maximum	Rating	(MVA)	Proje	ected L	oad			
			4)	(V)	Maximum	Raung			2022			2036	
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N-1	% SN	MVA	N-1	%SN
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.4	10.9	0.0	10.9	0%	0.0	10.9	0%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.6	14.2	0.0	14.2	0%	0.0	14.2	0%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.1	10.3	0.0	10.3	0%	0.0	10.3	0%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	4.5	8.4	36%	4.6	8.3	37%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	7.7	5.2	62%	7.9	5.0	64%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	9.9	3.1	79%	10.2	2.8	82%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	11.0	2.0	88%	11.3	1.7	90%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.1	7.3	2.8	99%	7.5	2.6	102%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.2	5.5	3.7	75%	5.7	3.5	77%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.6	11.6	8.8	2.8	76%	9.1	2.5	78%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	10.7	3.7	75%	11.1	3.3	77%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	8.0	6.4	58%	8.3	6.1	60%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	7.9	6.5	57%	8.1	6.3	58%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	83.9	94.4	11.9	82.5	14%	12.3	82.1	15%

Table 15 Base Case (w/ Golden Rock 13.2 kV) Transformer Normal Loads

Salem NH Suppl	y Line Analy	vsis								
			Line 9	Section	Rating	(M\/A)	F	Project	ed Loa	ad
			LINE C	Jection	Nating	(111 4 ~)	202	22	2	036
Study Area	Circuit	Voltage	From	То	SN	SE	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.7	67.4	33.8	62%	34.8	64%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	72.5	72.5	33.8	47%	34.8	48%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	12.2	38%	12.5	39%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	21.7	80%	22.3	82%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.7	67.4	20.9	38%	21.5	39%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	20.9	46%	21.5	48%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	20.9	65%	21.5	67%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	0.0	0%	0.0	0%
Methuen	2376	23	Meth Jnctn	Golden Rock	23.9	23.9		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	26.7	74%	28.1	78%

Table 16 Base Case (w/ Golden Rock 13.2 kV) Supply Line Normal Loading

			Svstem V	oltage (kV)	Maximum	Rating	(MVA)	P	rojected C	ontingenc	у
Study Area	Substation	Tranf. ID.	-,	J			(20	22	203	36
			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.40	10.90	0.0	0%	0.0	0%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.60	14.20	0.0	0%	0.0	0%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.10	10.30	0.0	0%	0.0	0%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	12.6	98%	13.0	101%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	12.6	98%	13.0	101%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	12.6	97%	13.0	100%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	12.6	97%	13.0	100%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.10	12.0	119%	12.4	123%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.20	12.0	131%	12.4	135%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.60	11.60	12.0	104%	12.4	107%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	10.7	75%	11.1	77%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	10.7	75%	11.1	77%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	10.7	75%	11.1	77%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	83.90	94.40	35.2	37%	36.2	38%

Table 17 Base Case (w/ Golden Rock 13.2 kV) Transformer Contingency Loading

Salem NH Supply	Line Conti	ngency An	alysis									
			Lino S	ection	Rating	(M)(A)		Р	rojected C	ontingend	;y	
Study Area	Circuit	Voltage	Line 3	ection	Rauny			2022			2036	
oludy Area	oncuit	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.7	67.4	66.6	0.0	99%	68.6	1.2	102%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	72.5	72.5	66.6	0.0	92%	68.6	0.0	95%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	33.0	1.1	104%	34.0	2.1	107%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	21.7	0.0	80%	22.3	0.0	82%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.7	67.4	66.6	0.0	99%	68.6	1.2	102%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	66.6	8.5	115%	68.6	10.4	118%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	33.0	1.1	104%	34.0	2.1	107%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	21.7	0.0	80%	22.3	0.0	82%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	33.8	9.9	142%	35.7	11.8	149%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	20.9	0.0	87%	22.0	0.0	92%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	26.7	0.0	65%	28.1	0.0	69%

Table 18 Base Case (w/ Golden Rock 13.2 kV) Supply Line Contingency Loading

Alternative Plan #1 Loading

Salem NH Feed	ler Analysis													
							2019			2022			2036	
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	N-1	%SN	Amps	N-1	%SN	Amps	N-1	%SN
Salem NH	BARRON AVENUE 10	13.2	10L1	387	462	107	355	28%	463	-1	120%	477	-15	123%
Salem NH	BARRON AVENUE 10	13.2	10L2	526	578	268	310	51%	320	258	61%	330	248	63%
Salem NH	BARRON AVENUE 10	13.2	10L4	339	339	176	163	52%	260	79	77%	268	71	79%
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	133	432	27%	196	369	39%	201	364	40%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	404	111	80%	6	509	1%	6	509	1%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	375	140	73%	349	166	68%	359	156	70%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	387	225	75%	204	408	40%	210	402	41%
Salem NH	PELHAM 14	13.2	14L4	530	589	44	545	8%	317	272	60%	326	263	62%
Salem NH	SALEM DEPOT 9	13.2	9L1	322	371	271	100	84%	302	69	94%	311	60	97%
Salem NH	SALEM DEPOT 9	13.2	9L2	322	371	224	147	70%	240	131	75%	247	124	77%
Salem NH	SALEM DEPOT 9	13.2	9L3	507	507	319	188	63%	391	116	77%	402	105	79%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	326	189	63%	358	157	70%	369	146	72%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	290	225	56%	225	290	44%	232	283	45%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	442	80	85%	483	39	93%	497	25	95%
Salem NH	GOLDEN ROCK 19	13.2	19L4	530	589		589	0%	77	512	14%	79	510	15%
Salem NH	GOLDEN ROCK 19	13.2	19L6	530	589		589	0%	246	343	46%	252	337	48%
Salem NH	GOLDEN ROCK 19	13.2	19L8	530	589		589	0%	359	230	68%	369	220	70%

Table 19 Alt #1 Feeder Normal Loading

Salem NH Trans	sformer Analysis															
			System	Voltage	Maximum	Pating	(MVA)		ļ	Project	ed Load	ł				
			()	«V)	Waxintani	Rating	(((((((((((((((((((((((((((((((((((((((2019			2022			2036	
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N-1	% SN	MVA	N-1	% SN	MVA	N-1	% SN
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.4	10.9	2.4	8.5	26%	10.6	0.3	113%	10.9	0.0	116%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.6	14.2	6.1	8.1	45%	7.3	6.9	54%	7.5	6.7	55%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.1	10.3	4.0	6.3	44%	5.9	4.4	65%	6.1	4.2	67%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	3.0	9.9	25%	4.5	8.4	36%	4.6	8.3	37%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	9.2	3.7	75%	0.1	12.8	1%	0.1	12.8	1%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	8.6	4.4	69%	8.0	5.0	64%	8.2	4.8	66%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	8.8	4.2	71%	4.7	8.3	37%	4.8	8.2	38%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.1	6.2	3.9	84%	6.9	3.2	94%	7.1	3.0	97%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.2	5.1	4.1	70%	5.5	3.7	75%	5.6	3.6	77%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.6	11.6	7.3	4.3	63%	8.9	2.7	77%	9.2	2.4	79%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	7.5	6.9	52%	8.2	6.2	57%	8.4	6.0	59%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	6.6	7.8	48%	5.1	9.3	37%	5.3	9.1	38%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	10.1	4.3	73%	11.0	3.4	79%	11.4	3.0	82%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.7	91.6	0.0	91.6	0%	15.6	76.0	20%	16.0	75.6	20%

Table 20 Alt #1 Transformer Normal Loading

Salem NH Supply Line Analysis												
			Line Section		Rating (MVA)		Projected Load					
			Line c	becubii	Rating (WVA)		2019		2022		2036	
Study Area	Circuit	Voltage	From	То	SN	SE	MVA	%SN	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	30.9	56%	25.9	47%	26.7	49%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	30.9	55%	25.9	46%	26.7	47%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	12.3	39%	4.6	14%	4.7	15%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	69%	21.3	79%	22.0	81%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	26.0	47%	30.6	56%	31.5	57%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	17.4	38%	12.6	28%	13.0	29%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	17.4	55%	12.6	40%	13.0	41%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0%	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	4.0	17%	0.0	0%	0.0	0%
Methuen	2376	23	Meth Jnctn	Golden Rock	23.9	23.9		0%		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	67%	24.4	68%	25.7	72%

Table 21 Alt #1 Supply Line Normal Loading

Salem NH Trans	sformer Contingency Ana	alysis											
			System V	oltage (kV)	Maximum	Rating	(MVA)		Р	rojected C	ontingenc	y	
Study Area	Substation	Tranf. ID.						20	19	20	22	203	36
			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE	MVA	% SE
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.40	10.90	6.3	58%	8.8	80%	9.0	83%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.60	14.20	6.3	44%	8.8	62%	9.0	63%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.10	10.30	6.3	61%	8.8	85%	9.0	87%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	9.9	77%	11.5	89%	11.8	92%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	9.9	77%	11.5	89%	11.8	92%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	9.9	76%	11.5	88%	11.8	91%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	9.9	76%	11.5	88%	11.8	91%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.10	9.3	92%	9.3	92%	9.6	95%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.20	9.3	101%	9.3	101%	9.6	104%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.60	11.60	9.3	80%	9.3	80%	9.6	82%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	12.1	84%	8.4	58%	8.7	60%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	12.1	84%	8.4	58%	8.7	60%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	12.1	84%	8.4	58%	8.7	60%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.70	91.60	8.4	9%	17.0	19%	17.5	19%

Table 22 Alt #1 Transformer Contingency Loading

Salem NH Supply	Line Conti	ngency An	alysis												
			Line S	ection	Rating	(M\/A)				Projec	ted Contin	gency			
Study Area	Circuit	Voltage	Line o	ection	Raung	(101 V A)		2019			2022			2036	
Study Area	oncuit	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	48.3	0.0	74%	38.6	0.0	59%	39.7	0.0	61%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	48.3	0.0	67%	38.6	0.0	53%	39.7	0.0	55%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	17.2	0.0	54%	17.8	0.0	56%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	21.3	0.0	79%	22.0	0.0	81%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	56.9	0.0	87%	56.5	0.0	86%	58.2	0.0	89%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	56.9	0.0	98%	56.5	0.0	97%	58.2	0.0	100%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	17.2	0.0	54%	17.8	0.0	56%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	21.3	0.0	79%	22.0	0.0	81%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	34.9	11.0	146%	31.9	8.0	133%	33.7	9.7	141%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	26.0	2.1	109%	30.6	6.7	128%	32.2	8.3	135%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	0.0	59%	24.4	0.0	60%	25.7	0.0	63%

Table 23 Alt #1 Supply Line Contingency Loading

Liberty Utilities System Planning Salem Area Study 2020

Alternative #2 Loading

Salem NH Feed	ler Analysis													
							2019			2022			2036	
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	N-1	%SN	Amps	N-1	%SN	Amps	N-1	%SN
Salem NH	BARRON AVENUE 10	13.2	10L1	387	462	107	355	28%	427	151	81%	440	138	84%
Salem NH	BARRON AVENUE 10	13.2	10L2	526	578	268	310	51%	259	319	49%	266	312	51%
Salem NH	BARRON AVENUE 10	13.2	10L4	339	339	176	163	52%	181	397	34%	186	392	35%
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	133	432	27%	217	348	43%	223	342	44%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	404	111	80%	44	471	9%	45	470	9%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	375	140	73%	349	166	68%	359	156	70%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	387	225	75%	205	407	40%	211	401	41%
Salem NH	PELHAM 14	13.2	14L4	530	589	44	545	8%	317	272	60%	326	263	62%
Salem NH	SALEM DEPOT 9	13.2	9L1	322	371	271	100	84%	303	275	58%	312	266	59%
Salem NH	SALEM DEPOT 9	13.2	9L2	322	371	224	147	70%	288	290	55%	297	281	57%
Salem NH	SALEM DEPOT 9	13.2	9L3	507	507	319	188	63%	391	187	74%	402	176	77%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	326	189	63%	347	168	67%	357	158	69%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	290	225	56%	312	203	61%	321	194	62%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	442	80	85%	386	136	74%	397	125	76%
Salem NH	GOLDEN ROCK 19	13.2	19L4	530	589		589	0%	84	528	16%	87	525	17%
Salem NH	GOLDEN ROCK 19	13.2	19L6	530	589		589	0%	313	299	60%	322	290	61%
Salem NH	GOLDEN ROCK 19	13.2	19L8	530	589		589	0%	413	199	79%	425	187	81%

Table 24 Alt #2 Feeder Normal Loading

			System	Voltage	Maximum	Pating	I (MVA)		I	Project	ed Load	d				
			(«V)	Waxiniuni	Rating			2019			2022			2036	
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N-1	% SN	MVA	N-1	% SN	MVA	N-1	% SN
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.7	91.6	56.9	34.7	72%	56.7	34.9	72%	58.4	33.2	74%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.4	10.9	2.4	8.5	26%	9.8	1.1	78%	10.0	3.0	80%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.6	14.2	6.1	8.1	45%	5.9	8.3	43%	6.1	8.1	45%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.1	10.3	4.0	6.3	44%	4.1	6.2	33%	4.3	8.7	34%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	3.0	9.9	25%	5.0	7.9	40%	5.1	7.8	41%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	9.2	3.7	75%	1.0	11.9	8%	1.0	11.9	8%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	8.6	4.4	69%	8.0	5.0	64%	8.2	4.8	66%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	8.8	4.2	71%	4.7	8.3	37%	4.8	8.2	39%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.1	6.2	3.9	84%	6.9	3.2	55%	7.1	5.9	57%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.2	5.1	4.1	70%	6.6	2.6	53%	6.8	6.2	54%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.6	11.6	7.3	4.3	63%	8.9	2.7	77%	9.2	2.4	79%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	7.5	6.9	52%	7.9	6.5	55%	8.2	6.2	57%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	6.6	7.8	48%	7.1	7.3	51%	7.3	7.1	53%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	10.1	4.3	73%	8.8	5.6	63%	9.1	5.3	65%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.7	91.6	0.0	91.6	0%	18.5	73.1	24%	19.1	72.5	24%

Table 25 Alt #2 Transformer Normal Loading

Salem NH Supp	ly Line Analy	sis										
			Lino	Section	Rating	(M\\/A)			Project	ed Loa	ad	
			LINE	Jection	Raung	(141 4 7)	201	19	202	22	2	036
Study Area	Circuit	Voltage	From	То	SN	SE	MVA	%SN	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	30.9	56%	28.4	52%	29.2	53%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	30.9	55%	28.4	50%	29.2	52%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	12.3	39%	6.0	19%	6.1	19%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	69%	22.4	83%	23.1	85%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	26.0	47%	28.3	52%	29.2	53%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	17.4	38%	12.7	28%	13.0	29%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	17.4	55%	12.7	40%	13.0	41%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0%	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	4.0	17%	0.0	0%	0.0	0%
Methuen	2376	23	Meth Jnctn	Golden Rock	23.9	23.9		0%		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	67%	23.9	67%	25.2	70%

Table 26 Alt #2 Supply Line Normal Loading

Salem NH Trans	sformer Contingency Ana	alysis											
			System V	oltage (kV)	Maximum	Rating	(MVA)		Ρ	rojected C	ontingenc	у	
Study Area	Substation	Tranf. ID.						20	19	20	22	203	36
			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE	MVA	% SE
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.40	10.90	6.3	58%	11.3	87%	11.6	89%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.60	14.20	6.3	44%	11.3	79%	11.6	82%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.10	10.30	6.3	61%	11.3	87%	11.6	89%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	9.9	77%	11.5	89%	11.8	92%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	9.9	77%	11.5	89%	11.8	92%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	9.9	76%	11.5	88%	11.8	91%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	9.9	76%	11.5	88%	11.8	91%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.10	9.3	92%	11.8	91%	12.1	93%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.20	9.3	101%	11.8	91%	12.1	93%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.60	11.60	9.3	80%	11.8	102%	12.1	105%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	12.1	84%	13.4	93%	13.8	96%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	12.1	84%	13.4	93%	13.8	96%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	12.1	84%	13.4	93%	13.8	96%
Salem NH	PELHAM 14	T1	115	13.2	40	50.30	56.00	8.4	15%	17.0	30%	17.5	31%
Salem NH	PELHAM 14	T2	115	13.2	40	50.30	56.00	8.4	15%	17.0	30%	17.5	31%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.70	91.60		0%		0%		0%

Table 27 Alt #2 Transformer Contingency Loading

Salem NH Supply	Line Conti	ngency An	alysis												
			Line S	ection	Rating	(M)(A)				Projec	ted Contin	gency			
Study Area	Circuit	Voltage	Line 3	ection	Kaung			2019			2022			2036	
	oncuit	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE	MVA	Load > SE	%SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	48.3	0.0	74%	41.1	0.0	63%	42.3	0.0	65%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	48.3	0.0	67%	41.1	0.0	57%	42.3	0.0	58%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	18.6	0.0	58%	19.2	0.0	60%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	22.4	0.0	83%	23.1	0.0	85%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	56.9	0.0	87%	56.7	0.0	87%	58.4	0.0	89%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	56.9	0.0	98%	56.7	0.0	98%	58.4	0.2	100%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	18.6	0.0	58%	19.2	0.0	60%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	22.4	0.0	83%	23.1	0.0	85%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	34.9	11.0	146%	32.5	8.6	136%	34.3	10.4	144%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	26.0	2.1	109%	28.3	4.4	119%	29.9	6.0	125%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	0.0	59%	23.9	0.0	59%	25.2	0.0	62%

Table 28 Alt #2 Supply Line Contingency Loading

Alternative #3 Loading

Salem NH Feed	ler Analysis			1										
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	2019 N-1	%SN	Amps	2022 N-1	%SN	Amps	2036 N-1	%SN
Salem NH	BARRON AVENUE 10	13.2	10L1	387	462	107	355	28%	460	118	88%	473	105	90%
Salem NH	BARRON AVENUE 10		10L2	526	578	268	310	51%	276	302	52%	284	294	54%
Salem NH	BARRON AVENUE 10	13.2	10L4	339	339	176	163	52%	181	397	34%	186	392	35%
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	133	432	27%	217	348	43%	224	341	44%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	404	111	80%	44	471	9%	45	470	9%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	375	140	73%	341	174	66%	351	164	68%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	387	225	75%	204	408	40%	210	402	41%
Salem NH	PELHAM 14	13.2	14L4	530	589	44	545	8%	317	272	60%	326	263	62%
Salem NH	SALEM DEPOT 9	13.2	9L1	322	371	271	100	84%	219	359	42%	226	352	43%
Salem NH	SALEM DEPOT 9	13.2	9L2	322	371	224	147	70%	288	290	55%	297	281	56%
Salem NH	SALEM DEPOT 9	13.2	9L3	507	507	319	188	63%	391	187	74%	402	176	77%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	326	189	63%	168	347	33%	173	342	34%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	290	225	56%	146	369	28%	150	365	29%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	442	80	85%	102	420	19%	105	417	20%
Salem NH	GOLDEN ROCK 19	13.2	19L4	530	589		589	0%	84	528	16%	86	526	16%
Salem NH	GOLDEN ROCK 19	13.2	19L6	530	589		589	0%	542	70	103%	558	54	106%
Salem NH	GOLDEN ROCK 19	13.2	19L8	530	589		589	0%	275	337	52%	283	329	54%
Salem NH	BARRON AVENUE 10	13.2	10L5	516	589		589	0%	121	468	23%	125	464	24%
Salem NH	SALEM DEPOT 9	13.2	9L4	516	589		589	0%	8	581	2%	8	581	2%
Salem NH	SALEM DEPOT 9	13.2	9L5	516	589		589	0%	466	123	90%	480	109	93%

Table 29 Alt #3 Feeder Normal Loading

			System	Voltage	Maximum	Poting	(MVA)		l	Project	ed Loa	d				
			()	(V)	Waxiniuni	кашу			2019			2022			203	6
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N-1	% SN	MVA	N-1	% SN	MVA	N-1	% SN
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.4	10.9	2.4	8.5	26%	10.5	0.4	84%	10.8	2.2	87%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.6	14.2	6.1	8.1	45%	6.3	7.9	46%	6.5	7.7	48%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.1	10.3	4.0	6.3	44%	4.1	6.2	33%	4.3	8.7	34%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	3.0	9.9	25%	5.0	7.9	40%	5.1	7.8	41%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	9.2	3.7	75%	1.0	11.9	8%	1.0	11.9	8%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	8.6	4.4	69%	7.8	5.2	62%	8.0	5.0	64%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	8.8	4.2	71%	4.7	8.3	37%	4.8	8.2	38%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.1	6.2	3.9	84%	5.0	5.1	40%	5.2	7.8	41%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.2	5.1	4.1	70%	6.6	2.6	53%	6.8	6.2	54%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.6	11.6	7.3	4.3	63%	8.9	2.7	77%	9.2	2.4	79%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	7.5	6.9	52%	3.9	10.5	27%	4.0	10.4	28%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	6.6	7.8	48%	3.3	11.1	24%	3.4	11.0	25%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	10.1	4.3	73%	2.3	12.1	17%	2.4	12.0	17%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.7	91.6	0.0	91.6	0%	20.6	71.0	26%	21.2	70.4	27%
Salem NH	BARRON AVENUE 10	L5	23	13.2	9.375	14.4	14.4	0.0	14.4	0%	2.8	11.6	19%	2.8	11.4	21%
Salem NH	SALEM DEPOT 9	L4	23	13.2	9.375	14.4	14.4	0.0	14.4	0%	0.2	14.2	1%	0.2	14.0	1%
Salem NH	SALEM DEPOT 9	L5	23	13.2	9.375	14.4	14.4	0.0	14.4	0%	10.7	3.7	74%	11.0	3.2	81%

Table 30 Alt #3 Transformer Normal Loading

Salem NH Supp	ly Line Analy	sis										
			l ine 9	Section	Rating	(M\/A)			Project	ed Loa	nd	
			LINE	Jection	Nating	(111 1 ~)	201	19	202	22	2	036
Study Area	Circuit	Voltage	From	То	SN	SE	MVA	%SN	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	30.9	56%	37.3	68%	38.4	70%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	30.9	55%	37.3	66%	38.4	68%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	12.3	39%	6.0	19%	6.1	19%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	69%	31.4	116%	32.3	119%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	26.0	47%	29.3	53%	30.1	55%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	17.4	38%	12.5	28%	12.8	28%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	17.4	55%	12.5	39%	12.8	40%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0%	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	4.0	17%	6.9	29%	7.3	30%
Methuen	2376	23	Meth Jnctn	Golden Rock	23.9	23.9		0%		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	67%	9.5	26%	10.0	28%

Table 31 Alt #3 Supply Line Normal Loading

Salem NH Trans	former Contingency Ana	alysis											
			System V	oltage (kV)	Maximum	Rating	(MVA)		Р	rojected C	ontingenc	у	
Study Area	Substation	Tranf. ID.						20 ⁻	19	20	22	20	36
			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE	MVA	% SE
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.40	10.90	4.2	39%	7.9	61%	8.1	63%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.60	14.20	4.2	30%	7.9	56%	8.1	57%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.10	10.30	4.2	41%	7.9	61%	8.1	63%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	9.9	77%	6.1	48%	6.3	49%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	9.9	77%	6.1	48%	6.3	49%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	9.9	76%	6.1	47%	6.3	49%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	9.9	76%	6.1	47%	6.3	49%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.10	4.7	46%	7.8	60%	8.1	62%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.20	4.7	51%	7.8	60%	8.1	62%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.60	11.60	4.7	40%	7.8	68%	8.1	70%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	12.1	84%	4.8	33%	4.9	34%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	12.1	84%	4.8	33%	4.9	34%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	12.1	84%	4.8	33%	4.9	34%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.70	91.60	0.0	0%		0%		0%
Salem NH	BARRON AVENUE 10	L5	23	13.2	9.375	14.40	14.40		0%	7.9	56%	8.1	57%
Salem NH	SALEM DEPOT 9	L4	23	13.2	9.375	14.40	14.40		0%	7.8	55%	8.1	57%
Salem NH	SALEM DEPOT 9	L5	23	13.2	9.375	14.40	14.40		0%	7.8	55%	8.1	57%

Table 32 Alt #3 Transformer Contingency Loading

Salem NH Supply	y Line Conti	ngency An	alysis												
			Line S	ection	Rating	(M)(A)				Projec	ted Contin	gency			
Study Area	Circuit	Voltage	Line 3	ection	Kaung			2019			2022			2036	
Study Area	Circuit	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE	MVA	Load > SE	%SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	48.3	0.0	74%	50.0	0.0	76%	51.5	0.0	79%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	48.3	0.0	67%	50.0	0.0	69%	51.5	0.0	71%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	18.4	0.0	58%	19.0	0.0	60%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	31.4	4.3	116%	32.3	5.2	119%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	56.9	0.0	87%	66.4	1.0	102%	68.4	3.0	105%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	56.9	0.0	98%	66.4	8.3	114%	68.4	10.2	118%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	18.4	0.0	58%	19.0	0.0	60%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	31.4	4.3	116%	32.3	5.2	119%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	34.9	11.0	146%	41.5	17.6	174%	43.8	19.9	183%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	26.0	2.1	109%	29.3	5.4	123%	30.9	7.0	129%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	0.0	59%	9.5	0.0	23%	10.0	0.0	25%

Table 33 Alt #3 Supply Line Contingency Loading

Liberty Utilities System Planning Salem Area Study 2020

Alternative #4 Loading

Salem NH Feed	ler Analysis													
							2019			2022			2036	
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	N-1	%SN	Amps	N-1	%SN	Amps	N-1	%SN
Salem NH	BARRON AVENUE 10	13.2	10L1	387	462	107	355	28%	117	461	22%	121	457	23%
Salem NH	BARRON AVENUE 10	13.2	10L2	526	578	268	310	51%	479	99	91%	493	85	94%
Salem NH	BARRON AVENUE 10	13.2	10L4	339	339	176	163	52%	192	386	36%	197	381	38%
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	133	432	27%	217	348	43%	224	341	44%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	404	111	80%	411	104	82%	423	92	84%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	375	140	73%	341	174	66%	351	164	68%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	387	225	75%	133	479	26%	137	475	26%
Salem NH	PELHAM 14	13.2	14L4	530	589	44	545	8%	382	207	72%	393	196	74%
Salem NH	SALEM DEPOT 9	13.2	9L1	322	371	271	100	84%	201	377	38%	207	371	39%
Salem NH	SALEM DEPOT 9	13.2	9L2	322	371	224	147	70%	288	290	55%	297	281	57%
Salem NH	SALEM DEPOT 9	13.2	9L3	507	507	319	188	63%	391	187	74%	402	176	77%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	326	189	63%	168	347	33%	173	342	34%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	290	225	56%	146	369	28%	150	365	29%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	442	80	85%	204	318	39%	210	312	40%
Salem NH	BARRON AVENUE 10	13.2	10L5	516	589		589	0%	169	420	33%	174	415	34%
Salem NH	SALEM DEPOT 9	13.2	9L4	516	589		589	0%	500	89	97%	515	74	100%
Salem NH	SALEM DEPOT 9	13.2	9L5	516	589		589	0%	466	123	90%	480	109	93%

Table 34 Alt #4 Feeder Normal Loading

Salem NH Trans	sformer Analysis				· · · · ·											
			System	Voltage	Maximum	Rating	(ΜVΔ)		1	Project	ed Load	k				
			()	κV)	maximum	nating	(2019			2022			203	86
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N-1	% SN	MVA	N-1	% SN	MVA	N-3	% SN
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.7	91.6	56.9	34.7	72%	53.0	38.6	67%	60.7	30.9	77%
Salem NH	GOLDEN ROCK 19	T2	115	23	50	78.7	91.6		91.6	0%	28.0	63.6	36%	61.3	30.3	78%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.4	10.9	2.4	8.5	26%	2.7	8.2	29%	2.8	10.2	22%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.6	14.2	6.1	8.1	45%	11.0	3.2	81%	11.3	2.9	83%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.1	10.3	4.0	6.3	44%	4.4	5.9	48%	4.5	8.5	36%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	3.0	9.9	25%	5.0	7.9	40%	5.1	7.8	41%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	9.2	3.7	75%	9.4	3.5	76%	9.7	3.2	78%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	8.6	4.4	69%	7.8	5.2	62%	8.0	5.0	64%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	8.8	4.2	71%	3.0	10.0	24%	3.1	9.9	25%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.1	6.2	3.9	84%	4.6	5.5	62%	4.7	8.3	38%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.2	5.1	4.1	70%	6.6	2.6	90%	6.8	6.2	54%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.6	11.6	7.3	4.3	63%	8.9	2.7	77%	9.2	2.4	79%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	7.5	6.9	52%	3.9	10.5	27%	4.0	10.4	28%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	6.6	7.8	48%	3.3	11.1	24%	3.4	11.0	25%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	10.1	4.3	73%	4.7	9.7	34%	4.8	9.6	35%
Salem NH	BARRON AVENUE 10	L5	23	13.2	9.375	14.4	14.4	0.0	14.4	0%	3.9	10.5	27%	4.0	10.2	29%
Salem NH	SALEM DEPOT 9	L4	23	13.2	9.375	14.4	14.4	0.0	14.4	0%	11.4	3.0	79%	11.8	2.4	87%
Salem NH	SALEM DEPOT 9	L5	23	13.2	9.375	14.4	14.4	0.0	14.4	0%	10.7	3.7	74%	11.0	3.2	81%

Table 35 Alt #4 Transformer Normal Loading

Salem NH Suppl	y Line Analy	vsis										
			l ino 9	ection	Rating	(M\/A)			Project	ed Loa	ıd	
			LINE	ection	Naung	(111 1 ~)	201	19	202	22	2	036
Study Area	Circuit	Voltage	From	То	SN	SE	MVA	%SN	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	18.6	34%	42.2	77%	43.4	79%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	18.6	33%	42.2	75%	43.4	77%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	0.0	0%	0.0	0%	0.0	0%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	69%	42.2	156%	43.4	160%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	17.4	32%	10.8	20%	11.2	20%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	17.4	38%	10.8	24%	11.2	25%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	0.0	0%	10.8	34%	11.2	35%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0%	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	4.0	17%	3.9	16%	4.0	17%
Methuen	2376	23	Meth Jnctn	Golden Rock	23.9	23.9		0%		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	67%	11.8	33%	12.2	34%
Salem NH	Line #3	23	Golden Rock	Barron Ave. Tap	54.8	65.4	20.9		28.0	51%	28.8	53%
Salem NH	Line #3	23	Barron Ave. Tap	Rockingham Tap	56.4	72.5	0.0		14.4	25%	14.8	26%

Table 36 Alt #4 Supply Lines Normal Loading

			System V	oltage (kV)	Maximum	Rating	(MVA)		P	rojected C	ontingency	y	
Study Area	Substation	Tranf. ID.	• • • • • •	o			(20 ⁻	19	202	22	203	36
			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE	MVA	% SE
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.70	91.60		0%	81.0	88%	83.4	91%
Salem NH	GOLDEN ROCK 19	T2	115	23	50	78.70	91.60		0%	81.0	88%	83.4	91%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.40	10.90	4.2	39%	7.3	56%	7.5	58%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.60	14.20	4.2	30%	7.3	51%	7.5	53%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.10	10.30	4.2	41%	7.3	56%	7.5	58%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	9.9	77%	8.4	65%	8.6	67%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	9.9	77%	8.4	65%	8.6	67%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	9.9	76%	8.4	65%	8.6	67%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	9.9	76%	8.4	65%	8.6	67%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.10	4.7	46%	10.6	81%	10.9	84%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.20	4.7	51%	10.6	81%	10.9	84%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.60	11.60	4.7	40%	10.6	91%	10.9	94%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	12.1	84%	5.9	41%	6.1	42%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	12.1	84%	5.9	41%	6.1	42%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	12.1	84%	5.9	41%	6.1	42%
Salem NH	BARRON AVENUE 10	L5	23	13.2	9.375	14.40	14.40	4.2	29%	7.3	51%	7.5	53%
Salem NH	SALEM DEPOT 9	L4	23	13.2	9.375	14.40	14.40	4.7	32%	10.6	74%	10.9	76%
Salem NH	SALEM DEPOT 9	L5	23	13.2	9.375	14.40	14.40	4.7	32%	10.6	74%	10.9	76%

Table 37 Alt #4 Transformer Contingency Loading

Salem NH Supply	Line Conti	ngency An	alysis												
			Lino S	ection	Rating	(M\\/A)				Projec	ted Contin	gency			
Study Area	Circuit	Voltage	Line 3	lection	Raung	(IVI V A)		2019			2022			2036	
olddy Alca	oncuit	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	36.0	0.0	55%	42.2	0.0	65%	43.4	0.0	66%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	36.0	0.0	50%	42.2	0.0	58%	43.4	0.0	60%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	0.0	0.0	0%	0.0	0.0	0%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	42.2	15.1	156%	43.4	16.4	160%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	48.3	0.0	74%	30.0	0.0	46%	30.8	0.0	47%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	48.3	0.0	83%	30.0	0.0	52%	30.8	0.0	53%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	30.0	0.0	94%	30.8	0.0	97%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	0.0	0.0	0%	0.0	0.0	0%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	18.6	0.0	78%	18.0	0.0	75%	19.0	0.0	80%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	17.4	0.0	73%	0.0	0.0	0%	0.0	0.0	0%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	0.0	59%	11.8	0.0	29%	12.5	0.0	31%
Salem NH	Line #3	23	Golden Rock	Barron Ave. Tap	54.8	65.4	20.9	0.0	32%	55.8	0.0	85%	58.9	0.0	90%
Salem NH	Line #3	23	Barron Ave. Tap	Rockingham Tap	56.4	72.5	0.0	0.0	0%	42.2	0.0	58%	44.5	0.0	61%
Salem NH	Line #3	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0.0	0%	42.2	15.1	156%	44.5	17.4	164%

Table 38 Alt #4 Supply Line Contingency Loading

Alternative #5 Loading

Salem NH Feed	ler Analysis													
							2019			2022			2036	
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	N-1	%SN	Amps	N-1	%SN	Amps	N-1	%SN
Salem NH	BARRON AVENUE 10	13.2	10L1	387	462	107	355	28%	117	461	22%	121	457	23%
Salem NH	BARRON AVENUE 10	13.2	10L2	526	578	268	310	51%	475	103	90%	489	89	93%
Salem NH	BARRON AVENUE 10	13.2	10L4	339	339	176	163	52%	191	387	36%	197	381	38%
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	133	432	27%	217	348	43%	224	341	44%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	404	111	80%	409	106	81%	421	94	84%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	375	140	73%	341	174	66%	351	164	68%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	387	225	75%	133	479	26%	137	475	26%
Salem NH	PELHAM 14	13.2	14L4	530	589	44	545	8%	382	207	72%	393	196	74%
Salem NH	SALEM DEPOT 9	13.2	9L1	322	371	271	100	84%	201	377	38%	207	371	39%
Salem NH	SALEM DEPOT 9	13.2	9L2	322	371	224	147	70%	288	290	55%	297	281	57%
Salem NH	SALEM DEPOT 9	13.2	9L3	507	507	319	188	63%	391	187	74%	402	176	77%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	326	189	63%	168	347	33%	173	342	34%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	290	225	56%	164	351	32%	169	346	33%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	442	80	85%	206	316	40%	212	310	41%
Salem NH	ROCKINGHAM 21 -23kV	13.2	21L9	516	589		589	0%	460	129	89%	474	115	92%
Salem NH	ROCKINGHAM 21 -23kV	13.2	21L10	516	589		589	0%	500	89	97%	515	74	100%
Salem NH	ROCKINGHAM 21 -23kV	13.2	21L11	516	589		589	0%	170	419	33%	175	414	34%

Table 39 Alt #5 Feeder Normal Loading

			System	Voltage	Maximum	Poting	(MVA)		I	Project	ed Load	ł				
			()	cV)	Maximum	Kaung			2019			2022			2036	
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N-1	%SN	MVA	N-1	% SN	MVA	N-1	% SN
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.7	91.6	56.9	34.7	72%	31.0	60.6	39%	31.9	59.7	40%
Salem NH	GOLDEN ROCK 19	T2	115	23	50	78.7	91.6	0.0	91.6	0%	53.7	37.9	68%	55.3	36.3	70%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.4	10.9	2.4	8.5	26%	2.7	8.2	29%	2.8	10.2	22%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.6	14.2	6.1	8.1	45%	10.9	3.3	80%	11.2	3.0	82%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.1	10.3	4.0	6.3	44%	4.4	5.9	48%	4.5	8.5	36%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	3.0	9.9	25%	5.0	7.9	40%	5.1	7.8	41%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	9.2	3.7	75%	9.4	3.5	75%	9.6	3.3	78%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	8.6	4.4	69%	7.8	5.2	62%	8.0	5.0	64%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	8.8	4.2	71%	3.0	10.0	24%	3.1	9.9	25%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.1	6.2	3.9	84%	4.6	5.5	62%	4.7	8.3	38%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.2	5.1	4.1	70%	6.6	2.6	90%	6.8	6.2	54%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.6	11.6	7.3	4.3	63%	8.9	2.7	77%	9.2	2.4	79%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	7.5	6.9	52%	3.9	10.5	27%	4.0	10.4	28%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	6.6	7.8	48%	3.8	10.6	27%	3.9	10.5	28%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	10.1	4.3	73%	4.7	9.7	34%	4.9	9.5	35%
Salem NH	ROCKINGHAM 21 -23kV	L9	23	13.2	9.375	12.5	13	0.0	13.0	0%	10.5	2.5	84%	10.8	2.2	87%
Salem NH	ROCKINGHAM 21 -23kV	L10	23	13.2	9.375	12.5	13	0.0	13.0	0%	11.4	1.6	91%	11.8	1.2	94%
Salem NH	ROCKINGHAM 21 -23kV	L11	23	13.2	9.375	12.5	13	0.0	13.0	0%	3.9	9.1	31%	4.0	9.0	32%

Table 40 Alt #5 Transformer Normal Loading

			Lino	Section	Rating	(MA) (A)			Project	ed Loa	d	
			Line c	bection	кашу	(111 V A)	20 ⁻	19	20	22	2	036
Study Area	Circuit	Voltage	From	То	SN	SE	MVA	%SN	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	30.9	56%	20.1	37%	20.7	38%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	30.9	55%	20.1	36%	20.7	37%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	12.3	39%		0%	0.0	0%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	69%	20.1	74%	20.7	76%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	26.0	47%	10.8	20%	11.2	20%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	17.4	38%	10.8	24%	11.2	25%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	17.4	55%	10.8	34%	11.2	35%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0%	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	4.0	17%		0%	0.0	0%
Methuen	2376	23	Meth Jnctn	Golden Rock	23.9	23.9		0%		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	67%	12.3	34%	12.7	35%
Salem NH	Line #3	23	Golden Rock	Barron Ave. Tap	54.8	65.4			27.9	51%	28.7	52%
Salem NH	Line #3	23	Barron Ave. Tap	Rockingham Tap	56.4	72.5			14.3	25%	14.7	26%
Salem NH	Line #3	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1			0.0	0%	0.0	0%
Salem NH	Line #4	23	Golden Rock	Barron Ave. Tap	54.8	65.4			25.8	47%	26.6	49%
Salem NH	Line #4	23	Barron Ave. Tap	Rockingham Tap	56.4	72.5			25.8	46%	26.6	47%
Salem NH	Line #4	23	Olde Trolley Tap	Salem Depot #9	56.4	72.5			0.0	0%	0.0	0%

Table 41 Alt #5 Supply Line Normal Loading

			System V	oltage (kV)	Maximum	Rating	(MVA)		Р	rojected C	ontingenc	у	
Study Area	Substation	Tranf. ID.	eyaam v	onago (itt)	maximum	nating	(20	19	20	22	203	36
-			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE	MVA	% SE
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.70	91.60		0%	84.7	92%	87.2	95%
Salem NH	GOLDEN ROCK 19	T2	115	23	50	78.70	91.60		0%	84.7	92%	87.2	95%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.40	10.90	6.3	58%	9.0	69%	9.2	71%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.60	14.20	6.3	44%	9.0	63%	9.2	65%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.10	10.30	6.3	61%	9.0	69%	9.2	71%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	9.9	77%	8.4	65%	8.6	67%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	9.9	77%	8.4	65%	8.6	67%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	9.9	76%	8.4	65%	8.6	66%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	9.9	76%	8.4	65%	8.6	66%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.10	9.3	92%	10.1	77%	10.4	80%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.20	9.3	101%	10.1	77%	10.4	80%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.60	11.60	9.3	80%	10.1	87%	10.4	89%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	12.1	84%	6.2	43%	6.3	44%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	12.1	84%	6.2	43%	6.3	44%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	12.1	84%	6.2	43%	6.3	44%
Salem NH	ROCKINGHAM 21 -23kV	L9	23	13.2	9.375	12.50	13.00	0.0	0%	12.9	99%	13.3	102%
Salem NH	ROCKINGHAM 21 -23kV	L10	23	13.2	9.375	12.50	13.00	0.0	0%	12.9	99%	13.3	102%
Salem NH	ROCKINGHAM 21 -23kV	L11	23	13.2	9.375	12.50	13.00	0.0	0%	12.9	99%	13.3	102%

Table 42 Alt #5 Transformer Contingency Loading

Salem NH Supply	Line Conti	ngency An	alysis												
			Line S	ection	Rating	(M\/A)				Projec	ted Contin	gency			
Study Area	Circuit	Voltage	Lille S		Raung	(111 1 7)		2019			2022			2036	
olday / loa	onoun	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	48.3	0.0	74%	46.0	0.0	70%	47.3	0.0	72%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	48.3	0.0	67%	46.0	0.0	63%	47.3	0.0	65%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%		0.0	0%	0.0	0.0	0%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	46.0	18.9	170%	47.3	20.2	175%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	56.9	0.0	87%	25.2	0.0	38%	25.9	0.0	40%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	56.9	0.0	98%	25.2	0.0	43%	25.9	0.0	45%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	25.2	0.0	79%	25.9	0.0	81%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	0.0	0.0	0%	0.0	0.0	0%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	30.9	7.0	129%	20.1	0.0	84%	21.2	0.0	89%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	26.0	2.1	109%	10.8	0.0	45%	11.4	0.0	48%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	0.0	59%	12.3	0.0	30%	13.0	0.0	32%
Salem NH	Line #3	23	Golden Rock	Barron Ave. Tap	54.8	65.4	0.0	0.0	0%	38.7	0.0	59%	40.8	0.0	62%
Salem NH	Line #3	23	Barron Ave. Tap	Rockingham Tap	56.4	72.5	0.0	0.0	0%	25.2	0.0	35%	26.6	0.0	37%
Salem NH	Line #3	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0.0	0%		0.0	0%	0.0	0.0	0%
Salem NH	Line #4	23	Golden Rock	Barron Ave. Tap	54.8	65.4	0.0	0.0	0%	46.0	0.0	70%	48.5	0.0	74%
Salem NH	Line #4	23	Barron Ave. Tap	Rockingham Tap	56.4	72.5	0.0	0.0	0%	46.0	0.0	63%	48.5	0.0	67%
Salem NH	Line #4	23	Olde Trolley Tap	Salem Depot #9	56.4	72.5	0.0	0.0	0%	46.0	0.0	63%	48.5	0.0	67%

Table 43 Alt #5 Supply Line Contingency Loading

Alternative #6 Loading

Salem NH Feed	ler Analysis													
							2019			2022			2036	
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	N-1	%SN	Amps	N-1	%SN	Amps	N-1	%SN
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	107	458	21%	217	348	43%	224	341	44%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	268	247	53%	252	263	50%	260	255	52%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	176	339	34%	348	167	68%	358	157	70%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	133	479	26%	461	151	89%	474	138	92%
Salem NH	PELHAM 14	13.2	14L4	530	589	323	266	61%	46	543	9%	48	541	9%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	271	244	53%	347	168	67%	357	158	69%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	224	291	43%	312	203	61%	321	194	62%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	319	203	61%	390	132	75%	402	120	77%
Salem NH	GOLDEN ROCK 19	13.2	19L4	530	589		589	0%	84	528	16%	86	526	16%
Salem NH	GOLDEN ROCK 19	13.2	19L6	530	589		589	0%	259	353	49%	267	345	51%
Salem NH	GOLDEN ROCK 19	13.2	19L8	530	589		589	0%	235	377	45%	242	370	46%
Salem NH	ROCKINGHAM 21	13.2	21L1	530	589		589	0%	455	134	86%	468	121	88%
Salem NH	ROCKINGHAM 21	13.2	21L2	515	589		589	0%	0	589	0%	0	589	0%
Salem NH	ROCKINGHAM 21	13.2	21L3	515	515		515	0%	0	515	0%	0	515	0%
Salem NH	ROCKINGHAM 21	13.2	21L4	515	515		515	0%	0	515	0%	0	515	0%
Salem NH	ROCKINGHAM 21	13.2	21L5	530	589		589	0%	281	308	53%	289	300	55%
Salem NH	ROCKINGHAM 21	13.2	21L6	530	589		589	0%	288	301	54%	296	293	56%
Salem NH	ROCKINGHAM 21	13.2	21L7	530	589		589	0%	372	217	70%	383	206	72%
Salem NH	ROCKINGHAM 21	13.2	21L8	530	589		589	0%	441	148	83%	454	135	86%

Table 44 Alt #6 Feeder Normal Loading

Salem NH Tran	sformer Analysis															
			-	Voltage	Maximum	Rating	(MVA)			Project	ed Load	b				
			()	<v)< th=""><th></th><th></th><th></th><th></th><th>2019</th><th></th><th></th><th>2022</th><th></th><th></th><th>2036</th><th>i</th></v)<>					2019			2022			2036	i
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N- 1	% SN	MVA	N-1	% SN	MVA	N-1	% SN
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.7	91.6		91.6	0%	29.2	62.4	37%	30.1	61.5	38%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	2.4	10.5	20%	5.0	7.9	40%	5.1	7.8	41%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	6.1	6.8	49%	5.8	7.1	47%	5.9	7.0	48%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	4.0	9.0	32%	8.0	5.0	64%	8.2	4.8	65%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	3.0	10.0	24%	10.5	2.5	84%	10.8	2.2	87%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	6.2	8.2	43%	7.9	6.5	55%	8.2	6.2	57%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	5.1	9.3	37%	7.1	7.3	51%	7.3	7.1	53%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	7.3	7.1	52%	8.9	5.5	64%	9.2	5.2	66%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.7	91.6	0.0	91.6	0%	13.2	78.4	17%	13.6	78.0	17%
Salem NH	ROCKINGHAM 21	T1	115	13.2	50	78.7	91.6	0.0	91.6	0%	25.3	66.3	32%	26.1	65.5	33%
Salem NH	ROCKINGHAM 21	T2	115	13.2	50	78.7	91.6	0.0	91.6	0%	16.7	74.9	21%	17.2	74.4	22%

Table 45 Alt #6 Transformer Normal Loading

Salem NH Supply	y Line Analy	vsis										
			Line	Section	Rating	(M\/A)			Project	ed Loa	ad	
			LINE	Jection	Rating	(141 4 7)	201	19	20	22	2	036
Study Area	Circuit	Voltage	From	То	SN	SE	MVA	%SN	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	9.6	17%	10.7	20%	11.0	20%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	9.6	17%	10.7	19%	11.0	20%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	8.6	27%	10.7	34%	11.0	35%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	1.0	4%	18.5	68%	19.0	70%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	7.1	13%	18.5	34%	19.0	35%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	7.1	16%	18.5	41%	19.0	42%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	7.1	22%	18.5	58%	19.0	60%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0%	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	0.0	0%	0.0	0%	0.0	0%
Methuen	2376	23	Meth Jnctn	Golden Rock	23.9	23.9		0%		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	18.6	52%	24.0	67%	25.3	71%

Table 46 Alt #6 Supply Line Normal Loading

Liberty Utilities System Planning Salem Area Study 2020

Salem NH Tran	sformer Contingency A	nalysis											
			System V	oltage (kV)	Maximum	Rating (MVA)			Р	rojected C	ontingency	y	
Study Area	Substation	Tranf. ID.	-			-	. ,	20	19	20	22	203	36
			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE	MVA	% SE
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.70	91.60	0.0	0%	0.0	0%	0.0	0%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	5.2	40%	9.7	75%	10.0	78%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	5.2	40%	9.7	75%	10.0	78%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	5.2	40%	9.7	75%	10.0	77%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	5.2	40%	9.7	75%	10.0	77%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	9.3	65%	12.0	83%	12.3	86%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	9.3	65%	12.0	83%	12.3	86%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	9.3	65%	12.0	83%	12.3	86%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.70	91.60	0.0	0%		0%	0.0	0%
Salem NH	ROCKINGHAM 21	T1	115	13.2	50	78.70	91.60	0.0	0%	44.8	49%	46.1	50%
Salem NH	ROCKINGHAM 21	T2	115	13.2	50	78.70	91.60	0.0	0%	44.8	49%	46.1	50%

Table 47 Alt #6 Transformer Contingency Loading

Salem NH Supply	Line Conti	ngency An	alysis												
			Line S	ection	Rating	(M\/A)				Projec	ted Contin	gency			
Study Area	Circuit	Voltage	Line c	becubii	Kaung	(IVI V A)		2019			2022			2036	
Study Area	oncuit	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE	MVA	Load > SE	%SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	16.7	0.0	25%	29.2	0.0	45%	30.1	0.0	46%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	16.7	0.0	23%	29.2	0.0	78%	30.1	0.0	80%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	15.6	0.0	49%	29.2	0.0	92%	30.1	0.0	94%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	1.0	0.0	4%	0.0	0.0	0%	0.0	0.0	0%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	16.7	0.0	25%	29.2	0.0	45%	30.1	0.0	46%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	16.7	0.0	29%	29.2	0.0	78%	30.1	0.0	80%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	15.6	0.0	49%	29.2	0.0	92%	30.1	0.0	94%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	1.0	0.0	4%	0.0	0.0	0%	0.0	0.0	0%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	9.6	0.0	40%	10.7	0.0	45%	11.3	0.0	47%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	7.1	0.0	30%	18.5	0.0	77%	19.5	0.0	82%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	18.6	0.0	46%	24.0	0.0	59%	25.3	0.0	62%

Table 48 Alt #6 Supply Line Contingency Loading

Liberty Utilities System Planning Salem Area Study 2020

Alternative #7 Loading

Salem NH Feed	ler Analysis													
							2019			2022			2036	
Study Area	Substation	Voltage (kV)	Feeder	SN Rating (Amps)	SE Rating (Amps)	Amps	N-1	%SN	Amps	N-1	%SN	Amps	N-1	%SN
Salem NH	BARRON AVENUE 10	13.2	10L1	387	462	107	355	28%	268	310	51%	276	302	52%
Salem NH	BARRON AVENUE 10	13.2	10L2	526	578	268	310	51%	287	291	55%	295	283	56%
Salem NH	BARRON AVENUE 10	13.2	10L4	339	339	176	163	52%	181	397	34%	186	392	35%
Salem NH	OLDE TROLLEY 18	13.2	18L1	503	565	133	432	27%	217	348	43%	224	341	44%
Salem NH	OLDE TROLLEY 18	13.2	18L2	503	515	404	111	80%	291	224	58%	299	216	59%
Salem NH	OLDE TROLLEY 18	13.2	18L3	515	515	375	140	73%	341	174	66%	351	164	68%
Salem NH	OLDE TROLLEY 18	13.2	18L4	516	612	387	225	75%	284	328	55%	292	320	57%
Salem NH	PELHAM 14	13.2	14L4	530	589	44	545	8%	490	99	92%	504	85	95%
Salem NH	SALEM DEPOT 9	13.2	9L1	322	371	271	100	84%	297	281	56%	305	273	58%
Salem NH	SALEM DEPOT 9	13.2	9L2	322	371	224	147	70%	288	290	55%	297	281	57%
Salem NH	SALEM DEPOT 9	13.2	9L3	507	507	319	188	63%	391	187	74%	402	176	77%
Salem NH	SPICKET RIVER 13	13.2	13L1	515	515	326	189	63%	348	167	68%	358	157	70%
Salem NH	SPICKET RIVER 13	13.2	13L2	515	515	290	225	56%	310	205	60%	319	196	62%
Salem NH	SPICKET RIVER 13	13.2	13L3	522	522	442	80	85%	385	137	74%	396	126	76%
Salem NH	GOLDEN ROCK 19	13.2	19L4	530	589		589	0%	84	528	16%	86	526	16%
Salem NH	GOLDEN ROCK 19	13.2	19L6	530	589		589	0%	113	499	22%	116	496	22%
Salem NH	PELHAM 14	13.2	14L6	528	647		647	0%	326	321	62%	336	311	64%

Table 49 Alt #7 Feeder Normal Loading

			System	Voltage	Maximum	Pating	(MVA)		I	Project	ed Load	ł				
			(I	kV)	Waximum	Rating			2019		2022			203		6
Study Area	Substation	Tranf. ID.	From	То	Nameplate Rating	SN	SE	MVA	N-1	% SN	MVA	N-1	% SN	MVA	N-1	% SN
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.7	91.6	56.9	34.7	72%	60.9	30.7	77%	62.7	28.9	80%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.4	10.9	2.4	8.5	26%	6.1	4.8	65%	6.3	6.7	50%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.6	14.2	6.1	8.1	45%	6.6	7.6	48%	6.8	7.4	50%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.1	10.3	4.0	6.3	44%	4.1	6.2	45%	4.3	8.7	34%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.4	12.9	3.0	9.9	25%	5.0	7.9	40%	5.1	7.8	41%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.4	12.9	9.2	3.7	75%	6.6	6.3	54%	6.8	6.1	55%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.5	13	8.6	4.4	69%	7.8	5.2	62%	8.0	5.0	64%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.5	13	8.8	4.2	71%	6.5	6.5	52%	6.7	6.3	53%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.1	6.2	3.9	84%	6.8	3.3	92%	7.0	6.0	56%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.2	5.1	4.1	70%	6.6	2.6	90%	6.8	6.2	54%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.6	11.6	7.3	4.3	63%	8.9	2.7	77%	9.2	2.4	79%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.4	14.4	7.5	6.9	52%	8.0	6.4	55%	8.2	6.2	57%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.9	14.4	6.6	7.8	48%	7.1	7.3	51%	7.3	7.1	52%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.9	14.4	10.1	4.3	73%	8.8	5.6	63%	9.1	5.3	65%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.7	91.6	0.0	91.6	0%	4.5	87.1	6%	4.6	87.0	6%

Table 50 Alt #7 Transformer Normal Loading

Salem NH Supply	y Line Analy	vsis										
			Line 9	Section	Rating	(M\/_A)			Project	ed Loa	ad	
			LINE	Jection	Rating		201	19	202	22	2	036
Study Area	Circuit	Voltage	From	То	SN	SE	MVA	%SN	MVA	%SN	MVA	%SN
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	30.9	56%	33.9	62%	34.9	64%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	30.9	55%	33.9	60%	34.9	62%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	12.3	39%	11.6	36%	12.0	38%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	69%	22.3	82%	23.0	85%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	26.0	47%	27.0	49%	27.8	51%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	17.4	38%	14.3	32%	14.7	33%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	17.4	55%	14.3	45%	14.7	46%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	0.0	0%	0.0	0%	0.0	0%
Methuen	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	4.0	17%	0.0	0%	0.0	0%
Methuen	2376	23	Meth Jnctn	Golden Rock	23.9	23.9		0%		0%	0.0	0%
Methuen	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	67%	23.8	66%	25.2	70%

Table 51 Alt # 7 Supply Line Normal Loading

Liberty Utilities System Planning Salem Area Study 2020

Salem NH Trans	sformer Contingency Ana	alysis											
			System V	oltage (kV)	Maximum	Rating	(MVA)		Р	rojected C	ontingenc	у	
Study Area	Substation	Tranf. ID.						20	19	20	22	203	36
			From	То	Nameplate Rating	SN	SE	MVA	% SE	MVA	% SE	MVA	% SE
Salem NH	GOLDEN ROCK 19	T1	115	23	50	78.70	91.60	0.0	0%	0.0	0%	0.0	0%
Salem NH	BARRON AVENUE 10	L1	23	13.2	7	9.40	10.90	6.3	58%	8.4	65%	8.7	67%
Salem NH	BARRON AVENUE 10	L2	23	13.2	7	13.60	14.20	6.3	44%	8.4	59%	8.7	61%
Salem NH	BARRON AVENUE 10	L4	23	13.2	7	9.10	10.30	6.3	61%	8.4	65%	8.7	67%
Salem NH	OLDE TROLLEY 18	L1	23	13.2	9.375	12.40	12.90	9.9	77%	9.2	71%	9.5	73%
Salem NH	OLDE TROLLEY 18	L2	23	13.2	9.375	12.40	12.90	9.9	77%	9.2	71%	9.5	73%
Salem NH	OLDE TROLLEY 18	L3	23	13.2	9.375	12.50	13.00	9.9	76%	9.2	71%	9.5	73%
Salem NH	OLDE TROLLEY 18	L4	23	13.2	9.375	12.50	13.00	9.9	76%	9.2	71%	9.5	73%
Salem NH	SALEM DEPOT 9	L1	23	13.2	7	7.36	10.10	9.3	92%	11.2	86%	11.5	88%
Salem NH	SALEM DEPOT 9	L2	23	13.2	7	7.36	9.20	9.3	101%	11.2	86%	11.5	88%
Salem NH	SALEM DEPOT 9	L3	23	13.2	9.375	11.60	11.60	9.3	80%	11.2	96%	11.5	99%
Salem NH	SPICKET RIVER 13	L1	23	13.2	9.375	14.40	14.40	12.1	84%	11.9	83%	12.3	85%
Salem NH	SPICKET RIVER 13	L2	23	13.2	9.375	13.90	14.40	12.1	84%	11.9	83%	12.3	85%
Salem NH	SPICKET RIVER 13	L3	23	13.2	9.375	13.90	14.40	12.1	84%	11.9	83%	12.3	85%
Salem NH	GOLDEN ROCK 19	T2	115	13.2	50	78.70	91.60		0%		0%	0.0	0%

Table 52 Alt #7 Transformer Contingency Loading

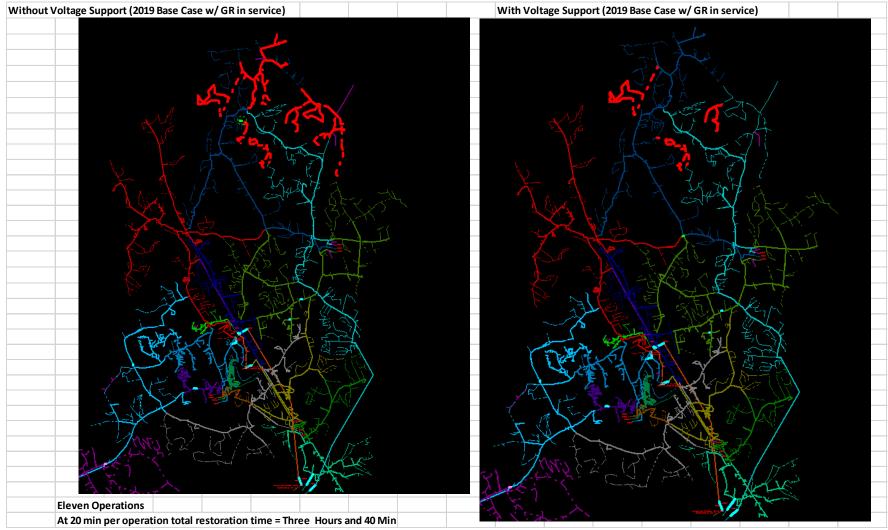

Salem NH Supply Line Contingency Analysis															
			Line S	ection	Rating	(M\/A)				Projec	ted Contin	gency			
Study Area	Circuit	Voltage	Line 3	ection	Kaung			2019			2022		2036		
Study Area	Circuit	(kV)	From	То	SN	SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE	MVA	Load > SE	% SE
Salem NH	2352	23	Golden Rock	Barron Ave. Tap	54.8	65.4	48.3	0.0	74%	48.2	0.0	74%	49.6	0.0	76%
Salem NH	2352	23	Barron Ave. Tap	Olde Trolley Tap	56.4	72.5	48.3	0.0	67%	48.2	0.0	67%	49.6	0.0	68%
Salem NH	2352	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	25.9	0.0	81%	26.7	0.0	84%
Salem NH	2352	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	22.3	0.0	82%	23.0	0.0	85%
Salem NH	2393	23	Golden Rock	Barron Ave. Tap	54.8	65.4	56.9	0.0	87%	60.9	0.0	93%	62.7	0.0	96%
Salem NH	2393	23	Barron Ave. Tap	Olde Trolley Tap	45.2	58.2	56.9	0.0	98%	48.2	0.0	83%	49.6	0.0	85%
Salem NH	2393	23	Olde Trolley Tap	Olde Trolley	31.9	31.9	29.7	0.0	93%	25.9	0.0	81%	26.7	0.0	84%
Salem NH	2393	23	Olde Trolley Tap	Salem Depot #9	27.1	27.1	18.6	0.0	69%	22.3	0.0	82%	23.0	0.0	85%
Methuen MA	2353	23	Meth Jnctn	Golden Rock	23.9	23.9	30.9	7.0	129%	38.1	14.2	159%	40.2	16.3	168%
Methuen MA	2376	23	Meth Jnctn	Golden Rock	23.9	23.9	26.0	2.1	109%	27.0	3.1	113%	28.5	4.6	119%
Methuen MA	2376	23	SPICKET RIVER TAP	SPICKET RIVER	35.9	40.7	24.2	0.0	59%	23.8	0.0	59%	25.2	0.0	62%

Table 53 Alt #7 Supply Line Contingency Loading

9.4 Appendix D – MWHr Summary

		2022 Pre	edicted Contingency N-1 Pr	oblems		
Plan	180 MWhr Transformer Violations	r Criteria	120 MWhr Supply Line Violations	Criteria	Feeders above 16	MWhr
	Description	MWhr	Description	MWhr	Description	MWhr
Base	Golden Rock T1 Outage	679	2393 Baron Ave Tap to Olde Trolley Tap	159	18L3	18
			G133 - 115kV	439	18L4	24
			Transmission Line		9L1	24
					9L2	20
					9L3	23
					13L1	18
					13L2	20
					13L3	17
1	Golden Rock T1 Outage	254			9L2	16
2	Golden Rock T1 Outage	237			9L2	16
3	Golden Rock T1 Outage	352			9L2	16
4					9L2	16
5					21L10	19
					9L2	16
6					21L7	25
					21L8	23
7	Golden Rock T1	345			9L2	16
	Outage				14L4 / 14L6	52
					14L3 / 14L4 / 14L6	88

Table 54 2022 Predicted Contingency N-1 Problems

9.5 Appendix E – Spicket River Backup Analysis

Figure 55: Voltage Performance during 13L1 contingency (low voltage <0.95 per-unit shown in red)

9.6 Appendix F – 22.8 kV Voltage Analysis

		Voltage Issues
<u>Description</u>	Summer Normal	<u>Contingency</u>
Existing 23 kV system. 2.5 MW of generation available on each of the Salem Depot 9L3 and Barron Ave. 10L4 feeders during contingency conditions.	None	None
Existing 23 kV system.	None	None
Add 2-23/13 kV feeder positions at Salem Depot and one at Barron Ave. to the existing system.	Salem Depot 23 kV bus at .9375 per-unit. Olde Trolley 23 kV bus at .9471 per-unit.	Olde Trolley 23 kV bus at .87857 per- unit for 2352 and Golden Rock 115/23 kV transformer out-of-service. Salem Depot 23 kV bus at .8676 per- unit for 2352 and Golden Rock 115/23 kV transformer out-of-service.
Add the second Golden Rock 115/23 kV transformer, one new 23 kV line, 2- 23/13 kV feeder positions at Salem Depot and one at Barron Ave. to the existing system.	None	None
Add the second Golden Rock 115/23 kV transformer, two new 23 kV lines and a new 23/13 kV Rockingham substation to the existing system.	None	Salem Depot 23 kV bus at .87524 per- unit for 2352 out-of-service. Rockingham 23 kV bus at .88188 per- unit for 2352 or second new line out- of-service.
Existing 23 kV system. Added contingency of picking up the Pelham 14L4 and L6 feeders through ties to Olde Trolley and Barron Ave.	None	Olde Trolley 23 kV bus at .89932 per- unit for Golden Rock 115/23 kV transformer out-of-service. Salem Depot 23 kV bus at .89206 per- unit for Golden Rock 115/23 kV transformer out-of-service.
Existing 23 kV system.	Olde Trolley 23 kV bus at .9411 per-unit and Salem Depot 23 kV bus at .9328 per-unit.	Olde Trolley 23 kV bus at .87171 per- unit for either 2352 or Golden Rock 115/23 kV transformer out-of-service. Salem Depot 23 kV bus at .86229 per- unit for either 2352 or Golden Rock 115/23 kV transformer out-of-service.
	Existing 23 kV system. 2.5 MW of generation available on each of the Salem Depot 9L3 and Barron Ave. 10L4 feeders during contingency conditions. Existing 23 kV system. Add 2-23/13 kV feeder positions at Salem Depot and one at Barron Ave. to the existing system. Add the second Golden Rock 115/23 kV transformer, one new 23 kV line, 2- 23/13 kV feeder positions at Salem Depot and one at Barron Ave. to the existing system. Add the second Golden Rock 115/23 kV transformer, two new 23 kV lines and a new 23/13 kV Rockingham substation to the existing system. Existing 23 kV system. Added contingency of picking up the Pelham 14L4 and L6 feeders through ties to Olde Trolley and Barron Ave.	Existing 23 kV system. 2.5 MW of generation available on each of the Salem Depot 9L3 and Barron Ave. 10L4 feeders during contingency conditions.NoneAdd 2-23/13 kV feeder positions at Salem Depot and one at Barron Ave. to the existing system.NoneAdd the second Golden Rock 115/23 kV transformer, one new 23 kV line, 2- 23/13 kV feeder positions at Salem Depot and one at Barron Ave. to the existing system.NoneAdd the second Golden Rock 115/23 kV transformer, one new 23 kV line, 2- 23/13 kV feeder positions at Salem Depot and one at Barron Ave. to the existing system.NoneAdd the second Golden Rock 115/23 kV transformer, two new 23 kV lines and a new 23/13 kV Rockingham substation to the existing system.NoneExisting 23 kV system. Added contingency of picking up the Pelham 14L4 and L6 feeders through ties to Olde Trolley and Barron Ave.NoneExisting 23 kV system.Olde Trolley 23 kV bus at .9411 per-unit and Salem Depot 23 kV

	Total Cost	Spent to Date Towards Plan	MVA Capacit	ty Provided	\$/	MVA	Criteria
Alternative Plan	(\$M)	(\$M)	Total	Firm	Total	Firm	Ranking
Alt Plan #1	\$11.41*	\$3.5	88.7	10	\$129	\$1,141	7
Alt Plan #2	\$24.00	\$3.5	104.7	17.1	\$229	\$1,404	4
Alt Plan #3	\$35.31	\$3.5	146.9	60.3	\$240	\$586	5
Alt Plan #4	\$33.94	\$0.0	152.1	108.1	\$223	\$314	3
Alt Plan #5	\$33.15	\$1. 5	152.1	93.7	\$218	\$354	2
Alt Plan #6	\$34.90	\$5.0	177.7	142.3	\$196	\$245	1
Alt Plan #7	\$25.01	\$3.5	116.68	29.1	\$214	\$859	6

9.7 Appendix G – Comparison of Plans – Cost vs Added Capacity

* Does not include annual operating expenses for diesel generation, estimated to be \$200,000 / year Table 55 Comparison of Plans – Cost vs Added Capacity

9.8 Appendix H – Comparable Past Studies to Salem

- A. Mt Support Substation Expansion
 - a. Project Need

The main driver for the Mt Support Substation Expansion Project was load relief of forecasted overloads under normal and contingency conditions and voltage violations. With the contingency loss of the Mt Support transformer or Transmission line, the sub transmission system would result overloaded. Other feeders and transformers in the area were projected to violate the Distribution Planning Criteria for normal and contingency loading.

b. Selected Solution

To address the system deficiencies in the area, rather than expand or rely on the existing sub transmission system, the preferred solution included the extension of a new 115kV transmission line, the installation of a new 115/13.2kV transformer and the installation of two new 13.2kV distribution feeders.

B. Michael Ave Substation

a. Project Need

The main driver for the Michael Ave Project was to provide added capacity for the expansion of Whelen Engineering in Charlestown NH and to address the asset conditions at the Charlestown Substation. The issues experienced with the Charlestown substation were similar to those being experienced with Salem Depot and Barron Ave substations.

b. Selected Solution

To address the asset condition at the Charlestown Substation and provide added capacity to supply Whelen Engineering, the preferred solution included the installation of a new 115kV substation in Charlestown NH including a new 115/13kV transformer, a new 115kV transmission line and two new 13.2kV distribution feeders. The new Michael Ave substation allowed for the retirement of the Charlestown Substation and for the expansion of Whelen Engineering.

- C. Pelham Substation Expansion
 - a. Project Need

The main driver for the Pelham Substation Expansion Project was load relief of forecasted overloads under normal and contingency conditions and to address the asset condition of the existing substation transformer. With the contingency loss of the Pelham transformer or Transmission line, the system lacked the necessary capacity to resolve Planning Criteria Violations for load at risk. Other feeders in the area were projected to violate the Distribution Planning Criteria for normal and contingency loading.

b. Selected Solution

To address the system deficiencies in the area, the preferred solution included the complete refurbishment of the Pelham substation including the extension of a new 115kV transmission line tap, the installation of a new 115/13.2kV transformer, the replacement of the existing 115/13.2kV transformer and the installation of two new 13.2kV distribution feeders.

10.0 Annex List

Annex A - National Grid Internal Strategy Document Distribution Substation Transformers Revised Strategy – October 2009

Annex B – 10L1 Testing & Maintenance Report: United Power Group - August 2014

Annex C – 10L4 Testing & Maintenance Report: United Power Group - September 2014

Annex D – 9L3 Testing & Maintenance Report: United Power Group - August 2014

Annex E – 2020 Dissolved Gas Analysis: Weidmann

- 1. Barron Ave 10L2 Test Report #01-7334797-618125-00
- 2. Barron Ave 10L1 Test Report #01-7334796-618125-00
- 3. Salem Depot 9L3 Test Report #01-7334792-618125-00
- 4. Salem Depot 9L2 Test Report #01-7334791-618125-00

Annex F – Liberty Utilities Electrical Substation Clearances Standard - Doc. # ENG-SUB006 – August 2020

THIS PAGE INTENTIONALLY LEFT BLANK

Distribution Substation Transformers Table of Contents

Distribu	ition Substation Transformers Strategy Statement	2
Distribu	ition Substation Transformers Strategy Justification	
1.0	Purpose and Scope	
2.0	Background	
2.1	Substation Maintenance Standards	4
2.2	Data	4
2.3	Events	7
2.4	Transformer Health and Risk Scores (THaRS)	7
3.0	Benefits	
3.1	Safety & Environmental	
3.2	Reliability	
3.3	Regulatory	
3.4	Customers	
4.0	Estimated Costs	
5.0	Implementation	14
6.0	Risk Assessment	14
6.1	Safety & Environmental	14
6.2	Reliability	
6.3	Regulatory	15
6.4	Customer	15
7.0	Data Requirements	
7.1	Existing/Interim:	
7.2	Proposed:	15
8.0	References	
9.0	Massachusetts	
10.0	New York	20
11.0	Rhode Island	
12.0	New Hampshire and Vermont	

Distribution Substation Transformers Strategy Statement

The strategic aims for Distribution Substation Power Transformers are to:

- minimize random transformer failures
- ensure that the transformer population is capable of performing its function
- provide replacement for those units that are identified as more likely to fail.

A list of candidates for replacement on a per state basis can be found in the state specific section of this document. It should be noted that transformers suggested for replacement are evaluated in conjunction with substation reviews. This strategy is based on transformer condition and risk, and has been developed with significant input from subject matter experts, local operations colleagues and available historic and test results.

This strategy supports both reliability and a sustainable network by establishing a list of replacement candidates by state, applying an ongoing GE Type U replacement program, and employing a tactical application of Load Tap Changer (LTC) filtration and condition monitoring.

Amendments Record

Issue	Date	Summary of Changes / Reasons	Author(s)	Approved By (Inc. Job Title)
	10/14/09	Revision	Eileen Duarte Distribution Asset Strategy	John Pettigrew Executive Vice President, Electric Distribution Operations
1	07/30/07	Initial Issue	Tony McGrail Substations O&M	John Pettigrew Executive Vice President, Electric Distribution Operations

Distribution Substation Transformers Strategy Justification

1.0 Purpose and Scope

This strategy sets forth a Distribution Substation Transformer program to allow National Grid to confidently rank it's substation transformers in terms of health, identify those transformers that are most critical to the system, and rank transformers in terms of risk so that the transformers are properly prioritized for asset replacement.

This strategy is consistent with the approach taken for our transmission assets and supports achieving the objective to improve reliability and meet service quality standards in all states in which National Grid operates. This strategy pertains to substation transformers described by FERC as distribution, which includes TxD, and DxD.

2.0 Background

Substation transformers are a critical asset class in the successful operation of the electrical distribution system. Consequently, we must endeavor to be proactive in our determination of the following:

- Transformer health through test and assessment
- Need for maintenance and content of the maintenance
- Spares and mobiles strategies
- System requirements and transformer capability
- Identification of 'at risk' units
- Identification of replacement candidates

Substation transformers have a number of characteristics that require close attention and supervision, such as:

- Transformers are usually very reliable (depending on size, configuration LTC's etc)
- Transformers have a long asset life expectancy
- Failures may cause significant interruptions
- Transformers are expensive
- Replacement is an involved procedure requiring coordination of many departments and issues
- Determining health and condition is a complex task
- Lead times for new transformers may be over a year
- Individual transformers of known manufacturer/design may be less reliable than others
- Safety and environmental concerns regarding large quantities of oil
- Replacement versus refurbish or repair decisions are complex
- Transformers have many sub-systems, including bushings, cooling, oil containment, tap changers, etc.

2.1 <u>Substation Maintenance Standards</u>

Transformer maintenance is covered under our substation maintenance standards and procedures. A list of substation maintenance documents can be found in SMS 400.00.1. There is no international standard that applies to transformer asset health. Work has been conducted to identify root cause analysis of failures at CIGRE, Doble Engineering, and HSB Insurance (1,2,3,4). These documents are referenced when transformer decisions are made at National Grid.

An oil sample is taken from our transformers on a one or two-year time-frame based on the size of the transformer as described in Substation Maintenance Standard (SMS) 402.02.1 and 402.01.1. Transformers rated 15 MVA and above are tested annually, and transformers rated between 2.5-14.9 MVA are tested on a 24 month interval (7, 8). The interval may change based on the results of the Dissolved Gas Analysis (DGA) or system incidents that indicate possible transformer health issues.

Transformers receive a bi-monthly Visual and Operational (V&O) inspection as part of the substation bimonthly V&O. A severe trouble condition¹ problem is addressed immediately. Problems and discrepancies found are corrected, and problems and discrepancies not corrected are recorded on an inspection card and follow-up work is generated. This is in accordance with the SMS 400.06.1 [17].

In addition, Thermographic Inspections are performed on transformers as part of the annual substation Thermographic Inspection. A Thermographic Inspection Report is created for detected problems and follow-up work is scheduled. This is in accordance with the SMS 400.07.1 [18].

Specialized testing to ascertain transformer health in detail is performed on commissioning or after an incident (7, 8). These tests include power factor, capacitance, Sweep Frequency Response Analysis (SFRA) and other tests to gain information about the integrity of the transformer insulation and winding structure.

Transformers equipped with Load Tap Changers (LTC's) will receive a V&O inspection (six times a year), thermographic inspection (annually), and DGA sample on the LTC. Internal inspections are performed if the results of the inspections and/or the DGA sample indicates the need, or if the number of operations exceeds the ROP constant or the time interval limit has been reached. The timeframe for DGA samples and internal inspections are based on the manufacturer and type of LTC, which is listed in SMS 412.01.1[19].

Maintenance is performed on transformers as necessary based on the findings of the above mentioned inspections, oil analysis, testing and Company expert analysis and knowledge of the unit.

2.2 <u>Data</u>

The substation distribution transformer population consists of 1,471 operating units and 155 spares. This is based on an MVA rating up to 20 MVA. Of the 1,471 operating units and 155 spares listed in AIMMS, 1,078 units and 99 spares have associated age data.

The age profile for the operating distribution transformers are displayed in Figure 1. Fifty percent of the transformer population with a known age was manufactured prior to 1972, with the majority being between 35 and 60 years old. In addition, 5 % of the population is greater than 70 years old, while 10% are greater than 60

¹ Hazardous situation to system operation and/or National Grid employees or the public

years old. Twenty-seven percent of the transformer population is missing age data information. The transformer age profile on a per state basis can be found in the Appendix. After analyzing the age profile data on a per state basis, it is expected that the average age of the transformer population is actually higher than the average 29 years indicated and most likely closer to what is seen in Rhode Island, and average age of 36 years with only 7.6% of missing age data. The greater the percentage of missing age data, the younger the transformer population seems to be, indicating that the missing age data relates to older units.

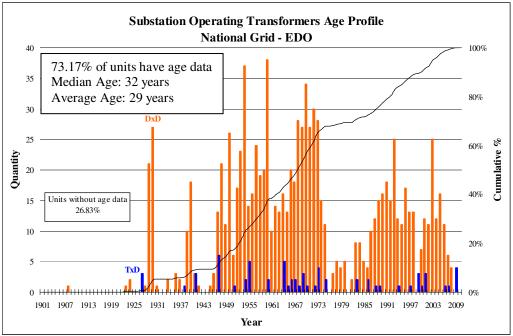


Figure 1. Distribution Transformer Age Profile

The age profile for the spare transformers is displayed in Figure 2. The average age of the spare fleet of transformers is 22 years. Fifty percent of the transformer population was manufactured prior to 1973, with the majority being between 35 and 54 years of age. In addition, 7 % of the population is greater than 63 years of age while 16% are greater than 52 years of age. Thirty-six percent of the transformer spare population is missing age data information.

The number of spares and age data, which was extracted from AIMMS, is presently under review. An initiative to determine the number of viable spares is underway, and CASCADE will be updated in 2010 in conjunction with the development of a transformer spares strategic approach.

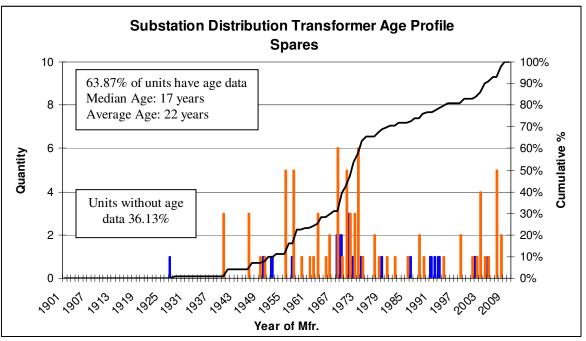


Figure 2: Distribution Transformer Age Profile Spares

The transformers MVA profile is shown in Figure 3 and indicates that 75% of the transformer population is 5 MVA or less, 91% is 7.5 MVA or less, and 98% is 20 MVA or less. DGA samples are typically taken on transformer banks rated 2.5 MVA or larger, equating to 0.833 MVA for single phase units in accordance with Substation Maintenance Standard 402.02.1 version 1.8.

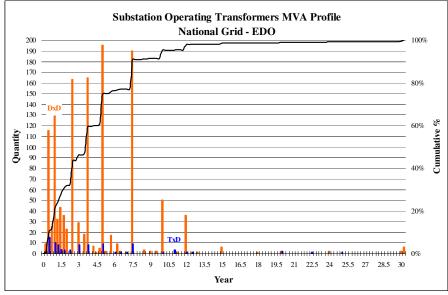


Figure 3. Distribution Transformer MVA Profile

2.3 <u>Events</u>

Over the last ten years there have been 47 transformers system wide that have failed due to various reasons. Figure 4 displays the number of failures on a per year basis.

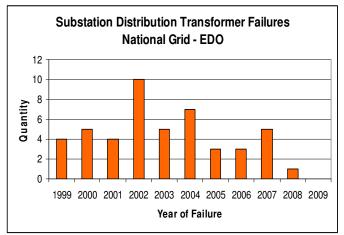


Figure 4. National Grid Transformer Failures

Based on the IDS and SIR data, over the last ten years there have been 212 events related to substation transformers. The most frequent listed failure reason extracted from this data is deteriorated equipment (79) followed by animals (32), overload (15), short circuit (14) and device failed (12). The number one cause of substation transformer failures is through faults. A healthy transformer is more likely able to withstand a thru fault than a unit that is deteriorated, aged or in poor electrical/mechanical condition.

Transformer failures are inevitable but we aim to minimize the likelihood of failures caused both by:

- Internal events insulation failure, winding movement etc.
- External events through faults, lightning, animal incursions etc.

Incipient internal events may be detected through Dissolved Gas Analysis (DGA), Visual & Operational Inspections (V&O), InfraRed inspections, PIW's or identified through engineering and industry knowledge. External events are addressed through application of lightning arresters, animal protection and pursuit of such activities as Feeder Hardening and Vegetation Management.

The failure rate for power transformers is approximately 0.5% per year with an average age at failure of between 30 and 35 years. Older units are not, *per se*, more likely to fail. However, they may be more susceptible due to accumulated effects of through faults and irreversible paper aging mechanisms. Transformer failures are captured by Substation O&M Services and the details distributed to key personnel in a bi-annual report. It is recommended that these failures be entered and maintained in Cascade in future.

2.4 <u>Transformer Health and Risk Scores (THaRS)</u>

In order to better manage the transformer fleet, we need to better understand the condition of all members of the fleet and their risks. This is not a simple matter and even the best managed fleet would still be prone to some

random failures. The aim is to prevent as many failures as possible, reduce the exposure, and thus reduce impact to an acceptable level (1).

Transformers tend to be reliable (3), but the reliability is a function of faults seen, maintenance and the manufacture/design of the transformer. DGA alone is not sufficient to detect incipient faults, and the industry best practice is to expect that about 25% to 50% of imminent failures may be detected using DGA. To help better manage our transformer fleet and not rely on DGA alone, a scoring system based on condition and risk has been put in place to formulate a 'watch list' of transformers. This list will be closely monitored, and an action plan will be developed for each transformer on 'watch' to assist in preventing failures.

Distribution uses the work developed for transformer dissolved gas analysis (DGA) at National Grid UK as discussed at the Doble 2002 Client Conference (5). The technical discussion presented by John Lapworth, National Grid, UK discusses a method of using a DGA scoring system based on ratios of key gasses to identify transformers that may be at risk of poor condition. Certain key gasses and combinations of key gasses are indicators of particular problems within a transformer. The basic combustible gas results are combined to give a single DGA score for each transformer for each oil sample. This DGA score is the baseline for prioritizing our fleet of transformers.

DGA analysis is performed by engineers in each region. The DGA scoring system is a newly applied tool in National Grid that assists in the ranking process. In the UK for transmission transformers, generally with conservators² since they are free-breathing and key gasses are released into the atmosphere, a score of 60 is an indication of 'monitor' while a score of 100 is an 'alarm' situation. In the early days of analysis and review, it seems that with US distribution transformers, generally sealed³, we can set the 'monitor' level to 100 and the 'alarm' level to 150. Key gasses remain contained within the transformer oil on sealed units, and therefore will have more combustible gasses present. This is, of course, a heuristic process but it can be validated by reviewing DGA results from known failed units. Failed units in the data set have an average DGA score in excess of 300, but as this was post fault, further analysis is necessary to gain the proper trend information.

Once the transformer population has received a DGA score, analysis with Subject Matter Experts (SME's) occurs to evaluate transformers with elevated scores or scores that have increased significantly since the previous analysis. This review, which includes review of other maintenance performed (V&O Inspection, Infrared survey, known problems such as through faults, field repairs, protective component issues, capacity issues), is conducted and the DGA rating is adjusted accordingly. After this review, the DGA score is converted to a DGA rating, which becomes part of the Transformer Health and Risk Score (THaRS) method used to prioritize transformers for replacement. A rating of 10 indicates a DGA score greater than 125, a rating of 5 indicates a DGA score between 76 and 125, and a DGA score less than 75 receives a rating of 1. However, these ratings are adjusted based on favorable or unfavorable comments from the SME's. For example, if a transformer's DGA score is greater than 125, but the SME's input is favorable (stable, transformer repaired, etc), then the score will be changed from a 10 to a 1.

² Conservator type transformers have free-breathing tanks and key gasses are released into the atmosphere.

³ Sealed transformers have sealed tanks and key gasses remain within the transformer oil

In addition to the DGA rating, an MVA score is provided to each unit based on the formula (MVA+20)/20. Twenty MVA is used indicating the largest MVA for distribution class transformers. A larger unit is considered more critical than a smaller unit because typically it may carry more load, and is more costly to replace.

As displayed in Figure 1, National Grid has a large population of aging transformers. As the unit ages, the insulation condition deteriorates and therefore becomes more susceptible to failures. In addition, older units have more likely been exposed to through faults, thus further weakening the insulation integrity. Also, parts become obsolete and maintenance becomes costly. The health review includes an age score based on a life expectancy of 60 years, an age that we expect half of our transformers to reach. A transformer that is 60 years old would receive a score of 2, while a transformer that is new would receive a score of 1.

Transformers that contain 50 ppm or more of PCB are considered a hazardous waste and must be handled and disposed of in accordance with EP-1, Waste Management. Units that are known or expected to contain PCB in the insulating oil are an environmental and human health risk, and therefore are considered during this transformer health review. A transformer failure that contains 50 ppm or more of PCB in the oil is a contamination issue that requires an immediate and costly clean up. A score of 1.2 is given to those units containing PCB of 50 ppm or more, and a score of 1 to those units that are PCB free. Although PCB spills are serious, units containing PCB insulating oils can be mitigated by retro-filling with mineral oil.

Highly Utilized (HUtz) transformers are those transformers that have been identified to operate at 100% load or more during peak load periods. Although based on certain circumstances and the time of year, these transformers may or may not exceed 100% load. However, a transformer that is operated at its limit or above for long periods of time may result in a more rapid deterioration of condition than units operated below maximum load. In addition, since the capacity of these transformers has been exceeded, a future solution may be necessary in order to withstand the growth these transformers are serving. Therefore, a HUtz score has been incorporated into the health and risk review. If a transformer is operated above 100% load, the amount above 100% is added to 1.0. For example, a transformer that operates at 114% load will receive a HUtz score of 1.14.

The scores are applied to each transformer and a final transformer health and risk score (THaRS) is determined. The transformers are ranked in order of replacement priority based on the descending order of the final score. Further technical input from SME's is performed and the list is revised in light of their comments and experience. Table 1 describes the transformer health and risk scores.

THaRS is a simple but comprehensive method developed to initiate the replacement prioritization of the distribution substation transformer fleet. The scoring system is highly weighted on transformer condition with some risk incorporated into the analysis. Additionally, it should be noted that both O&M and the operations staff have provided comments and direction with regards to the history and capability of individual units, and assisted with the prioritization of the final list.

Condition	Evaluation		Impact Eva	luation	Risk Analysis
DGA	Age	PCB	HUtz	MVA	THaRS
10 >125	(60+Age)/60	1.2 =	1.0 +	(20+MVA)/20	
05>75<=125	_	PCB	percent		DGA*MVA*Age*PCB*HUtz
01<=75		1.0≠	overload		
		PCB			
Comments	Based on the			Based on	
from SME's	life			largest unit	
are included	expectancy			being 20	
in the score	of 60 years			MVA	

 Table 1. Transformer Health and Risk Scores

Applying transformer health and risk scores allows us to provide a basic asset ranking. Future asset ranking methods will combine the methods discussed in this document along with the following:

- Design and manufacture information
- Station situation
- Oil quality
- Transformer winding type and LTC Type
- Capability of asset to perform required function
- Past performance, maintenance and costs
- Spare availability and mobile readiness
- Available through fault and interruption data

Transformer health and risk scores are not, by themselves, an indicator of a transformer problem. There is a need for more engineering judgment. For example, DGA results in NY tend to have higher hydrogen values than those from NE and the cause is related to the lab used; consequently they have a higher DGA score. Going forward, NY and NE will be using the same laboratory, and this ambiguity will be resolved.

The transformer health and risk score (THaRS) profile for National Grid's transformer fleet is displayed in Figure 6. The results represent the latest DGA records and PCB comments listed in AIMMS for all FERC coded TxD and DxD units rated greater than 0.5 MVA. The Highly Utilized Transformer List for Summer 2009 was used to determine the HUtz score (13).

Figure 5 shows how the scores are placed in good, fair and poor health and risk categories. There is some overlap, but when the score is above 10, the transformer warrants further investigation and is most likely on the 15 year replacement list. For example, if a transformer had a score of 6.5, the unit may either be considered good or fair. If a transformer received a score of 18, then the unit could be considered either fair or poor. Further analysis would be necessary in order to determine the outcome. A transformer with a score of 37 would be considered poor and a score of 3.3 would be considered good. In any event, a transformer with a score of 10 or higher warrants further investigation, and is most likely on the replacement list.

There were a total of 887 THaRS performed on National Grid's fleet of transformers; 323 performed on NE units and 524 performed on NY units. This does not correlate with the total number of operating transformers because either a DGA sample was not performed (units less than 2.5 MVA do not require DGA samples),

or the MVA rating is 0.5 MVA or less.

The average THaRS of the National Grid fleet of operating transformers is 3.11, which indicates that the majority of the units are in good condition and pose little risk. In addition, 825 transformers have scores less than 10, of which 92.5% have scores less than 5. There is 1 transformer with a score greater than 40; 1 with a score between than 30 and 40; 10 with a score between than 20 and 30, and 62 with a score between than 10 and 20. From a population of 887 units scored, and noting that not all transformers are DGA sampled, 7% have a score greater than 10. All scores have been reviewed to ensure consistency of approach. It is recommended that those units (50) with scores in the fair-poor and poor categories have a mitigation plan in place in case of failure prior to replacement. Units with a score of 10 or higher (55 of the population) are placed on a watch list and monitored more closely; the watch list and associated action plans are in the process of being finalized and made generally available.

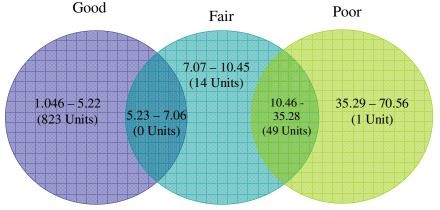


Figure 5 Transformer Health and Risk Scores (THaRS) Descriptors

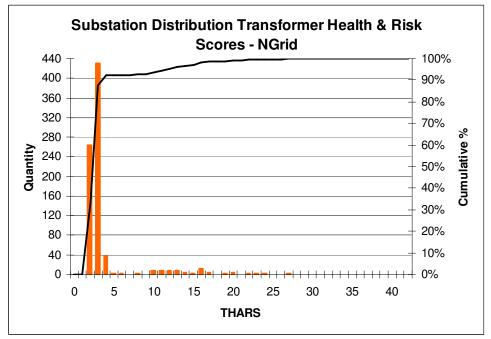


Figure 6. National Grid Transformer Health and Risk Score Profile

<u>Asset Replacement:</u> As the transformer population ages, replacement of both the oldest units and those most likely to fail should be considered. Older units tend to have insulation deterioration due to aging paper, and units most likely to fail may be those that have seen numerous faults.

The volume of transformers which are, in theory, required to be replaced annually is determined by analysis of the population of transformers in each state: by expecting the population to have an average life expectancy of 60 years, the volume required for replacement each year can be identified. However, this statistical analysis of the population does not identify individual units which are actual candidates for replacement. For example, New York's total MVA is 2590.63/60years = 43.18 MVA per year is suggested to be replaced.

The process continues by identifying the 'at risk' subpopulation of power transformers based on condition, and then identifying those with high Transformer Health and Risk Scores or with known and probable failure modes. This analysis is ongoing as the status of the transformer health and risk is in a constant state of flux. As of July 2009, there is a list of 80 transformers as candidates for replacement in the next 5 years. The list of replacement transformers can be found in the appendix under the appropriate state. The replacement candidates are listed in order of priority with the five-year candidates coded in orange. The preceding ten-year replacement list is coded in yellow. Each list generates replacement candidates for the next 15 years. It must be noted that this list is dynamic and updates to the lists are constantly ongoing due to changes in condition and risk. Therefore, the list projected in this strategy represents a snapshot in time and does not reflect the absolute list. This list is maintained by Asset Strategy and is communicated to Asset Planning. Although this list changes based on condition, transformers allocated for immediate replacement will not change. In addition, units that fail unexpectedly will be addressed immediately.

<u>Type U Bushing Replacement:</u> It is industry best practice to identify and replace those bushings that are GE Type U. These bushings have a known catastrophic failure mode, and are a risk to both safety and the system. The Substation Maintenance Standard, SMS 450.20.1 (10) discusses the replacement policy in detail.

LTC Filtration Systems: A tactical plan to apply LTC filtration systems to units requiring high maintenance and a risk of failure is ongoing. Units equipped with arcing-in-oil design type load tap changers, and elevated numbers of LTC operations are closely evaluated and considered candidates for installation of an LTC filtration system (11). Installation of LTC filtration systems will be installed when units come out of service for LTC maintenance per EOP SMP412.01.1 Load Tap Changer (12). The failure rate of transformers is strongly linked to tap changers, and the filtration unit helps keep the LTC clean, and extends the maintenance interval and the transformer life.

<u>Condition Monitoring</u>: Condition monitoring is applied on a case by case basis using an identified cost benefit. At present, National Grid may use additional condition monitoring to supplement our DGA where appropriate. This additional condition monitoring may comprise of oil analysis and partial discharge.

<u>Surge Arrester Replacement</u>: Presently, there is a substation Surge Arrester Strategy and an arrester replacement standard, SMS 419.15.2 Transformer Surge Arrester Replacement that addresses the replacement of any non-metal oxide (MOV) type arrester. This maintenance standard is an initiative to improve system reliability and transformer protection, and to reduce the likelihood of catastrophic arrester failures by implementing new protection technology.

3.0 Benefits

The risk of outages and catastrophic events will be reduced. All transformers will have an asset health (condition) score based on the following inputs:

- Available DGA, field diagnostic and test information
- Operational history, including load, faults, fault level and temperature data
- Particular manufacturer & design input
- Maintenance and inspection data
- \circ Expected lifetime curve, including EOSU⁴ and LOSU⁵ where available
- Reliability Centered Maintenance (RCM) analysis of available failure data and incident data

All transformers will be assessed for criticality based on the consequence of failure or unavailability using the following inputs:

- o Impact on CAIDI, SAIFI, SAIDI, CMI and CI statistics
- Input from system operation and system planning
- Availability of spares, mobile units and replacement complexity

All transformers will be ranked in terms of risk (consequence of criticality and health), and will be targeted for replacement based on risk and the constraints of the business.

As a result, the risk of outages, catastrophic events, and random failures will be reduced.

3.1 <u>Safety & Environmental</u>

Fewer transformer failures, removal of older units, and mitigation or removal of PCB contained units reduces the probability of an oil leak and oil containment issues.

3.2 <u>Reliability</u>

Risk to reliability will lessen as a result of fewer transformer interruptions related to the replaced units.

3.3 <u>Regulatory</u>

Potential improvements in SAIFI and SAIDI may be achieved.

3.4 <u>Customers</u>

Customer outages may be reduced. A customer outage may be substantial if a transformer fails. Transformer failures may affect numerous feeders resulting in a larger number of customers without power.

4.0 Estimated Costs

The costs indicated here are estimates that represent all aspects of a straightforward transformer replacement including engineering, foundation upgrades, purchase price, installation, commissioning and basic connections,

⁴ Earliest Onset of Significant Unreliability

⁵ Longest Onset of Significant Unreliability

but does not include changes to protection or significant infrastructure upgrades. The numbers given are for indication based on recent experiences and MVA of units.

For units rated 7.4 MVA and below, the estimated replacement cost is \$900k per unit (average). For units rated above 7.4 MVA, the estimated replacement cost is \$1500k per unit (average).

There are 54 units on the five-year replacement list below 7.4 MVA, giving a total of \$48.6M There are 26 units on the five-year replacement list above 7.4 MVA, giving a total of \$39.0M

This results in an overall estimated cost of \$87.6M for 5 years, or \$17.52M per annum. However, there is a lead time associated with these costs that skews the actual annual values.

The GE Type U bushings replacement initiative will continue to be applied in accordance with SMS 450.20.1. The Surge Arrester replacement initiative will continue to be applied in accordance with SMS 419.15.2.

As discussed in Section 2.4, an LTC filtration system may be installed at an estimated cost of \$25k per unit as needed.

Condition or partial discharge monitoring is a possibility, but unlikely on distribution equipment. It is considered a small capital item, and would be considered on an as needed basis.

5.0 Implementation

There should be an on-going state prioritized asset replacement plan based on condition and risk, and a tactical response program to install LTC filtration systems and condition or partial discharge monitoring as needed.

Continued review and revision of the replacement lists in each state will be performed in conjunction with SME's, Substations O&M staff and Operations staff so as to gather and reflect the latest data and information available for each transformer.

6.0 Risk Assessment

6.1 <u>Safety & Environmental</u>

Transformer failures may be both catastrophic and sudden. Distribution units may be smaller, but they are usually in closer proximity to residential areas. A catastrophic bushing or arrester failure has placed porcelain shards in neighboring fields, and the results of a transformer failure may cause oil contamination of the environment resulting in excessive clean-up costs.

6.2 <u>Reliability</u>

In most cases, a transformer failure will lead to power outages for customers. A transformer failure can take time to fix as the timing depends on many factors, including availability of spare transformers, mobile transformers or sourcing a replacement externally. In these cases, a transformer failure may have substantial impact.

6.3 <u>Regulatory</u>

The loss of a transformer may impact several regulatory targets. Although the number of substation events are low, they do contribute to SAIFI and SAIDI.

6.4 <u>Customer</u>

Customer outages may be substantial if a transformer fails. A transformer failure may affect numerous feeders resulting in a larger amount of customers without power.

7.0 Data Requirements

As National Grid evolves in the ability to manage the transformer fleet, our data requirements will grow.

7.1 <u>Existing/Interim:</u>

AIMMS, PIW's IDS

7.2 <u>Proposed:</u>

Cascade, EMS, PIW's, IDS

8.0 References

- 1. CIGRE failure study
- 2. Alan Wilson "Impact of technical condition on utilization of power transformers", Doble 2002
- 3. William Bartley, HSB, "Risk and Transformer Assessment", Doble HSB paper, 2004
- 4. Marsh, Keynote address, EuroDoble 2006
- 5. John Lapworth "A scoring system for integrating dissolved gas analysis results into a life management process for power transformers", Doble 2002
- 6. SMS 430.10.3 Transformer Oil In Service Evaluation
- 7. SMS 402.01.1 Transformer 15 MVA and above
- 8. SMS 402.02.1 Transformer 2.5 to 14.9 MVA
- 9. Hartford Steam Boiler Insurance Company Asset Management Newsletter, July 2006
- 10. SMS 450.20.1 GE Type U Bushing Replacement
- 11. Falla, Dan, National Grid, Installation of LTC Oil Filtration Systems, August, 2007
- 12. SMS 412.01.1 Load Tap Changer
- 13. Highly Utilized Transformer List Summer 2009, National Grid
- 14. SMS 419.15.2 Transformer Surge Arrester Replacement
- 15. Jacques Afonso, Surge Arrester Strategy, January 8, 2009
- 16. Technical Evaluation of Proposed Capital Expenditure Program for NGC's 2006/07 Price Control Extension, Draft Final Report, July 2005, OFGEM
- 17. SMS 400.06.1 Visual and Operational (V&O) Inspection
- 18. SMS 400.07.1 Thermographic Inspection
- 19. EP-1; Waste Management
- 20. EPA 40 CFR Chapter 1, 761.125 Requirements for PCB Spill Cleanup

9.0 Massachusetts

There are 483 operating transformers in Massachusetts listed in AIMMS, with 85 spares. Of the 483 units, 269 received transformer health and risk scores. The total MVA population in Massachusetts is 2,572, and it is suggested that approximately 43 MVA be replaced per year to keep up with the aging population and to lessen the risk of failures.

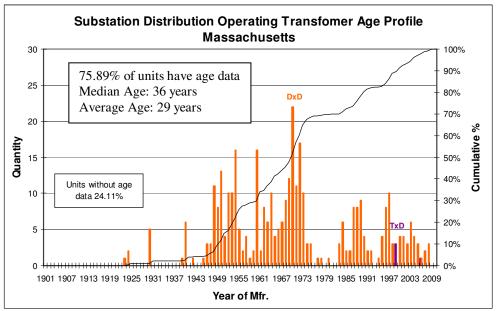


Figure 7. Substation Distribution Transformer Age Profile

Of the 483 operating transformers listed in AIMMS, 362 have age data, and therefore the average age is 29 years. This is similar to the total transformer population shown in Figure 1. The Massachusetts transformer age profile is displayed in Figure 7. Transformers without an age recorded tend to be older units.

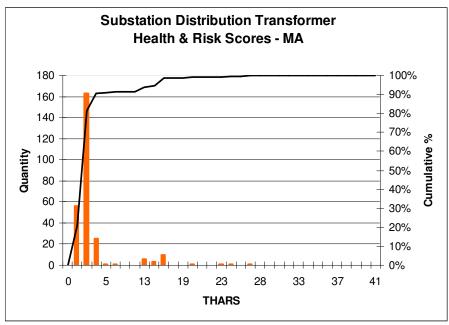


Figure 8. Transformer Health and Risk Scores for Massachusetts

In reference to Figure 8, 91% of the transformer health and risk scores for Massachusetts are 5 or below. This indicates that a large majority of the units in Massachusetts are in good condition and pose very little risk based on this health and risk scoring system. However, 5.2% of the population have scores 10 or greater, and 1% greater than 20. These units are on the 15 year replacement list found in Table 2. The THaRS number was excluded from the list because it is still in development, and it is our intention to improve on this prioritization tool.

The replacement candidates for Massachusetts are listed below in order of priority. The red coded unit(s) are already on the replacement list for FY10, the orange coated list is the replacement list for FY11 to FY14, and the yellow coded list is for the following 10 years. The number of units on the replacement list is based on the total population of transformer MVA divided by 60 years.

Represents those already on the list for replacement FY10

Represents replacement candidates for FY11-FY14 in order of priority.

Represent replacement candidates for FY15-FY25 in order of priority.Analysis based mostly on age then MVA forMA - REPLACEMENT BASED ON 43 MVA PER YEARLAST DGA

MA - REPLACEMEN	I BASEL	J ON 43		1				-	DGA		
						ZMET					ZCOM
					ROGE	HANE					BUST_
STA LOC	EQNUM		VOLT	AGE	N		MONO		E		GAS
Salem 2 Valley St	20757	7	23	41	36	64	300	105	28	0	533
Tyngsboro 211	21601	6.25	23-13.2	37	855	53	344	3	701	2	1958
West Gloucester 28	23586	12.5	34.5-22.9	23	154	62	727	24	2	0	969
Rockport 40	23898	9.38	34.5-22.9	21	16	9	1140	2	46	0	1213
Vine 8	20363	3.75	13.8-4.33 kV	59	542	43	509	1	58	0	1153
Walnut Street 32	21112	10	24.6-4.16	62	32	8	158	8	6	0	212
Walnut Street 32	21111	10	24.6-4.16	62	18	6	90	8	4	0	126
Gloucester 24	20113	7.25	23-2.4	62	17	25	73	83	16	0	214
Melrose 4	20152	9.38	23-4.16	47	0	2	3	17	3	0	25
Melrose 4	20151	9.38	23-4.16	47	0	33	259	28	85	0	405
Water Street 31	21094	9.375	23.5-4.16 kV	52							
Salem 15	22955	1.5	13.2-2.3 kV 1	79							
Salem 15	22956	1.5	13.2-2.3 kV 1	79							
Salem 15	22957	1.5	13.2-2.3 kV 1	79							
Lawrence 2	20135	7.5	13.8-2.4	85	5	3	144	2	2	0	156
Lawrence 2	20136	7.5	13.8-2.4	85	0				3	0	95
Medford 9	20149	10	23.46-4	69	14	27	1130	0	36	0	1207
Medford 9	20150	10	23.46-4	59	27	30	1100	8	39	0	1204
Worthen Street 13	21899	7	13.8-13.2ZZ k	36	29	145	567	110	126	0	1204
Plainville 3451	21545	, 6.25	22.9-13.8 kV	37	49	469	1980	398	273	0	
North Lawrence 6	20653	9.38	13.8-2.4 kV 7	59	8	5	184	1	39	0	237
Revere Beach 35	20055	9.38 9.38	22.9-4.16 kV	59	0	1	3	1	0	0	5
Bancroft Street 3	20250	9.30 6.25	13.2-2.4 kV 5	59 59	0 17	58	3 42	45	200	0	362
	20657	9.38	13.2-2.4 kV 5	58	6	5	42 23	4 <u>5</u>	1	0	40
Faraday Street 11 Burrill 2	20057	9.30 3.65	13.8-4.36 kV	58	o 14	5 85	1100	3 34	34	0	40 1267
					5					-	
Quebec Street 17	20238 21046	12.5 9.38	23.5-13.8 kV	57 57	ว 185	21 9	10 151	153 10	9 3	0 0	198 358
Newburyport 36 Total MVA		9.30 206.9	22.9-2.4 kV 7	57	100	9	101	10	3	0	300
Glendal 6	20110	7.5	23-2.4	61	12	27	629	23	143	0	
Glendal 6	20110	7.5	23-2.4	01	12	21	629	23	143	0	
	00007	0.00	10.0.0.4	C1	0	4	7	0	4	0	21
Wollaston 2	20387	9.38	13.8-2.4	61	0	4	-	9		0	
Revere 7	20248	9.38	23-2.4	?	0 1	10	38	13	25 0	0	86
Revere 7	20249	9.38	23-2.4	?			11				19
Newburyport 36	21047	9.38	22.9-2.4 kV 7	57	12	18	103	26	14	0	173
Amesbury 5	21003	9.38	22.3-2.4 kV 7	57	15	9	81	17	11	0	133
Water Street 31	21408	6.25	22-2.4 kV 5/6	57	0	10	20	11	70	0	111
Hudson 7	20132	3.75	13.8-4.36 kV	57	9	7	561	3	2	0	582
Salem 3 Boston St	20283	10	24.45-4.16	50	11	48	182	34	48	0	323
Salem 3 Boston St	20284	10	23-2.4 kV 7.5	61	18	6	161	0	3	0	188
Lawrence 1	20774	12.5	23.5-13.8 kV	56	36	64	300	105	28	0	533
Quebec Street 17	20237	12.5	23.5-13.8-4.16	56	7	1	29	1	2	0	40
Topsfield 26	23591	12.5	22.9-22.9 kV	?	14	17	625	5	1	0	662
Faraday Street 11	20658	9.38	13.2-2.4 kV 7	56	4	6	35	2	8	0	55
Dale Street 55	20581	7	22.9-13.2 kV	?	222	19	1070	3	49	0	1363
South Billerica 18	23115	7	22.9-13.8 kV	?	6	42	396	20	21	0	485
North Andover 7	-20606	6.25	22.9-2.4 kV 5	-56	14	7	168	14	15	0	218
Andover 3	20650	9.38	14.1-4.16 kV	55	63	13	169	13	9	0	2674
Methuen 5	20720	9.38	22.9-4.16 kV	55	4	21	22	70	5	0	122
North Beverly 18	22539	9.38	22.9-4.16 kV	55	5	14	25	55	5	0	104
Anderson	00054	0.00			0.4	7	10	00		0	

							_			-	
North Andover 7	20606	6.25	22.9-2.4 kV 5	56	14	7	168	14	15	0	218
Andover 3	20650	9.38	14.1-4.16 kV	55	<mark>63</mark>	13	169	13	9	0	267
Methuen 5	20720	9.38	22.9-4.16 kV	55	4	21	22	70	5	0	122
North Beverly 18	22539	9.38	22.9-4.16 kV	55	5	14	25	55	5	0	104
Andover 3	20651	9.38	14.1-4.16 kV	55	24	7	18	33	3	0	85
North Beverly 18	20183	9.38	22.9-4.16 kV	55	103	6	197	25	8	0	339
Methuen 5	20721	9.38	22.9-4.16 kV	55	0	16	24	30	3	0	73
Perry Street 3	20212	9.38	13.2-4.16 kV	55	0	2	47	1	17	0	67
Kent 13	20802	4.69	13.8-4.36 kV	55	35	65	390	104	16	0	610
Western 4	20380	3.75	13.8-4.36 kV	55	0	113	174	384	18	0	689
Perry Street 3	20213	9.38	13.2-4.16 kV	54	11	4	143	2	39	0	199
Atlantic 4	20003	6.25	13.8-4.16 kV	54	92	4	281	2	2	0	381
Lawrence 1	20134	9.38	13.8-2.3 kV 7	53	28	8	89	18	12	0	155
Humphrey 1	20133	6.25	13.8-4.36 kV	?	28	83	468	181	12	0	772
Beverly 12	20279	7	23-4.16 kV 5/	40	9	48	543	17	16	0	633
Sheffield 8	20273	7	23-13.8 kV 5/	40	68	48	325	124	13	0	578
West Methuen 63	23142	20	23-13.8 kV 12	38	13	21	279	7	22	0	342
West Methuen 63	23263	20	23-13.8 kV 12	38	19	30	150	29	4	0	232
North Lawrence 6	23316	20	23-13.2 kV 12	36	20	20	326	13	21	0	400
Swampscott 22	23135	20	23-13.8 kV 12	36	56	5	217	1	11	1	291
Risingdale 9	23580	20	23-23.8 kV 12	35	10	11	85	4	13	0	123
Candle Street 101	24034	30	46-13.2 kV 3(13	18	2	161	1	1	0	183
Candle Street 101	24041	30	46-13.2 kV 3(13	2	3	47	1	1	0	54
Total MVA		414.01									

Table 2. Massachusetts Transformer Replacement List

In reference to Table 2, there are 27 transformers on the list for replacement over the next 5 years. One is to be replaced in FY10, which is excluded from the cost analysis. There is one single-phase bank that will be replaced with a 3-phase transformer. Therefore the cost is representative of replacing 24, 3-phase transformers. The cost of replacement is as follows:

Eight units at \$900k per unit (average), \$1.44M pa for 5 years Sixteen units at \$1.5M per unit (average), \$4.8M pa for 5 years

10.0 New York

There are 807 operating transformers in New York listed in AIMMS, with 56 spares. Of the 807 units, 524 received transformer health and risk scores. The total MVA population in New York is 2,591, and it is suggested that approximately 43 MVA be replaced per year to keep up with the aging population and to lessen the risk of failures.

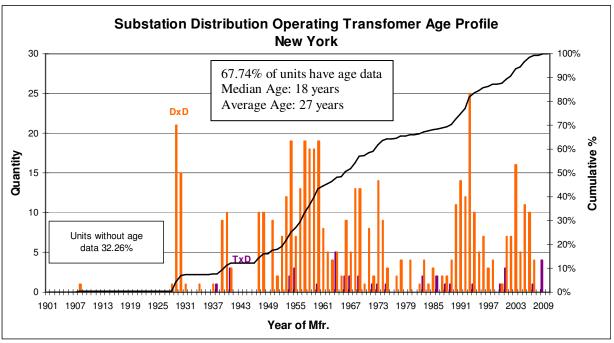


Figure 9. Distribution Transformer Age Profile

The available age data listed in AIMMS for New York results in an average age of 27 years, which is based on 547 units with age data. New York also has the largest amount of missing age data; this is not a significant issue as age may be inferred, if necessary, from related substation equipment and age is used as an indicator for condition rather than a driver for replacement. New York has 7 smaller units (less than 2.5 MVA) on the replacement list that may be best solved with a planning solution rather than replacement. The New York transformer age profile can be found in Figure 9.

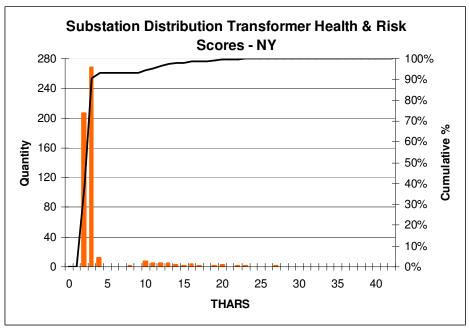


Figure 10. Transformer Health and Risk Scores for New York

In reference to Figure 10, 93% of the transformer health and risk scores for New York are below 5. This indicates that a large majority of the units in New York are in good condition and pose very little risk based on this health and risk scoring system. On the other hand, 7% of the population have scores greater than 10, and 1% greater than 20. These units are on the 15 year replacement list, which is attached below in Table 3.

Docket No. DE 19-064 Attachment A Page 22 of 31 National Grid Internal Strategy Document Distribution Substation Transformers Revised Strategy – October 2009

	NY - REPLACEMEN	T BASED C	ON 43 M		R				LAST I	DGA		
						ZHYD	ZME	ZCAR	ZETH	ZETH	ZACE	ZCOMB
						ROGE		BON	ANE		TYLE	UST_G
DIVISION	STA LOC	EQNUM	MVA	VOLT	AGE	Ν	NE	MON		E	NE	AS _
NYCDSU	Fayetteville Station 18	222261	6.25	34.5-2.4 kV	52	25	211	108	333	929	0	1606
NYWDSU	French Creek Station		3.75	34.5-13.8 k∖	36	123	17	782	11	9	32	974
NYWDSU	Station 034	219590	2.5	23-4.16 kV 2	79	141	7	129	6	9	0	292
	Station 124 - Almeda	219384	3.75	34.5-4.16 k∖		15	801	327	1483	2708	0	5334
NYWDSU	Station 124 - Almeda	219390	5.25	34.5-4.16 k∖		4	140	184	315	61	0	704
NYWDSU	Station 124 - Almeda	219388	4.687	34.5-4.16 k∖		20	80	269	120	39	0	528
NYWDSU	Station 124 - Almeda	219382	3.75	34.5-4.16 k∖	?	12	137	93	508	36	0	786
NYWDSU	Avon Station 43	220403	3.75	34.5-4.8 kV	49	34	100	131	41	6	0	312
NYEDSU	Newtonville Station 30	221606	5.6	34.5-4.16 k∖		108	65	84	41	107	0	405
NYWDSU	Station 056	219732	3.13	23-4.16 kV 2	53	304	13	378	13	21	0	729
NYWDSU	Oak Hill Station 62	220487	2.5	34.5-4.8 kV		261	7	540	5	26	0	839
NYEDSU	Chrisler Avenue Stati	221777	3	34.5-4.16 k∖	?	9792	10	236	5	4	0	10047
NYWDSU	Station 038	219633	2.5	23-4.16 kV 2	79	13	4	110	18	8	0	153
NYCDSU	Mill Street Station 748	221188	6.25	23-4.8 kV 5/	54	16	45	270	77	6	0	414
NYEDSU	McCrea Street Station	221950	3.75	34.5-4.8 kV	59	191	5	527	4	3	0	730
NYCDSU	Mill Street Station 748	221187	6.25	23-4.8 kV 5/	54	348	123	107	258	17	0	853
NYCDSU	Mill Street Station 748	221189	6.25	23-4.8 kV 5/	54	8	72	148	95	7	0	330
NYEDSU	Chrisler Avenue Stati	221776	3	34.5-4.16 k∖	62	9	5	303	3	6	0	326
NYCDSU	Fisher Avenue Station	220643	6.25	34.5-13.8 k∖	39	0	1	28	1	2	0	32
NYCDSU	Rock City Station 623	222363	7	46-4.16 kV ξ	55	81	636	125	776	1805	0	3423
NYEDSU	Summit Station 347	222446	10.5	69-4.8 kV 7.	40	46	39	140	28	68	0	321
NYWDSU	Golah Station	220370	7.5	69-34.5 kV 7	71	208	30	351	30	16	0	635
NYEDSU	Chestertown Station 4	222029	10.5	34.5-13.8 k∖		19	169	126	316	378	0	1008
NYWDSU	Station 037	219618	2.5	23-4.16 kV 2	79	96	6	189	7	10	0	308
NYEDSU	Hoag Station 221	222408	0.7	34.5-4.8 kV	61	95	6	571	4	6	0	682
NYEDSU	Hoag Station 221	222407	0.7	34.5-4.8 kV	61	92	6	576	4	5	1	684
NYEDSU	Hoag Station 221	222409	0.7	34.5-4.8 kV	61	142	10	915	5	8	0	1080
NYCDSU	Westvale Station 133		7.5	34.5-4.16 k\	49	38	3	167	2	8	2	220
NYCDSU	Galeville Station 213		6.25	34.5-4.16 k∖	51	228	35	677	101	17	0	1058
NYCDSU	Glenwood Station 22		6.25	34.5-4.16 k∖	49	21	267	322	390	1174	0	2174
NYEDSU	Colvin Avenue Station		6.25	34.5-4.16 k∖		111	113	275	66	278	1	844
	Fabius Station 55	220852	0.83	34.5-4.8 kV	50		10	311	60	12	0	514
NYCDSU	Fabius Station 55	220851	0.83	34.5-4.8 kV	50	62	7	187	34	6	0	296
NYCDSU	Fabius Station 55	220853	0.83	34.5-4.8 kV	50	7	90	276	173	14	0	560
NYCDSU	Cuyler Station 24	222280	2	34.5-4.16 k∖	80							
NYCDSU	Cuyler Station 24	222281	2	34.5-4.16 k∖	80							
NYCDSU	Cuyler Station 24	222282	2	34.5-4.16 k∖	80							
NYCDSU	Cuyler Station 24	222283	2	34.5-4.16 k∖	80							
NYCDSU	Cuyler Station 24	222284	2	34.5-4.16 k\	80							
NYCDSU	Cuyler Station 24	222285	2	34.5-4.16 k∖	80	0.07	0.0	0.00	00	-		1001
	Station 030	219562	3	23-4.16 kV 2	59	297	28	966	23	7	0	1321
	Machias Station 13	246649	3.75	34.54.8 kV		76	30	172	36	38	0	352
	Station 083 - Welch A		3.5	12-4.16 kV 3		399	69 0	771	82	26	0	1347
	Station 057	222125	5.3	23-4.16 kV 3		94	6	452	7	4	0	563
	North Collins Station		2.5	34.5-4.8 kV	46	123	212	193	359	50	0	937
	Station 025	219527	2.5	23-4.16 kV 2		7	4	136	6	5	6	164
	Station 029	219558	2.5	23-4.16 kV 2		43	6	104	6	8	0	167
NYWDSU	Station 027	219544	2.5	23-4.16 kV 2		29	5	73	6	11	0	124

Uncontrolled when printed

Docket No. DE 19-064 Attachment A Page 23 of 31 National Grid Internal Strategy Document Distribution Substation Transformers Revised Strategy – October 2009

								000				
	Station 045	219660		23-4.16 kV 2.5		87	8	306	149	14	0	564
NYCDSU	Roosevelt Road Temp			23-4.8 kV 1.66		41	27	51	84	8	0	211
NYEDSU	Glens Falls Hospital S	222024		34.5-4.16 kV 2	35	101	40	236	75	39	0	491
	Total MVA	001400	195.094	00 4 0 10/ 0/0 5		4.4	0	100	7	00		400
NYCDSU	State Street Station 9			23-4.8 kV 3/3.7	55 60	44 6	6 3	420 79	7 3	22	0	499 93
NYCDSU	Miller Street Station 1			34.5-4.8	69 69	6 29	3 4	79 114	3 4	2	0	93 153
NYCDSU NYCDSU	Miller Street Station 1 Miller Street Station 1			34.5-4.9 34.5-4.10	69 69	29 4	4 3	78	4 3	2	0 0	89
	Station 048	219683		23-4.16 kV 3.7	09 16	4 0	3 1	70 80	3 1	1 38	0	120
		219803		23 kV 22.5 MV	42	28	9	901	4	30 4	1	947
	Elm Street Station	219812		23 kV .15 MVA	42	27	2	100	2	4	0	132
	Fayette Street Station				43	25	104	157	121	158	0	565
	Fayette Street Station				43	3	1	37	1	1	0	43
	Station 056	219734		23-4.16 kV 2.5	109	4	80	272	133	63	0	552
NYEDSU	Tibbits Avenue Station			34.5-4.16 kV 5	55	119	5	341	4	2	0	471
NYEDSU	Scotia Station 255	221771		34.5-4.16 kV 5	54	68	3	311	0	1	0	383
	Station 051	219697		23-4.16 kV 2.5	70	45	21	684	11	8	0	769
NYEDSU	Partridge Street Static			34.5-4.16 kV 1		0	32	462	39	12	0	545
NYEDSU	Partridge Street Static			34.5-4.16 kV 1		0	27	423	27	12	0	489
NYCDSU	Conkling Station 652			43.8/4.36 kV 5	53	84	73	260	186	15	0	618
NYCDSU	Park Street Station 14			34.5-4.16 kV 5	53	46	19	338	11	1	0	415
NYEDSU	Karner Station 317	221618	6.25	34.5-4.16 kV 5	75	12	69	257	264	25	0	627
NYEDSU	Shore Road Station 2	221782	6.3	34.5-4.8 kV 5/(52	104	4	392	1	2	0	503
NYEDSU	Selkirk Station 149	221523	9.4	34.5-13.8 kV 7	40	9	53	339	39	79	0	519
NYCDSU	Seventh North Street	220713	7	34.5-4.8 kV 5.(48	2	77	113	122	7	0	321
NYEDSU	Saratoga Station 142	222469	6.3	34.5-4.16 kV 5	72	21	4	243	2	6	0	276
NYEDSU	Lynn Street Station 32	221923	6.25	34.5-4.16 kV 5	50	138	128	1205	130	19	0	1620
NYEDSU	Gloversville Station 72			69-13.8 kV 15/	16	15	6	339	3	7	0	370
	Sheppard Road Static			34.5-13.8 kV 3	36	101	52	454	47	32	0	686
NYEDSU	Delmar Station 279	221561		34.5-4.8 kV 5/(49	79	74	826	87	24	1	1091
NYEDSU	Watt Street Station 38			34.5-13.8 kV 7	38	60	157	648	194	32	0	1091
NYCDSU	Lenox Station 513	220983		13.2-4.16 kV 5		80	27	239	185	16	1	548
NYEDSU	Market Hill Station 324			69-4.16 kV 5/6	45	35	28	613	14	7	0	697
NYEDSU	Newtonville Station 30			34.5-13.8 kV 5		13	2	194	1	1	0	211
	Lansingburgh Station			34.5-13.8 kV 7		140	104	709	126	28	0	1107
	State Street Station 9			23-4.8 kV 3/3.	55	148	237	737		138	0	2717
	Station 043 Homer Station 129	219667		23-4.16 kV 2.5	80 56	0	3 8	82	2 15	1 14	0	88 326
	Homer Station 129	220606 220607		34.5 -4.8 kV 2. 34.5-4.8 kV 2.{	56 56	23 14	8 5	266 180	5	14 5	0 0	326 209
	Homer Station 129	220607		34.5-4.8 kV 2.	56 59	7	5 4	147	э 3	5 4	0	165
	Station 026	219537		23-4.16 kV 3.7	29	7 18	4 67	214	3 126	4 22	0	447
	Station 026	219533		23-4.16 kV 3.7		5	63	202	126	32	0	447
	West Herkimer Station			46-13.8 kV 5/6	38	25	87	320	135	18	0	420 585
	Station 157	219450		23-4.16 kV 5 N	00	72	57	247	140	18	0	534
	Station 023	219511		23-4.16 kV 2.5	80	10	6	118	4	27	0	165
	Station 041	219643		23-4.16 kV 2.5	80	11	5	163	5	10	0	194
	Rensselaer Station 13			34.5-13.8 kV 1		15	23	424	16	13	0	491
	Station 041	219647		23-4.16 kV 2.5	80	13	2	80	2	1	0	98
	Station 023	219512		23-4.16 kV 2.5	80	7	4	132	5	9	0	157
	Station 037	219620		23-4.16 kV 2.5	79	86	5	88	12	9	0	200
	Station 037	219614		23-4.16 kV 2.5	79	12	5	133	6	8	0	164
	Station 037	219619		23-4.16 kV 2.5	79	35	5	102	6	8	0	156
								-	-			

Uncontrolled when printed

Docket No. DE 19-064 Attachment A Page 24 of 31 National Grid Internal Strategy Document Distribution Substation Transformers Revised Strategy – October 2009

NYWDSU Station 034 219594 2.5 23.4.16 kV 2.5 79 8 6 17.8 5 9 0 206 NYWDSU Station 035 219603 2.5 23.4.16 kV 2.5 79 7 5 118 4 6 0 140 NYWDSU Station 035 219603 2.5 23.4.16 kV 2.5 79 6 4 102 3 7 0 122 NYWDSU Station 035 219602 2.5 23.4.16 kV 2.5 79 2 4 128 3 6 0 143 NYWDSU Station 040 219635 4.8 23.4.16 kV 2.5 79 2 13 2 0 35 NYCDSU Station 22 20100 4.3 4.5.4.16 kV 7 45 30 6 168 118 16 0 338 NYCDSU Ash Street Station 22 22069 9.4 3.4.5.4.16 kV 7.45 2 3 8 0 2 2.0 119 1 384 19 10 1 136 119 </th <th></th> <th>-</th>													-
NYWDSU Station 035 219603 2.5 23-4.16 kV 2.5 79 4 3 74 2 3 0 86 NYWDSU Station 035 219598 2.5 23-4.16 kV 2.5 79 6 4 102 3 7 0 122 NYWDSU Station 035 219602 2.5 23-4.16 kV 2.5 79 4 128 3 6 0 143 NYWDSU Station 040 219635 4.8 23-4.16 kV 2.5 79 7 7 2 21 3 0 6 143 40 335 25 25 0 838 NYCDSU Ash Street Station 22: 20069 9.4 34.5-4.16 kV 7 45 30 50 115 121 34 0 365 NYCDSU Ash Street Station 22: 20069 9.4 34.5-4.16 kV 7 45 30 50 115 121 30 26 20 NYCDSU Marifield Station 35 22196<			219594	2.5	23-4.16 kV 2.5	79			178			-	206
NYWDSU Station 035 219598 2.5 23.4.16 kV 2.5 79 6 4 102 3 7 0 122 NYWDSU Station 034 219505 2.5 23.4.16 kV 2.5 79 2 4 128 3 6 0 143 NYWDSU Station 040 219602 2.5 23.4.16 kV 2.5 79 4 13 40 335 25 25 0 633 NYUDSU Delmar Station 22 219513 2.5 24.4.16 kV 2.5 78 7 2 21 3 2 0 621 NYCDSU Ash Street Station 22 220699 9.4 34.5-4.16 kV 7 45 30 6 168 118 16 0 338 NYCDSU Ash Street Station 22 220699 9.4 34.5-4.16 kV 7.5 5 34 8 203 119 19 1 388 0 2 20 37 7 14 16 16 147 0 327 7 11 10 10 177 1	NYWDSU	Station 035	219604	2.5	23-4.16 kV 2.5	79						-	-
NYWDSU Station 034 219595 2.5 23-4.16 kV 2.5 79 2 4 128 3 6 0 143 NYWDSU Station 035 219602 2.5 23-4.16 kV 2.5 79 4 5 105 4 7 0 125 NYWDSU Station 023 219513 2.5 23-4.16 kV 2.5 78 7 2 21 3 2 0 621 NYCDSU Ash Street Station 22 20069 9.4 34.5-4.16 kV 7 45 30 6 1168 118 16 0 338 NYCDSU Ash Street Station 22 200699 9.4 34.5-4.16 kV 7 45 34 8 00 2 5 20 119 19 1 384 NYCDSU Ash Street Station 22 220698 9.4 34.5-23 kV 7.5 45 2 3 8 0 2 2 2 2 2 2 2 2 10 1	NYWDSU	Station 035	219603	2.5	23-4.16 kV 2.5	79			74				
NYWDSU Station 035 219602 2.5 23-4.16 kV 2.5 79 4 5 105 4 7 0 125 NYWDSU Station 040 219635 4.8 23-4.16 kV 2.5 78 71 2 21 3 2 0 838 NYWDSU Delmar Station 22 221560 6.25 34.5-4.16 kV 7 45 30 50 115 121 34 0 350 NYCDSU Ash Street Station 22 220699 9.4 34.5-4.16 kV 7 45 30 6 168 118 16 338 NYCDSU Ash Street Station 22 20699 9.4 34.5-4.16 kV 7 45 34 8 0.203 119 19 1 384 NYCDSU Ash Street Station 356 21209 3.75 23-4.8 kV 3.75 48 0 8 461 4 154 0 627 NYWDSU Poland Station 60 220233 2.5 34.5-4.8 kV 2.1 54 1 102 304 211 100 1719 NYWDSU <td< th=""><th></th><th></th><th>219598</th><th>2.5</th><th>23-4.16 kV 2.5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>			219598	2.5	23-4.16 kV 2.5								
NYWDSU Station 040 219635 4.8 23-4.16 kV 3.7 413 40 335 25 25 0 838 NYWDSU Station 023 219513 2.5 23-4.16 kV 2.5 78 7 2 21 3 2 0 35 NYCDSU Ash Street Station 22 220700 9.4 34.5.4.16 kV 7 45 30 60 1168 118 16 0 338 NYCDSU Ash Street Station 22 22069 9.4 34.5.4.16 kV 7 45 30 6 168 118 16 0 338 NYCDSU Ash Street Station 22 2069 9.4 34.5.4.16 kV 7 45 34 8 0.2 5 20 NYCDSU Antverp Station 801 22129 3.7 24.8 kV 3.7 48 0 8.4 41 154 0 677 2 60 0 659 NYWDSU Greenhurs Station 60 22053 2.5 34.5.4.16 kV 3.7 <t< th=""><th>NYWDSU</th><th>Station 034</th><th>219595</th><th>2.5</th><th>23-4.16 kV 2.5</th><th>79</th><th>2</th><th>4</th><th>128</th><th>3</th><th>6</th><th>0</th><th></th></t<>	NYWDSU	Station 034	219595	2.5	23-4.16 kV 2.5	79	2	4	128	3	6	0	
NYWDSU Station 023 219513 2.5 23-4.16 kV 2.5 78 7 2 21 3 2 0 35 NYCDSU Ash Street Station 22 220700 9.4 34.5-4.16 kV 7 45 30 50 115 121 34 0 350 NYCDSU Ash Street Station 22 220699 9.4 34.5-4.16 kV 7 45 30 6 168 118 16 0 338 NYCDSU Ash Street Station 22 220699 9.4 34.5-4.16 kV 7 45 34 8 203 119 19 1 384 0 2 2 0 77 2 3 8 0 2 2 0 350 34.5.4.16 kV 7.5 45 16 83 192 168 15 0 474 NYCDSU Antwerp Station 60 22023 2.5 34.5.4.8 kV 2.5 53 25 7 110 1 10 176 54 10 26 4 567 2 60 0 659 34.5.4.16 kV 3 51		Station 035	219602	2.5	23-4.16 kV 2.5	79						0	
NYEDSU Delmar Station 279 221560 6.25 34.5.4.16 kV 7 58 176 5 435 3 2 0 621 NYCDSU Ash Street Station 22: 220700 9.4 34.5.4.16 kV 7 45 30 60 116 118 16 0 338 NYCDSU Ash Street Station 22: 220699 9.4 34.5.4.16 kV 7 45 34 8 203 119 19 1 384 NYCDSU Ash Street Station 22: 220699 9.4 34.5.2.3 kV 7.5 45 2 3 8 0 2 5 20 NYEDSU Mayfield Station 356 22188 10.5 69-13.8 kV 7.5 41 16 83 192 168 15 0 474 NYEDSU Poland Station 61 220233 2.5 34.5.4.8 kV 2.t 54 1 102 304 211 100 16 100 285 NYEDSU Constantia Station 54 22052 2.5 34.5.4.16 kV 3.5 1141 6 354 4 2 0 507 NYWDSU<	NYWDSU	Station 040	219635	4.8	23-4.16 kV 3.7		413	40		25		0	
NYCDSU Ash Street Station 22: 220700 9.4 34.5-4.16 kV 7 45 30 50 115 121 34 0 350 NYCDSU Ash Street Station 22: 220699 9.4 34.5-4.16 kV 7 45 34 8 203 119 19 1 384 NYCDSU Mine Road Station 77 221269 9.4 34.5-4.16 kV 7.5 45 34 8 203 119 19 1 384 NYCDSU Mayfield Station 356 221898 10.5 69-13.8 kV 7.5 41 16 83 192 168 15 0 474 NYCDSU Antwerp Station 66 22032 2.5 34.5-4.8 kV 2.f 54 1 102 304 211 100 1 719 NYEDSU Greenhurst Station 60 22053 2.5 34.5-4.8 kV 2.f 54 1 102 304 211 100 1 102 304 24 0 463 NYCDSU Greenhurst Station 60 22052 2.5 34.5-4.16 kV 3 55 141 6 354					23-4.16 kV 2.5	78	7						
NYCDSU Ash Street Station 222 220698 9.4 34.5-4.16 kV 7 45 30 6 168 118 16 0 338 NYCDSU Ash Street Station 222 220699 9.4 34.5-4.16 kV 7 45 34 8 203 119 19 1 384 NYCDSU Maine Road Station 77 221262 9.4 34.5-23 kV 7.5 45 2 3 8 0 2 5 20 NYEDSU Antwerp Station 801 221209 3.75 23.4.8 kV 2.5 46 667 2 60 0 659 NYEDSU Greenhurst Station 60 22033 2.5 34.5-4.8 kV 2.5 53 25 7 216 24 13 0 285 NYCDSU Constantia Station 19 220659 3.65 34.5-4.16 kV 3 69 8 442 5 4 0 468 NYCDSU Constantia Station 54 220529 2.5 34.5-4.16 kV 3 7 3 0 260 NYWDSU Station 067 219769 3.75 23-4.1		Delmar Station 279	221560	6.25	34.5-4.8 kV 5/ŧ	58			435			0	
NYCDSU Ash Street Station 22: 220699 9.4 34.5-4.16 kV 7 45 34 8 203 119 19 1 384 NYCDSU Mine Road Station 37 221898 10.5 69-13.8 kV 7.5 45 2 3 8 0 2 5 20 NYCDSU Antwerp Station 801 221209 3.75 23-4.8 kV 3.75 45 0 8 461 4 154 0 627 NYWDSU Schuylerville Station 60 220323 2.5 34.5-4.8 kV 2.f 54 1 102 304 211 100 1 719 NYEDSU Greenhurst Station 60 220533 2.5 34.5-4.8 kV 2.f 54 54 4 0 488 NYCDSU Ginton Station 604 221055 6.5 34.5-4.16 kV 3 55 1 114 6 354 4 2 0 577 NYEDSU Emmet Street Station 22175 6.5 34.5-4.16 kV 3 51 0 144 236 7 3 0 2607 NYWDSU <td< th=""><th></th><th></th><th></th><th>9.4</th><th>34.5-4.16 kV 7</th><th>45</th><th></th><th></th><th></th><th></th><th></th><th>0</th><th></th></td<>				9.4	34.5-4.16 kV 7	45						0	
NYCDSU Mine Road Station 77 221262 9.4 34.5-23 kV 7.5 45 2 3 8 0 2 5 20 NYCDSU Mayfield Station 366 221898 10.5 69-13.8 kV 7.5 41 16 83 192 168 15 0 474 NYCDSU Antwerp Station 801 221209 3.75 23.4.5 kV 3.75 48 10.0 8 461 4 154 0 627 NYWDSU Greenhurst Station 60 220323 2.5 34.5 -4.8 kV 2.! 53 59 7 216 24 13 0 285 NYCDSU Constantis Station 604 221025 10.5 46-13.8 kV 7.5 40 150 8 247 9 8 0 422 NYEDSU Cinton Station 604 221025 10.5 45-4.16 kV 3 51 141 6 354 4 2 0 507 NYWDSU Station 160 - Summer 219769 3.75 23.5-4.16 kV 3 11 14 31 10 0 434 42 0		Ash Street Station 223	220698	9.4	34.5-4.16 kV 7	45				118		-	
NYEDSU Mayfield Station 356 221898 10.5 69-13.8 kV 7.5 41 16 83 192 168 15 0 474 NYCDSU Antwerp Station 801 221209 3.75 23-4.8 kV 3.75 48 0 8 461 4 154 0 627 NYEDSU Schuylerville Station 13 222032 2.5 34.5-4.8 kV 2.! 53 25 7 216 24 13 0 285 NYEDSU Greenhurst Station 19 220669 3.65 34.5-4.8 kV 2.! 53 25 7 216 24 13 0 285 NYCDSU Constantia Station 64 221025 10.5 46-13.8 kV 7.5 40 150.8 247 9 8 0 422 NYEDSU Emmet Street Station 221755 6.25 34.5-4.16 kV 3.7 7 10 14 236 7 3 0 260 NYWDSU Station 058 21973 4.69 34.5-4.16 kV 3.7 7 60 163 164 10 343 NYWDSU		Ash Street Station 223	220699	9.4	34.5-4.16 kV 7	45							
NYCDSU Antwerp Station 801 221209 3.75 23-4.8 kV 3.75 48 0 8 461 4 154 0 627 NYWDSU Poland Station 66 220323 2.5 34.5-4.8 kV 2.5 54 1 102 304 211 100 1 719 NYEDSU Greenhurst Station 60 220533 2.5 34.5-4.8 kV 2.5 53 25 7 216 24 13 0 285 NYCDSU Genenhurst Station 60 221025 10.5 46-13.8 kV 7.5 40 150 8 247 9 8 0 422 NYEDSU Emmet Street Station 221755 6.25 34.5-4.16 kV 3.7 7 114 6.3554 4 2 0 507 NYWDSU Station 067 219769 3.75 34.5-4.16 kV 3.7 7 37 60 163 164 10 0 434 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3.7 7 35 14.16 kV 3.7 14 13 11 0 599			221262	9.4	34.5-23 kV 7.5	45				0			
NYWDSU NYWDSU NYWDSU Schuylerville Station 66 22032 2.5 34.5-4.8 kV 2! 54 1 102 304 211 100 1 719 NYEDSU NYWDSU NYWDSU Schamer Station 60 NYCDSU Constantia Station 19 220633 2.5 34.5-4.8 kV 2! 53 57 216 24 13 0 285 NYCDSU NYCDSU Constantia Station 19 22069 3.65 34.5-4.16 kV 3 69 9 8 442 5 4 0 468 NYCDSU NYEDSU Sherman Station 54 220529 2.5 34.5-4.16 kV 3 7 141 6 354 4 2 0 507 NYWDSU Station 067 219769 3.75 23-4.16 kV 3.7 7 30 141 31 217 20 80 1 363 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3.7 7 37 60 163 164 10 0 434 NYWDSU Station 052 219708 3 23-4.16 kV 2.5 70 32 17 406 </th <th></th> <th></th> <th>221898</th> <th>10.5</th> <th>69-13.8 kV 7.5</th> <th></th> <th>16</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			221898	10.5	69-13.8 kV 7.5		16						
NYEDSU NYEDSU NYWDSU Setup 107 Schuylerville Station 3 (22247) 6.3 34.5-4.8 kV 5/t 26 4 567 2 600 0 659 NYWDSU NYCDSU NYCDSU Constantia Station 19 (20069) 220669 3.65 34.5-4.16 kV 3 69 8 442 5 4 0 468 NYCDSU NYEDSU NYEDSU Emmet Street Station 221755 6.25 34.5-4.16 kV 3 55 141 6 354 4 2 0 507 NYWDSU NYWDSU Station 067 219769 3.75 34.5-4.16 kV 3 ? 25 5 197 68 16 1 312 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3 ? 37 60 163 164 10 0 434 NYWDSU Station 052 219708 3 23-4.16 kV 2.5 70 35 17 437 13 11 0 513 NYWDSU Station 051 219706 3 23-4.16 kV 2.5 70 32 17 406 12 10			221209				0				154		
NYWDSU NYCDSU NYCDSU Greenhurst Station 60 Constantia Station 19 220669 3.65 34.5-4.8 kV 2.! 53 25 7 216 24 13 0 285 NYCDSU Constantia Station 19 220669 3.65 34.5-4.16 kV 3 69 8 442 5 4 0 468 NYEDSU Emmet Street Station 221025 10.5 46-13.8 kV 7.5 40 141 6 354 4 2 0 507 NYWDSU Sherman Station 54 220252 2.5 34.5-4.16 kV 3 7 3 0 260 NYWDSU Station 067 219769 3.75 23-4.16 kV 3.7 7 37 60 163 164 10 0 434 NYWDSU Station 058 219778 4.69 34.5-4.16 kV 3.41 10 71 172 92 87 2 424 NYWDSU Station 052 219708 23-4.16 kV 2.5 70 35 17 437 13 1					34.5-4.8 kV 2.{	54							
NYCDSU Constantia Station 19 220669 3.65 34.5-4.16 kV 3 69 8 442 5 4 0 468 NYCDSU Clinton Station 604 221025 10.5 46-13.8 kV 7.5 40 150 8 247 9 8 0 422 NYEDSU Emmet Street Station 221755 6.25 34.5-4.16 kV 3 55 141 6 354 4 2 0 507 NYWDSU Station 067 219769 3.75 34.5-4.16 kV 3.7 ? 37 60 163 164 10 0 434 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3.7 ? 37 60 163 164 10 0 434 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 2.5 70 32 17 40 11 31 11 0 599 NYWDSU Station 052 219708 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th></t<>											-		
NYCDSU Clinton Station 604 221025 10.5 46-13.8 kV 7.5 40 150 8 247 9 8 0 422 NYEDSU Emmet Street Station 221755 6.25 34.5-4.16 kV 3 55 141 6 354 4 2 0 507 NYWDSU Station 067 219769 3.75 34.5-4.16 kV 3 ? 25 5 197 68 16 1 312 NYWDSU Station 067 219769 3.75 23-4.16 kV 3.7 ? 37 60 163 164 10 0 434 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3 41 0 71 172 92 87 2 424 NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 35 17 437 13 11 0 513 NYWDSU Station 051 219706 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU	NYWDSU	Greenhurst Station 60	220533	2.5	34.5-4.8 kV 2.{	53	25	7			13		285
NYEDSU Emmet Street Station 221755 6.25 34.5-4.16 kV 3 55 141 6 354 4 2 0 507 NYWDSU Sherman Station 54 220529 2.5 34.5-4.8 kV 2.! 51 0 14 236 7 3 0 260 NYWDSU Station 067 219769 3.75 34.5-4.16 kV 3 ? 25 5 197 68 16 1 312 NYWDSU Station 067 219769 3.75 23-4.16 kV 3 41 14 31 217 20 80 1 363 NYWDSU Station 058 219735 4.69 34.5-4.16 kV 2.5 70 42 19 514 13 11 0 513 NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 35 17 437 13 11 0 513 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU	NYCDSU	Constantia Station 19	220669	3.65	34.5-4.16 kV 3	69	9						
NYWDSU Sherman Station 54 220529 2.5 34.5-4.8 kV 2.5 51 0 14 236 7 3 0 260 NYWDSU Station 067 219769 3.75 34.5-4.16 kV 3 ? 25 5 197 68 16 1 312 NYWDSU Station 160 - Summer 219737 4.69 34.5-4.16 kV 3.7 ? 37 60 163 164 10 0 434 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3.7 ? 37 60 163 164 10 0 434 NYWDSU Station 052 219708 3 23-4.16 kV 2.5 70 42 19 514 13 11 0 513 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 437 13 11 0 778 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 39 21 708 10 10 0 788 NYWDSU	NYCDSU	Clinton Station 604	221025	10.5	46-13.8 kV 7.5	40	150	8	247	9		0	422
NYWDSU Station 067 219769 3.75 34.5-4.16 kV 3 ? 25 5 197 68 16 1 312 NYWDSU Station 160 - Summer 219456 3.75 23-4.16 kV 3.7 ? 37 60 163 164 10 0 434 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3 41 14 31 217 20 80 1 363 NYWDSU Station 052 219708 3 23-4.16 kV 2.5 70 42 19 514 13 11 0 599 NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 778 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 80 0 301 NYWDSU Station 051 219699	NYEDSU	Emmet Street Station	221755	6.25	34.5-4.16 kV 3	55	141	6	354	4	2	0	507
NYWDSU Station 160 - Summer 219456 3.75 23-4.16 kV 3.7 ? 37 60 163 164 10 0 434 NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3 41 14 31 217 20 80 1 363 NYWDSU Station 058 219735 4.69 34.5-4.16 kV 3 41 0 71 172 92 87 2 424 NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 35 17 437 13 11 0 513 NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 478 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 39 21 708 10 10 0 788 NYEDSU Station 051	NYWDSU	Sherman Station 54	220529	2.5	34.5-4.8 kV 2.{	51	0	14	236	7	3	0	260
NYWDSU Station 058 219737 4.69 34.5-4.16 kV 3 41 14 31 217 20 80 1 363 NYWDSU Station 058 219735 4.69 34.5-4.16 kV 3 41 0 71 172 92 87 2 424 NYWDSU Station 052 219708 3 23-4.16 kV 2.5 70 42 19 514 13 11 0 599 NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 35 17 437 13 11 0 513 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 39 21 708 10 10 0 788 NYEDSU Station 051 219699 3 23-4.16 kV 2.5 70 39 21 78 38 0 301 NYEDSU Schahare Station 234 <	NYWDSU	Station 067	219769	3.75	34.5-4.16 kV 3					68	16	1	
NYWDSU Station 058 219735 4.69 34.5-4.16 kV 3 41 0 71 172 92 87 2 424 NYWDSU Station 052 219708 3 23-4.16 kV 2.5 70 42 19 514 13 11 0 599 NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 35 17 437 13 11 0 513 NYWDSU Station 052 219710 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219699 3 23-4.16 kV 2.5 70 39 21 708 10 10 0 788 NYEDSU Schoharie Station 234 221848 10.5 69-13.8 kV 7.5 38 3 70 217 153 23 0 466 NYEDSU Comm	NYWDSU	Station 160 - Summer	219456	3.75	23-4.16 kV 3.7	?	37			164	10	0	434
NYWDSU Station 052 219708 3 23-4.16 kV 2.5 70 42 19 514 13 11 0 599 NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 35 17 437 13 11 0 513 NYWDSU Station 052 219710 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 39 21 708 10 10 0 788 NYEDSU Station 051 219699 3 23-4.16 kV 2.5 70 39 21 708 10 10 0 788 NYEDSU Schoharie Station 234 221848 10.5 69-13.8 kV 7 38 3 70 217 153 23 0 466 NYEDSU Station	NYWDSU	Station 058	219737	4.69	34.5-4.16 kV 3	41	14		217	20			363
NYWDSU Station 052 219706 3 23-4.16 kV 2.5 70 35 17 437 13 11 0 513 NYWDSU Station 052 219710 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 32 17 406 12 10 0 477 NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 39 21 708 10 10 0 788 NYEDSU Schoharie Station 234 221848 10.5 69-13.8 kV 7.5 38 3 70 217 153 23 0 466 NYEDSU Brunswick Station 264 221556 10.5 34.5-13.8 kV 7 38 3 70 217 153 23 0 466 NYEDSU Commerce Avenue St 221600 8.4 34.5-13.8 kV 7 38 3 75 14 12 0 118 NYWDSU Stat	NYWDSU	Station 058		4.69	34.5-4.16 kV 3	41	-					2	
NYWDSUStation 052219710323-4.16 kV 2.570321740612100477NYWDSUStation 051219701323-4.16 kV 2.57042206971180778NYWDSUStation 051219699323-4.16 kV 2.570392170810100788NYEDSUSchoharie Station 23422184810.569-13.8 kV 7.538263212778380301NYEDSUBrunswick Station 26422155610.534.5-13.8 kV 7.538370217153230466NYEDSUCommerce Avenue St2216008.434.5-13.8 kV 7.538370217153230466NYWDSUStation 0272195392.523-4.16 kV 2.5987514120118NYWDSUStation 0382196272.523-4.16 kV 2.57985147680174NYWDSUStation 0382196322.523-4.16 kV 2.57985147680174NYWDSUStation 0382196312.523-4.16 kV 2.5792392220101NYCDSUFine Station 978221424134.5-4.8 kV 1.1572392220101NYCDSUGabr	NYWDSU	Station 052	219708	3	23-4.16 kV 2.5	70				13		0	
NYWDSU Station 051 219701 3 23-4.16 kV 2.5 70 42 20 697 11 8 0 778 NYWDSU Station 051 219699 3 23-4.16 kV 2.5 70 39 21 708 10 10 0 788 NYEDSU Schoharie Station 234 221848 10.5 69-13.8 kV 7.5 38 26 32 127 78 38 0 301 NYEDSU Brunswick Station 264 221556 10.5 34.5-13.8 kV 7 38 3 70 217 153 23 0 466 NYEDSU Commerce Avenue S 221600 8.4 34.5-13.8 kV 7 38 3 70 217 153 23 0 466 NYWDSU Station 027 219539 2.5 23-4.16 kV 2.5 9 8 75 14 12 0 118 NYWDSU Station 038 219627 2.5 23-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station		Station 052		3	23-4.16 kV 2.5	70					-		
NYWDSU Station 051 219699 3 23-4.16 kV 2.5 70 39 21 708 10 0 788 NYEDSU Schoharie Station 234 221848 10.5 69-13.8 kV 7.5 38 26 32 127 78 38 0 301 NYEDSU Brunswick Station 264 221556 10.5 34.5-13.8 kV 7 38 3 70 217 153 23 0 466 NYEDSU Commerce Avenue St 221600 8.4 34.5-13.8 kV 7 38 3 70 217 153 23 0 466 NYWDSU Station 027 219539 2.5 23-4.16 kV 2.5 9 8 75 14 12 0 118 NYWDSU Station 067 219767 3.75 34.5-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219632 2.5 23-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038	NYWDSU	Station 052	219710	3	23-4.16 kV 2.5	70	32	17	406	12		0	477
NYEDSU Schoharie Station 234 221848 10.5 69-13.8 kV 7.5 38 26 32 127 78 38 0 301 NYEDSU Brunswick Station 264 221556 10.5 34.5-13.8 kV 7 38 3 70 217 153 23 0 466 NYEDSU Commerce Avenue SI 221600 8.4 34.5-13.8 kV 7 38 0 1 1 0 633 NYWDSU Station 027 219539 2.5 23-4.16 kV 2.5 9 8 75 14 12 0 118 NYWDSU Station 067 219767 3.75 34.5-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219627 2.5 23-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYWDSU Station 038 219631 <t< th=""><th>NYWDSU</th><th>Station 051</th><th>219701</th><th>3</th><th>23-4.16 kV 2.5</th><th>70</th><th></th><th></th><th></th><th>11</th><th>8</th><th>0</th><th></th></t<>	NYWDSU	Station 051	219701	3	23-4.16 kV 2.5	70				11	8	0	
NYEDSU Brunswick Station 264 221556 10.5 34.5-13.8 kV 7 38 3 70 217 153 23 0 466 NYEDSU Commerce Avenue St 221600 8.4 34.5-13.8 kV 7 0 1 60 1 1 0 63 NYWDSU Station 027 219539 2.5 23-4.16 kV 2.5 9 8 75 14 12 0 118 NYWDSU Station 067 219767 3.75 34.5-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219627 2.5 23-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219632 2.5 23-4.16 kV 2.5 79 6 5 129 5 10 0 155 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYCDSU Fine Station 978 221424 1	NYWDSU			3	23-4.16 kV 2.5	70						0	
NYEDSU Commerce Avenue St 221600 8.4 34.5-13.8 kV 7 0 1 60 1 1 0 63 NYWDSU Station 027 219539 2.5 23-4.16 kV 2.5 9 8 75 14 12 0 118 NYWDSU Station 067 219767 3.75 34.5-4.16 kV 2.5 9 8 75 14 12 0 118 NYWDSU Station 067 219767 3.75 34.5-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219632 2.5 23-4.16 kV 2.5 79 6 5 129 5 10 0 155 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 6 5 129 5 10 0 155 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYCDSU Fine Station 978 221424 1 34.5-4.8 kV 1/25<													
NYWDSU Station 027 219539 2.5 23-4.16 kV 2.5 9 8 75 14 12 0 118 NYWDSU Station 067 219767 3.75 34.5-4.16 kV 3 42 33 39 112 22 11 2 219 NYWDSU Station 038 219627 2.5 23-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219632 2.5 23-4.16 kV 2.5 79 6 5 129 5 10 0 155 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYCDSU Fine Station 978 221424 1 34.5-4.8 kV 1! 57 13 4 120 3 4 0 144 NYCDSU Gabriels Station 835 221268						38	3			153	23		
NYWDSU Station 067 219767 3.75 34.5-4.16 kV 3 42 33 39 112 22 11 2 219 NYWDSU Station 038 219627 2.5 23-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219632 2.5 23-4.16 kV 2.5 79 6 5 129 5 10 0 155 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 6 5 129 5 10 0 155 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYCDSU Fine Station 978 221424 1 34.5-4.8 kV 1/1 57 2 3 92 2 2 0 101 NYCDSU Moira Station 859 221293 3 34.5-4.8 kV 3/4 59 13 4 120 3 4 0 144 NYCDSU Gabriels Station 8							0			1	1		
NYWDSU Station 038 219627 2.5 23-4.16 kV 2.5 79 8 5 147 6 8 0 174 NYWDSU Station 038 219632 2.5 23-4.16 kV 2.5 79 6 5 129 5 10 0 155 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYCDSU Fine Station 978 221424 1 34.5-4.8 kV 1! 57 2 3 92 2 2 0 101 NYCDSU Moira Station 859 221293 3 34.5-4.8 kV 3/2 59 13 4 120 3 4 0 144 NYCDSU Gabriels Station 835 221268 1.28 46-4.8 kV 1.28 ? 4 1 52 1 1 0 59													
NYWDSU Station 038 219632 2.5 23-4.16 kV 2.5 79 6 5 129 5 10 0 155 NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYCDSU Fine Station 978 221424 1 34.5-4.8 kV 1 l 57 2 3 92 2 2 0 101 NYCDSU Moira Station 859 221293 3 34.5-4.8 kV 3/2 59 13 4 120 3 4 0 144 NYCDSU Gabriels Station 835 221268 1.28 46-4.8 kV 1.28 ? 4 1 52 1 1 0 59	NYWDSU	Station 067	219767	3.75	34.5-4.16 kV 3	42	33	39		22		2	219
NYWDSU Station 038 219631 2.5 23-4.16 kV 2.5 79 2 3 92 2 2 0 101 NYCDSU Fine Station 978 221424 1 34.5-4.8 kV 1 l 57 Image: Constraint of the station s			219627	2.5	23-4.16 kV 2.5	79	8					0	
NYCDSU Fine Station 978 221424 1 34.5-4.8 kV 1 l 57 Image: Constraint of the station stat			219632	2.5		79	6			5		0	155
NYCDSU Moira Station 859 221293 3 34.5-4.8 kV 3/2 59 13 4 120 3 4 0 144 NYCDSU Gabriels Station 835 221268 1.28 46-4.8 kV 1.28 ? 4 1 52 1 1 0 59				2.5	23-4.16 kV 2.5	79	2	3	92	2	2	0	101
NYCDSU Gabriels Station 835 221268 1.28 46-4.8 kV 1.28 ? 4 1 52 1 1 0 59			221424	1	34.5-4.8 kV 1 ľ	57							
	NYCDSU	Moira Station 859		3	34.5-4.8 kV 3/4			4		3	4	0	
Total MVA 424	NYCDSU	Gabriels Station 835	221268	1.28	46-4.8 kV 1.28	?	4	1	52	1	1	0	59
		Total MVA		424	ļ								

NYEDSU Commerce Avenue Si	221600	8.4	34.5-13.8 kV 7		0	1	60	1	1	0	63
NYWDSU Station 027	219539	2.5	23-4.16 kV 2.5		9	8	75	14	12	0	118
NYWDSU Station 067	219767	3.75	34.5-4.16 kV 3	42	33	39	112	22	11	2	219
NYWDSU Station 038	219627	2.5	23-4.16 kV 2.5	79	8	5	147	6	8	0	174
NYWDSU Station 038	219632	2.5	23-4.16 kV 2.5	79	6	5	129	5	10	0	155
NYWDSU Station 038	219631	2.5	23-4.16 kV 2.5	79	2	3	92	2	2	0	101
Total MVA		431									

Table 3. New York Transformer Replacement List

In reference to Table 3, there are 51 transformers on the list for replacement over the next 5 years in New York. There are 4 single-phase banks that will be replaced with 3-phase transformers. Therefore the cost is representative of replacing 40, 3-phase transformers. The cost of replacement is as follows:

Thirty nine units at \$900k per unit (average), \$7.02M pa for 5 years Four units at \$1.5M per unit (average), \$1.2M pa for 5 years

11.0 Rhode Island

There are 143 operating transformers in Rhode Island listed in AIMMS, with 12 spares. Of the 143 units, 79 received transformer health and risk scores. The total MVA population in Rhode Island is 983.94, and it is suggested that approximately 16 MVA be replaced per year to keep up with the aging population and to lessen the risk of failures.

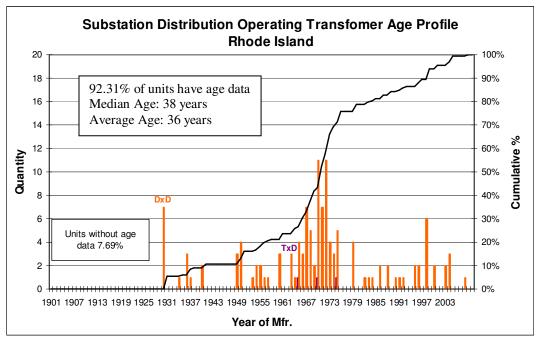


Figure 11. Distribution Transformer Age Profile

There are 132 units with age data in AIMMS for Rhode Island. Based on the available age data, the average RI transformer age is 36 years. Rhode Island has the oldest average age, but has the least amount of transformers with missing age data as a proportion of the population (7.69%). The Rhode Island transformer age profile can be found in Figure 11.

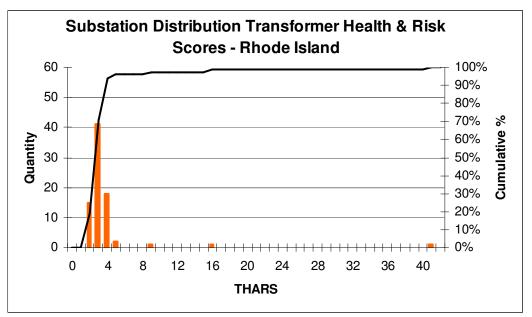


Figure 12. Transformer Health and Risk Scores for Rhode Island

In reference to Figure 12, 93.7% of the transformer health and risk scores for Rhode Island are 5.0 or below. This indicates that a large majority of the units in Rhode Island are in good condition and pose very little risk based on this health and risk scoring system. On the other hand, 2.5% of the population have scores greater than 10, and there is one unit with a score of 41. This unit is on the top of the Rhode Island replacement list. The attached list of replacement candidates for Rhode Island is listed below in Table 4.

RI - REPLACEMENT	BASED	ON 16 I	NVA PER YEAR	ł				LAST	-		
					ZHYD	ZME	ZCARB	ZETH	ZETH	ZACE	ZCOMB
					ROGE	THA	ON_M	ANE	YLENE	TYLE	UST_G
STA LOC	EQNUN	1 MVA	VOLT	AGE	N	NE	ONOXI			NE	AS
Geneva 71	21233	9.38	23-4.16 kV 7	44							
Admiral Street 9	20652	15	22-11	79	2160	6	356	1	23	0	2546
Admiral Street 9	20659	15	22-11	79	44	6	467	3	18	0	538
South Street	20316	10	22-11	69	672	2	51	1	10	1	
Elmwood Gnd Bank -	24448	0.5	21.45-11	79							
Elmwood Gnd Bank -	24449	0.5	21.45-11	72							
Elmwood Gnd Bank -	24450	0.5	21.45-11	79							
Hunt River 40	23170	17.92	34.5	39	6	7	167	1	2	0	183
Hope 15	20794	6.25	21.9-7.2	?	14	2	93	0	3	0	112
Lakewood 57	22817	10.5	22.9-4.16	45	0	0	2	0	1	1	4
Vernon 23	24254	3.13	23-4.16	60	18	4	155	0	4	0	181
Total MVA		79.3									
Lafayette 30	20837	6.25	33.6-12.470Y	52	5	2	84	1	16	0	108
Toray Fan 87	23700	9.38	34.5-2.4	79	3	5	31	15	3	0	57
Harris Avenue 12	23244	9.38	23-4.16 kV 7	?	9	58	335	53	36	0	491
Knightsville 66	20882	9.38	22.9-4.16 kV	54	0	1	60	0	18	0	79
Knightsville 66	22811	9.38	22.9-4.16 kV	54	3	1	66	0	4	0	74
Toray Lumirror 88	23701	10.5	34.5-4.16 kV	49	5	39	206	23	44	0	317
West Greenville 45	20918	6.25	22.9-13.2 kV	49	0	9	289	0	20	0	318
Langworthy Corner 86		7	33.6-12.470Y	46	82	17	819	5	47	0	970
Geneva 71	21232	9.38	22.9-4.16 kV	44	0	1	7	2	14	0	24
Lakewood 57	21351	10.5	22.9-4.16 kV	43	9	15	70	13	4	0	111
Coventry 54	20679	9.38	34.5-12.470Y	43	19	2	115	0	1	0	137
Auburn 73	21347	10.5	21.9-4.16 kV	42	5	10	122	6	3	0	146
Warwick 52	21036	10.5	22.9-13.2 kV	41	30	146	172	253	13	0	614
Warwick Mall 28	20498	6.25	22.9-13.2 kV	40	30	130	449	58	341	1	1009
Total MVA		108.4									

 Table 4. Rhode Island Transformer Replacement List

In reference to Table 4, there are 11 transformers on the list for replacement over the next 5 years in Rhode Island. However, one is to be replaced in FY10, which is excluded from the cost analysis. There is one single-phase bank that will be replaced with a 3-phase transformer. Therefore the cost is representative of replacing 8, 3-phase transformers. The cost of replacement is as follows:

Three units at \$900k per unit (average), \$540k pa for 5 years Five units at \$1.5M per unit (average), \$1.5M pa for 5 years

12.0 New Hampshire and Vermont

There are 44 operating transformers in New Hampshire and Vermont, with 2 spares. Of the 44 units, 15 received transformer health and risk scores. The replacement candidates in New Hampshire and Vermont were based on condition rather than total MVA due to the small quantity of units located in these states. There is one unit on the replacement list that is located in Vermont.

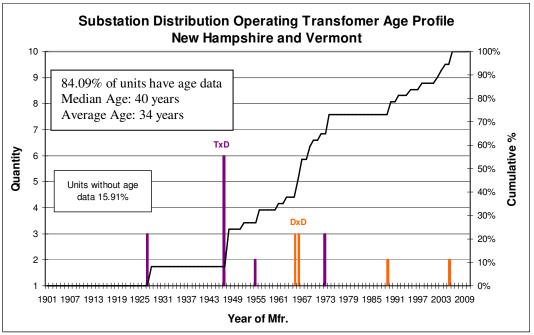


Figure 13. Distribution Transformer Age Profile

There are 37 units with age data in AIMMS for New Hampshire and Vermont. Based on the available age data, the average NH and VT transformer age is 34 years. NH and VT have the least amount of transformers with missing age data by actual count (7 units). The New Hampshire and Vermont transformer age profile is shown in Figure 13.

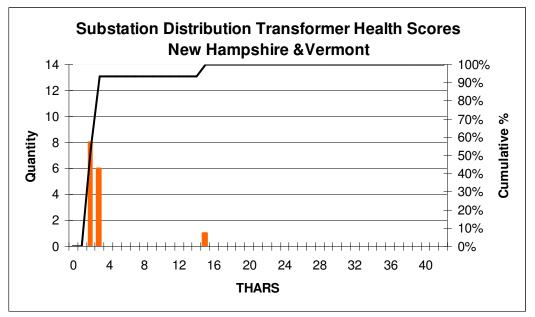


Figure 14. Transformer Health and Risk Scores for New Hampshire and Vermont

In reference to Figure 14, the majority of the transformer health and risk scores for New Hampshire and Vermont are 5.0 or below. This indicates that a most of the units in New Hampshire and Vermont are in good condition and pose very little risk based on this health and risk scoring system. There is 1 unit with a score of 15 and this unit is on the replacement list. The replacement candidates for New Hampshire and Vermont are listed below in Table 5 and Table 6.

	NH - REPLACEMEN	T BASEI		ONDITION	ROGE HANE BON_ MON HAN HYL CE B AGE N MON E ENE TY 0 ? 565 264 1050 139 96 0 2 41 104 17 1160 4 28 0 13 ? 129 71 508 40 104 0 8							
						ZHYD	ZMET	ZCAR	ZET	ZET	ZA	ZCOM
						ROGE	HANE	BON_	HAN	HYL	CE	BUST
DIVISION	STA LOC	EQNU	MVA	VOLT	AGE	Ν		MON	E	ENE	ΤY	_GAS
NENG	Salem Depot 9	23068	7	22.9-13.2	?	565	264	1050	139	96	0	2114
NENG	Salem Depot 9	20402	7	22.9-13.2	41	104	17	1160	4	28	0	1313
NENG	Spicket River 13	23438	9.38	22.9-13.2 ZZ	?	129	71	508	40	104	0	852
NENG	Barron Avenue 10	20775	6.25	22.9-13.2	47	11	150	708	93	49	0	1011
	Total MVA		29.63									
NENG	Barron Avenue 10	21649	6.25	22.9-13.2 kV	38	11	150	708	93	49	0	1011
NENG	Charlestown 32	23604	6.25	45-13.2 kV 5/	36	30	29	736	5	63	0	863
NENG	Salem Depot 9	22772	9.38	22.9-13.2 ZZ k	20	70	39	573	17	3	0	702
	Total MVA		21.88									

Table 5. New Hampshire Transformer Replacement List

	VT - REPLACEMEN	T BASED	ON CO	ONDITIO	N	-							
						ZHYD	ZMET	ZCAR	ZET	ZET	ZAC	ZCOM	
						ROGE	HANE	BON_	HAN	HYL	ETYL	BUST	
						N		MONO	E	ENE	ENE	GAS	
DIVISION	STA LOC	EQNUM	MVA	VOLT	AGE			XIDE					
NENG	Bridge Street 67	20062	3.75	6.9-4.8	49								
	Table 6. Vermont Transformer Replacement List												

iont ransio nei керіасе In reference to Tables 5 and 6, there are 5 transformers on the list for replacement over the next 5 years in New Hampshire (4 units) and in Vermont (1 unit). The cost of replacement is as follows:

Four units at \$900k per unit (average), \$720k pa for 5 years One unit at \$1.5M per unit (average), \$300k pa for 5 years

United Power Group, Inc.

Liberty Utilities 9 Lowell Road Salem, NH 03079 Date. 8/27/14 Project No.

Project Location:

Barron Ave. Substation

Scope:

Perform testing & maintenance on the following equipment:

- 1. 10L1 Transformer
- 2. 10L1 Recloser and Form 3A Controller
- 3. 10L1 Voltage Regulators
- 4. Substation Perimeter Fence Grounding

Remarks:

- 1. Transformer 10L1's bushings are showing signs of deterioration. UPG would like to see past test data for the transformer. The transformer is over 40 years old. UPG recommends retesting the transformer in 1 year to see if the condition worsens.
- 2. Recloser 10L1 and form 3A controller test results are acceptable for service.
- 3. Voltage regulators 10L1 test results are acceptable for service.
- 4. UPG was asked to inspect the ground on the perimeter fence. It was discovered that most of the fence was ungrounded; a 2-point test was used to find this issue. UPG recommends adding grounds to the fence posts and adding a ground wire along the chain link.

Submitted by: James Fazio

United Power Group Inc

			UN	itec		owe	er G	rou	p, inc.				
									_	Page N	lo.		
Customer	Liberty	Utilitie	es				Date	8/26	/2014	Project	No.		
Address	Salem,	NH					Air Te	emp.	25C	Rel. Hu	umidity	32%	
Owner	Liberty	Utilitie	es				Date	Last Ins	spection	By Oth	ers		
Address	Salem,	NH					Last I	nspecti	on Report No.				
Equipment	Location		Barron Ave.	Sube	ation								
Owner Iden			Transforme		alion								
Owner iden	lincation		Transionne	IIULI									
Nameplate	Informa	tion											
Manufactur	er		GE	KVA	500	0/5600	/7000	Phase	3	Cycle	60		
Serial No.		F-9	59759	Туре	-		ver	Form		Class	0A		
Primary Vo	Itage	13.2				Wye			Current	-	141	Ampe	eres
Secondary	•	7.62				Wye			Current		245	Ampe	
Coolant	Oil	X	Askarel			Air			Nitrogen		Othe		
Coolant Ca	-		-		Mair	n Tank		OUG	LTC	-	Switcl	-	-
Temperatur		511113			-	e of Ma			_	dance	3.58%		
No Load Ta			ltagoo	24400				300/217		uance	5.50%		
NO LOAU TA	ap Chang	ler vo	mages	24100)/230	00/229	00/223	500/217	00				
Gauges and (Measured			Reset	Trip	Alarm	LTC	Measu	red	Max.	Min
Oil Temper			40C	60	С	Х			Тар		NA		
Wdg. Temp	perature					Х			Counter		NA		
Pressure			1+										
Oil Level			25C										
Visual Insp	pection												
Primary Co			OK		Sec	ondary	Conne	ections		(ЭK		
Tap Conne			OK		Leal		001110				NA NA		
Gas Regula			NA		Pain	-							
Infra-Red Ir		1	NA			unds					DK		
	ispection		INA		0100	unus					JN		
Fans and C	Controls		Oil Temp.	Wdg.	Tem	р.	Manu	al	Auto	Lubrica	tion Dat	е	
Stage 1			60C					Х	Х				
Stage 2													
Accessory	Inspecti	ion			Alar	m	Trip		Т				
Pressure R	-		Main Tank				P		1				
Pressure R									1				
Sudden Pre									-				
Suuden Fit		EVICE							4				
Additional	Toste												
Auditional	1 5313												

Remarks

(1) Cooling fan is missing.

JF

Submitted By

Company		UPG		Sei	rial Number		F-959759	
Location		Barron A	ve. Substation	Sp	ecial ID		Transform	er - 10L1
Division		Liberty U	Jtilities	Ci	rcuit Designati	on		
Manufacturer		GE		Co	nfiguration		Y-Y	
Year Mfg.				Ta	nk Type		OTHER	
Mfr. Location		USA		Co	olant		OIL	
Phases		3		Cla	ass		OA/FA	
Oil Volume		690 UG		BI	L		110 kV	
Weight		18600 L	В	Wi	inding Config.		Wye-Wye	
kV		22.9, 7.6	2	VA	ARating		, 5000, 560	00, 7000 kVA
Note								
Test Date	8/2	6/2014	Test Time		7:54:38 AM	Weath	ier	SUNNY
Air Temperature	23	°C	Tank Temp.		23°C	RH.		61 %
Tested by	JF/	RB	Work Order #			Last T	'est Date	7/31/2014
Checked by			Test Set Type		M4K	Retest	Date	
Checked Date			Set Top S/N			Reaso	n	ROUTINE
Last Sheet #			Set Bottom S/N			Trave	l Time	
P.O. #		Ins. Book #				Durat	ion	
Copies			Sheet #			Crew	Size	2

Transformer 10L1 – Doble Test

Bushing Nameplate

Dsg	Serial	Mfr	Туре	C1 %PF	C1 Cap	C2 %PF	C2 Cap	kV	Amps	Year
H2	1629051	GE	U	0.25	433			25	400	1967
H3	1629067	GE	U	0.31	446			25	400	1967
X1	1629055	GE	U	0.27	432			25	400	1967
X2	1629526	GE	U	0.27	439			25	400	1967
XO	1629093	GE	U	0.26	460			25	400	1967
X3	1629060	GE	U	0.27	431			25	400	1967
H1	1629061	GE	U	0.28	449			25	400	1967

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} I	[R _{man}
CH + CHL	8.005	28.401	1.007		1.00	7533.6		
СН	8.004	28.362	1.002	0.35	1.00	7523.1	G	

Bushing C1

ID	Serial	NP %PF	NP Cap	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
H1	1629061	0.28	449	10.005	1.722	0.1360	0.79	1.00	456.73	D	
H2	1629051	0.25	433	10.005	1.642	0.0920	0.56	1.00	435.61	D	
H3	1629067	0.31	446	10.010	1.695	0.1050	0.62	1.00	449.49	D	
X1	1629055	0.27	432	10.006	1.630	0.0690	0.42	1.00	432.28	G	
X2	1629526	0.27	439	10.006	1.745	0.0530	0.30	1.00	462.82	D	
X3	1629060	0.27	431	10.005	1.758	0.0640	0.36	1.00	466.21	D	
XO	1629093	0.26	460	10.006	1.738	0.0540	0.31	1.00	460.91	G	

Insulation Resistance

Mfr.		Serial #		
Connection	Volts	T1(Mohms)	T2(Mohms)	PI
Hi / Lo to Earth	5000	9500	21000	2.2105

Exciting Current Tests

				Туре	Steps		oost %	Buck %		osition Found	Posit Le			Oil olume
	De-Energized Tap Changer													
On-Loa	On-Load Tap Changer													
				H1 -	HO		H	2 - H0		H3	3 - HO			
DETC LTC Test kV		m	A V	Watts	X	mA	Watt	s X	mA	Watts	X	IR _{auto}	IR _{man}	
	3	8.045	113	.84 9	49.85	L	74.934	657.2	8 L	114.32	956.31	L	G	

Turns Ratio (H-L) Tests

	Mfi	ſ		Seria	ıl #	HV	/ Windin	g	LV Winding			
Con	actions			H1 -	HO	-	H2 - H0		H3 - H0			
Conn	Connections			X1 -	X0		X2 - X0		X3 - X0			
Тар	Tap Np Volt Tap Np V		Np Volt	Cal	Ratio 1	Ratio 2	Ratio 3	Min Lim	Max Lim	IR _{auto}	IR _{man}	
3	3 13220 762		7620	1.735	1.732	1.737 1.734 1.726			1.744	G		

United Power Group, Inc. VACUUM RECLOSER TEST AND INSPECTION REPORT

Docket No. DE 19-064

Attachment B Page 5 of 15

Page No. Customer Liberty Utilities Date 8/26/2014 Project No. Address Salem, NH Air Temp. 88F Rel. Humidity 38% Owner Liberty Utilities Date Last Inspection Salem, NH Address Last Inspection Report No. Barron Ave. Equipment Location **Owner Identification** Recloser 10L1 Breaker Nameplate Data: Manufacturer McGraw Edison VSA Type Serial No. 1896 Type Operating Mechanism Coil Spring 800 15.5 Amperes Age Interrupt. Rating 12kA ΚV Specified Tolerances (If Applicable) Adjustment Mfr's As As Checks Rec. Found Left Latch Wipe NA Latch Wipe NA Х Х Latch Clearance Latch Clearance Х Х Stop Clearance NA Stop Clearance Х Х Prop. Clearance NA Prop. Clearance Х Х Contact Gap NA Contact Travel NA Phase Checked А в С Contact Wipe NA Contact Gap Х Х Х Erosion Indicator NA Contact Travel х Х Х Contact Wipe х х Х Inspection and Maintenance: Erosion Indicator х Checked Х х Insp. Found Cleaned See ltem s: ltem Dirty & Lubed Remarks Phase Test Data в С А Vacuum Bottles х KV Bottle Megohms Primary Stabs х 5 KV Open CB B1 B3 B5 Ground Stab Х 100,000+ 100,000+ 100,000+ Structural Checks х Megohms To Ground B2 Β4 B6 Х Mech. Conn. Bushings not under 100,000+ 100,000+ 100,000+ Charging Motor Х <u>test were grounded.</u> 5 KV Closed CB B1 & B2 B3 & B4 B5 & B6 Closing Springs х Megohms To Ground 100,000+ 100,000+ 100,000+ х **Opening Springs** K = Number Entered Above X 1000 **Operation Coils** х Visual OK Closing/Opening Speed Auxiliary Devices Х 241 Contact Rest. Microhms 239 237 Insulating Memb. Х Recloser Wiring х HIPOT Tests Microamps 1 Minute Test Racking Device Phase tested 2 3 x 1 Heater & Lights 37.5 KV AC. Bottle Test Р Ρ Р Cubicle Wiring ¥ 37.5 KV Closed CB Test Р Р Р X = Yes For This Entry Bottle Test is a Go No Go Test (P = Pass) (F= Fail) Counter Found 644 Closed Test Energize a Phase & Grd. All Others Counter Left 670

Remarks: Results are acceptable.

Submitted by: J Fa:

J Fazio

Equipment Used:

DLRO, Megger, HIPOT

Company		UPG		Se	rial Number		1896		
Location		Barron A	ve Substation	Sp	ecial ID		Breaker 10	L1	
Division		Liberty I	Utility	Ci	rcuit Designation	on			
Manufacturer		MC-ED		Ту	pe		VSA		
Yr. Manufactured				Cl	ass				
Mfr. Location		USA		M	echanism Type				
Interrupting Rating		12.0 kA		M	echanism Desig	n	COIL SPRING		
Weight				BI	L		110 kV		
Total Weight		525 LB		Co	ontrol Volts		125		
Counter				Ar	nps		800		
kV		15.5							
Note									
Test Date	8/26	5/2014	Test Time		11:05:30 AM	Weat	her	SUNNY	
Air Temperature	35 °	°C	Tank Temp.		°C	RH.		34 %	
Tested by	JF		Work Order #			Last 7	Fest Date	7/31/2014	
Checked by			Test Set Type		M4K	Retest	t Date		
Checked Date			Set Top S/N			Reaso	n	ROUTINE	
Last Sheet #			Set Bottom S/N			Trave	l Time		
P.O. #			Ins. Book #			Durat	ion		
Copies			Sheet #			Crew	Size		

10L1 - Vacuum Recloser

Overall Tests

Test Mode	Ph.	Test kV	mA	Watts	IR _{auto}	IR _{man}
GND	1	10.003	0.1820	0.0070	G	
GND	1	10.003	0.1750	0.0110	G	
GND	2	10.004	0.1900	0.0110	G	
GND	2	10.003	0.1840	0.0160	G	
GND	3	10.003	0.1920	0.0060	G	
GND	3	10.005	0.1760	0.0090	G	
UST	1	10.004	0.0370	0.0010	G	
UST	2	10.004	0.0390	0.0050	G	
UST	3	10.003	0.0380	0.0010	G	

Hot Collar Tests

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	1	GROUND	1	10.005	0.0610	0.0080	G	
	2	GROUND	1	10.007	0.0610	0.0050	G	
	3	GROUND	1	10.006	0.0660	0.0060	G	
	4	GROUND	1	10.006	0.0620	0.0060	G	
	5	GROUND	1	10.007	0.0650	0.0050	G	
	6	GROUND	1	10.007	0.0610	0.0050	G	

United Power Group, Inc. Docket No. DE 19-064 Attachment B

Page 8 of 15

PROTECTIVE RELAY TEST REPORT

					Page No.		
Customer	Liberty Utilitie	38	Date	<u>8/26/14</u>	_ Proj. No.		
Address	Salem, NH		Air Temp.	88F	Rel. Hum.	<u>35%</u>	
Owner	Liberty Utilitie	98	Date Last	Inspection	By Others		
Address	<u>Salem, NH</u>		Last Insp	ection Report	No		
Equipment	Location	Barron Ave. Substation					
Owner Ider	ntification	10L1 Recloser					

Circuit Identification

_10L1 C.T.Ratio _____ C.T.Ratio _____ P.T.Ratio _____

Visual Insp	pection	Routine Maint	enance	
Cover Gasket	×	Glass Cleaned	×	Mfr: Cooper
Glass	X	Case Cleaned	X	Type Ph: Form 3A
Foreign Material	X	Relay Cleaned	X	Cat No:
Moisture	X	Connections Tight	X	Tap Range Ph:
Spiral Spring		Taps Tightened		Tap Range Grd:
Bearing Condition		Contacts Cleaned		Inst. Range Ph:
Bearing End-Play		Insulation Resistance	X	Inst Range Grd:
Disc Clearance		Trip Circuit	X	Use: 51P/51G/79
Rust	X			S/N =

	Relay Settings														
	Re	clos	ing	Inst. Eler	nent Setting	Tap S	Setting		Curve	e Setting			Time Dia	d Setting	
	1st	2nd	3rd	50P-1	50G-1	51P	51G	50P-1	50G-1	51P	51G	51P Fast	51G Fast	51P	51G
Specified	5	15	LO			560A	200A					А	1	D	3
As Found	5	15	LO			560A	200A					А	1	D	3
As Left	5	15	LO			560A	200A					А	1	D	3

Test Operations - As Found - Time in Seconds

		Time E	Element	С	Current Voltage		Inst. E	lement						
		P.	U.		Time		Current	Noltage	Tarq	ets		Redu	osing	
	Zero			P. U.	Tap 1	Tap 2	Pick							
	Set	Tap 1	Tap 2	X	<u>×2</u>	84	Up	Delay	LED	Reset	1st	2nd	3rd	4th
A Phase		0.588			1.16	0.254			X	×				
B Phase		0.586			1.13	0.247			X	X	5	15	LO	
C Phase		0.587			1.15	0.248			X	X				
GRD		0.203			6.26	2.36			X	X				

Test Operations - As Le	ft - Time in Seconds
-------------------------	----------------------

		Time E	Element	С	Current Voltage		Inst. E	Inst. Element						
		P.	U.		Time		Current	Noltage	Tarq	ets		Redo	osinq	
	Zero			P. U.	Tap 1	Tap 2	Pick							
	Set	Tap 1	Tap 2	Х	<u>X2</u>	<u>X4</u>	Up	Delay	LED	Reset	1st	2nd	3rd	4th
A Phase		0.588			1.16	0.254			X	X				
B Phase		0.586			1.13	0.247			X	X	5	15	LO	
C Phase		0.587			1.15	0.248			Х	Х				
GRD		0.203			6.26	2.36			X	X				

Submitted By JF _____Equipment Used ______Equipment Used _____Equipment Used ______Equipment Used _____Equipment Used _____Equipment Used _____Equipment Used _____Equipment Used _____Equipment Used ____Equipment Used ____Equipment Used ____Equipment Used ____Equipment Used ____Equipment Used ____Equipment Us

175

Company	UPG		Sei	rial Number		M168839	PVC
Location	Barron A	Ave. Substation	Sp	ecial ID		10L1Regu	lators
Division	Liberty V	Utilities	Ci	rcuit Designati	ion	A Phase	
Manufacturer	GE		Ty	ре		VR-1	
Yr. Manufactured	2000			Class OA			
Mfr. Location	USA						
Tank Type	N2 BLA	NKETED	Co	olant		OIL	
Phases	1		BI	L		95 kV	
Weight	2790 LH	3	Oil	l Volume		95 UG	
kV	7.96		An	nps		313	
Impedance	%		VA	Rating		250 kVA	
Catalog #			LT	C Counter		98624	
Design	Step		Ct	rl Wire Diame	eter		
Catalog/Style			Crew Size				
Note							
Test Date	8/27/2014	Test Time		7:35:00 AM	Weath	ner	SUNNY
Air Temperature	24 °C	Tank Temp.		24°C	RH.		59 %
Tested by		Work Order #			Last T	est Date	8/1/2014
Checked by		Test Set Type		M4K	Retest	Date	
Checked Date		Set Top S/N			Reaso	n	ROUTINE
Last Sheet #		Set Bottom S/N	I		Trave	l Time	
P.O. #		Ins. Book #			Durat	ion	
Copies		Sheet #			Crew	Size	

10L1 - A Phase Voltage Regulator

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} IR _m	ıan
СН	8.003	15.928	3.775	2.37	1.00	4223.8	G	

Hot Collar Tests

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	3	10.012	0.0690	0.0240	G	
	L	GROUND	3	10.014	0.0690	0.0310	G	
	SL	GROUND	3	10.012	0.0650	0.0210	G	

Insulation Resistance

Mfr.:	AVO	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	3200	6100	1.9062	G	

Exciting Current Tests

			Mfr.	Туре	Ste	ps P	osition	Found	Positic	on Left
De	-Energized Tap Chan	ıger								
(On-Load Tap Change	r								
	Connections	SA	A - SL		SB - SL		SC - SL			
LTC	Test kV	mA	Wa	atts	mA	Watts	mA	Watts	IR _{auto}	IR _{man}
1L	2.500	504.32	792	2.04						
N	2.500	852.15	856	5.43						
1R	2.501	501.95	824	1.77						
2R	2.500	851.27	871	1.76						
3R	2.501	502.12	816	5.97						
4R	2.502	852.36	900).32						
5R	2.502	849.18	922	2.24						
6R	2.502	852.70	905	5.43						
7R	2.500	502.95	820).01						
8R	2.502	853.18	907	7.52						
9R	2.503	504.92	847	7.34						
10R	2.500	853.11	891	1.57						
11R	2.500	503.78	824	4.60						
12R	2.503	853.83	919	9.61						
13R	2.500	850.87	902	2.72						
14R	2.501	853.13	902	2.59						
15R	2.499	504.35	819	9.84						
16R	2.501	853.06	893	3.12						

Company	UPG		Sei	rial Number		M168838	PVC
Location	Barron	Ave. Substation	Sp	ecial ID		10L1Regu	lators
Division	Liberty	Utilities	Ci	rcuit Designati	ion	B Phase	
Manufacturer	GE		Ty	Туре		VR-1	
Yr. Manufactured	2000		Cla	-		OA	
Mfr. Location	USA						
Tank Type	N2 BL	ANKETED	Coolant			OIL	
Phases	1		BI	L		95 kV	
Weight	2790 I	JB	Oil	l Volume		95 UG	
kV	7.96		An	nps		313	
Impedance	%		VA	Rating		250 kVA	
Catalog #			LT	C Counter		98624	
Design	Step		Ct	rl Wire Diame	eter		
Catalog/Style			Crew Size				
Note							
Test Date	8/27/2014	Test Time		7:35:00 AM	Weath	ner	SUNNY
Air Temperature	24 °C	Tank Temp.		24°C	RH.		59 %
Tested by	JF	Work Order #			Last T	est Date	8/1/2014
Checked by		Test Set Type		M4K	Retest	Date	
Checked Date		Set Top S/N			Reaso	n	ROUTINE
Last Sheet #		Set Bottom S/N	N		Trave	l Time	
P.O. #		Ins. Book #			Durat	ion	
Copies		Sheet #			Crew	Size	

10L1 – B Phase Voltage Regulator

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
СН	8.009	15.110	2.741	1.81	1.00	4007.2	G	

Hot Collar Tests

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	3	10.011	0.0720	0.0260	G	
	L	GROUND	3	10.014	0.0660	0.0310	G	
	SL	GROUND	3	10.012	0.0660	0.0300	G	

Insulation Resistance

Mfr.:	AVO	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	8600	13400	1.5581	G	

Exciting Current Tests

		Mfr.	Туре	pe Steps Po		osition Found		Position Left		
De-Energized Tap Changer										
(On-Load Tap Change	r								
Connections SA			A - SL		SB - SL		SC - SL			
LTC	Test kV	mA	Watts		mA	Watts	mA	mA Watts		IR _{man}
1L	2.501	513.71	784	1.42						
N	2.502	863.16	883	3.66						
1R	2.500	510.79	801	1.35						
2R	2.502	862.19	889	9.40						
3R	2.503	512.35	835	5.33						
4R	2.500	862.91	869	9.66						
5R	2.501	859.01	897	7.53						
6R	2.502	862.84	899	9.14						
7R	2.504	513.60	845	5.59						
8R	2.501	863.50	895	5.13						
9R	2.500	512.98	813	3.39						
10R	2.502	863.31	897	7.76						
11R	2.500	513.21	813	3.64						
12R	2.501	863.61	889	9.59						
13R	2.501	862.06	910	0.00						
14R	2.502	863.77	912	2.19						
15R	2.500	514.03	816	5.40						
16R	2.502	863.93	902	2.15						

Company	UPG		Sei	rial Number		M168837	PVC		
Location	Barron A	Ave. Substation	Sp	ecial ID		10L1Regulators			
Division	Liberty V	Liberty Utilities		rcuit Designati	ion	C Phase			
Manufacturer	GE		Ту	0		VR-1	VR-1		
Yr. Manufactured	2000	2000		188		OA			
Mfr. Location	USA					1			
Tank Type	N2 BLA	NKETED	Co	olant		OIL			
Phases	1		BI	L		95 kV			
Weight	2790 LH	3	Oil	Volume		95 UG			
kV	7.96		An	ıps		313			
Impedance	%		VA	Rating		250 kVA			
Catalog #				C Counter		98624			
Design	Step	Step		rl Wire Diame	ter				
Catalog/Style				ew Size					
Note									
Test Date	8/27/2014	Test Time		7:46:31 AM	Weath	ner	SUNNY		
Air Temperature	23 °C	C Tank Temp.		23°C	RH.		59 %		
Tested by		Work Order #			Last T	est Date	8/27/2014		
Checked by		Test Set Type		M4K	Retest	Date			
Checked Date		Set Top S/N			Reaso	n	ROUTINE		
Last Sheet #		Set Bottom S/N			Trave				
P.O. #		Ins. Book #			Duration				
Copies		Sheet #			Crew Size				

10L1 – C Phase Voltage Regulator

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} IR _n	nan
СН	8.004	16.483	4.126	2.50	1.00	4371.0	G	

Hot Collar Tests

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	3	10.011	0.0730	0.0380	G	
	L	GROUND	3	10.014	0.0680	0.0280	G	
	SL	GROUND	3	10.010	0.0640	0.0360	G	

Insulation Resistance

Mfr.:	AVO	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	4890	7220	1.4765		G

Exciting Current Tests

			Mfr.	Туре	Ste	eps I	Position	Found	Positic	on Left
De	-Energized Tap Chan	iger								
(On-Load Tap Change	r								
	Connections	SA	A - SL		SE	8 - SL	SC	C - SL		
LTC	Test kV	mA	Wa	atts	mA	Watts	mA	Watts	IR _{auto}	IR _{man}
1L	2.515	531.36	845	5.75						
N	2.509	892.74	923	3.63						
1R	2.500	526.14	787	7.71						
2R	2.502	888.78	876	5.65						
3R	2.500	526.26	789	9.59						
4R	2.500	888.19	853	3.04						
5R	2.500	884.38	874	1.44						
6R	2.503	889.94	893	3.95						
7R	2.501	527.56	807	7.78						
8R	2.501	889.12	867	7.20						
9R	2.500	527.55	792	2.53						
10R	2.502	889.62	882	2.03						
11R	2.501	528.06	807	7.26						
12R	2.501	889.55	872	2.37						
13R	2.500	887.03	870).17						
14R	2.500	889.19	852	2.58						
15R	2.501	528.70	807	7.44						
16R	2.500	889.34	853	3.53						

		Uni	ited Po	ower Gr	oup, Ir		Attachm Page 15 Page No.	ent B
Customer	Liberty Utilities			Date	8/27/2014		Proj. No.	
Address	Salem, NH			Air Temp.	85F		Rel. Hum.	54%
Owner	Liberty Utilities			Date Last Insp	ection	By Others		
Address	Salem, NH			Last Inspection	n Report No			
Equipment Owner Ider		Barron / 10L1	Ave.					
Manuf.	GE		Туре	VR1		Test Set#		
Gallons	95		Oil Levels	OK		KVA	250	Douvor
Nameplate	Voltage	7960	Ser#A	M168839 PVC			Doble Factor	Power Results
Line to Line			Ser # B	M168838 PVC			Test KV	8
Percent Re		5/8%		M168837 PVC			Position	N
	- <u>-</u>	,.						
Тар	Тар	TTR	TTR MEAS					
Position	Voltage	Ratio	S-SL A	S-SL B	S-SL C			
			L-SL A	L-SL B	L-SL C			
16R	8756	0.909	0.904	0.906	0.906			
15R	8706	0.914	0.912	0.912	0.912			
14R	8657	0.920	0.917	0.917	0.917			
13R	8607	0.925	0.923	0.923	0.923			
12R	8557	0.930	0.929	0.929	0.929			
11R	8507	0.936	0.934	0.934	0.934			
10R	8458	0.941	0.941	0.941	0.941			
9R	8408	0.947	0.946	0.946	0.946			
8R	8358	0.952	0.951	0.951	0.951			
7R	8308	0.958	0.957	0.957	0.957			
6R	8259	0.964	0.962	0.962	0.962			
5R	8209	0.970	0.969	0.969	0.969			
4R	8159	0.976	0.976	0.976	0.976			
3R	8109	0.982	0.982	0.982	0.982			
2R	8060	0.988	0.988	0.988	0.988			
1R	8010	0.994	0.994	0.994	0.994			
N	7960	1.000	1.000	1.000	1.000			
1L	7910	1.006	1.006	1.006	1.006			
2L	7861	1.013	1.013	1.013	1.013			
3L	7811	1.019	1.019	1.019	1.019			
4L	7761	1.026	1.025	1.025	1.025			
5L	7711	1.032	1.033	1.033	1.033			
6L	7662	1.039	1.041	1.041	1.041			
7L	7612	1.046	1.047	1.047	1.047			
8L	7562	1.053	1.054	1.054	1.054			
9L	7512	1.060	1.061	1.061	1.061			
10L	7463	1.067	1.068	1.068	1.068			
11L	7413	1.074	1.075	1.075	1.075			
12L	7363	1.081	1.082	1.082	1.082			
13L	7313	1.088	1.091	1.091	1.091			
14L	7264	1.096	1.099	1.099	1.099			
15L 16L	7214 7164	1.103	1.107 1.115	1.107 1.115	1.107 1.115			
IUL	/104	1.111	1.110	1.113	1.110			

Remarks: Regulator test results are acceptable.

United Power Group, Inc.

Liberty Utilities 9 Lowell Road Salem, NH 03079 Date. 9/18/14 Project No.

Project Location:

Barron Ave. Substation

Scope:

Perform testing & maintenance on the following equipment:

- 1. 10L4 Transformer
- 2. 10L4 Recloser and Form 6 Controller
- 3. 10L4 Voltage Regulators

Remarks:

- 1. Transformer 10L4's X1 and X2 bushings are showing signs of deterioration. UPG would like to see past test data for the transformer. There is also signs of oil leaking around the bottom valve. A closer look will be taken when the oil sample is extracted.
- 2. Recloser 10L4 and form 6 controller test results are acceptable for service.
- 3. Voltage regulators 10L4 test results are acceptable for service.

Submitted by: James Fazio

Company		UPG		Sei	rial Number		G-853504		
Location		Barron A	ve. Substation	Sp	ecial ID		Transform	er - 10L4	
Division		Liberty U	Jtilities	Ci	rcuit Designati	on			
Manufacturer		GE		Co	nfiguration		Y-Y		
Year Mfg.				Ta	nk Type		OTHER		
Mfr. Location		USA		Co	olant		OIL		
Phases		3		Cla	ass		OA/FA		
Oil Volume		1010 UC	ũ	BI	L		110 kV		
Weight		35700 L	B	Winding Config.			Wye-Wye		
kV		22.9, 7.9	7	VA	Rating		, , 5000, 62	250 kVA	
Note									
Test Date	9/1	7/2014	Test Time		9:31:01 AM	Weath	ier		
Air Temperature	22	°C	Tank Temp.		°C	RH.		40 %	
Tested by	JF/	MH	Work Order #			Last T	est Date	8/26/2014	
Checked by			Test Set Type		M4K	Retest	Date		
Checked Date			Set Top S/N			Reaso	n	ROUTINE	
Last Sheet #			Set Bottom S/N			Trave	l Time		
P.O. #			Ins. Book #			Durat	ion		
Copies			Sheet #			Crew	Size		

Transformer 10L4 – Doble Test

Bushing Nameplate

Dsg	Serial	Mfr	Туре	C1 %PF	C1 Cap	C2 %PF	C2 Cap	kV	Amps	Year
H2	8T01120505	A-BB	O+C	0.36	535	0.30	431	25	400	1998
H3	8T01120509	A-BB	O+C	0.37	530	0.33	425	25	400	1998
X1	1715668	GE	U	0.30	444			16	400	1971
X2	1715669	GE	U	0.31	446			16	400	1971
XO	1715667	GE	U	0.32	447			16	400	1971
X3	1583864	GE	U	0.28	439			16	400	1965
H1	8T01120504	A-BB	O+C	0.36	533	0.42	430	25	400	1998

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} IR _{man}
CH + CHL	8.001	31.693	1.101		1.00	8406.7	
СН	8.001	31.689	1.102	0.35	1.00	8405.6	G

Bushing C1

ID	Serial	NP %PF	NP Cap	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
H1	8T01120504	0.36	533	10.002	2.016	0.0790	0.39	1.00	534.65	G	
H2	8T01120505	0.36	535	10.002	1.923	0.0710	0.37	1.00	537.03	G	
H3	8T01120509	0.37	530	10.002	1.905	0.0740	0.39	1.00	531.98	G	
X1	1715668	0.30	444	8.001	1.684	0.1120	0.67	1.00	446.74	D	
X2	1715669	0.31	446	8.002	1.598	0.0950	0.59	1.00	446.09	D	
X3	1583864	0.28	439	8.001	1.577	0.0550	0.35	1.00	440.27	G	
XO	1715667	0.32	447	8.002	1.598	0.0570	0.36	1.00	446.19	G	

Bushing C2

ID	Serial #	NP %PF	NP Cap	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
H1	8T01120504	0.42	430	0.5000	1.568	0.0480	0.31	1.00	437.81	G	
H2	8T01120505	0.30	431	0.5000	1.566	0.0360	0.23	1.00	437.33	G	
H3	8T01120509	0.33	425	0.5000	1.553	0.0350	0.23	1.00	433.74	G	

Insulation Resistance

Mfr.		Serial #		
Connection	Volts	T1(Mohms)	T2(Mohms)	PI
Hi to Lo/Earth	5000	4900	11900	2.4286

Exciting Current Tests

	De-Energized Tap		Mfr.	Туре	Steps		oost %	Buck %		osition Found	Posit Le			Oil Jume
	Changer													
On-Load Tap Changer														
				H1 -	HO		H	2 - H0		H3	6 - HO			
DETC	LTC	Test kV	m	4 1	Watts	X	mA	Watt	s X	mA	Watts	X	IR _{auto}	IR _{man}
	3	8.024	122.	55 1	051.2	L	83.382	736.1	5 L	118.43	1032.3	L	G	

Turns Ratio (H-L) Tests

	Mfı	•		Seria	ıl #	HV	/ Windin	g	LV Winding			
							L-N		L-N			
Conr	Connections			H1 -	HO	-	H2 - H0		H3 - H0			
				X1 -	X0		X2 - X0		X3	- X0		
Тар	Np Volt	Тар	Np Volt	Cal	Ratio 1	Ratio 2	Ratio 3	Min Lim	Max Lim	IR _{auto}	IR _{man}	
2	13570		7970	1.703	1.745	1.745	1.744				G	

United Power Group, Inc.

			•		••	• • • •			,	Page I	No.		
Customer	Liberty	Utilitie	es				Date	9/17/	2014	Projec			
Address	Salem,						Air T	emp.	14C	Rel. H	umidity	37%	
Owner	Liberty	Utilitie	es					Last Ins	pection	By Oth	ners		
Address	Salem,	NH					Last	Inspectio	on Report No.				
Equipment	Location		Barron Ave.	Subst	ation	l							
Owner Iden			Transforme	r 10L4									
Nameplate	Informa	tion											
Manufactur	er		GE	KVA	Ę	5000/62		Phase	3	Cycle	60		
Serial No.		G-8	353504	Туре		Po۱	ver	Form		Class	OA		
Primary Vol	Itage	13.5	57kV	Delta		Wye	Х	Rated (Current	_	123	Ampe	eres
Secondary	Voltage	7.97	7kV	Delta		Wye	Х	Rated (Current		209	Ampe	eres
Coolant	Oil	Х	Askarel			Air		- N	litrogen		Othe	er	
Coolant Ca	pacity - L		-		Mair	n Tank	10	010UG	LTČ	-	Switc		-
Temperatur	• •				Date	e of Mar	nufact	ure	Impe	dance	3.21%		
No Load Ta		er Vo	ltages					300/2170					
	.p e		Juligee						~				
Gaucies and (Counters		Measured	Maxim	านm	Reset	Trip	Alarm	LTC	Measu	ired	Max.	Min.
Oil Tempera	ature		25C	600	С	Х			Тар		NA		
Wdg. Temp	perature					Х			Counter		NA		-
Pressure			1+							•		_	
Oil Level			25C										
			•					•	u				
Visual Insp									-				
Primary Co	nnection		OK		Sec	ondary	Conn	ections			OK		
Tap Conne	ections		OK		Leal	ĸs				Botto	m Valve		
Gas Regula	ator		NA		Pair	nt					OK		
Infra-Red Ir	nspection		NA		Grou	unds					OK		
				I					.	<u></u>			
Fans and C	Controls		Oil Temp.	Wdg.	Tem	р.	Manu		Auto	Lubrica	ation Dat	е	
Stage 1			60C					Х	Х				
Stage 2													
Accessory	Inspecti	ion			Alar	m	Trip		1				
Pressure R			Main Tank		7 (101)		mp		1				
Pressure R									-				
Sudden Pre													
ouddennine]				
Additional	Tests												
Remarks	С)il lea	k on bottom	valve.									

Submitted By

JF

Company		UPG		Se	rial Number		CP571172	094	
Location		Barron A	ve Substation	Sp	ecial ID		Breaker 10L4		
Division		Liberty U	Jtility	Ci	rcuit Designati	on			
Manufacturer		KYLE			ре		OTHER		
Yr. Manufactured					ass				
Mfr. Location		USA			echanism Type				
Interrupting Rating		12.0 kA			echanism Desig	n	COIL SPR	ING	
Weight				BI	L		110 kV		
Total Weight		525 LB		Control Volts			125		
Counter				An	nps		800		
kV		15.5							
Note									
Test Date	9/1	7/2014	Test Time		12:36:43 PM	Weatl	ner		
Air Temperature	26	°C	Tank Temp.		°C	RH.		26 %	
Tested by			Work Order #			Last 7	Test Date	8/26/2014	
Checked by			Test Set Type		M4K	Retest	Date		
Checked Date			Set Top S/N			Reaso	n	ROUTINE	
Last Sheet #			Set Bottom S/N			Trave	l Time		
P.O. #			Ins. Book #			Duration			
Copies	Copies		Sheet #			Crew	Size		

10L4 - Vacuum Recloser

Overall Tests

Test Mode	Ph.	Test kV	mA	Watts	IR _{auto}	IR _{man}
GND	1	10.002	0.2240	0.0030		G
GND	1	9.306	0.2010	0.0080		G
GND	2	10.002	0.2230	0.0030		G
GND	2	10.002	0.2060	0.0090		G
GND	3	10.002	0.2230	0.0020		G
GND	3	10.001	0.2000	0.0080		G
UST	1	10.001	0.0490	0.0000		G
UST	2	10.001	0.0490	0.0000		G
UST	3	10.002	0.0490	0.0000		G

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	1	GROUND	1	10.007	0.0730	0.0140	G	
	2	GROUND	1	10.008	0.0780	0.0150	G	
	3	GROUND	1	10.007	0.0770	0.0100	G	
	4	GROUND	1	10.008	0.0720	0.0150	G	
	5	GROUND	1	10.007	0.0640	0.0170	G	
	6	GROUND	1	10.007	0.0730	0.0130	G	

Docket No. DE 19-064 Attachment C Page 8 of 16

United Power Group, Inc. VACUUM RECLOSER TEST AND INSPECTION REPORT

a .						D .	0/17/0014		Page No.		
Customer	Libertv Utili					Date	9/17/2014		Proiect No.	·. <u> </u>	
Address	Salem. NH					Air Temp.	70F		Rel. Humid	itv <u>389</u>	6
Owner	Libertv Utili					-	st Inspection				
Address	<u>Salem. NH</u>					Last Inspect	ion Report No.				
Equipment L		Barron A									
Owner Identi	ification	Recloser	10L4								
Manufacture						Nameplate Tvpe	VSA-12				
Serial No.	CP571172				•	atina Mechan		<u>Coil Sprina</u>		101 15	-
Amperes	800	_ Aae _			Interrupt. R	ating	<u>12kA</u>			KV <u>15.</u>	5
						_					
A	diustment		Mfr's	As	As		Spe	ecified Tolera	ances (If Apr	olicable)	
	Checks		Rec.	Found	Left	Latch W	/ipe	NA			
Latch Wipe				×	X	Latch C	learance	NA			
Latch Cleara	ince			×	X	Stop Cle	earance	NA			
Stop Clearar	nce			X	Х	Prop. C	learance	NA			
Prop. Cleara	nce			X	X	Contact	Gad	NA			
						Contact	Travel	NA			
Phase Chec	:ked		А	В	С	Contact	Wipe	NA			
Contact Gap)		Х	X	X	Erosion	Indicator	NA			
Contact Trav			Х	X	X	┨ ┍━━━━					
Contact Wip			Х	X	X			Inspection a	1	ince:	
Erosion India	cator		×	Х	Х		Checked	Insp.	Found	Cleaned	See
				_	_	,	ltems:	ltem	Dirtv	& Lubed	Remarks
	se Test Data		A	B	С	Vacuum		<u> </u>			
	Bottle Meaoh	ims				Primarv		X			
	Dpen CB		B1	B3	B5	Ground		<u> </u>			
Meaohms T			00.000+	100.000+	100.000+		al Checks	X			
Bushinas na		L.	B2	B4	B6	Mech. C		<u> </u>			
test were an			00.000+	100.000+	100.000+	Charain		X			
	Closed CB		B1 & B2	B3 & B4	B5 & B6	Closina		X			
Meaohms To				100.000+	100.000+	1	a Sprinas	×			
	K = Nu	mber Entere	ed Above .	X 1000		Operatio	on Coils	X			
Closina/Ope	nina Speed	Vi	isual OK		-	Auxilian	/ Devices	×			
Contact Res	t. Microhms		169	166	168	Insulatir	na Memb.	Х			
						Reclose	er Wirina	×			
	HIPOT Te	sts Microal	mps 1 Mir	nute Test		Rackinc	Device	_			
	ase tested		1	2	3	Heater &	& Liahts	×	ļ		
37.5 KV A	AC. Bottle Te	est	Р	Р	Р	Cubicle	Wirina	X	ļ		
	Closed CB Te		Р	Р	Р			X = Yes	For This Enti	v	
	is a Go No G					Counter		_		58	
Closed Test	' Eneraize a P	Phase & Gro	d. All Othe	?/S		Counter	Left			74	

Remarks: Results are acceptable.

Submitted bv: J Fazio

Equipment Used: DLRO. Meager. HIPOT

United Power Group, Inc.

Docket No. DE 19-064 Attachment C Page 9 of 16

PROTECTIVE RELAY TEST REPORT

					Page No.		
Customer	Liberty Utilitie	es	Date	9/17/14	Proj. No.		
Address	Salem, NH		Air Temp.	70F	Rel. Hum.	30%	
Owner	Liberty Utilitie	es	Date Last	Inspection	By Others		
Address	Salem, NH		Last Inspe	ction Report	No.		
Equipment	Location	Barron Ave. Substation					
Owner Ider	ntification	10L4 Recloser					

Circuit Identification

10L4

C.T.Ratio 1000/1 P.T.Ratio

Visual Ins	pection	Routine Maint	enance	
Cover Gasket	X	Glass Cleaned	Х	Mfr: Cooper
Glass	X	Case Cleaned	Х	Type Ph: Form F6
Foreign Material	X	Relay Cleaned	Х	Cat No:
Moisture	X	Connections Tight	Х	Tap Range Ph: 5-3200A
Spiral Spring		Taps Tightened		Tap Range Grd: 2-1600A
Bearing Condition		Contacts Cleaned		Inst. Range Ph:
Bearing End-Play		Insulation Resistance	Х	Inst Range Grd:
Disc Clearance		Trip Circuit	Х	Use: 51P/51G/79
Rust	X			S/N =
Remarks: Results	are acceptable.			

	Relay Settings														
	Re	eclos	ing	Inst. Eler	nent Settina	Tap S	Setting		Curve	Setting			Time Dia	al Setting	
	1st	2nd	3rd	50P-1	50G-1	51P	51G	50P-1	50G-1	51P	51G	50P-1	50G-1	51P	51G
Specified	5	5	LO			720A	280A							133	140
As Found	5	5	LO			720A	280A							133	140
As Left	5	5	LO			720A	280A							133	140

Test Operations	- As Found -	Time in	Seconds
------------------------	--------------	---------	---------

		Time Element Current Voltage		Inst. E	lement									
		P.	U.		Time		Current	/Voltage	Targets		Reclosing			
	Zero			P. U.	Tap 1	Tap 2	Pick							
	Set	Tap 1	Tap 2	Х	<u>X3</u>	<u>X5</u>	Up	Delay	LED	Reset	1st	2nd	3rd	4th
A Phase		0.723			1.35	0.528			Х	Х				
B Phase		0.725			1.36	0.524			Х	Х	5	5	LO	
C Phase		0.726			1.35	0.529			Х	Х				
GRD		0.284			3.30	1.89			Х	Х	5	5	LO	

		Time Element Current Voltage		Inst. E	lement									
		P.	U.		Time		Current	/Voltage	Targ	ets	Reclosing			
	Zero			P. U.	Tap 1	Tap 2	Pick							
	Set	Tap 1	Tap 2	Х	<u>X3</u>	<u>X5</u>	Up	Delay	LED	Reset	1st	2nd	3rd	4th
A Phase		0.723			1.35	0.528			Х	Х				
B Phase		0.725			1.36	0.524			Х	Х	5	5	LO	
C Phase		0.726			1.35	0.529			Х	Х				
GRD		0.284			3.30	1.89			Х	Х	5	5	LO	

Submitted By JF

Equipment Used Doble 2253

Company	UPG		Sei	rial Number		M044407I	PFN	
Location	Barron	Ave. Substation	Sp	ecial ID		10L4 Regulators		
Division	Liberty	Utilities	-	rcuit Designati	ion	A Phase		
Manufacturer	GE		Ту			ML-32		
Yr. Manufactured	1986		Cla			OA		
Mfr. Location	USA		_			1		
Tank Type	N2 BLA	NKETED	Co	olant		OIL		
Phases	1		BI	L		95 kV		
Weight	2790 L	В	Oil	Volume		95 UG		
kV	7.96		An	ıps		313		
Impedance	%		VA	Rating		250 kVA		
Catalog #]		C Counter		258007		
Design	Step		Ct	rl Wire Diame	eter			
Catalog/Style			Cr	ew Size				
Note								
Test Date	9/18/2014	Test Time		8:33:18 AM	Weatl	ner	SUNNY	
Air Temperature	16 °C	Tank Temp.		°C	RH.		60 %	
Tested by	JF	Work Order #			Last T	est Date	8/27/2014	
Checked by		Test Set Type		M4K	Retest	Date		
Checked Date		Set Top S/N		Reason		n	ROUTINE	
Last Sheet #		Set Bottom S/N	S/N Travel Time		l Time			
P.O. #		Ins. Book #			Durat	ion		
Copies		Sheet #			Crew	Size		

10L4 - A Phase Voltage Regulator

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} IR _{ma}
СН	8.001	11.093	1.172	1.06	1.00	2942.4	G

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	3	10.013	0.0670	0.0130	G	
	L	GROUND	3	10.014	0.0680	0.0130	G	
	SL	GROUND	3	10.013	0.0610	0.0100	G	

Insulation Resistance

Mfr.:	AV0	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	14500	26700	1.8414	G	

Exciting Current Tests

			Mfr.	Туре	Ste	ps P	osition	Found	Positic	on Left
De	-Energized Tap Chan	ıger								
(On-Load Tap Change	r								
	Connections	SA	A - SL		SB	- SL	SC	C - SL		
LTC	Test kV	mA	Wa	atts	mA	Watts	mA	Watts	IR _{auto}	IR _{man}
1L	2.500	402.14	104	45.1						
N	2.499	1377.1	128	36.8						
1R	2.500	401.39	104	46.8						
2R	2.498	1376.7	128	35.4						
3R	2.500	805.25	116	51.8						
4R	2.499	1376.9	128	36.7						
5R	2.500	401.82	104	46.7						
6R	2.500	1376.4	128	36.3						
7R	2.499	805.09	116	52.6						
8R	2.499	1376.5	128	36.8						
9R	2.500	402.09	104	48.4						
10R	2.499	1376.4	128	37.5						
11R	2.499	805.57	116	54.9						
12R	2.499	1376.5	128	38.1						
13R	2.500	402.34	105	50.6						
14R	2.499	1377.4	128	39.6						
15R	2.500	805.67	116	59.1						
16R	2.499	1376.7	129	90.4						

Company	UPG		Sei	rial Number		M046769F	РСР	
Location	Barron A	Ave. Substation	Sp	ecial ID		10L4 Regu	ilators	
Division	Liberty U	Utilities	Ci	rcuit Designati	ion	B Phase		
Manufacturer	GE		Ту	ре		MLT-32		
Yr. Manufactured	1986		Cla			OA		
Mfr. Location	USA							
Tank Type	N2 BLA	NKETED	Co	olant		OIL		
Phases	1		BI	L		95 kV		
Weight	2790 LH	B Oil Volume				95 UG		
kV	7.96		An	nps		313		
Impedance	%		VA	Rating				
Catalog #			LT	C Counter		533046		
Design	Step		Ct	rl Wire Diame	ter			
Catalog/Style			Cr	ew Size				
Note								
Test Date	9/18/2014	Test Time		8:54:10 AM	Weath	ier	SUNNY	
Air Temperature	17 °C	Tank Temp.		°C	RH.		55 %	
Tested by	JF	Work Order #			Last T	est Date	8/27/2014	
Checked by		Test Set Type		M4K	Retest	Date		
Checked Date		Set Top S/N			Reaso	n	ROUTINE	
Last Sheet #		Set Bottom S/N	1		Trave	l Time		
P.O. #		Ins. Book #			Durat	ion		
Copies		Sheet #			Crew	Size		

10L4 – B Phase Voltage Regulator

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} IR _n	nan
СН	8.001	12.151	2.242	1.85	1.00	3222.6	G	

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	3	10.011	0.0680	0.0100	G	
	L	GROUND	3	10.015	0.0720	0.0100	G	
	SL	GROUND	3	10.012	0.0590	0.0150	G	

Insulation Resistance

Mfr.:	AV0	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	6320	14500	2.2943		

Exciting Current Tests

			Mfr.	Туре	Ste	ps P	osition	Found	Positic	on Left
De	-Energized Tap Chan	iger								
(On-Load Tap Change	r								
	Connections	SA	A - SL		SB	3 - SL	SC	C - SL		
LTC	Test kV	mA	Wa	atts	mA	Watts	mA	Watts	IR _{auto}	IR _{man}
1L	2.500	380.98	104	18.9						
N	2.500	1287.6	130)3.2						
1R	2.500	380.11	104	46.7						
2R	2.500	1287.2	130)3.8						
3R	2.500	754.57	116	56.3						
4R	2.500	1287.6	130)4.0						
5R	2.500	380.64	104	45.7						
6R	2.500	1288.2	130)5.0						
7R	2.500	755.29	116	57.3						
8R	2.500	1287.8	130	06.0						
9R	2.500	381.08	104	48.7						
10R	2.500	1288.2	130)7.2						
11R	2.499	755.66	117	70.6						
12R	2.499	1288.2	130)8.5						
13R	2.500	381.37	105	51.2						
14R	2.500	1288.6	131	10.5						
15R	2.499	756.11	117	76.7						
16R	2.500	1288.8	131	14.2						

Company	UPG		Ser	ial Number		M044399F	PFN	
Location	Barron	Ave. Substation	Spe	ecial ID		10L4 Regi	ulators	
Division	Liberty	Utilities		cuit Designati	ion	C Phase		
Manufacturer	GE		Ty			ML-32		
Yr. Manufactured	1986		Cla	-		OA		
Mfr. Location	USA		_					
Tank Type	N2 BLA	NKETED	Co	olant		OIL		
Phases	1		BII			95 kV		
Weight	2790 L	В	Oil	Volume		95 UG		
kV	7.96		An	ips		313		
Impedance	%		VA	Rating				
Catalog #			LT	C Counter		426012		
Design	Step		Ctı	l Wire Diame	eter			
Catalog/Style			Cre	ew Size				
Note								
Test Date	9/18/2014	Test Time		9:20:05 AM	Weatl	ner	SUNNY	
Air Temperature	19 °C	Tank Temp.		°C	RH.		47 %	
Tested by	JF	Work Order #			Last T	Test Date	8/27/2014	
Checked by		Test Set Type		M4K	Retest	Date		
Checked Date		Set Top S/N			Reaso	n	ROUTINE	
Last Sheet #		Set Bottom S/N	N		Trave	l Time		
P.O. #		Ins. Book #			Durat	ion		
Copies		Sheet #			Crew	Size		

10L4 – C Phase Voltage Regulator

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} I	IR _{man}
СН	8.001	12.102	2.191	1.81	1.00	3209.6	G	

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	3	10.011	0.0650	0.0060	G	
	L	GROUND	3	10.015	0.0670	0.0080	G	
	SL	GROUND	3	10.012	0.0580	0.0050	G	

Insulation Resistance

Mfr.:	AVO	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	12700	27800	2.189		

Exciting Current Tests

	I			Туре	Ste	ps P	osition	Found	Positic	on Left
De	-Energized Tap Char	ıger								
(On-Load Tap Change	r								
	Connections	SA	- SL		SB	- SL	SC	C - SL		
LTC	Test kV	mA	Wa	atts	mA	Watts	mA	Watts	IR _{auto}	IR _{man}
1L	2.501	411.41	105	59.7						
N	2.500	1376.3	130)3.3						
1R	2.500	410.61	105	59.3						
2R	2.499	1376.3	130)3.8						
3R	2.500	810.33	117	76.6						
4R	2.500	1376.6	130)3.8						
5R	2.500	411.25	105	59.1						
6R	2.500	1376.6	130)3.1						
7R	2.500	810.99	117	76.9						
8R	2.499	1377.0	130)3.9						
9R	2.499	411.57	106	50.8						
10R	2.500	1376.6	130)4.1						
11R	2.500	810.99	117	79.2						
12R	2.500	1376.7	130)5.7						
13R	2.500	411.88	106	53.7						
14R	2.500	1376.8	130)7.3						
15R	2.499	811.02	118	33.2						
16R	2.500	1376.6	130)8.5				r	1	1

		Un	ited P	ower Gro	oup, Ir		ket No. DE 19 Attachme Page 16 c	nt C
					•		Page No.	
Customer	Liberty Utilities			Date	9/18/2014		Proj. No.	
Address	Salem, NH			Air Temp.	55F		Rel. Hum.	37%
Owner	Liberty Utilities			Date Last Insp	ection	By Others	-	
Address	Salem, NH			Last Inspection	n Report No			
				_			-	
Equipment		Barron /						
Owner Ide	ntification	10L4 Re	egulators					
	05		-					
Manuf.	GE		Туре	VR1		_Test Set#	TTR-JF	
Gallons	95		Oil Levels	OK		KVA	250	
Nomoniato	Voltago	7960	Ser#A	M044407PFN			Doble Factor	Power
Nameplate Line to Lin		7900	Ser # A	M046769PCP		_	Test KV	Results
Percent Re		5/8%	Ser # C	M044399PFN		-	Position	8 N
	gulation	5/0%		101044088FFIN		-	FUSILIUIT	
Тар	Тар	TTR	TTR MEAS		S:	1		
Position	Voltage	Ratio	S-SL A	S-SL B	S-SL C	1		
	, endige		L-SL A	L-SL B	L-SL C	-		
16R	8756	0.909	0.904	0.905	0.905	1		
15R	8706	0.914	0.912	0.912	0.912			
14R	8657	0.920	0.917	0.918	0.917			
13R	8607	0.925	0.925	0.921	0.923			
12R	8557	0.930	0.929	0.928	0.929			
11R	8507	0.936	0.934	0.933	0.933			
10R	8458	0.941	0.941	0.941	0.939			
9R	8408	0.947	0.945	0.946	0.946			
8R	8358	0.952	0.951	0.952	0.951			
7R	8308	0.958	0.957	0.956	0.957			
6R	8259	0.964	0.964	0.962	0.963			
5R	8209	0.970	0.969	0.968	0.969			
4R	8159	0.976	0.975	0.976	0.976			
3R	8109	0.982	0.982	0.982	0.981			
2R	8060	0.988	0.987	0.989	0.988	-		
1R	8010	0.994	0.994	0.995	0.994			
N	7960	1.000	1.000	1.001	1.000			
1L	7910	1.006	1.007	1.007	1.006			
2L	7861	1.013	1.013	1.013	1.013			
3L	7811	1.019	1.02	1.019	1.019			
4L	7761	1.026	1.025	1.024	1.025			
5L	7711	1.032	1.032	1.034	1.033			
6L	7662	1.039	1.041	1.041	1.042			
7L	7612	1.046	1.047	1.047	1.048			
8L	7562	1.053	1.055	1.055	1.054			
9L	7512	1.060	1.061	1.061	1.062]		
10L	7463	1.067	1.069	1.068	1.068	1		
11L	7413	1.074	1.076	1.076	1.075]		
12L	7363	1.081	1.083	1.082	1.082			
13L	7313	1.088	1.092	1.092	1.093	1		
14L	7264	1.096	1.099	1.101	1.099	1		
15L	7214	1.103	1.109	1.107	1.107	1		
16L	7164	1.111	1.117	1.116	1.115	1		
	_					-		

Remarks: Regulator test results are acceptable.

United Power Group, Inc.

Liberty Utilities 9 Lowell Road Salem, NH 03079 Date. 8/1/14 Project No.

Project Location:

Salem Depot Substation

Scope:

Perform testing & maintenance on the following equipment:

- 1. Transformer 9T3
- 2. Transformer 9L1T
- 3. 9L3 Recloser and Form 6 Controller
- 4. 9L3 Voltage Regulators

Remarks:

- 1. Transformer 9T3's H3 bushing is showing signs of deterioration; the bushing's power factor value has doubled and needs to be replaced. The oil temperature and tank pressure gauges are in poor condition. UPG also recommends replacing both gauges.
- 2. Transformer 9L1T test results are acceptable for service.
- 3. Recloser 9L3 and form 6 controller test results are acceptable for service.
- 4. Voltage regulator 9L3 "A phase" stopped operating on the 15L tap. It was discovered that the limit switch located in the regulator tap indication gauge was misaligned. Adjustments were made and the regulator operated correctly. All other test results are acceptable.

Submitted by: James Fazio

Company		UPG		Se	erial Number		M 160691		
Location		Salem D	epot Substation	S	pecial ID		Transform	er - 9T3	
Division		Liberty V	Utilities	Ci	ircuit Designati	on			
Manufacturer		GE		C	onfiguration		D-ZZY		
Year Mfg.				T	ank Type		OTHER		
Mfr. Location		USA		C	oolant		OIL		
Phases		3			lass		OA/FA		
Oil Volume	lume 1250 UG BIL					110 kV			
Weight		43400 L	JB	W	inding Config.		Delta-Wye	2	
kV		22.9, 7.6	52	V	A Rating		, , 7500, 93	375 kVA	
Note									
Test Date	7/3	1/2014	Test Time		11:27:29 AM	Weath	ier	SUNNY	
Air Temperature	31 °	°C	Tank Temp.		31°C	RH.		32 %	
Tested by	JF/I	RB	Work Order #			Last T	'est Date	7/31/2014	
Checked by			Test Set Type		M4K	Retest	Date		
Checked Date			Set Top S/N			Reaso	n	TROUBLE	
Last Sheet #			Set Bottom S/N			Trave	l Time		
P.O. #			Ins. Book #			Durati	ion		
Copies			Sheet #			Crew	Size	2	

9T3- Two-winding Transformer

Bushing Nameplate

Dsg	Serial	Mfr	Туре	C1 %PF	C1 Cap	C2 %PF	C2 Cap	kV	Amps	Year
H1	3745150989	W	0C	0.33	583			25	400	1989
H2	3745151089	W	0C	0.32	592			25	400	1989
H3	3740560189	W	0C	0.31	600			25	400	1989
X1	3745151189	W	0C	0.34	563			25	400	1989
X2	3745150289	W	0C	0.33	593			25	400	1989
X0	3745150389	W	0C	0.32	588			25	400	1989
X3	3745150189	W	0C	0.31	600			25	400	1989

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
CH + CHL	10.004	45.326	1.337		1.00	12023.0		
СН	10.003	15.242	0.5490	0.36	1.00	4043.0	G	
CHL(UST)	10.003	30.074	0.7620	0.25	1.00	7977.4	G	
CHL		30.084	0.788	0.26	1.00	7980.000	G	
CL + CHL	8.003	64.041	1.742		1.00	16987.3		
CL	8.003	33.959	0.9870	0.29	1.00	9007.8	G	
CHL(UST)	8.003	30.073	0.7580	0.25	1.00	7977.0	G	
CHL		30.082	0.755	0.25	1.00	7979.500	G	
CH'		8.756	0.270	0.31	1.00	2263.540		
CL'		25.306	0.666	0.26	1.00	6684.280		

Overall Tests

Bushing C1

ID	Serial	NP %PF	NP Cap	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
H1	3745150989	0.33	583	10.002	2.091	0.0730	0.35	1.00	583.83	G	
H2	3745151089	0.32	592	10.003	2.122	0.0680	0.32	1.00	592.63	G	
H3	3740560189	0.31	600	10.010	2.273	0.1380	0.61	1.00	603.00	D	
XO	3745150389	0.32	588	8.004	2.218	0.0820	0.37	1.00	588.27	G	
X1	3745151189	0.34	563	8.007	2.232	0.0850	0.38	1.00	592.17	G	
X2	3745150289	0.33	593	8.004	2.023	0.0720	0.36	1.00	564.80	G	
X3	3745150289-	0.33	593	8.004	2.180	0.0820	0.38	1.00	578.28	G	

Insulation Resistance

Mfr. AVO		Serial #		
Connection	Volts	T1(Mohms)	T2(Mohms)	PI
Hi to Earth Guard Lo	5000	17800	20700	1.162
Lo to Earth Guard Hi	5000	14400	34400	2.388
Hi to Lo Guard Earth	5000	15200	45700	3.006

Exciting Current Tests

			Mfr.	Туре	Steps		oost %	Buck %		osition Tound	Posit Le			Oil Jume
	Energized Tap Changer													
On-Loa	ad Tap	Changer												
				H1 -	Н3		F	I2 - H1		H3	3 - H2			
DETC	LTC	Test kV	m	A Watts X		mA	Wat	s X	mA	Watts	X	IR _{auto}	IR _{man}	
	3	8.028	55.2	90 4	21.21	L	22.841	175.6	53 L	60.242	448.31	L	G	

Turns Ratio (H-L) Tests

	Mfı	•		Seria	ıl #	Н	V Windin	g	LV W	inding	
							L-L		L	-N	
Conn	nections			H1 -	HO	-	H2 - H0		Н3	- H0	
				X1 -	X0		X2 - X0		X3	- X0	
Тар	Np Volt	Тар	Np Volt	Cal	Ratio 1	Ratio 2	Ratio 3	Min Lim	n Max Lim IR _{auto}		IR _{man}
3	22900		7620	3.005	3.001	2.999	3.002	2.990	3.020	G	

United Power Group, Inc.

Customer	like ender	14:11:4:					Data	7/04	10044	Page No.		
Customer	Liberty						Date		2014	Project No.	200/	
Address	Salem,						Air Te	•	25C	Rel. Humidity	32%	
Owner	Liberty							Last Ins		By Others		
Address	Salem,	NH					Last I	nspectio	on Report No	D		
Equipment I Owner Iden			Depo	ot Subs	tatic	n						
Nameplate												
		05			-							
Manufacture	er	GE		KVA		7500/93		Phase	3	_Cycle <u>60</u>		
Serial No.		M 160691		Туре	.,	Pov	ver	Form		_Class _OA/FA		
Primary Vol	•	22.9kV		Delta	Х				Current	236	Amp	
Secondary	-	7.62kV		Delta			Х	-	Current	410	Amp	eres
Coolant	Oil		karel			Air			litrogen	Oth	-	_
Coolant Cap		Jnits				n Tank			LTC	Swite		
Temperatur						e of Mar				edance 7.37%	6	
No Load Ta	ip Chang	er Voltages		24100	/235	500/229	00/223	300/217	00			
		Maaa	urod	Movie	~	Pocot	Trin	Alorm	LTC	Moogurad	Max	. Min.
Gauges and C		Measu				Reset	пр	Alarm		Measured	Max	. 101111.
Oil Tempera		40		110		Х			Tap	NA		
Wdg. Temp	erature	30		700	C	Х			Counter	NA		
Pressure		1-							4			
Oil Level		25	С									
Visual Insp			OK		<u></u>	andanı	Canna	otiona				
Primary Cor			OK			ondary	Conne	ections		OK		
Tap Conne			OK		Lea					NA		
Gas Regula			NA		Pair					OK		
Infra-Red In	spection		NA		Gro	unds				OK		
Fans and C	Controls	Oil Tei	mn	Wdg.	Tem	n	Manu	al	Auto	Lubrication Da	te	
Stage 1		80C	np.	mag.	1011	γ.			OK	Eublidation Ba		
Stage 2								011				
etage =				I								
Accessory	Inspect	ion			Alar	m	Trip		T			
Pressure Re			ank						1			
Pressure Re									1			
Sudden Pre									1			
Additional	Tests											
Remarks	Oil tom	o and tank p	raccu	re agu	100 I	noode ta	ho re	hand				
INCIDARS	Ontern	J and tank p	16330	ie gau	jes i		J DE IE	placeu.				
Submitted E	Bv	JF										
<u></u>	- /	2.										

Company		UPG		Sei	rial Number		965618C		
Location		Salem D	epot Substation	Sp	ecial ID		Transformer - 9L1T		
Division		Liberty U	Jtilities	Ci	rcuit Designati	on			
Manufacturer		GE		Co	nfiguration		Y-Y		
Year Mfg.				Ta	nk Type		OTHER		
Mfr. Location		USA		Co	olant		OIL		
Phases		3		Cla	ass		OA/FA		
Oil Volume				BI	Ĺ		150 kV		
Weight	veight 186			Winding Config.			Wye-Wye		
kV		22.9, 13.	8	VA	Rating		5000,6250	,7000 kVA	
Note				-					
Test Date	7/3	1/2014	Test Time		8:45:13 AM	Weath	ier	SUNNY	
Air Temperature	25	°C	Tank Temp.		30°C	RH.		45 %	
Tested by	JF/	'RB	Work Order #			Last T	est Date		
Checked by			Test Set Type		M4K	Retest	Date		
Checked Date			Set Top S/N			Reaso	n	ROUTINE	
Last Sheet #			Set Bottom S/N			Trave	l Time		
P.O. #			Ins. Book #			Durat	ion		
Copies			Sheet #			Crew	Size	2	

9L1T- Auto Transformer

Bushing Nameplate

Dsg	Serial	Mfr	Туре	C1 %PF	C1 Cap	C2 %PF	C2 Cap	kV	Amps	Year
X1	1ZUA7CJ2679303	A-BB	O+C	0.26	489	0.15	647	25	400	2008
X2	1ZUA7CJ2679307	A-BB	O+C	0.25	491	0.19	671	25	400	2008
X3	0S23105550	A-BB	O+C	0.29	515	0.27	411	25	400	2000
X0	1ZUA7CJ2679302	A-BB	O+C	0.25	488	0.17	623	25	400	2008
H1	0S23105539	A-BB	O+C	0.25	489	0.25	423	25	400	2000
H2	1ZUA7CJ2679310	A-BB	O+C	0.25	497	0.24	875	25	400	2008
H3	1ZUA7CJ2679305	A-BB	O+C	0.25	489	0.16	725	25	400	2008

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
CH + CHL	8.004	28.796	0.9190		1.00	7638.3		
СН	8.003	28.791	0.9240	0.32	1.00	7637.0		G

Bushing C1

ID	Serial	NP %PF	NP Cap	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
H1	0S23105539	0.25	489	8.002	1.838	0.0580	0.32	1.00	487.61	G	
H2	1ZUA7CJ2679310	0.25	497	8.006	1.872	0.0460	0.25	1.00	496.65	G	
H3	1ZUA7CJ2679305	0.25	489	8.004	1.838	0.0440	0.24	1.00	487.43	G	
X0	1ZUA7CJ2679302	0.25	488	8.004	1.832	0.0430	0.23	1.00	485.94	G	
X1	1ZUA7CJ2679303	0.26	489	8.004	1.840	0.0440	0.24	1.00	488.07	G	
X2	1ZUA7CJ2679307	0.25	491	8.004	1.849	0.0440	0.24	1.00	490.53	G	
X3	0S23105550	0.29	515	8.004	1.926	0.0630	0.33	1.00	510.89	G	

Bushing C2

ID	Serial #	NP %PF	NP Cap	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
H1	0S23105539	0.25	423	0.4990	1.618	0.0190	0.12	1.00	429.10	G	
H2	1ZUA7CJ2679310	0.24	875	0.4990	3.310	0.0770	0.23	1.00	877.87	G	
H3	1ZUA7CJ2679305	0.16	725	0.4990	2.751	0.0520	0.19	1.00	729.70	G	
X1	1ZUA7CJ2679303	0.15	647	0.4990	2.452	0.0420	0.17	1.00	650.38	G	
X2	1ZUA7CJ2679307	0.19	671	0.4990	2.543	0.0420	0.17	1.00	674.46	G	
X3	0S23105550	0.27	411	0.5000	1.569	0.0400	0.25	1.00	416.25	G	
X0	1ZUA7CJ2679302	0.17	623	0.4990	2.356	0.0350	0.15	1.00	624.95	G	

Insulation Resistance

Mfr. AVO		Serial #		
Connection	Volts	T1(Mohms)	T2(Mohms)	PI
Hi to Earth Guard Lo		2480	3360	1.35

Exciting Current Tests

			Mfr.	Туре	Steps		oost %	Buck %	-	osition Found	Posit Le			Oil olume
De-Energized Tap Changer														
On-Loa	ad Tap	Changer												
				H1 -	HO		H	12 - HO		H	3 - H0			
DETC	LTC	Test kV	m	4 I V	Watts	X	mA	Wat	ts X	mA	Watts	X	IR _{auto}	IR _{man}
3 5.008		5.008	126	.53 1	067.1	L	92.078	3 770.7	76 L	126.49	1067.6	L	G	

Turns Ratio (H-L) Tests

	Mfi	•		Seria	ıl #	Н	V Windin	g	LV Winding			
				L-N					L-N			
Connections				H1 -			H2 - H0		H3 - H0			
				X1 -	X0		X2 - X0		X3	- X0		
Тар	Tap Np Volt Tap Np V		Np Volt	Cal	Ratio 1	Ratio 2	Ratio 3	Min Lim	Max Lim	IR _{auto}	IR _{man}	
3	3 13220 762			1.735	1.7339	1.7339	1.7342	1.726	1.744	G		

United Power Group, Inc.

								1	-, -	Page No.		
Customer	Liberty		es				Date			Project No.		
Address	Salem,						Air Te	•	25C	Rel. Humidity	32%	
Owner	Liberty		es					Last Ins		By Others		
Address	Salem,	NH					Last I	nspectic	on Report No	D		
Equipment	Location		Salem Depo	ot Sub	static	n						
Owner Ider			9L1T		otatie							
Nameplate												
Manufactur	rer		GE	KVA	500	0/6250	/7000	Phase	3	Cycle 60		
Serial No.		965	5618C	Туре	-	Au		Form		Class OA/FA		
Primary Vo	ltage	22.9		Delta			X	Rated 0	Current	01000 <u>07477</u> 176	Ampe	eres
Secondary		7.62		Delta			X	Rated 0		306	Ampe	
Coolant	Oil	X	Askarel	-		Air			itrogen	Othe	-	
Coolant Ca	apacity - L		-		Mai	n Tank	1	OUG	LTČ	Switc	-	-
Temperatu					Date	e of Mai			-	edance 3.46%		
No Load Ta		jer Vo	oltages	2410				300/2170				
			C C									
Gauges and 0	Counters		Measured	Maxir	mum	Reset	Trip	Alarm	LTC	Measured	Max.	Min.
Oil Temper	ature		30C	30)C				Тар	NA		
Wdg. Temp	perature		30C	30)C				Counter	NA		
Pressure												
Oil Level			25C									
Visual Insp					1-							
Primary Co			OK			ondary	Conne	ections		OK		
Tap Conne			OK		Lea					NA		
Gas Regula			NA		Pair					OK		
Infra-Red Ir	nspectior	1	NA		Gro	unds				OK		
Fans and C	Controls		Oil Temp.	Wdg.	Tom	n	Manu	al	Auto	Lubrication Dat		
Stage 1	001111013			wag.	Ten	ip.	Indita		71010	Eddfieddion Dai		
Stage 2												
				I								
Accessory	Inspect	ion			Alar	m	Trip		T			
Pressure R	elief Dev	ice -	Main Tank						1			
Pressure R	Relief Dev	ice -	LTC						1			
Sudden Pre	essure D	evice							1			
	Tasta								-			
Additional	Iests											
Remarks	Transfo	rmer	tested OK.									
. tomanto	11010											
Submitted I	Bv	JF										
	3											

Company		UPG		Sei	rial Number		CP571029803		
Location		Salem D	epot	Sp	ecial ID		Recloser 9L3		
Division		Liberty U	Jtility	Ci	rcuit Designat	ion			
Manufacturer		CPS		Ту	ре		VSA		
Yr. Manufactured		2006		Cla	ass				
Mfr. Location		USA		Me	echanism Type	e			
Interrupting Rating		12.0 kA			echanism Desi	gn	COIL SPR	ING	
Weight			BI	L		110 kV			
Total Weight	525 LB		Co	ntrol Volts		125			
Counter		124		An	nps		800		
kV		15.5							
Note									
Test Date	7/3	1/2014	Test Time		2:06:19 PM	Weath	ier	SUNNY	
Air Temperature	31	°C	Tank Temp.			RH.		34 %	
Tested by	JF		Work Order #			Last T	'est Date		
Checked by			Test Set Type		M4K	Retest	Date		
Checked Date	Checked Date Set Top S/N				Reason R		ROUTINE		
Last Sheet #			Set Bottom S/N	-		Trave	l Time		
P.O. #	. # Ins. Book #		Ins. Book #			Durat	ion		
Copies			Sheet #		Crew	Size			

Overall Tests

Test Mode	Ph.	Test kV	mA	Watts	IR _{auto}	IR _{man}
GND	1	10.007	0.2210	0.0180		G
GND	1	10.005	0.2080	0.0220		G
GND	2	10.004	0.2210	0.0270		G
GND	2	10.004	0.2120	0.0250		G
GND	3	10.004	0.2210	0.0150		G
GND	3	10.004	0.2080	0.0340		G
UST	1	10.007	0.0500	0.0010		G
UST	2	10.003	0.0480	0.0000		G
UST	3	10.004	0.0490	0.0010		G

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	1	GROUND	1	10.004	0.0720	0.0290	G	
	2	GROUND	1	10.005	0.0740	0.0200	G	
	3	GROUND	1	10.004	0.0710	0.0130	G	
	4	GROUND	1	10.004	0.0730	0.0130	G	
	5	GROUND	1	10.004	0.0740	0.0120	G	
	6	GROUND	1	10.004	0.0810	0.0270	G	

United Power Group, Inc. VACUUM RECLOSER TEST AND INSPECTION REPORT

Page No. 4 U061118 Customer Liberty Utilities Date 6/10/2011 Project No. Address Salem, NH Air Temp. 77F Rel. Humidity 42% Owner Liberty Utilities Date Last Inspection New Salem, NH Address Last Inspection Report No. Equipment Location Salem Depot **Owner Identification** Recloser 9L3 Breaker Nameplate Data: Manufacturer VSA12 Cooper Type CP571029803 Serial No. Type Operating Mechanism Coil Spring 800 15.5 Amperes Age 2006 Interrupt. Rating 12kA ΚV Specified Tolerances (If Applicable) Adjustment Mfr's As As Checks Rec. Found Left Latch Wipe NA Latch Wipe NA Х Х Latch Clearance Latch Clearance Х Х Stop Clearance NA Stop Clearance Х Х Prop. Clearance NA Prop. Clearance Х х Contact Gap NA Contact Travel NA Phase Checked А в С Contact Wipe NA Contact Gap х Х Х Erosion Indicator NA Contact Travel х х Х Contact Wipe х Х Х Inspection and Maintenance: Erosion Indicator х Checked See Х х Insp. Found Cleaned ltem s: ltem Dirty & Lubed Remarks Phase Test Data В С Vacuum Bottles А х Primary Stabs KV Bottle Megohms х KV Open CB B1 B3 B5 Ground Stab Х 5 100,000+ 100,000+ 100,000+ Structural Checks Х Megohms To Ground B2 Β4 B6 Bushings not under 100,000+ 100,000+ 100,000+ <u>test were grounded.</u> 5 KV Closed CB B1 & B2 B3 & B4 B5 & B6 Megohms To Ground 100,000+ 100,000+ 100,000+ K = Number Entered Above X 1000 Visual OK Closing/Opening Speed Contact Rest. Microhms 180 192 181

HIPOT Tests Microamps 1 Minute Test											
Phase tested 1 2 3											
37.5 KV AC. Bottle Test P P P											
37.5 KV Closed CB Test	37.5 KV Closed CB Test P P P										
Bottle Test is a Go No Go Test (P = Pass) (F= Fail)											
Closed Test Energize a Phase &	Grd. All Othe	ers									

Х			
Х			
Х			
Х			
Х			
х			
х			
Х			
Х			
х			
X = Yes i	For This En	try	
		140	
		163	
	X X X X X X X X X X X	X X	X X 140

Docket No. DE 19-064

Attachment D Page 12 of 20

Remarks: Results are acceptable

Submitted by:

J Fazio

Equipment Used:

DLRO, Megger, HIPOT

United Power Group, Inc.

Docket No. DE 19-064 Attachment D Page 13 of 20

PROTECTIVE RELAY TEST REPORT

					Paqe No.		
Customer	Liberty Utilitie	9S	Date	<u>8/1/14</u>	_ Proj. No.		
Address	Salem, NH		Air Temp.	80F	Rel. Hum.	<u>35%</u>	
Owner	Liberty Utilitie	95	Date Last	Inspection	By Others		
Address	Salem, NH		Last Inspe	ection Report	No		
Equipment	Location	Salem Depot Substation					
Owner Ider	ntification	<u>9L3 Recloser</u>					

Circuit Identification

9L3 C.T.Ratio 1000/1

	P.T.Ratio	
_		

Visual Insp	pection	Routine Maint	enance	
Cover Gasket		Glass Cleaned	X	Mfr: Cooper
Glass		Case Cleaned	X	Type Ph: Form F6
Foreign Material		Relay Cleaned	X	Cat No:
Moisture		Connections Tight	X	Tap Range Ph: 5-3200A
Spiral Spring		Taps Tightened		Tap Range Grd: 2-1600A
Bearing Condition		Contacts Cleaned		Inst. Range Ph:
Bearing End-Play		Insulation Resistance	X	Inst Range Grd:
Disc Clearance		Trip Circuit	X	Use: 51P/51G/79
Rust				S/N =

	Relay Settings														
	Reclosing Inst. Element Setting Tap Setting Curve Setting Time Dial Setting														
	1st	2nc	3rd	50P-1	50G-1	51P	51G	50P-1	50G-1	51P	51G	50P-1	50G-1	51P	51G
Specified	5	10	LO			600A	240A							132	IEC VI
As Found	5	10	LO			600A	240A							132	IEC VI
As Left	5	10	LO			600A	240A							132	IEC VI

Test Operations - As Found - Time in Seconds

		Time E	Element	Current Voltage		Inst. E	Inst. Element							
		P.	U.		Time		Current	Current/Voltage		Targets		Reclosing		
	Zero			P. U.	Tap 1	Tap 2	Pick							
	Set	Tap 1	Tap 2	Х	82	84	Up	Delay	LED	Reset	1st	2nd	3rd	4th
A Phase		0.600			13.6	3.91			×	×				
B Phase		0.600			13.5	3.90			X	X	5	10	LO	
C Phase		0.600			13.6	3.90			Х	X				
GRD		0.241			2.54	.564			X	X				

Test Operations - As Left -	Time in Seconds
-----------------------------	-----------------

		Time E	Time Element Current Voltage		Inst. E	Inst. Element								
		P.	. U.		Time		Current	Noltage	Targets			Redo	osinq	
	Zero			P. U.	Tap 1	Tap 2	Pick							
	Set	Tap 1	Tap 2	Х	<u>X2</u>	<u>X4</u>	Up	Delay	LED	Reset	1st	2nd	3rd	4th
A Phase		0.600			13.6	3.91			X	X				
B Phase		0.600			13.5	3.90			X	X	5	10	LO	
C Phase		0.600			13.6	3.90			Х	X				
GRD		0.241			2.54	.564			X	X				

Submitted By JF _____Equipment Used ______Equipment Used _____Equipment Used ______Equipment Used _____Equipment Used _____Equipment Used _____Equipment Used _____Equipment Used _____Equipment Used ____Equipment Used ___

Company	UPG		Se	rial Number		Q557660-7	ГSR	
Location	Salem I	Depot Substation	Sp	ecial ID		9L3 Regul	ators	
Division	Liberty	Utilities	Ci	rcuit Designat	ion	A Phase		
Manufacturer	GE		Ту	pe		VR-1		
Yr. Manufactured	2000		Cl	ass		OA		
Mfr. Location	USA							
Tank Type	N2 BLA	ANKETED	Co	oolant		OIL		
Phases	1		BI	L		95 kV		
Weight	3079 L	B	Oi	l Volume		112 UG		
kV	7.96		Ar	nps		418		
Impedance	npedance %			A Rating		333 kVA		
Catalog #			LTC Counter			186279		
Design	Step		Ct	rl Wire Diame	eter			
Catalog/Style			Crew Size					
Note								
Test Date	8/1/2014	Test Time		7:29:06 AM	Weath	er	SUNNY	
Air Temperature	23 °C	Tank Temp.		23°C	RH.		62 %	
Tested by	jf	Work Order #			Last T	est Date		
Checked by		Test Set Type		M4K	Retest	Date		
Checked Date		Set Top S/N			Reason	ı	ROUTINE	
Last Sheet #		Set Bottom S/N			Travel	Time		
P.O. #		Ins. Book #			Durati	on		
Copies		Sheet #			Crew S	Size	1	

9L3 - Voltage Regulator "A Phase"

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} IR _{man}
СН	8.004	19.973	2.052	1.03	1.00	5297.7	G

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	2	10.004	0.0770	0.0530	G	
	L	GROUND	2	10.006	0.0790	0.0510	G	
	SL	GROUND	2	10.004	0.0580	0.0470	G	

Insulation Resistance

Mfr.:	AVO	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	5600	26000	4.6429		G

Exciting Current Tests

			Mfr.	Туре	Ste	ps P	osition	Found	Positic	on Left
De	-Energized Tap Chan	ger								
(On-Load Tap Change	r								
	Connections S		- SL		SB	3 - SL	SC	C - SL		
LTC	Test kV	mA	Wa	atts	mA	Watts	mA	Watts	IR _{auto}	IR _{man}
1R	2.500	1144.1	101	0.4						
N	2.500	1151.7	984	1.34						
1L	2.500	685.37	892	2.26						
2L	2.501	1150.8	101	1.6						
3L	2.503	684.84	912	2.81						
4L	2.500	1151.2	989	9.06						
5L	2.502	685.01	907	7.98						
6L	2.502	1151.5	101	15.2						
7L	2.503	1148.7	102	28.0						
8L	2.500	1151.3	998	3.78						
9L	2.503	1147.7	104	46.1						
10L	2.507	1151.4	103	37.8						
11L	2.501	1146.2	101	17.6						
12L	2.500	1150.0	999	9.93						
13L	2.501	682.53	896	5.33						
14L	2.500	1150.4	991	1.85						
15L	2.501	682.36	895	5.51						1
16L	2.502	1150.2	101	2.6						

Company	UPG		Serial Number		Q557658-7	TSR	
Location	Salem	Depot Substation	Special ID		9L3 Regulators		
Division	Liberty	Utilities	Circuit Designa	ation	B Phase		
Manufacturer	GE		Туре		VR-1		
Yr. Manufactured	2000		Class		OA		
Mfr. Location	USA		_				
Tank Type	N2 BL	ANKETED	Coolant		OIL		
Phases	1		BIL		95 kV		
Weight	3079 I	B	Oil Volume		112 UG		
kV	7.96		Amps		418		
Impedance	%		VA Rating		333 kVA		
Catalog #		LTC Cour		Counter 186279			
Design	Step		Ctrl Wire Dian	Ctrl Wire Diameter			
Catalog/Style		Crew Size					
Note							
Test Date	8/1/2014	Test Time	10:17:53 AM	Weatl	ner	SUNNY	
Air Temperature	25 °C	Tank Temp.	25°C	RH.		55 %	
Tested by	JF	Work Order #		Last T	est Date	8/1/2014	
Checked by		Test Set Type	M4K	Retest	Date		
Checked Date		Set Top S/N		Reaso	n	ROUTINE	
Last Sheet #		Set Bottom S/N		Trave	l Time		
P.O. #		Ins. Book #		Durat	ion		
Copies		Sheet #		Crew	Size	1	

9L3 - Voltage Regulator "B Phase"

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto} IR _n	nan
СН	8.004	20.432	1.814	0.89	1.00	5419.5	G	

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	2	10.005	0.0680	0.0310	G	
	L	GROUND	2	10.008	0.0710	0.0300	G	
	SL	GROUND	2	10.007	0.0690	0.0280	G	

Insulation Resistance

Mfr.:	AVO	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	12300	34200	2.7805		

Exciting Current Tests

			Mfr.	Туре	Ste	ps P	osition	Found	Positic	on Left
De	-Energized Tap Char	ıger								
(On-Load Tap Change	r								
	Connections S		A - SL		SB	8 - SL	SC	C - SL		
LTC	Test kV	mA	Wa	atts	mA	Watts	mA	Watts	IR _{auto}	IR _{man}
1R	2.505	1165.1	105	59.9						
N	2.502	1170.9	100)4.2						
1L	2.501	695.86	925	5.58						
2L	2.504	1171.3	104	42.6						
3L	2.500	695.31	915	5.41						
4L	2.499	1170.3	997	7.49						
5L	2.502	695.67	921	1.06						
6L	2.501	1170.9	101	17.4						
7L	2.499	1167.3	102	21.4						
8L	2.505	1171.5	103	35.8						
9L	2.500	1166.0	102	29.8						
10L	2.499	1169.8	100)5.1						
11L	2.503	1165.7	103	36.7						
12L	2.502	1170.1	101	13.2						
13L	2.500	692.89	903	3.68						
14L	2.503	1169.7	102	24.3						
15L	2.501	693.18	910).64						
16L	2.503	1169.6	102	22.6						

Company	UPG		Serial Number		Q557659-	TSR	
Location	Salem	Depot Substation	Special ID		9L3 Regulators		
Division	Libert	y Utilities	Circuit Designat	ion	C Phase		
Manufacturer	GE		Туре		VR-1		
Yr. Manufactured	2000		Class		OA		
Mfr. Location	USA						
Tank Type	N2 BI	ANKETED	Coolant		OIL		
Phases	1		BIL		95 kV		
Weight	3079	LB	Oil Volume		112 UG		
kV	7.96		Amps		418		
Impedance	%		VA Rating		333 kVA		
Catalog #			LTC Counter				
Design	Step		Ctrl Wire Diame	eter			
Catalog/Style			Crew Size				
Note							
Test Date	8/1/2014	Test Time	11:11:19 AM	Weath	ner	SUNNY	
Air Temperature	29 °C	Tank Temp.	29°C	RH.		46 %	
Tested by	JF	Work Order #		Last T	est Date	8/1/2014	
Checked by		Test Set Type	M4K	Retest	Date		
Checked Date		Set Top S/N		Reaso	n	ROUTINE	
Last Sheet #		Set Bottom S/N		Trave	l Time		
P.O. #		Ins. Book #		Durat	ion		
Copies		Sheet #		Crew	Size	1	

9L3 - Voltage Regulator "C Phase"

Overall Tests

Meas.	Test kV	mA	Watts	%PF corr	Corr Fctr	Cap(pF)	IR _{auto}	IR _{man}
СН	8.004	21.188	2.491	1.18	1.00	5619.8	G	

Serial #	ID	Test Mode	Skirt #	Test kV	mA	Watts	IR _{auto}	IR _{man}
	S	GROUND	2	10.005	0.077	0.054	G	
	L	GROUND	2	10.008	0.068	0.051	G	
	SL	GROUND	2	10.007	0.055	0.044	G	

Insulation Resistance

Mfr.:	AVO	Serial #:				
kV	Connection	T1(Mohms)	T2(Mohms)	PI	IR _{auto}	IR _{man}
5000	Src/Load to Earth	5800	9700	1.6724		

Exciting Current Tests

			Mfr.	Туре	Ste	ps P	osition	Found	Positic	on Left
De	-Energized Tap Chan	ger								
(On-Load Tap Change	r								
	Connections	SA	A - SL		SB	- SL	SC	C - SL		
LTC	Test kV	mA	Wa	atts	mA	Watts	mA	Watts	IR _{auto}	IR _{man}
1R	2.504	1141.3	100	0.80						
N	2.501	1149.3	987	7.89						
1L	2.502	683.01	894	4.75						
2L	2.506	1150.6	101	17.4						
3L	2.501	682.80	890).91						
4L	2.499	1148.8	971	1.44						
5L	2.502	682.90	895	5.02						
6L	2.506	1150.1	101	18.0						
7L	2.499	1145.5	996	5.83						
8L	2.500	1148.4	969	9.91						
9L	2.500	1144.8	100)2.6						
10L	2.500	1147.8	972	2.31						
11L	2.503	1144.9	101	16.2						
12L	2.501	1148.8	984	1.69						
13L	2.502	681.13	888	3.42						
14L	2.502	1148.5	992	2.23						
15L	2.501	680.04	881	1.51						
16L	2.503	1148.8	998	8.48						

		Uni	ted P	ower Gro	oup, Ir		ocket No. DE 1 Attachn Page 20 Page No .	nent D	
Customer	Liberty Utilities			Date	8/1/2014		Proj. No.		
Address	Salem, NH			Air Temp.	68F		Rel. Hum.	34%	
Owner	Liberty Utilities			Date Last Insp		By Others	-		
Address	Salem, NH			Last Inspection					
	,								
Equipment	t Location	Salem D	Depot						
Owner Ide	ntification	9L3 Re	gulator Bar	ık					_
Manuf.	GE		Туре	VR1			TTR-JF		
Gallons	112		Oil Levels	OK		KVA	333		
NI		7000	0	0557000 TO	_		Doble	Power	
Nameplate		7960	Ser#A	Q557660 - TS Q557658 - TS			Factor	Results	
Line to Lin		E/00/	Ser#B			-	Test KV	8 N	
Percent Re	egulation	5/8%	Ser # C	Q557659 - TS	۲		Position	IN	
Тар	Тар	TTR	TTR MEAS		s.	1			
Position	Voltage	Ratio	S-SL A	S-SL B	S-SL C				
1 Conton	voltage	1 tatio	L-SL A	L-SL B	L-SL C				
16R	8756	0.909	0.906	0.906	0.906				
15R	8706	0.914	0.911	0.911	0.911				
14R	8657	0.920	0.915	0.915	0.915				
13R	8607	0.925	0.921	0.921	0.921				
12R	8557	0.930	0.926	0.926	0.926				
11R	8507	0.936	0.932	0.932	0.932				
10R	8458	0.941	0.937	0.937	0.937				
9R	8408	0.947	0.944	0.944	0.944				
8R	8358	0.952	0.951	0.951	0.951				
7R	8308	0.958	0.957	0.957	0.957				
6R	8259	0.964	0.963	0.963	0.963				
5R	8209	0.970	0.969	0.969	0.969				
4R	8159	0.976	0.975	0.975	0.975				
3R 2R	8109	0.982	0.981	0.981	0.981 0.985				
1R	8060 8010	0.988	0.985 0.995	0.985 0.995	0.985				
N	7960	1.000	1.000	1.000	1.000				
1L	7910	1.006	1.006	1.006	1.006				
2L	7861	1.013	1.013	1.013	1.000				
3L	7811	1.019	1.017	1.017	1.017				
4L	7761	1.026	1.024	1.024	1.024				
5L	7711	1.032	1.031	1.031	1.031				
6L	7662	1.039	1.037	1.037	1.037				
7L	7612	1.046	1.044	1.044	1.044				
8L	7562	1.053	1.053	1.053	1.053				
9L	7512	1.060	1.061	1.062	1.061				
10L	7463	1.067	1.067	1.067	1.067				
11L	7413	1.074	1.075	1.075	1.075				
12L	7363	1.081	1.083	1.083	1.083				
13L	7313	1.088	1.091	1.091	1.091				
14L	7264	1.096	1.097	1.097	1.097				
15L 16L	7214 7164	1.103	1.105 1.112	1.105 1.112	1.105				
IOL	/104	1.111	1.112	1.112	1.112	l			

Remarks: Regulator test results are acceptable.

						Docket No. DE 19-064 Attachment E Page 1 of 8
W/EIL	MANN	W	EIDMANN ELECTRI	CAL TECHNOLO	GY	TEST REPORT
VVCIL			RESS DRIVE, UNIT			01-7334797-618125-00
			215 639 8599 +			Page 1 of 2
		N	WWW.WEIDMANN-	ELECTRICAL.COM	1	
Liberty Utilities		Serial#: ⊢	A08863002		Mfr: ABB	Control#: 7334797
		Location: B	ARRON AVENUE 1	0	kV: 22.9	Order#: 618125
		Equipment: T	RANSFORMER		kVA: 9375	Account: 110710
LONDONDERRY,	, NH 03053 US (Compartment: N	IAIN(BOTTOM)	Year	Mf'd: <mark>2002</mark>	Received: 04/28/2020
ATTN: MARIO BA	RONE	Breathing: S	EAL	Syring	ge ID: 55005286	Reported: 05/12/2020
PO#: PO0000167	51	Bank: P	hase:	Bott	tle ID:	
Project ID:		Fluid: MIN U	ISGal: 1323	Sample	d By:	
Customer ID: RE	F# 024304					
	Lab C	ontrol Number:	7334797	7044984	7035705 ⁷	
		Date Sampled:	11/21/2019	06/14/2017	12/17/2014	
		Order Number:	618125	541715	539662	
		Oil Temp:		45	50	
Dissolved Gas A	nalysis (DGA) Hydro	gen (H2) (µL/L):	<2	347	<2	
ASTM	Metha	ne (CH4) (µL/L):	17	17	16	
D-36121	Ethan	e (C2H6) (µL/L):	7	6	4	
	Ethylen	e (C2H4) (µL/L):	1	1	<1	
	Acetylen	e (C2H2) (µL/L):	<1	<1	<1	
	Carbon Monox	ide (CO) (µL/L):	<mark>474</mark>	<mark>531</mark>	<mark>431</mark>	
	Carbon Dioxid	de (CO2) (µL/L):	1425	1681	1320	
		gen (N2) (µL/L):	60545	74393	98100	
		gen (O2) (µL/L):	2263	2549	14600	
	Total Dissolved Ga		64732	79525	114471	
Tota	I Dissolved Combustible Gas		499	902	451	
		valent TCG (%):	0.5603	1.2905	0.2979	
DGA	-					
-	DGA Keys Gas / Inter		Methane within con		• •	
Diagnostics				•	. ,	
	(mos	st recent sample)	Ethane within condi	· ·	,	
			Ethylene within con			
			Acetylene within co			
						cellulose insulation (350 µL/L).
			Carbon Dioxide with			
			TDCG within condit	ion 1 limits (720 μ L	_/L).	
	DGA TDCG Rate Inter	pretive Method:	Retest Annually.			
	PER IEE	E C57.104-2008	1-Continue normal	operation.		
	(two mos	st recent sample)				
	DGA Cellulose (Pa	per) Insulation:	CO2/CO Ratio is or	nly applicable wher	CO2 greater than	5000 and CO greater than 500.
	Weidmann DGA 0	Condition Code:	NORMAL			
	Weidmann Recom	mended Action:	Continue normal op	eration. Resample	for testing within o	ne year.
Comment:			•		<u>.</u>	
General Oil Quali	ity (GOQ)					
ASTM D-15331	Moisture in Oil	(mg/kg):	5	12	5	
ASTM D-9711	Interfacial Tension	(mN/m):	33.85	38.17	36.0	
ASTM D-9741	Acid Number	(mg KOH/g):	0.004	0.014	0.005	
ASTM D-15001	Color Number	(ASTM):	L1.0	L1.0	1	
ASTM D-15241	Visual Exam.	(Relative):	PASS	PASS	PASS	
I			1			

ASTM D-15241	Visual Exam.	(Relative):	PASS	PASS	PASS
			CLR&BRIGHT	CLR&BRIGHT	CLR&BRIGHT
ASTM D-15241	Sediment Exam.	(Relative):	LIGHT	TRACE	
ASTM D-8771	Dielectric Breakdown	(kV):	47	54	52
ASTM D-1816	Dielectric Breakdown 1 mm	(kV °C):		34 (25°C)	23 (50°C)
ASTM D-9241	Power Factor @ 25°C (Routine)	(%):	0.057	0.099	0.056
ASTM D-924	Power Factor @ 100°C (Routine) (%):			1.052
ASTM D-1298	Density @15°C	(g/mL):			0.891

Notations: 1. Analysis is ISO/IEC 17025:2017 accredited, ANAB Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Weidmann Laboratory other than Primary Lab. 6. Weidmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results; accreditation status does not apply to these results. 8. Imported Equipment 10. mg/kg , μg/g, μg/mL, μL/L = ppm, μg/L = ppb, mN/m = dynes/cm, mm³/s = cSt

Accreditation applies to current analysis only. The analyses, opinions or interpretations contained in this report are based upon material and information supplied by the client. WEIDMANN Electrical Technology does not imply that the contents of the sample received by this laboratory are the same as all such material in the environment from which the sample was taken. Our test results relate only to the samples tested. Any interpretations or opinions expressed represent the best judgment of WEIDMANN Electrical Technology. WEIDMANN Electrical Technology assumes no responsibility and makes no warranty or representation, expressed or miled as to the condition, productivity or proper operation of any equipment or other property for which this report may be used or relied upon for any reason whatsever. This test report shall not be reproduced except in full, without written approval of the laboratory.

Docket No. DE 19-064
Attachment E
Page 2 of 8

WEIDMANN	343
----------	-----

WEIDMANN ELECTRICAL TECHNOLOGY

30 PROGRESS DRIVE, UNIT B + BENSALEM, PA + 19020 215 639 8599 + 215 639 8577

			215 639 8599 + 2 WWW.WEIDMANN-E			Page 2 of 2
Liberty Utilities		Serial#:	HA08863002	Γ	Mfr: ABB	Control#: 7334797
		Location:	BARRON AVENUE 10	1	kV: 22.9	Order#: 618125
		Equipment:	TRANSFORMER	k'	VA: 9375	Account: 110710
LONDONDERRY, NH	03053 US	Compartment:	MAIN(BOTTOM)	Year M	f'd: 2002	Received: 04/28/2020
ATTN: MARIO BARON	١E	Breathing:	SEAL	Syringe	ID: 55005286	Reported: 05/12/2020
PO#: PO000016751		Bank:	Phase:	Bottle	ID:	
Project ID:		Fluid: MIN	USGal: 1323	Sampled	By:	
Customer ID: REF# 02	24304					
	Lat	Control Numbe	r: 7334797	7044984	7035705 ⁷	
		Date Sample	1: 11/21/2019	06/14/2017	12/17/2014	
		Order Numbe	r: 618125	541715	539662	
		Oil Tem	b :	45	50	
ASTM D-4052	Density @15°C	(g/mL):		0.891	
ASTM D-445	Viscosity @40°C	(mm²/s):		8.93	
ASTM D-2668 ^{5, 6}	Oxidation Inhibitor	<u>(</u> wt. %	6) 0.187	0.183	0.251	
GOQ Diagnostics		Moisture in Oi	I: Acceptable for in-ser	vice oil (35 mg/kg m	nax).	
PER IEEE C57.106-20	15 Ir	terfacial Tensio	1: Acceptable for in-ser	vice oil (25 mN/m m	iin).	
(most recent sample)		Acid Numbe	r: Acceptable for in-ser	vice oil (0.2 mg KOł	H/g max).	
	Color N	umber and Visua	I: Diagnostic not applic	able. Diagnostic not	t applicable.	
	Dielectric Breakd	own ASTM D-87	7: Diagnostic not applic	able.		
	Power Factor	@ 25°C (Routine): Acceptable for in-ser	vice oil (0.5% max).		
	0	xidation Inhibito	r: Exceeds limit for in-s type II (0.08% min ar	ervice oil Type I (0.0 nd 0.3% max).	0% min and 0.08% ma	ax). Acceptable for in-service oil
Comment:						
Furanic Compound	2-Fi	uraldehyde (µg/L): < 10	< 10		
ASTM D-5837 ⁵	5-Hydroxy-methyl-f	uraldehyde (µg/L): < 10	< 10		
		Acetylfuran (µg/L		< 10		
	•	uraldehyde (µg/L		< 10		
		ryl alcohol (µg/L): < 10	< 10		
New insulation wit	Diagnostics (most rece th a high degree of mec 0 and paper with less th result in a transformer to	hanical strength v an 250 is in its "O	vill typically have a Deg ld Age." Severely degra estimations are based	ree of Polymerizatio Ided insulation with on a study by Chen	n (DP) of 1000-1300. a DP of 150 or less w dong of GSU transfor	"Middle Aged" paper is ill have very little mechanical mers filled with mineral oil.
Estimate	ed Average Degree of I	Polymerization (DP): >1003	-		
Estimate	ed Operating Age of th	e Equipment: <1	.0			
Notations:						
Comment:						
): < 1.0 mg/kg	< 1.0 mg/kg		
PCB	Conc	entration (mg/kg	J. < 1.0 mg/kg	< 1.0 mg/ng		
PCB mod EPA Method 808		entration (mg/kg 3 Type (Arocolor		ND		
): ND	00		

End of Test Report

dje They Authorized By:

ERIC MCANANY CHEMIST

Notations: 1. Analysis is ISO/IEC 17025:2017 accredited, ANAB Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Weidmann Laboratory other than Primary Lab. 6. Weidmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results; accreditation status does not apply to these results. 8. Imported Equipment 10. mg/kg , µg/g, µg/mL, µL/L = ppm, µg/L = ppb, mN/m = dynes/cm, mm²/s = cSt

Accreditation applies to current analysis only. The analyses, opinions or interpretations contained in this report are based upon material and information supplied by the client. WEIDMANN Electrical Technology does not imply that the contents of the sample received by this laboratory are the same as all such material in the environment from which the sample was taken. Our test results relate only to the samples tested. Any interpretations or opinions expressed represent the best judgment of WEIDMANN Electrical Technology. WEIDMANN Electrical Technology assumes no responsibility and makes no warranty or representation, expressed or implied as to the condition, productivity or proper operation of any equipment or other property for which this report may be used or relied upon for any reason whatsoever. This test report shall not be reproduced except in full, without written approval of the laboratory.

Docket No. DE 19-064 Attachment E Page 3 of 8

WEIDMANN

WEIDMANN ELECTRICAL TECHNOLOGY

3430 PROGRESS DRIVE, UNIT B + BENSALEM, PA + 19020 215 639 8599 + 215 639 8577 TEST REPORT 01-7334796-618125-00

			215 639 8599 + 2 WWW.WEIDMANN-EL	ECTRICAL COM			Page 1 of 2
Liberty Utilities		Serial#:	F959759		GENERAL	Control#:	7334796
		Leasting		1.1/-	ELECTRIC	0	040405
			BARRON AVENUE 10		22.9	Order#:	
	NUL 02052 LIC	• •			7000	Account:	
LONDONDERRY,		•	MAIN(BOTTOM)	Year Mf'd:			04/28/2020
ATTN: MARIO BA		Breathing:		Syringe ID:		Reported:	05/12/2020
PO#: PO0000167	51		Phase:	Bottle ID:			
Project ID:	E# 022496	Fiuld: MIN	USGal: 739	Sampled By:			
Customer ID: REI	F# 023400	Lab Control Numbe	r: 7334796	7044991	7035681 ⁷	70357047	7035682
		Date Sample		06/14/2017	01/11/2016	01/17/2014	01/17/2014
		Order Numbe		541715	539638	539661	539639
		Oil Tem		65	60	60	60
Dissolved Gas A	nalvsis (DGA)	Hydrogen (H2) (µL/L		37	36	53	5
ASTM		Methane (CH4) (µL/L		8	10	11	1
D-3612 ¹		Ethane (C2H6) (µL/L		3	2	2	
		Ethylene (C2H4) (µL/L		1	1	1	
		Acetylene (C2H2) (µL/L		<1	<1	<1	<
	Car	bon Monoxide (CO) (µL/L		435	439	585	58
		rbon Dioxide (CO2) (μL/L		3966	4600	5220	5220
		Nitrogen (N2) (µL/L		64457	68900	77200	7720
		Oxygen (O2) (µL/L		21425	22700	20900	20900
	Total D	issolved Gas (TDG) (µL/L		90332	96688	103972	103972
Tota		oustible Gas (TDCG) (µL/L		484	488	652	652
		Equivalent TCG (%		0.4982	0.4686	0.5812	0.5812
DGA	DCA Kove	Gas / Interpretive Method		lition 1 limite (100 ul /l)		
Diagnostics	DGA Reys	PER IEEE C57.104-200	, ,	· ·	•		
Diagnostics			e) Ethane within condition	· · · /			
		(most recent sample	·	(I)			
				tion 1 limits (50 µl /l)			
			-	tion 1 limits (50 μ L/L).			
			Acetylene within cond	dition 1 limits (1 μ L/L).	f overheated c	ellulose insulation (35	0 ul /l)
			Acetylene within cond Carbon Monoxide: Co	dition 1 limits (1 μ L/L). Indition 2 Indications o		•	• •
			Acetylene within cond Carbon Monoxide: Co Carbon Dioxide: Cond	dition 1 limits (1 μ L/L). ondition 2 Indications of dition 2 Indications of c		•	• •
		Poto Informativo Motho	Acetylene within cond Carbon Monoxide: Con Carbon Dioxide: Cond TDCG within conditio	dition 1 limits (1 μ L/L). ondition 2 Indications of dition 2 Indications of c		•	• •
	DGA TDCC	Rate Interpretive Method	Acetylene within cond Carbon Monoxide: Co Carbon Dioxide: Cond TDCG within conditio	dition 1 limits (1 μL/L). ondition 2 Indications o dition 2 Indications of c n 1 limits (720 μL/L).		•	• •
	DGA TDCG	PER IEEE C57.104-200	Acetylene within cond Carbon Monoxide: Co Carbon Dioxide: Cond TDCG within conditio I: Retest Annually. 8 1-Continue normal op	dition 1 limits (1 μL/L). ondition 2 Indications o dition 2 Indications of c n 1 limits (720 μL/L).		•	• •
		PER IEEE C57.104-200 (two most recent sample	Acetylene within cond Carbon Monoxide: Con TDCG within conditio I: Retest Annually. 1-Continue normal op	dition 1 limits (1 µL/L). ondition 2 Indications of dition 2 Indications of c n 1 limits (720 µL/L).	verheated cel	ulose insulation (2500	μL/L).
	DGA Co	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation	Acetylene within cond Carbon Monoxide: Con TDCG within conditio	dition 1 limits (1 µL/L). ondition 2 Indications of dition 2 Indications of c n 1 limits (720 µL/L).	verheated cel	ulose insulation (2500	μL/L).
	DGA Co	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code	Acetylene within cond Carbon Monoxide: Con TDCG within conditio	dition 1 limits (1 µL/L). ondition 2 Indications of dition 2 Indications of c n 1 limits (720 µL/L). peration.	greater than §	ulose insulation (2500	μL/L).
Comment:	DGA Co	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation	Acetylene within cond Carbon Monoxide: Con TDCG within conditio	dition 1 limits (1 µL/L). ondition 2 Indications of dition 2 Indications of c n 1 limits (720 µL/L). peration.	greater than §	ulose insulation (2500	μL/L).
Comment:	DGA Co Weidm Weidma	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code	Acetylene within cond Carbon Monoxide: Con TDCG within conditio	dition 1 limits (1 µL/L). ondition 2 Indications of dition 2 Indications of c n 1 limits (720 µL/L). peration.	greater than §	ulose insulation (2500	μL/L).
General Oil Quali	DGA Co Weidm Weidma	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action	Acetylene within cond Carbon Monoxide: Con TDCG within conditio I: Retest Annually. 1-Continue normal open CO2/CO Ratio is only CO2/CO Ratio is only CO1/CO Ratio is only	dition 1 limits (1 µL/L). ondition 2 Indications of dition 2 Indications of c n 1 limits (720 µL/L). peration.	greater than t	ulose insulation (2500	han 500.
General Oil Quali ASTM D-1533 ¹	DGA Co Weidm Weidma ity (GOQ) Moisture	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action	Acetylene within cond Carbon Monoxide: Con TDCG within conditio TDCG within conditio I: Retest Annually. 1-Continue normal open CO2/CO Ratio is only CO2/CO Ratio is only CO1/CO	dition 1 limits (1 µL/L). ondition 2 Indications of dition 2 Indications of c <u>n 1 limits (720 µL/L).</u> peration. <u>ration. Resample for te</u> 16	greater than t sting within or	ulose insulation (2500 5000 and CO greater t e year. 9) μL/L). han 500.
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹	DGA Co Weidm Weidma ity (GOQ) Moisture Interfacial	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m	Acetylene within cond Carbon Monoxide: Con TDCG within conditio I: Retest Annually. 1-Continue normal op) CO2/CO Ratio is only NORMAL Continue normal oper 9): 9 40.15	dition 1 limits (1 μL/L). condition 2 Indications of dition 2 Indications of c n 1 limits (720 μL/L). peration. ration. Resample for te 16 37.72	greater than 5 sting within or 10 41.0	ulose insulation (2500 5000 and CO greater t e year. 9 42.0	han 500.
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹	DGA Co Weidm Weidma ity (GOQ) Moisture Interfacial Acid Nu	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m mber (mg KOH/g	Acetylene within cond Carbon Monoxide: Con TDCG within conditio I: Retest Annually. 1-Continue normal ope I: CO2/CO Ratio is only I: NORMAL I: Continue normal ope I: 9 I: 9 I: 9 I: 0.007	dition 1 limits (1 μL/L). condition 2 Indications of dition 2 Indications of c n 1 limits (720 μL/L). peration. ration. Resample for te 16 37.72 0.022	greater than 5 sting within or 10 41.0 0.005	ulose insulation (2500 5000 and CO greater t e year. 9 42.0 0.005	han 500.
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹	DGA Co Weidm Weidma ity (GOQ) Moisture Interfacial Acid Nu Color Nu	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m umber (mg KOH/g umber (ASTM	Acetylene within cond Carbon Monoxide: Con TDCG within conditio I: Retest Annually. 1-Continue normal op CO2/CO Ratio is only CO2/CO Ratio is only NORMAL Continue normal open 9 2 3 3 40.15 3 3 40.15 3 3 40.15 3 3 4 1.5	dition 1 limits (1 μL/L). condition 2 Indications of dition 2 Indications of c n 1 limits (720 μL/L). peration. ration. Resample for te 16 37.72 0.022 L1.0	greater than 5 sting within or 10 41.0 0.005 1.5	ulose insulation (2500 5000 and CO greater t e year. 9 42.0 0.005 1.5	han 500.
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹	DGA Co Weidm Weidma ity (GOQ) Moisture Interfacial Acid Nu	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m umber (mg KOH/g umber (ASTM	Acetylene within cond Carbon Monoxide: Con- TDCG within conditio I: Retest Annually. 1-Continue normal ope CO2/CO Ratio is only CO2/CO Ratio is only CO2/CO Ratio is only NORMAL Continue normal ope 9 1: 9 2: 9 3: 40.15 3: 0.007 1: 1.5 3: PASS	dition 1 limits (1 μL/L). ondition 2 Indications of dition 2 Indications of dition 2 Indications of don't a limits (720 μL/L). peration. <u>applicable when CO2</u> ration. Resample for te 16 37.72 0.022 L1.0 PASS	greater than 5 sting within or 10 41.0 0.005 1.5 PASS	ulose insulation (2500 5000 and CO greater t e year. 9 42.0 0.005 1.5 PASS	han 500. 9 μL/L). 9 μL/
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹ ASTM D-1524 ¹	DGA Co Weidm Weidma ity (GOQ) Moisture Interfacial Acid Nu Color Nu Visual E	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m mber (mg KOH/g umber (ASTM Exam. (Relative	Acetylene within cond Carbon Monoxide: Con TDCG within conditio I: Retest Annually. 1-Continue normal ope CO2/CO Ratio is only CO2/CO Ratio is only NORMAL Continue normal ope P CO2/CO Ratio is only CO2/CO RATIO IS ONLY	dition 1 limits (1 μL/L). ondition 2 Indications of dition 2 Indications of c <u>n 1 limits (720 μL/L).</u> peration. <u>ration. Resample for te</u> 16 37.72 0.022 L1.0 PASS CLR&BRIGHT CL	greater than 5 sting within or 10 41.0 0.005 1.5	ulose insulation (2500 0000 and CO greater t e year. 9 42.0 0.005 1.5 PASS	han 500.
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹ ASTM D-1524 ¹	DGA Co Weidma Weidma ity (GOQ) Moisture Interfacial Acid Nu Color Nu Visual E Sediment	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m mber (mg KOH/g umber (ASTM Exam. (Relative Exam. (Relative	Acetylene within cond Carbon Monoxide: Con TDCG within conditio TDCG within conditio I: Retest Annually. 1-Continue normal oper CO2/CO Ratio is only CO2/CO RATIO IS ON CO2/CO2/CO2/CO2/CO2/CO2/CO2/CO2/CO2/CO2/	dition 1 limits (1 μL/L). condition 2 Indications of dition 2 Indications of c <u>n 1 limits (720 μL/L).</u> corration. <u>ration. Resample for te</u> 16 37.72 0.022 L1.0 PASS CLR&BRIGHT CL TRACE	greater than 5 sting within or 10 41.0 0.005 1.5 PASS R&BRIGHT	ulose insulation (2500 5000 and CO greater t e year. 9 42.0 0.005 1.5 PASS CLR&BRIGHT	han 500. han 500. 9 42.0 0.005 1.5 PASS CLR&BRIGHT
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹ ASTM D-1524 ¹ ASTM D-1524 ¹ ASTM D-877 ¹	DGA Co Weidma Weidma ity (GOQ) Moisture Interfacial Acid Nu Color Nu Visual E Sediment Dielectric Bi	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m mber (mg KOH/g umber (ASTM Exam. (Relative reakdown (kV	Acetylene within cond Carbon Monoxide: Con TDCG within conditio TDCG within conditio I: Retest Annually. 1-Continue normal oper CO2/CO Ratio is only CO2/CO RATIO IS ON CO2/CO2/CO2/CO2/CO2/CO2/CO2/CO2/CO2/CO2/	dition 1 limits (1 μL/L). condition 2 Indications of dition 2 Indications of c <u>n 1 limits (720 μL/L).</u> corration. <u>ration. Resample for te</u> 16 37.72 0.022 L1.0 PASS CLR&BRIGHT CL TRACE 47	greater than 5 sting within or 10 41.0 0.005 1.5 PASS R&BRIGHT 62	ulose insulation (2500 5000 and CO greater t e year. 9 42.0 0.005 1.5 PASS CLR&BRIGHT 59	han 500. han 500. 9 42.0 0.005 1.5 PASS CLR&BRIGHT 59
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹ ASTM D-1524 ¹ ASTM D-1524 ¹ ASTM D-877 ¹ ASTM D-1816	DGA Co Weidma Weidma ity (GOQ) Moisture Interfacial Acid Nu Color Nu Visual E Sediment Dielectric Br Dielectric Brea	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m mber (mg KOH/g umber (ASTM Exam. (Relative Exam. (Relative reakdown (kV °C	Acetylene within cond Carbon Monoxide: Con TDCG within conditio I: Retest Annually. 1-Continue normal ope I: CO2/CO Ratio is only I: CO2/CO Ratio is o	dition 1 limits (1 μL/L). condition 2 Indications of dition 2 Indications of c <u>n 1 limits (720 μL/L).</u> corration. <u>r applicable when CO2</u> ration. Resample for te 16 37.72 0.022 L1.0 PASS CLR&BRIGHT CL TRACE 47 30 (27°C)	greater than 5 sting within or 10 41.0 0.005 1.5 PASS R&BRIGHT 62 37 (60°C)	ulose insulation (2500 5000 and CO greater t e year. 9 42.0 0.005 1.5 PASS CLR&BRIGHT 59 36 (60°C)) μL/L). han 500. 9 42.0 0.005 1.5 PASS CLR&BRIGHT 59 36 (60°C)
General Oil Quali ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹ ASTM D-1524 ¹ ASTM D-1524 ¹	DGA Co Weidma Weidma ity (GOQ) Moisture Interfacial Acid Nu Color Nu Visual E Sediment Dielectric Br Dielectric Brea	PER IEEE C57.104-200 (two most recent sample ellulose (Paper) Insulation nann DGA Condition Code ann Recommended Action e in Oil (mg/kg Tension (mN/m mber (mg KOH/g umber (ASTM Exam. (Relative Exam. (Relative reakdown (kV kdown 1 mm (kV °C 2 25°C (Routine) (%	Acetylene within cond Carbon Monoxide: Con TDCG within conditio I: Retest Annually. 1-Continue normal ope I: CO2/CO Ratio is only I: CO2/CO RATIO IS O	dition 1 limits (1 μL/L). condition 2 Indications of dition 2 Indications of c <u>n 1 limits (720 μL/L).</u> corration. <u>ration. Resample for te</u> 16 37.72 0.022 L1.0 PASS CLR&BRIGHT CL TRACE 47	greater than 5 sting within or 10 41.0 0.005 1.5 PASS R&BRIGHT 62	ulose insulation (2500 5000 and CO greater t e year. 9 42.0 0.005 1.5 PASS CLR&BRIGHT 59) μL/L).

Notations: 1. Analysis is ISO/IEC 17025:2017 accredited, ANAB Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Weidmann Laboratory other than Primary Lab. 6. Weidmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results; accreditation status does not apply to these results. 8. Imported Equipment 10. mg/kg , μg/g, μg/mL, μL/L = ppm, μg/L = ppb, mN/m = dynes/cm, mm²/s = cSt

Accreditation applies to current analysis only. The analyses, opinions or interpretations contained in this report are based upon material and information supplied by the client. WEIDMANN Electrical Technology does not imply that the contents of the sample received by this laboratory are the same as all such material in the environment from which the sample was taken. Our test results relate only to the samples tested. Any interpretations or opinions expressed represent the best judgment of WEIDMANN Electrical Technology. WEIDMANN Electrical Technology assumes no responsibility and makes no warranty or representation, expressed or implied as to the condition, productivity or proper operation of any equipment or other property for which this report may be used or relied upon for any reason whatsoever. This test report shall not be reproduced except in full, without written approval of the laboratory.

Docket No. DE 19-064 Attachment E Page 4 of 8

WEIDMANN

WEIDMANN ELECTRICAL TECHNOLOGY

3430 PROGRESS DRIVE, UNIT B + BENSALEM, PA + 19020 215 639 8599 + 215 639 8577

			215 639 8599 + 21 WWW.WEIDMANN-EL				Page 2 of 2
Liberty Utilities		Serial#:	F959759	Mfr:	GENERAL ELECTRIC	Control#	: 7334796
		Location:	BARRON AVENUE 10	kV:	22.9	Order#	: 618125
		Equipment:	TRANSFORMER	kVA:	7000	Account	: 110710
LONDONDERRY, NH 03	3053 US	Compartment:	MAIN(BOTTOM)	Year Mf'd:	1970	Received	: 04/28/2020
ATTN: MARIO BARONE		Breathing:	SEAL	Syringe ID:	53004958	Reported	: 05/12/2020
PO#: PO000016751		Bank:	Phase:	Bottle ID:			
Project ID:		Fluid: MIN	USGal: 739	Sampled By:			
Customer ID: REF# 023	3486		-1				
	Lab	Control Number	: 7334796	7044991	7035681 ⁷	7035704 ⁷	7035682
		Date Sampled	: 11/21/2019	06/14/2017	01/11/2016	01/17/2014	01/17/2014
		Order Number	: 618125	541715	539638	539661	539639
		Oil Temp	:	65	60	60	60
ASTM D-1298	Density @15°C	(g/mL)	:		0.896	0.896	0.896
ASTM D-4052	Density @15°C	(g/mL)	:		0.896	0.896	0.896
ASTM D-445	Viscosity @40°C	(mm²/s)	:		10.05	10.02	10.02
ASTM D-2668 ^{5, 6}	Oxidation Inhibitor	<u>(</u> wt. %) 0.173	0.179	0.235	0.237	0.237
GOQ Diagnostics		Moisture in Oi	: Acceptable for in-servi	ce oil (35 mg/kg max)			
PER IEEE C57.106-201	5 Int	erfacial Tension	: Acceptable for in-servi	ce oil (25 mN/m min).			
				, , ,			
(most recent sample)		Acid Number	Acceptable for in-servi	,	max).		
(most recent sample)	Color Nu	Acid Number		ce oil (0.2 mg KOH/g	,		
(most recent sample)	Color Nu Dielectric Breakdo	mber and Visua	Diagnostic not applica	ce oil (0.2 mg KOH/g ble. Diagnostic not ap	,		
(most recent sample)	Dielectric Breakdo	mber and Visua wn ASTM D-877	Diagnostic not applica	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble.	,		
(most recent sample)	Dielectric Breakdo Power Factor @	mber and Visua wn ASTM D-877	 Diagnostic not applica Diagnostic not applica Acceptable for in-servition 	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0%	plicable.	max). Acceptable for	or in-service oi
(most recent sample) Comment:	Dielectric Breakdo Power Factor @	mber and Visua wn ASTM D-877 2 25°C (Routine)	 Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se 	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0%	plicable.	max). Acceptable fo	or in-service oi
	Dielectric Breakdo Power Factor (Ox	mber and Visua wn ASTM D-877 2 25°C (Routine)	 Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and 	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0%	plicable.	max). Acceptable fo	or in-service oi
Comment:	Dielectric Breakdo Power Factor (Ox	mber and Visua wn ASTM D-877 © 25°C (Routine idation Inhibitor raldehyde (µg/L)	Diagnostic not applica Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and 59	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max).	plicable.	max). Acceptable fo	or in-service oi
Comment: Furanic Compound	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu	mber and Visua wn ASTM D-877 © 25°C (Routine idation Inhibitor raldehyde (µg/L)	Diagnostic not applica Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and 59 < 10	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69	plicable.	max). Acceptable fo	or in-service oi
Comment: Furanic Compound	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Ad	mber and Visua wn ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (μg/L) raldehyde (μg/L)	 Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and 59 < 10 < 10 	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10	plicable.	max). Acceptable fo	or in-service oi
Comment: Furanic Compound ASTM D-5837 ⁵	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Ad 5-Methyl-2-fu 2-Fur	mber and Visual wn ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (μg/L) raldehyde (μg/L) raldehyde (μg/L) yl alcohol (μg/L)	Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and : 59 : < 10	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% 10.3% max). 69 < 10 < 10	plicable.	max). Acceptable fo	or in-service oil
Comment: Furanic Compound ASTM D-5837 ⁵ Furanic Compound Dia	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Ad 5-Methyl-2-fu 2-Fur agnostics (most recen	mber and Visual wn ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (μg/L) raldehyde (μg/L) raldehyde (μg/L) yl alcohol (μg/L) t sample):	 Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and 59 < 10 < 10 < 10 	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10	plicable.		
Comment: Furanic Compound ASTM D-5837 ⁵ Furanic Compound Dia	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Ad 5-Methyl-2-fu 2-Fur agnostics (most recen	mber and Visual wn ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (μg/L) raldehyde (μg/L) raldehyde (μg/L) yl alcohol (μg/L) t sample):	Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and : 59 : < 10	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10	plicable.		
Comment: Furanic Compound ASTM D-5837 ⁵ Furanic Compound Dia New insulation with approximately 500 a strength and may re	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Ad 5-Methyl-2-fu 2-Fur agnostics (most recen	mber and Visual wn ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (µg/L) cetylfuran (µg/L) raldehyde (µg/L) yl alcohol (µg/L) t sample): anical strength w n 250 is in its "Ol ilure. The above	Diagnostic not applica Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10	plicable.		
Comment: Furanic Compound ASTM D-5837 ⁵ Furanic Compound Dia New insulation with approximately 500 a strength and may re Estimated	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Ad 5-Methyl-2-fu 2-Fur 2-Fur agnostics (most recent a high degree of mech and paper with less that esult in a transformer far	mber and Visual wm ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (µg/L) raldehyde (µg/L) raldehyde (µg/L) yl alcohol (µg/L) t sample): anical strength w n 250 is in its "Ol ilure. The above olymerization (D	Diagnostic not applica Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10	plicable.		
Comment: Furanic Compound ASTM D-5837 ⁵ Furanic Compound Dia New insulation with approximately 500 a strength and may re Estimated	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Au 5-Methyl-2-fu 2-Fur agnostics (most recent a high degree of mech and paper with less that esult in a transformer fa Average Degree of P	mber and Visual wm ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (µg/L) raldehyde (µg/L) raldehyde (µg/L) yl alcohol (µg/L) t sample): anical strength w n 250 is in its "Ol ilure. The above olymerization (D	Diagnostic not applica Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10	plicable.		
Comment: Furanic Compound ASTM D-5837 ⁵ Furanic Compound Dia New insulation with approximately 500 a strength and may re Estimated Estimated	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Au 5-Methyl-2-fu 2-Fur agnostics (most recent a high degree of mech and paper with less that esult in a transformer fa Average Degree of P	mber and Visual wm ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (µg/L) raldehyde (µg/L) raldehyde (µg/L) yl alcohol (µg/L) t sample): anical strength w n 250 is in its "Ol ilure. The above olymerization (D	Diagnostic not applica Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10	plicable.		
Comment: Furanic Compound ASTM D-5837 ⁵ Furanic Compound Dia New insulation with approximately 500 a strength and may re Estimated Estimated Notations:	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Au 5-Methyl-2-fu 2-Fur agnostics (most recen a high degree of mech and paper with less tha esult in a transformer fa Average Degree of P Operating Age of the	mber and Visual wm ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (µg/L) raldehyde (µg/L) raldehyde (µg/L) yl alcohol (µg/L) t sample): anical strength w n 250 is in its "Ol ilure. The above olymerization (D	Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and Comparison of the service of the servi	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10	plicable.		
Comment: Furanic Compound ASTM D-5837 ⁵ Furanic Compound Dia New insulation with approximately 500 a strength and may re Estimated Estimated Notations: Comment:	Dielectric Breakdo Power Factor (Ox 2-Fu 5-Hydroxy-methyl-fu 2-Au 5-Methyl-2-fu 2-Fur agnostics (most recen a high degree of mech and paper with less tha esult in a transformer fa Average Degree of P Operating Age of the Conce	mber and Visual wm ASTM D-877 2 25°C (Routine idation Inhibitor raldehyde (μg/L) raldehyde (μg/L) raldehyde (μg/L) yl alcohol (μg/L) t sample): anical strength w n 250 is in its "Ol ilure. The above olymerization (D Equipment: 10.	 Diagnostic not applica Diagnostic not applica Acceptable for in-servi Exceeds limit for in-se type II (0.08% min and 59 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 80 < 10 < 10<td>ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10 e of Polymerization (E ed insulation with a D n a study by Chendon</td><td>plicable.</td><td></td><td></td>	ce oil (0.2 mg KOH/g ble. Diagnostic not ap ble. ce oil (0.5% max). rvice oil Type I (0.0% I 0.3% max). 69 < 10 < 10 < 10 < 10 < 10 e of Polymerization (E ed insulation with a D n a study by Chendon	plicable.		

Comment:

End of Test Report

Authorized By:

ERIC MCANANY CHEMIST

Notations: 1. Analysis is ISO/IEC 17025:2017 accredited, ANAB Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Weidmann Laboratory other than Primary Lab. 6. Weidmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results; accreditation status does not apply to these results. 8. Imported Equipment 10. mg/kg , µg/g, µg/mL, µL/L = ppm, µg/L = ppb, mN/m = dynes/cm, mm²/s = cSt

Accreditation applies to current analysis only. The analyses, opinions or interpretations contained in this report are based upon material and information supplied by the client. WEIDMANN Electrical Technology does not imply that the contents of the sample received by this laboratory are the same as all such material in the environment from which the sample was taken. Our test results relate only to the samples tested. Any interpretations or opinions expressed represent the best judgment of WEIDMANN Electrical Technology. WEIDMANN Electrical Technology, weight as the new responsibility and makes no warranty or representation, expressed or implied as to the condition, productivity or proper operation of any equipment or other property for which this report may be used or relied upon for any reason whatsoever. This test report shall not be reproduced except in full, without written approval of the laboratory.

Docket No. DE 19-064 Attachment E Page 5 of 8

			WWW.WEIDMANN	-ELECTRICAL.CON	1		Page 1 of 2
Liberty Utilities		Serial#:	V160691		Mfr: GENERAL ELECTRIC	Contro	ol#: 7334792
		Location:	SALEM DEPOT #9		kV: 23	Orde	er#: 618125
		Equipment:	TRANSFORMER		kVA: 9300	Αссοι	unt: 110710
LONDONDERRY, NH	H 03053 US	Compartment:	MAIN(BOTTOM)	Year	Mf'd: <mark>1989</mark>	Receiv	ed: 04/28/2020
ATTN: MARIO BARO	NE	Breathing:	SEAL	Syring	ge ID: 3001645	Report	ed: 05/12/2020
PO#: PO000016751		Bank:	Phase:	Bot	le ID:		
Project ID:		Fluid: MIN	USGal: 1250	Sample	d By:		
Customer ID: REF#	022772						
	Lab C	ontrol Number:	7334792	7044980	7035699 ⁷	7035709 ⁷	7035700 ⁷
		Date Sampled:	11/21/2019	06/14/2017	09/01/2016	12/16/2014	12/16/2014
		Order Number:	618125	541715	539656	539666	539657
		Oil Temp:	:	55	90	80	80
Dissolved Gas Anal	ysis (DGA) Hydro	gen (H2) (µL/L):	40	51	50	50	50
ASTM	Methai	ne (CH4) (µL/L):	55	56	54	51	51
D-36121	Ethan	e (C2H6) (µL/L):	56	44	48	39	39
	Ethylen	e (C2H4) (µL/L):	4	4	4	4	4
	Acetylen	e (C2H2) (µL/L):	<1	<1	<1	<1	<1
	Carbon Monox	<mark>ide (CO) (μL/L)</mark> :	<mark>. 459</mark>	<mark>495</mark>	<mark>477</mark>	<mark>447</mark>	<mark>447</mark>
	Carbon Dioxid	<mark>de (CO2) (μL/L)</mark> :	<mark>: 13496</mark>	<mark>14360</mark>	<mark>14800</mark>	<mark>14200</mark>	<mark>14200</mark>
		gen (N2) (µL/L):		80509	89000	83300	83300
	Oxy	gen (O2) (µL/L):	<500	1194	4950	6500	6500
	Total Dissolved Ga	as (TDG) (µL/L):	79090	96713	109383	104591	104591
Total Di	issolved Combustible Gas			650	633	591	591
	Equi	valent TCG (%):	0.6293	0.5587	0.4794	0.4804	0.4804
DGA	DGA Keys Gas / Inter	pretive Method:	Hydrogen within co	ondition 1 limits (10) μL/L).		
Diagnostics	PER IEE	E C57.104-2008	Methane within co	ndition 1 limits (120	μL/L).		
	(mos	t recent sample)	Ethane within cond	dition 1 limits (65 µL	/L).		
			Ethylene within co	ndition 1 limits (50 µ	ıL/L).		
			Acetylene within co	ondition 1 limits (1 µ	IL/L).		
			Carbon Monoxide:	Condition 2 Indicat	ions of overheated	cellulose insulation	(350 µL/L).
			Carbon Dioxide: C	ondition 4 Severe In	ndications of overhe	eated cellulose insu	lation (10000
			μL/L).				
			TDCG within cond	ition 1 limits (720 µL	_/L).		
	DGA TDCG Rate Inter	pretive Method:	Retest Annually.				
	PER IEE	E C57.104-2008	1-Continue normal	l operation.			
		t recent sample)		·			
	DGA Cellulose (Pa	per) Insulation:	CO2/CO Ratio is o	only applicable wher	CO2 greater than	5000 and CO grea	ter than 500.
	Weidmann DGA C	Condition Code					
	Weidmann Recom			months for testing			
Comment:				inonano for tooting.			
General Oil Quality	(GOQ)						
ASTM D-1533 ¹	Moisture in Oil	(mg/kg):	10	23	58	6	6
ASTM D-9711	Interfacial Tension	(mN/m):		37.82	35.0	38.0	38.0
ASTM D-9741	Acid Number	(mg KOH/g):		0.016	0.005	0.005	0.005
ASTM D-1500 ¹	Color Number	(ASTM):		L0.5	0.5	0.5	0.5
ASTM D-1524 ¹	Visual Exam.	(Relative):		PASS	PASS	PASS	PASS
		(CLR&BRIGHT		CLR&BRIGHT	CLR&BRIGHT	CLR&BRIGHT
ASTM D-15241	Sediment Exam.	(Relative):		TRACE			
ASTM D-8771	Dielectric Breakdown	(kV):		51	55	63	63
	Dielectric Breakdown 1 mr	. ,		25 (24°C)	42 (90°C)	39 (80°C)	39 (80°C)
	Power Factor @ 25°C (Rou			0.018	0.008	0.005	0.005
		·, (/v)					

WEIDMANN ELECTRICAL TECHNOLOGY

3430 PROGRESS DRIVE, UNIT B + BENSALEM, PA + 19020

215 639 8599 + 215 639 8577

Notations: 1. Analysis is ISO/IEC 17025:2017 accredited, ANAB Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Weidmann Laboratory other than Primary Lab. 6. Weidmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results; accreditation status does not apply to these results. 8. Imported Equipment 10. mg/kg , μg/g, μg/mL, μL/L = ppm, μg/L = ppb, mN/m = dynes/cm, mm²/s = cSt

Accreditation applies to current analysis only. The analyses, opinions or interpretations contained in this report are based upon material and information supplied by the client. WEIDMANN Electrical Technology does not imply that the contents of the sample received by this laboratory are the same as all such material in the environment from which the sample was taken. Our test results relate only to the sample or samples tested. Any interpretations or opinions expressed represent the best judgment of WEIDMANN Electrical Technology. WEIDMANN Electrical Technology assumes no responsibility and makes no warranty or representation, expressed or mileid as to the condition, productivity or proper operation of any equipment or other property for which this report may be used or relied upon for any reason whatsoever. This test report shall not be reproduced except in full, without written approval of the laboratory.

TEST REPORT 01-7334792-618125-00

Page 1 of 2

WEIDMANN

Docket No. DE 19-064 Attachment E Page 6 of 8

WEIDMANN

WEIDMANN ELECTRICAL TECHNOLOGY

3430 PROGRESS DRIVE, UNIT B + BENSALEM, PA + 19020 215 639 8599 + 215 639 8577

	TEST	REPORT
01-733	4792-6	618125-00

	3430 F KOU					
		215 639 8599 + 2 WWW.WEIDMANN-EL				Page 2 of 2
Liberty Utilities	Serial#: 1	M160691	Ν	Afr: GENERAL ELECTRIC	Control#	: 7334792
	Location: S	SALEM DEPOT #9		kV: 23	Order#	: 618125
	Equipment:	TRANSFORMER	k	VA: 9300	Account	t: 110710
LONDONDERRY, NH 03053 US	Compartment:	MAIN(BOTTOM)	Year M	f'd : 1989	Received	I: 04/28/2020
ATTN: MARIO BARONE	Breathing:	SEAL	Syringe	ID: 3001645	Reported	I: 05/12/2020
PO#: PO000016751	Bank: I	Phase:	Bottle	ID:		
Project ID:	Fluid: MIN	JSGal: 1250	Sampled	By:		
Customer ID: REF# 022772						
Lab C	ontrol Number:	7334792	7044980	7035699 ⁷	7035709 ⁷	703570
	Date Sampled:	11/21/2019	06/14/2017	09/01/2016	12/16/2014	12/16/201
	Order Number:	618125	541715	539656	539666	53965
	Oil Temp:		55	90	80	8
ASTM D-924 Power Factor @ 100°C (Rou	utine) (%)			0.340	0.324	0.32
ASTM D-1298 Density @ 15°C	(g/mL):			0.874	0.873	0.87
ASTM D-4052 Density @15°C	(g/mL):			0.874	0.873	0.87
ASTM D-445 Viscosity @40°C	(mm²/s):			8.52	8.46	8.4
ASTM D-2668 ^{5, 6} Oxidation Inhibitor	(wt. %)	0.045	0.033	0.059	0.069	0.06
GOQ Diagnostics	Moisture in Oil:	Acceptable for in-serv	vice oil (35 mg/kg m	iax).		
PER IEEE C57.106-2015 Inte	rfacial Tension:	Acceptable for in-serv	vice oil (25 mN/m m	iin).		
(most recent sample)	Acid Number:	Acceptable for in-serv	vice oil (0.2 mg KOH	H/g max).		
		Acceptable for in-serverter Diagnostic not application	. 0	0,		
Color Num	ber and Visual:		able. Diagnostic not	0,		
Color Num Dielectric Breakdow	ber and Visual: vn ASTM D-877:	Diagnostic not applica	able. Diagnostic not able.	0,		
Color Num Dielectric Breakdow Power Factor @	ber and Visual: vn ASTM D-877: 25°C (Routine):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0%	applicable.	ax). Exceeds limit f	or in-service o
Color Num Dielectric Breakdow Power Factor @ Oxio	ber and Visual: vn ASTM D-877: 25°C (Routine):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0%	applicable.	ax). Exceeds limit f	or in-service o
Color Num Dielectric Breakdow Power Factor @ Oxio Comment:	ber and Visual: vn ASTM D-877: 25°C (Routine):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0%	applicable.	ax). Exceeds limit f	or in-service o
Color Num Dielectric Breakdow Power Factor @ Oxio Comment: Furanic Compound 2-Fura	ber and Visual: vn ASTM D-877: 25°C (Routine) dation Inhibitor: aldehyde (µg/L):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max).	applicable.	ax). Exceeds limit f	or in-service o
Color Num Dielectric Breakdow Power Factor @ Oxio Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura	ber and Visual: vn ASTM D-877: 25°C (Routine) dation Inhibitor: aldehyde (µg/L):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an 10 < 10	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10	applicable.	ax). Exceeds limit f	or in-service o
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Ace	ber and Visual: vn ASTM D-877: 25°C (Routine) dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an 10 < 10 < 10	able. Diagnostic not able. <i>v</i> ice oil (0.5% max). <i>v</i> ice oil Type I (0.0% <u>d 0.3% max).</u> < 10 < 10	applicable.	ax). Exceeds limit f	or in-service o
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura	ber and Visual: vn ASTM D-877: 25°C (Routine) dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): etylfuran (µg/L):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10	applicable.	ax). Exceeds limit f	or in-service o
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura	ber and Visual: vn ASTM D-877: 25°C (Routine) dation Inhibitor: aldehyde (μg/L): aldehyde (μg/L): aldehyde (μg/L): aldehyde (μg/L): I alcohol (μg/L):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10	applicable.	ax). Exceeds limit f	or in-service o
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura 2-Fury	ber and Visual: vn ASTM D-877: 25°C (Routine): dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): etylfuran (µg/L): aldehyde (µg/L): aldehyde (µg/L): sample): nical strength wi 250 is in its "Old	Diagnostic not applica Diagnostic not applica Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10 < 10 I typically have a Degra	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10 < 10 ee of Polymerization ded insulation with a	n (DP) of 1000-130	0. "Middle Aged" p will have very little	aper is mechanical
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura 2-Fury Furanic Compound Diagnostics (most recent New insulation with a high degree of mecha approximately 500 and paper with less than	ber and Visual: vn ASTM D-877: 25°C (Routine) dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): aldehyde (µg/L): aldehyde (µg/L): aldehyde (µg/L): sample): nical strength wi 250 is in its "Olc ure. The above of	Diagnostic not applica Diagnostic not applica Acceptable for in-server Acceptable for in-server type II (0.08% min and 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 <	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10 < 10 ee of Polymerization ded insulation with a	n (DP) of 1000-130	0. "Middle Aged" p will have very little	aper is mechanical
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura 2-Fury Furanic Compound Diagnostics (most recent New insulation with a high degree of mecha approximately 500 and paper with less than strength and may result in a transformer fail	ber and Visual: vn ASTM D-877: 25°C (Routine): dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): etylfuran (µg/L): aldehyde (µg/L): aldehyde (µg/L): sample): nical strength wi 250 is in its "Old ure. The above etymerization (Di	Diagnostic not applica Diagnostic not applica Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10 < 10 It ypically have a Degrad Age." Severely degrad estimations are based of P): 1001	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10 < 10 ee of Polymerization ded insulation with a	n (DP) of 1000-130	0. "Middle Aged" p will have very little	aper is mechanical
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Ace 5-Methyl-2-fura 2-Fury Furanic Compound Diagnostics (most recent New insulation with a high degree of mecha approximately 500 and paper with less than strength and may result in a transformer fail Estimated Average Degree of Pol Estimated Operating Age of the E	ber and Visual: vn ASTM D-877: 25°C (Routine): dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): etylfuran (µg/L): aldehyde (µg/L): aldehyde (µg/L): sample): nical strength wi 250 is in its "Old ure. The above etymerization (Di	Diagnostic not applica Diagnostic not applica Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10 < 10 It ypically have a Degrad Age." Severely degrad estimations are based of P): 1001	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10 < 10 ee of Polymerization ded insulation with a	n (DP) of 1000-130	0. "Middle Aged" p will have very little	aper is mechanical
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura 2-Fury Furanic Compound Diagnostics (most recent New insulation with a high degree of mecha approximately 500 and paper with less than strength and may result in a transformer fail Estimated Average Degree of Pol Estimated Operating Age of the E Notations:	ber and Visual: vn ASTM D-877: 25°C (Routine): dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): etylfuran (µg/L): aldehyde (µg/L): aldehyde (µg/L): sample): nical strength wi 250 is in its "Old ure. The above etymerization (Di	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10 < 10 Il typically have a Degra Age." Severely degrad estimations are based of P): 1001	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10 < 10 ee of Polymerization ded insulation with a	n (DP) of 1000-130	0. "Middle Aged" p will have very little	aper is mechanical
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura 2-Fury Furanic Compound Diagnostics (most recent New insulation with a high degree of mecha approximately 500 and paper with less than strength and may result in a transformer fail Estimated Average Degree of Pol Estimated Operating Age of the E Notations: Comment:	ber and Visual: vn ASTM D-877: 25°C (Routine): dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): etylfuran (µg/L): aldehyde (µg/L): aldehyde (µg/L): sample): nical strength wi 250 is in its "Old ure. The above etymerization (Di	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10 < 10 Il typically have a Degrad stimations are based of P): 1001	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10 < 10 ee of Polymerization ded insulation with a	n (DP) of 1000-130	0. "Middle Aged" p will have very little	aper is mechanical
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura 2-Fury Furanic Compound Diagnostics (most recent New insulation with a high degree of mecha approximately 500 and paper with less than strength and may result in a transformer fail Estimated Average Degree of Pol Estimated Operating Age of the E Notations: Comment: PCB Concen	ber and Visual: 25°C (Routine) dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): aldehyde (µg/L): aldehyde (µg/L): aldehyde (µg/L): aldehyde (µg/L): sample): nical strength wi 250 is in its "Olc ure. The above e lymerization (DI Equipment: <1.0	Diagnostic not applica Diagnostic not applica Acceptable for in-serv Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10 < 10 It typically have a Degra Age." Severely degrad estimations are based of P): 1001	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10 ded insulation with a on a study by Chene	n (DP) of 1000-130	0. "Middle Aged" p will have very little	aper is mechanical
Color Num Dielectric Breakdow Power Factor @ Oxid Comment: Furanic Compound 2-Fura ASTM D-5837 ⁵ 5-Hydroxy-methyl-fura 2-Act 5-Methyl-2-fura 2-Fury Furanic Compound Diagnostics (most recent New insulation with a high degree of mecha approximately 500 and paper with less than strength and may result in a transformer fail Estimated Average Degree of Pol Estimated Average Degree of Pol Estimated Operating Age of the E Notations: Comment: PCB Concen mod EPA Method 8082a ^{5,6} PCB T	ber and Visual: vn ASTM D-877: 25°C (Routine): dation Inhibitor: aldehyde (µg/L): aldehyde (µg/L): etylfuran (µg/L): aldehyde (µg/L): aldehyde (µg/L): sample): nical strength wi 250 is in its "Olc ure. The above c lymerization (DI Equipment: <1.0 tration (mg/kg):	Diagnostic not applica Diagnostic not applica Acceptable for in-serv type II (0.08% min an 10 < 10 < 10 < 10 < 10 It typically have a Degra Age." Severely degrad estimations are based of P): 1001	able. Diagnostic not able. vice oil (0.5% max). vice oil Type I (0.0% d 0.3% max). < 10 < 10 < 10 < 10 < 10 < 10 ee of Polymerization ded insulation with a on a study by Cheno < 1.0 mg/kg	n (DP) of 1000-130	0. "Middle Aged" p will have very little	aper is mechanical

Authorized By:

ERIC MCANANY CHEMIST

Notations: 1. Analysis is ISO/IEC 17025:2017 accredited, ANAB Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Weidmann Laboratory other than Primary Lab. 6. Weidmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results; accreditation status does not apply to these results. 8. Imported Equipment 10. mg/kg , µg/g, µg/mL, µL/L = ppm, µg/L = ppb, mN/m = dynes/cm, mm²/s = cSt

Accreditation applies to current analysis only. The analyses, opinions or interpretations contained in this report are based upon material and information supplied by the client. WEIDMANN Electrical Technology does not imply that the contents of the sample received by this laboratory are the same as all such material in the environment from which the sample was taken. Our test results relate only to the samples tested. Any interpretations or opinions expressed represent the best judgment of WEIDMANN Electrical Technology. WEIDMANN Electrical Technology, weight as the new responsibility and makes no warranty or representation, expressed or implied as to the condition, productivity or proper operation of any equipment or other property for which this report may be used or relied upon for any reason whatsoever. This test report shall not be reproduced except in full, without written approval of the laboratory.

Docket No. DE 19-064 Attachment E Page 7 of 8

WEIDMANN

WEIDMANN ELECTRICAL TECHNOLOGY

3430 PROGRESS DRIVE, UNIT B + BENSALEM, PA + 19020 215 639 8599 + 215 639 8577

	TEST REPORT
01-	7334791-618125-00

		١	215 639 8599 + NWW.WEIDMANN-E				Page 1 of 2
Liberty Utilities		Serial#: G			Mfr: GENERAL ELECTRIC	Contro	l#: 7334791
		Location: S	ALEM DEPOT 9		kV: 22.9	Orde	r#: 618125
		Equipment: T	RANSFORMER		kVA: 7000	Accou	nt: 110710
LONDONDERRY, NH	03053 US	Compartment: N	IAIN(BOTTOM)	Year	Mf'd:	Receive	ed: 04/28/2020
ATTN: MARIO BARON	NE	Breathing: S	EAL	Syring	e ID: 53005817	Reporte	ed: 05/12/2020
PO#: PO000016751		Bank: P			e ID:	•	
Project ID:		Fluid: MIN U	ISGal: 1010	Sample	d By:		
Customer ID: REF# 0	23068				-		
	Lab (Control Number:	7334791	7044979	7035697 ⁷	7035708 ⁷	7035698
		Date Sampled:	11/21/2019	06/14/2017	09/01/2016	12/16/2014	12/16/201
		Order Number:	618125	541715	539654	539665	53965
		Oil Temp:		56	60	60	6
Dissolved Gas Analy	sis (DGA) Hydro	ogen (H2) (µL/L):	<mark>469</mark>	<mark>488</mark>	<mark>226</mark>	<mark>649</mark>	64
ASTM	Metha	ne (CH4) (µL/L):	<mark>307</mark>	<mark>355</mark>	<mark>299</mark>	<mark>373</mark>	37
D-3612 ¹	Ethar	<mark>ne (C2H6) (µL/L</mark>):	<mark>194</mark>	<mark>175</mark>	<mark>194</mark>	<mark>183</mark>	<mark>(18</mark> ;
	Ethyler	ne (C2H4) (µL/L):	111	121	122	<mark>136</mark>	13
	Acetyler	ne (C2H2) (µL/L):	<1	<1	<1	<1	<
	Carbon Mono	xide (CO) (µL/L):	<mark>1164</mark>	<mark>1293</mark>	<mark>773</mark>	<mark>1320</mark>	1320
	Carbon Diox	ide (CO2) (µL/L):	<mark>18354</mark>	<mark>19237</mark>	<mark>19400</mark>	<mark>17200</mark>	1720
	Nitro	ogen (N2) (µL/L):	61883	78625	76300	72700	7270
	Oxy	/gen (O2) (µL/L):	585	1295	14100	3950	395
	Total Dissolved G	as (TDG) (µL/L):	83067	101589	111414	96511	9651
Total Dis	solved Combustible Ga	s (TDCG) (µL/L):	<mark>2245</mark>	<mark>2432</mark>	<mark>1614</mark>	<mark>2661</mark>	<mark>266</mark> 2
	Equ	ivalent TCG (%):	2.6607	2.2693	1.195	2.783	2.783
DGA	DGA Keys Gas / Inte	rpretive Method:	Hydrogen: Condition	2 Indications of p	artial discharge acti	vity (100 µl /l)	
Diagnostics	•	-	Methane: Condition	•	-	• • • •	
Diagnootioo							
		st recent sample)	Ethane: Condition 4	Indications of seve	rely overheated (>	250°C) oil (150 ul /l	
	(110	st recent sample)				250°C) oil (150 µL/l ed (>350°C) oil (100	,
	(110	st recent sample)	Ethylene: Condition	3 Indications of sig	nificantly overheate	, , ,	,
	(110	st recent sample)	Ethylene: Condition Acetylene within cor	3 Indications of sig ndition 1 limits (1 μl	nificantly overheate _/L).	ed (>350°C) oil (100	,) μL/L).
	(ind	st recent sample)	Ethylene: Condition Acetylene within cor Carbon Monoxide: (3 Indications of sig ndition 1 limits (1 μl	nificantly overheate _/L).	ed (>350°C) oil (100	,) μL/L).
	(ind	st recent sample)	Ethylene: Condition Acetylene within cor Carbon Monoxide: 0 µL/L).	3 Indications of sig ndition 1 limits (1 µl Condition 3 Indicatio	nificantly overheate /L). ons of significantly (ed (>350°C) oil (100	μL/L). e insulation (570
	(ind	st recent sample)	Ethylene: Condition Acetylene within cor Carbon Monoxide: (μ L/L). Carbon Dioxide: Co	3 Indications of sig ndition 1 limits (1 µl Condition 3 Indicatio	nificantly overheate /L). ons of significantly (ed (>350°C) oil (100	μL/L). e insulation (570
	(ind	st recent sample)	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μL/L). Carbon Dioxide: Co μL/L).	3 Indications of sig ndition 1 limits (1 µl Condition 3 Indication ndition 4 Severe In	nificantly overheate /L). ons of significantly o dications of overhe	ed (>350°C) oil (100 overheated cellulos ated cellulose insula	μL/L). e insulation (570 ation (10000
	(ind	st recent sample)	Ethylene: Condition Acetylene within cor Carbon Monoxide: (μ L/L). Carbon Dioxide: Co	3 Indications of sig ndition 1 limits (1 µl Condition 3 Indication ndition 4 Severe In	nificantly overheate /L). ons of significantly o dications of overhe	ed (>350°C) oil (100 overheated cellulos ated cellulose insula	μL/L). e insulation (570 ation (10000
	х 		Ethylene: Condition Acetylene within cor Carbon Monoxide: C µL/L). Carbon Dioxide: Co µL/L). TDCG: Condition 3 (1920 µL/L).	3 Indications of sig ndition 1 limits (1 µl Condition 3 Indication ndition 4 Severe In	nificantly overheate /L). ons of significantly o dications of overhe	ed (>350°C) oil (100 overheated cellulos ated cellulose insula	μL/L). e insulation (570 ation (10000
	DGA TDCG Rate Inte	rpretive Method:	Ethylene: Condition Acetylene within cor Carbon Monoxide: C µL/L). Carbon Dioxide: Co µL/L). TDCG: Condition 3 (1920 µL/L). Retest Monthly.	3 Indications of sig ndition 1 limits (1 µl Condition 3 Indication Indition 4 Severe In Levels indicate a h	nificantly overheate /L). ons of significantly dications of overhe gh level of decomp	ed (>350°C) oil (100 overheated cellulos ated cellulose insul- osition. Faults are p) μL/L). e insulation (570 ation (10000 probably present
	DGA TDCG Rate Inter PER IEI	rpretive Method: EE C57.104-2008	Ethylene: Condition Acetylene within cor Carbon Monoxide: C µL/L). Carbon Dioxide: Co µL/L). TDCG: Condition 3 (1920 µL/L).	3 Indications of sig ndition 1 limits (1 µl Condition 3 Indication Indition 4 Severe In Levels indicate a h	nificantly overheate /L). ons of significantly dications of overhe gh level of decomp	ed (>350°C) oil (100 overheated cellulos ated cellulose insul- osition. Faults are p) μL/L). e insulation (570 ation (10000 probably present
	DGA TDCG Rate Inter PER IEI (two mo	rpretive Method: EE C57.104-2008 st recent sample)	Ethylene: Condition Acetylene within cor Carbon Monoxide: C µL/L). Carbon Dioxide: Co µL/L). TDCG: Condition 3 (1920 µL/L). Retest Monthly. Exercise extreme ca	3 Indications of sig adition 1 limits (1 µl Condition 3 Indication adition 4 Severe In Levels indicate a h	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases.	ed (>350°C) oil (100 overheated cellulos ated cellulose insul- iosition. Faults are p) μL/L). e insulation (570 ation (10000 probably present
	DGA TDCG Rate Intel PER IEI (two mo DGA Cellulose (P	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation:	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi	3 Indications of sig adition 1 limits (1 µl Condition 3 Indication adition 4 Severe In Levels indicate a h	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases.	ed (>350°C) oil (100 overheated cellulos ated cellulose insul- iosition. Faults are p) μL/L). e insulation (570 ation (10000 probably present
	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code:	Ethylene: Condition Acetylene within cor Carbon Monoxide: C µL/L). Carbon Dioxide: Co µL/L). TDCG: Condition 3 (1920 µL/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION	3 Indications of sig adition 1 limits (1 µl Condition 3 Indication adition 4 Severe In Levels indicate a h aution. Analyze for cation of thermal d	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases.	ed (>350°C) oil (100 overheated cellulos ated cellulose insul- iosition. Faults are p) μL/L). e insulation (570 ation (10000 probably present
	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code:	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi	3 Indications of sig adition 1 limits (1 µl Condition 3 Indication adition 4 Severe In Levels indicate a h aution. Analyze for cation of thermal d	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases.	ed (>350°C) oil (100 overheated cellulos ated cellulose insul- iosition. Faults are p) μL/L). e insulation (570 ation (10000 probably present
Comment:	DGA TDCG Rate Intel PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code:	Ethylene: Condition Acetylene within cor Carbon Monoxide: C µL/L). Carbon Dioxide: Co µL/L). TDCG: Condition 3 (1920 µL/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION	3 Indications of sig adition 1 limits (1 µl Condition 3 Indication adition 4 Severe In Levels indicate a h aution. Analyze for cation of thermal d	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases.	ed (>350°C) oil (100 overheated cellulos ated cellulose insul- iosition. Faults are p) μL/L). e insulation (570 ation (10000 probably present
General Oil Quality (C	DGA TDCG Rate Intel PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code: mended Action:	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION Resample within 6 r	3 Indications of sig adition 1 limits (1 µl Condition 3 Indication adition 4 Severe In Levels indicate a h aution. Analyze for cation of thermal d months for testing.	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases. I ecomposition of cel	ed (>350°C) oil (100 overheated cellulos ated cellulose insula osition. Faults are p Plan outage. Advise	y μL/L). e insulation (570 ation (10000 probably present manufacturer.)
General Oil Quality (C ASTM D-1533 ¹	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code: mended Action: (mg/kg):	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION Resample within 6 r	3 Indications of sig adition 1 limits (1 µl Condition 3 Indication adition 4 Severe In Levels indicate a h aution. Analyze for cation of thermal d months for testing.	nificantly overheate /L). ons of significantly of dications of overhe- gh level of decomp individual gases. I ecomposition of cel	ed (>350°C) oil (100 overheated cellulos ated cellulose insula osition. Faults are p Plan outage. Advise Ilulose insulation.	y μL/L). e insulation (570 ation (10000 probably present manufacturer.)
General Oil Quality (C ASTM D-1533 ¹ ASTM D-971 ¹	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code: mended Action: (mg/kg): (mN/m):	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION Resample within 6 r 19 38.6	3 Indications of sig adition 1 limits (1 µl Condition 3 Indication adition 4 Severe In Levels indicate a high aution. Analyze for cation of thermal d months for testing. 91 37.21	nificantly overheate /L). ons of significantly dications of overhe gh level of decomp individual gases. I ecomposition of cel <2 37.0	ed (>350°C) oil (100 overheated cellulos ated cellulose insula osition. Faults are p Plan outage. Advise Ilulose insulation.	y μL/L). e insulation (570 ation (10000 probably present manufacturer.)
General Oil Quality (C ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom GOQ) Moisture in Oil Interfacial Tension Acid Number	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code: mended Action: (mg/kg): (mN/m): (mg KOH/g):	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION Resample within 6 r 19 38.6 0.009	3 Indications of sig ndition 1 limits (1 µl condition 3 Indication ndition 4 Severe In Levels indicate a high nution. Analyze for cation of thermal d nonths for testing. 91 37.21 0.021	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases. I ecomposition of cel <2 37.0 0.005	ed (>350°C) oil (100 overheated cellulos ated cellulose insula osition. Faults are p Plan outage. Advise lulose insulation. 4 39.0 0.005) μL/L). e insulation (570 ation (10000 probably present manufacturer.)
General Oil Quality (C ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom GOQ) Moisture in Oil Interfacial Tension Acid Number Color Number	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code: mended Action: (mg/kg): (mN/m): (mg KOH/g): (ASTM):	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION Resample within 6 r 19 38.6 0.009 L1.5	3 Indications of signation 1 limits (1 µl condition 1 limits (1 µl condition 3 Indication addition 4 Severe In Levels indicate a high nution. Analyze for cation of thermal d nonths for testing. 91 37.21 0.021 L1.0	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases. I ecomposition of cel <2 37.0 0.005 1.5	ed (>350°C) oil (100 overheated cellulos ated cellulose insula osition. Faults are p Plan outage. Advise lulose insulation. 4 39.0 0.005 1.5) μL/L). e insulation (570 ation (10000 probably present e manufacturer.) 39.1 39.1 1.1
General Oil Quality (C ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom GOQ) Moisture in Oil Interfacial Tension Acid Number	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code: mended Action: (mg/kg): (mN/m): (mg KOH/g):	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION Resample within 6 r 19 38.6 0.009 L1.5 PASS	3 Indications of signation 1 limits (1 µl Condition 1 limits (1 µl Condition 3 Indication addition 4 Severe In Levels indicate a high nution. Analyze for cation of thermal d nonths for testing. 91 37.21 0.021 L1.0 PASS	nificantly overheate /L). ons of significantly o dications of overhe- gh level of decomp individual gases. I ecomposition of cel <2	ed (>350°C) oil (100 overheated cellulos ated cellulose insula osition. Faults are p Plan outage. Advise lulose insulation. 4 39.0 0.005 1.5 PASS	y μL/L). e insulation (570 ation (10000 probably present e manufacturer.) a manufacturer. 39.0 0.003 1.3
General Oil Quality (C ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹ ASTM D-1524 ¹	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom GOQ) Moisture in Oil Interfacial Tension Acid Number Color Number Visual Exam.	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code: mended Action: (mg/kg): (mN/m): (mg KOH/g): (ASTM): (Relative):	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION Resample within 6 r 19 38.6 0.009 L1.5 PASS CLR&BRIGHT	3 Indications of sig ndition 1 limits (1 µl Condition 3 Indication ndition 4 Severe In Levels indicate a high nution. Analyze for cation of thermal d nonths for testing. 91 37.21 0.021 L1.0 PASS CLR&BRIGHT	nificantly overheate /L). ons of significantly o dications of overhe gh level of decomp individual gases. I ecomposition of cel <2 37.0 0.005 1.5	ed (>350°C) oil (100 overheated cellulos ated cellulose insula osition. Faults are p Plan outage. Advise lulose insulation. 4 39.0 0.005 1.5	y μL/L). e insulation (570 ation (10000 probably present e manufacturer.) a manufacturer. 39.0 0.003 1.3
General Oil Quality (C ASTM D-1533 ¹ ASTM D-971 ¹ ASTM D-974 ¹ ASTM D-1500 ¹	DGA TDCG Rate Inter PER IEI (two mo DGA Cellulose (P Weidmann DGA Weidmann Recom GOQ) Moisture in Oil Interfacial Tension Acid Number Color Number	rpretive Method: EE C57.104-2008 st recent sample) aper) Insulation: Condition Code: mended Action: (mg/kg): (mN/m): (mg KOH/g): (ASTM):	Ethylene: Condition Acetylene within cor Carbon Monoxide: C μ L/L). Carbon Dioxide: Co μ L/L). TDCG: Condition 3 (1920 μ L/L). Retest Monthly. Exercise extreme ca CO2/CO >= 10: Indi CAUTION Resample within 6 r 19 38.6 0.009 L1.5 PASS CLR&BRIGHT ND	3 Indications of signation 1 limits (1 µl Condition 1 limits (1 µl Condition 3 Indication addition 4 Severe In Levels indicate a high nution. Analyze for cation of thermal d nonths for testing. 91 37.21 0.021 L1.0 PASS	nificantly overheate /L). ons of significantly o dications of overhe- gh level of decomp individual gases. I ecomposition of cel <2	ed (>350°C) oil (100 overheated cellulos ated cellulose insula osition. Faults are p Plan outage. Advise lulose insulation. 4 39.0 0.005 1.5 PASS	y μL/L). e insulation (570 ation (10000 probably present

Notations: 1. Analysis is ISO/IEC 17025:2017 accredited, ANAB Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Weidmann Laboratory other than Primary Lab. 6. Weidmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results; accreditation status does not apply to these results. 8. Imported Equipment 10. mg/kg , μg/g, μg/mL, μL/L = ppm, μg/L = ppb, mN/m = dynes/cm, mm³/s = cSt

Accreditation applies to current analysis only. The analyses, opinions or interpretations contained in this report are based upon material and information supplied by the client. WEIDMANN Electrical Technology does not imply that the contents of the sample received by this laboratory are the same as all such material in the environment from which the sample was taken. Our test results relate only to the samples tested. Any interpretations or opinions expressed represent the best judgment of WEIDMANN Electrical Technology. WEIDMANN Electrical Technology assumes no responsibility and makes no warranty or representation, expressed or miled as to the condition, productivity or proper operation of any equipment or other property for which this report may be used or relied upon for any reason whatsoever. This test report shall not be reproduced except in full, without written approval of the laboratory.

Docket No. DE 19-064 Attachment E Page 8 of 8

WEIDMANN

WEIDMANN ELECTRICAL TECHNOLOGY

3430 PROGRESS DRIVE, UNIT B + BENSALEM, PA + 19020 215 639 8599 + 215 639 8577

	01001		, or the	D + DEINSALEIVI, P		01100	191-010125-0
				215 639 8577 LECTRICAL.COM			Page 2 of 2
Liberty Utilities	Seria	II#: G859810A			Mfr: GENERAL ELECTRIC	Control#	: 7334791
	Locatio	on: SALEM DEF	POT 9		kV: 22.9	Order#	: 618125
	Equipme	nt: TRANSFOR	RMER	k	VA: 7000	Account	t: 110710
LONDONDERRY, NH 03053 L	JS Compartme	nt: MAIN(BOTT	IOM)	Year M	lf'd:	Received	1: 04/28/2020
ATTN: MARIO BARONE	Breathir	ng: SEAL		Syringe	ID: 53005817	Reported	1: 05/12/2020
PO#: PO000016751	Bai	nk: Phase:		Bottle	D:		
Project ID:	Fluid: M	IN USGal: 101	0	Sampled	By:		
Customer ID: REF# 023068				-	-		
	Lab Control Num	nber: 7	334791	7044979	7035697 ⁷	7035708 ⁷	7035698
	Date Sam	oled: 11/2	21/2019	06/14/2017	09/01/2016	12/16/2014	12/16/201
	Order Num	nber:	618125	541715	539654	539665	53965
	Oil Te	emp:		56	60	60	6
ASTM D-1816 Dielectric	Breakdown 1 mm (kV	' °C):		27 (25°C)	40 (60°C)	42 (60°C)	42 (60°C
ASTM D-924 ¹ Power Fac	ctor @ 25°C (Routine)	(%):	0.007	0.021	0.006	0.004	0.00
ASTM D-924 Power Fac	tor @ 100°C (Routine)	(%):			0.195	0.238	0.23
ASTM D-1298 De	nsity @15°C (g/	mL):			0.887	0.887	0.88
ASTM D-4052 De	nsity @15°C (g/	mL):			0.887	0.887	0.88
ASTM D-445 Viso	cosity @40°C (mm	1²/s):			9.34	9.31	9.3
ASTM D-2668 ^{5, 6} Oxid	ation Inhibitor (w	t. %)	0.068	0.066	0.095	0.098	0.09
GOQ Diagnostics	Moisture in	Oil: Acceptable	e for in-ser	vice oil (35 mg/kg r	nax).		
PER IEEE C57.106-2015	Interfacial Tens	sion: Acceptable	e for in-ser	vice oil (25 mN/m n	nin).		
(most recent sample)	Acid Num	ber: Acceptable	e for in-ser	vice oil (0.2 mg KO	H/g max).		
	Color Number and Vis	sual: Diagnostic	c not applic	able. Diagnostic no	t applicable.		
Die	electric Breakdown ASTM D-	-877: Diagnostic	c not applic	able.			
	Power Factor @ 25°C (Rout	tine): Acceptable	e for in-ser	vice oil (0.5% max)			
	Oxidation Inhib			vice oil Type I (0.0% nd 0.3% max).	% min and 0.08% n	nax). Exceeds limit f	or in-service o
Comment:							
Furanic Compound	2-Furaldehyde (µ	g/L):	41	38			
ASTM D-58375 5-Hyd	droxy-methyl-furaldehyde (µ	g/L):	< 10	< 10			
	2-Acetylfuran (µ	g/L):	< 10	< 10			
	5-Methyl-2-furaldehyde (µ	g/L):	38	28			
	2-Furyl alcohol (µ	g/L):	< 10	< 10			
Furanic Compound Diagnost	tics (most recent sample):						
approximately 500 and pa	n degree of mechanical streng aper with less than 250 is in its a transformer failure. The abo	"Old Age." Seve	erely degra	ded insulation with	a DP of 150 or les	s will have very little	mechanical
Estimated Avera	age Degree of Polymerization	n (DP): 828					
Estimated Opera	ating Age of the Equipment:	7.6					
Notations:							
Comment:							
РСВ	Concentration (mg	/kg): 268.13	3 mg/kg	265.02 mg/kg			
mod EPA Method 8082a ^{5, 6}	PCB Type (Aroco	olor): 126	60/54/42	1260/54/42			
IIIOU EFA Methou 0002a	<i>у</i> , ,						

End of Test Report

Authorized By:

ERIC MCANANY CHEMIST

Notations: 1. Analysis is ISO/IEC 17025:2017 accredited, ANAB Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Weidmann Laboratory other than Primary Lab. 6. Weidmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results; accreditation status does not apply to these results. 8. Imported Equipment 10. mg/kg , µg/g, µg/mL, µL/L = ppm, µg/L = ppb, mN/m = dynes/cm, mm²/s = cSt

Accreditation applies to current analysis only. The analyses, opinions or interpretations contained in this report are based upon material and information supplied by the client. WEIDMANN Electrical Technology does not imply that the contents of the sample received by this laboratory are the same as all such material in the environment from which the sample was taken. Our test results relate only to the samples tested. Any interpretations or opinions expressed represent the best judgment of WEIDMANN Electrical Technology. WEIDMANN Electrical Technology assumes no responsibility and makes no warranty or representation, expressed or miled as to the condition, productivity or proper operation of any equipment or other property for which this report may be used or relied upon for any reason whatsoever. This test report shall not be reproduced except in full, without written approval of the laboratory.

ENGINEERING DOCUMENT General Standard Electrical Substation Clearances

INTRODUCTION

An initial step in the engineering and design of any electric station is the selection of suitable electrical clearances. Design clearances and spacing of energized and grounded parts are established for two purposes, to assure the proper operation of the substation and to assure the safety of the public and personnel working in and around the substation bus and equipment.

<u>PURPOSE</u>

The purpose of this standard is to provide the design requirements for electrical clearances and spacing for outdoor substations.

ACCOUNTABILITY

Not Applicable

COORDINATION

Not Applicable

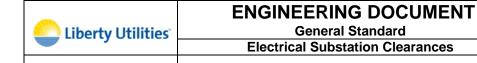
REFERENCES

IEEE Paper T-72-131-6 "Minimum Line-To-Ground Electrical Clearances for EHV Substations Based on Switching Surge Requirements" by IEEE Working Group 59.1, IEEE Transactions on Power Apparatus and Systems, Volume 91, 1972, pages 1924-1930.

IEEE Paper 31-TP-66-16, "Minimum Phase to Phase Electrical Clearances for Substations Based on Switching Surges and Lightning Surges", T. Udo, IEEE Power Transactions on Power Apparatus and Systems, Volume 85, 1966, pages 838-845

IEEE Paper 31 TP 66-106 "Series Gaps in Air Break Switches", P. Mayo, IEEE Transactions on Power Apparatus and Systems, Volume PAS-66, No. 4, April 1967, pages 428-438.

LU-ENG-SUB005 Animal Deterrents in Electric Substations


DEFINITIONS

See Section 3.0

<u>TRAINING</u>

Not Applicable

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.					
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Author: 227 Robert J Johnson			

DOCUMENT CONTENTS

Table of Contents

1.0	OPERATING REQUIREMENTS	3
2.0	CODES & STANDARDS	3
3.0	EXPLANATION OF TERMS	4
4.0	ELECTRICAL CLEARANCES AND SPACING FOR OUTDOOR STATIONS	5
5.0	SAFETY CLEARANCES	6
6.0	ELECTRICAL CLEARANCES AND SPACING FOR INDOOR FACILITIES	7
7.0	LIBERTY PREFERRED CLEARANCE AND SPACING	8
8.0	TABLES AND FIGURES	8
9.0	REVISION HISTORY	19

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.					
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Author: 228 Robert J Johnson			

1.0 OPERATING REQUIREMENTS

- <u>1.1</u> The proper operation of the substation is addressed by establishing clearances and spacing that coordinate with the design insulation level of the substation. Minimum electrical clearances in air-insulated substations have a direct correlation with the insulation levels.
 - 1.1.1 For voltages up to 115kV, clearances are generally selected based on BIL.
 - 1.1.2 At 230 kV, clearances are generally dictated by BIL, but could also be dictated by switching surge.
 - 1.1.3 For EHV (345kV and above), clearances are generally dictated by switching surge withstand requirements. Table 8.3 provides typical insulation levels for substation equipment.
- <u>1.2</u> The potential for hazards and personal injury is greatly increased as the proximity of personnel to electrical equipment decreases. Consequently, safety clearances are established to minimize the possibility of accidental human contact with live parts. Guards shall be provided around all live parts operating above 300V phase-to-phase without adequate insulating covering, unless the location of the live parts gives a sufficient safety clearance zone.
- <u>1.3</u> Working clearances around electrical equipment are designed to provide safe access to personnel working in the substation. The safe distances required for normal operation and maintenance work are specified in:
 - 1.3.1 Table 2A-D Minimum Approach Distances of this standard
 - 1.3.2 Section 5 Substations of Liberty's Employee Safety & Health Handbook.

2.0 CODES & STANDARDS

- <u>2.1</u> This standard is based on the following:
 - 2.1.1 ANSI C2-2007, National Electrical Safety Code (NESC)
 - 2.1.2 ANSI C37.06-2000, "AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis-Preferred Ratings and Related Required Capabilities"
 - 2.1.3 ANSI C37.32-2002, "American National Standard for Switchgear High Voltage Air Switches, Bus Supports, and Switch Accessories - Schedules of Preferred Ratings, Manufacturing Specifications, and Application Guide"
 - 2.1.4 ANSI C84.1-2006, "Electrical Power Systems and Equipment Voltage Ratings (60 Hz)"
 - 2.1.5 IEEE C57.12.00-2006, IEEE Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers,

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.					
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Author: Robert J Joh	229 Inson		

- 2.1.6 IEEE C62.22-1996, "Guide for the Application of Metal-Oxide Surge Arresters for Alternating-Current Systems".
- 2.1.7 IEEE Std. 1313.1-1996, "IEEE Standard for Insulation Coordination Definitions, Principles, and Rules"
- 2.1.8 IEEE Std. 1313.2-1999, "IEEE Guide for the Application of Insulation Coordination"
- 2.1.9 IEEE Std. 1427-2006, "IEEE Guide for Recommended Electrical Clearances and Insulation Levels in Air-Insulated Electrical Power Substations"
- 2.1.10 Liberty Employee Health & Safety Handbook
- 2.1.11 NEMA Standards Publication No. SG-6-2000, "Power Switching Equipment"
- 2.1.12 NESC 2017 "National Electric Safety Code"
- 2.1.13 OSHA Standard 29CFR1910.269, "Working on Exposed Energized Parts"

3.0 EXPLANATION OF TERMS

- <u>3.1</u> Air Switch: A switching device designed to close and open one or more electric circuits by means of guided separable contacts that separate in air.
- <u>3.2</u> BIL: Commonly referred to as "Basic Impulse Level" or "Basic Insulation Level." The BIL value is a reference insulation value expressed in terms of the crest value of a standard lightning impulse.
- <u>3.3</u> BSL: The reference insulation level expressed in terms of the crest value of a standard switching impulse.
- <u>3.4</u> Centerline-to-Centerline Spacing of Buses: A distance that is measured from the centerline of one bus/conductor to the centerline of another bus/conductor
- 3.5 Clearance between Live Parts: A distance that is measured from surface to surface of two electrically connected parts having voltages different from that of the ground.
- <u>3.6</u> Clearances: The clear distance measured between two objects measured surface to surface.
- <u>3.7</u> Double-Break Switch: A switch that opens a conductor of a circuit at two points.
- <u>3.8</u> Equipment Internal & External BIL/BSL: The internal insulation level of equipment such as transformers vs. the external insulation level of the substation
- <u>3.9</u> Horn-Gap Switches: A switch provided with arcing horns.
- <u>3.10</u> Insulation Coordination: The process of bringing the insulation strengths of electrical equipment and buses into the proper relationship with expected overvoltages and with the characteristics of the insulating media and surge protective devices, to obtain an acceptable risk of failure.
- <u>3.11</u> Maintenance Clearances: Clearance values designed to provide adequate distances during the maintenance of electrical equipment

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.					
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Author: Robert J Joh	230 Inson		

- 3.12 Maximum System Voltage: The highest voltage at which a system is designed to operate.
- 3.13 Minimum clearances: The shortest distance measured between any energized parts.
- <u>3.14</u> Nominal System Voltage: The nominal value assigned to a system for the purpose of conveniently designating its voltage class. The actual operating voltage of a system may vary above and below the nominal value.
- 3.15 Phase to Grade: The shortest distance between any energized part and finished grade, that is the surface beneath a person's feet or beneath a vehicle's tires.
- <u>3.16</u> Phase to Ground: The shortest distance between any energized part(s) and the adjacent grounded part(s).
- <u>3.17</u> Phase to Phase: The shortest distance between any energized parts where the parts are different phases, including phases of different voltages.
- <u>3.18</u> Recommended Clearance: The clearance value in accordance with all applicable codes that have been obtained through years of successful experience.
- <u>3.19</u> Safe Working Clearances: Clearance values designed to ensure the safety of personnel working about electrical equipment.
- <u>3.20</u> Side Break Switch: A switch in which the travel of the blade is in a plane parallel to the base of the switch.
- 3.21 Spacing: The clear distance measured between two objects measured center to center.
- <u>3.22</u> Surge Arrester: Electrical device designed to protect electrical systems and equipment from overvoltages and from transient overvoltages that appear on the system.
- <u>3.23</u> Vertical Break Switch: A switch in which the travel of the blade is in a plane perpendicular to the plane of the mounting base. The blade in the closed position is parallel to the mounting base.

4.0 ELECTRICAL CLEARANCES AND SPACING FOR OUTDOOR STATIONS

- 4.1 Table 8.1 provides Liberty's design requirements for electrical clearances and spacing for outdoor substations. These values are based on a combination of code requirements and Liberty's operating experience and preferred practices. It lists the phase-to-ground and phase-to-phase clearance values as well as phase-to-phase spacing. Figure 8.1 provides a visual aid of various electrical clearance values that may be used in a substation. Liberty Preferred Clearances and Spacing are presented in Section 7.0.
- 4.2 When Preferred and Minimum values are listed for the same attribute in Table 8.1, the preferred value should be used for design. The Minimum values listed are based on the minimum requirements of ANSI C37.32. The minimum values are to be used only in evaluating existing stations, or in the design of new stations where space is very limited and the more generous preferred value cannot be accommodated.
- <u>4.3</u> The phase-to-ground and phase-to-phase clearances listed in ANSI C37.32 are generally more conservative than those of IEEE 1427. Historically ANSI C37.32 has been used as the governing code for electrical clearances and is reflected in Liberty current

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.					
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Author: 231 Robert J Johnson			
	Substation Engineering and Design	Robert 3 Johnson			

practices. For that reason the more conservative values of Liberty Preferred Practices, ANSI C37.32 and IEEE 1427 are used in Table 8.1 except as noted.

<u>4.4</u> Liberty tries to design the appearance of its substations to be pleasing to the eye. As such one goal is to keep the station bus spacing as uniform as possible. The phase spacing for a voltage level should be as uniform as possible. The phase spacing for a voltage level should be used through-out the entire station. Based solely on the phase spacing tables in this document you could have three different phase spacings for one voltage level given by dimensions A, B and F in Clearance Figure 8.1. When determining the phase spacing pick the largest dimension necessary for the type of switches to be used and use that dimension for all of the bus spacing at that voltage level.

5.0 SAFETY CLEARANCES

- 5.1 NESC Rules
 - 5.1.1 These clearances are for personnel safety and are based on NESC requirements and Liberty's preferred practices. The following NESC rules are used for the basis of this Section:
 - a. Rule 110 "General Requirements"
 - b. Rule 124 "Guarding Live Parts"
 - c. Rule 232 "Vertical Clearances of Wires, Conductors, Cables, and Equipment Above Ground, Roadway, Rail or Water Surfaces"
 - d. Rule 234 "Clearances of Wires, Conductors, Cables and Equipment from Buildings, Bridges, Rail Cars, Swimming Pools and other Installations"
 - e. Rule 441 "Energized Conductors or Parts"
- 5.2 Design Factors
 - 5.2.1 Factors that are considered in establishing substation safety clearance requirements include the following:
 - a. Clearances from earth, taking into account a number of factors such as voltage class, height of a person, depth of snow where applicable, height of footings, etc.
 - b. Clearances to vehicles, taking into account the height of typical maintenance vehicles, and the height of floats and trucks that are used for the transportation of major equipment.
 - c. Clearances to fences.
- 5.3 Design Safety Clearances
 - 5.3.1 Table 8.1 also provides Liberty design "Safety Clearances" from energized parts to personnel, roadways, control house roofs, railroads, vehicles, and fences within the substation and to buildings on the property line. Figures 8.1, 8.2, 8.3, 8.4 and 8.5 assist in interpreting the values presented in Table 8.1. Personnel clearance values presented in Table 8.1 are also applicable to personnel working

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.					
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Author: 232 Robert J Johnson			

in indoor areas of the substation. Liberty Preferred Clearances and Spacing are presented in Section 7.0.

- 5.3.2 The derivation/source of these clearances is as follows:
 - a. NESC Part 2, Rule 232C1a For the minimum clearance from energized conductor to roadways/other land traverse by vehicles. Clearance values for cables (lines/strain bus) are derived from Rule 232B1 (H) and for Rigid Bus from Rule 232B2 (J).
 - b. NESC Part 1, Rule 110A2 For the minimum safety clearance to station fence (S). This table presents the minimum values required by code.
 - c. NESC Part 1, Rule 124A1 For the minimum horizontal clearance from unguarded live parts (E) and minimum vertical clearance from unguarded live parts to grade (D).
 - d. NESC Part 1 Rule 124C3 For the minimum horizontal clearance from guard to live parts.
 - e. NESC Part 2, Rule 234C1 For the minimum clearance from conductors to the roof of the substation control house (K) or the side wall of buildings(M).
 - f. NESC Part 4, Rule 441A1 For the minimum approach distance to energized conductors. These distances are more conservative than those shown in Table R-6 of OSHA 29CFR1910.269, "Working on Exposed Energized Parts".
 - g. NESC Part 2, Rules 232B1 and 232C1a For the minimum clearance from overhead conductors to railroad tracks within the substation site (L).
- 5.4 Working Clearances Around Equipment
 - 5.4.1 Working clearances around electrical equipment are designed to provide safe access to personnel working in the substation. The safe distances required for normal operation and maintenance work are specified in:
 - a. Table 2A D Minimum Approach Distances of this standard
 - b. Section 5 Substations of Liberty's Employee Health & Safety Handbook.

6.0 ELECTRICAL CLEARANCES AND SPACING FOR INDOOR FACILITIES

- 6.1 Table 8.2 provides electrical clearance for bare conductors for indoor substation facilities. It lists the phase-to-ground and phase-to-phase minimum and recommended clearance values. When both values are shown, the clearance used should be as near the recommended as practical. Figure 8.1 provides a visual aid of various electrical clearance values that may be used in a substation.
- <u>6.2</u> This section present the values based on the codes cited in Table 8.2. Liberty Preferred Clearances and Spacing are presented in Section 7.0.

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Author: 233 Robert J Johnson			

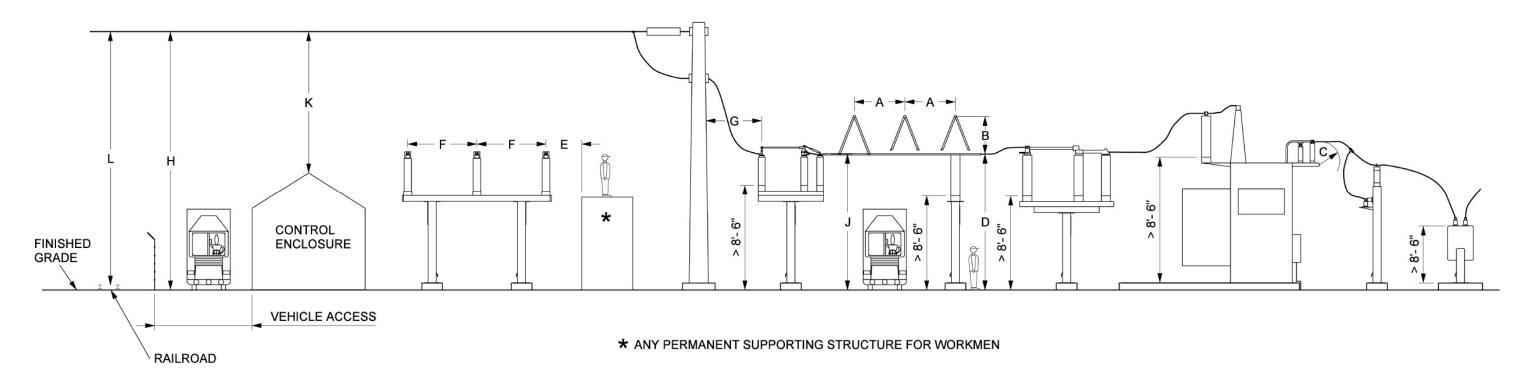
7.0 LIBERTY PREFERRED CLEARANCE AND SPACING

- <u>7.1</u> Sections 4.0, 5.0 and 6.0 present spacing and clearances based primarily on code minimum requirements. Liberty, though years of design and operational experience has established preferred values of design clearances and spacing. These preferred values are discussed below.
 - 7.1.1 Clearances to Fences
 - a. Figure 8.3 provides the Liberty preferred clearances to substation fences and should be used for new designs for conductors leaving the station.
 - b. Figure 8.4 provide the Liberty preferred clearance to substation fences and should be used for new designs for conductors not leaving the station.
 - 7.1.2 Preferred Spacing, Bus Heights and Clearances
 - a. Table 8.1 provides the Liberty preferred spacing, bus height and clearances and should be used for new designs.

8.0 TABLES AND FIGURES

- 8.1 Safety Clearances to Fences, Property Lines and Buildings
 - 8.1.1 The permitted or intended use of the property immediately outside the fence or property line may not be known at the time of original design. Therefore proper safety clearances should be incorporated in the design to allow for the most liberal potential use of adjacent area.
 - 8.1.2 Figure 8.3 illustrates the safety clearance to substation fences for conductors leaving the station.
 - a. Dimension H is the Minimum Vertical Clearance to Unguarded Live Parts for Vehicular Traffic from Table 8.1.
 - b. Dimension D is the Minimum Vertical Clearance to Unguarded Live Parts for Personnel on Foot, from Table 8.1.
 - c. Dimension S is the Minimum Clearance of Live Parts to Substation Fences from Table 8.1
 - 8.1.3 The Safety Clearance boundary is located by constructing an arc with Radius S from a point on the substation fence a height of H-S above grade, such that the arc is tangent to the horizontal line defined by Dimension H and intersects the horizontal line defined by Dimension D. All live parts are to be located beyond this Safety Clearance boundary as shown in Figure 8.3. If the center of the arc is above the horizontal line defined by D, (i.e., H-S > D), then after a 90 degree sweep of the arc a vertical line is drawn tangent to the arc and intersecting the horizontal line defined by D

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.						
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.						
ENG-SUB006 Electrical Substation Clearance Originating Department: Substation Engineering and Design Author: Robert J Johnson						


		Docket No. DE 19-064 Attachment F Page 9 of 19
	ENGINEERING DOCUMENT	Doc. # ENG-SUB006
Liberty Utilities	General Standard	Page 9 of 19
,	Electrical Substation Clearances	Version 1.0 – 08/01/20

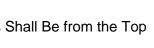
- 8.1.4 Figure 8.4 illustrates the safety clearance to substation fences for conductors not leaving the station. The minimum safety clearance zone for substation fences is located by constructing an arc with radius S from a point on the fence 5'-0" above grade, such that the arc intersects the horizontal line defined by Dimension D.
- 8.1.5 Fences or walls when installed as barriers for unauthorized personnel shall be located such that exposed live parts are outside the safety zone. However, when a fence, partition, or wall with no openings through which sticks or other objects can be inserted is utilized, live parts may be installed within the safety clearance zone, if they are below the horizontal line projected from the top of the fence or wall.
- 8.1.6 Figure 8.5 illustrates the minimum clearance per NESC 234c1 of conductor in a substation to a building on the property line or that may be built on the property line.

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED.						
FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRITATE DEPARTMENT WEBSITE.						
ENG-SUB006 Electrical Substation Clearance Originating Department: Author: Substation Engineering and Design Robert J Jo						

	ENGINEERING DOCUMENT	Doc.# ENG-SUB006
Liberty Utilities	General Standard	Page 10 of 19
	Electrical Substation Clearances	Version 1.0 – 08/01/20

Figure 8.1 - Application Guideline

This Applications Diagram's Sole Purpose is to illustrate the Application of the Various Electrical Clearances for Outdoor Structures.


It Does Not Necessarily Represent Standard Structures or Electrical Arrangements

Whenever a Foundation is Large enough for a Workman to Stand on Without Conscious Effort, the Minimum and Recommended Clearances Shall Be from the Top of the Foundation and Not Finished Grade.

- A Recommended Centerline to Centerline Spacing of Bus
- B Clearance between Live Parts.
- C Clearance from Live Parts to Ground
- D Minimum Vertical Clearance to Unguarded Live Parts Accessible Only to Personnel on Foot
- E Minimum Horizontal Clearance to Unguarded Live Parts from Any Permanent Supporting Structure for Workmen
- F Phase-to-Phase Spacing for Switches-
- G Phase-to-Ground Spacing for Horn Gap Switches
- H Minimum Vertical Clearance to Unguarded Wire and Conductor Live Parts Accessible to Vehicular Traffic.
- J Minimum Vertical Clearance to Unguarded Rigid Bus Live Parts for Vehicular Traffic
- K Minimum Vertical Clearance of Overhead Conductors to Control Enclosure Roofs
- L Minimum Vertical Clearance of Overhead Conductors to Railroad Tracks

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance Originating Department: Substation Engineering and Design Sponsor: Robert J Johnson					

Docket No. DE 19-064 Attachment F Page 10 of 19

	ENGINEERING DOCUMENT	Doc.# ENG-SUB006
Liberty Utilities	General Standard	Page 11 of 19
· ·	Electrical Substation Clearances	Version 1.0 – 08/01/20

Table 8.1 - Outdoor Phase Spacing Bus Heights and Clearances

Preferred Nominal System	Voltage (kV)	2.4 4.26 4.8 7.2	12 13.2 13.8	23	34.5	46	69	115	138		230		34	5
BIL (kV)		95	110	150	200	250	350	550	650	750	900	1050	1175	1300
Maximum Voltage Rating (kV)		8.25	15.5	25.8	38.0	48.3	72.5	121	145		242	I	37	2
Center-to-Center	Bus, Vertical Break Switches, Double Side Break Switches	2' - 0"		3' - 0"		4' - 0"	5' - 0"	8' -	· 0"	9' - 0"	11' - 0"	13' - 4"	16' -	0"
Spacing (A)	Side Break Switches	2' - 6"	2' - 6"	3' - 0"	4' - 0"	4' - 0"	6' - 0"	9' - 0"	11' - 0"	13' - 0"	16' - 0"	18' - 0"	NY	E
	Minimum per ANSI C37.32	0' - 7"	1' - 0"	1' - 3"	1' - 6"	1' - 9"	2' - 7'	4' - 5"	5' - 3"	6' - 0"	7' - 5"	8' - 9"	8' - 0	" (2)
Clearance Between Live Parts (B)	Preferred	1' - 0"	1' - 6'	2' - 0"	2' - 6"	3' - 0"	4' - 0"	6' - 0"	7' - 0"	8' - 0"	10' - 0"	11' - 0"	13' -	6"
	Minimum for Animal Deterrent ⁽⁴⁾		1	1	Ş	See LU-ENC	G-SUB005 /	Animal Dete	rrents in El	ectric Subst	tations	I	L	
	Minimum per ANSI C37.32	0' - 6"	0' - 8" ⁽¹⁾	0' - 11" ⁽¹⁾	1' - 3" ⁽¹⁾	1' - 7" ⁽¹⁾	2' - 1'	3' - 6"	4' - 2"	4' - 10"	5' - 11"	6' - 11"	7' - 10"	8' - 8"
Clearance From Live Parts to Ground (C)	Preferred	0' - 8"	0' - 10"	1' - 0"	1' - 3"	1' - 7"	2' - 5"	3' - 11"	4' - 5"	5' - 2"	6' - 4"	7' - 7'	8' - 2"	9' - 4"
	Minimum for Animal Deterrent ⁽⁴⁾				Ş	See LU-ENC	G-SUB005 A	Animal Dete	rrents in El	ectric Subst	tations	1		
Clearance from	(D) Vertical ⁽³⁾	9'	- 0"		10' - 0"		11' - 0"	12' - 0"	13' - 0"	14' - 0"	15' - 0"	16' - 0"	17' -	9"
Unguarded Live Parts	(E) Horizontal	3' - 4"	3' - 6"	3' - 9"	4' - 0"	4' - 4"	4' - 11"	6' - 1"	6' - 8"	7' - 4"	9' - 4"	10' - 0"	12' -	3"
Spacing of Horn-Gap	(F) Phase-to-Phase	3'	- 0"	4' - 0"	5' - 0"	6' - 0"	7' - 0"	10' - 0"	12' - 0"	14' - 0"	16' - 0"	18' - 0"	19' - 0"	20' - 0"
Switches without Arc Extinguishing Devices ⁽⁵⁾	(G) Phase-to-Ground	2'	- 0"	2' - 6"	3' - 0"	3' - 9"	4' - 3"	6' - 0"	7' - 6"	9' - 0"	10' - 0"	11' - 0"	12' -	0"

(Continued)

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: Robert J Johnson			

	ENGINEERING DOCUMENT	Doc.# ENG-SUB006
Liberty Utilities	General Standard	Page 12 of 19
· ·	Electrical Substation Clearances	Version 1.0 – 08/01/20

Preferred Nominal System V	oltage (kV)	2.4 4.26 4.8 7.2	12 13.2 13.8	23	34.5	46	69	115	138	230	345
Vertical Clearances from	(H) Line/Strain Bus	22'	- 0"		25' - 0"			30' - 0"		34' - 0"	37' - 0"
Conductors to Roads/Land Traversed by Vehicles	(J) Rigid Bus	20' - 0"			20' - 6" 21' - 6"		- 6"	23' - 6"	26' - 0"		
Vertical Clearances Overhea House Roof (K)	d Conductors to Control		12'	- 6"		12' - 9"	13' - 2"	14' - 2"	14" - 7"	16' - 6"	19' - 0"
Vertical Clearances Overhea Tracks (L)	d Conductors to Railroad		26'	- 6"		26' - 9"	27' - 2"	28' - 1"	28' - 7"	30' - 6"	33' - 0"
Horizontal Clearance of Con	ductor to Buildings (M)		7' ·	- 6"		7' - 8"	8' - 2"	9' - 0"	9' - 6"	11' - 3"	13' - 6"
Clearance to Fence ⁽⁶⁾ (S)			11'	- 0"		12'	- 0"	14'	- 0"	16' - 5"	18' - 4"
Approach Distance to Energ (Phase-to-Ground) - Qualifie		2'	- 2"	3' - 0"	3' - 0"	4'	- 0"	5' - 0"	6' - 0"	7' - 0"	9' - 0"
Approach Distance to Energ (Phase-to-Ground) - Non-Qu				10' - 0"			10' - 8"	12' - 4"	13' - 0"	16' - 0"	20' - 0"

Notes for Table 8.1

Letter in () refers to attributes in Figures 8.1, 8.2, 8.3, 8.4 and 8.5

Electrical clearances values based on ANSI C37.32 and EEEE 1427 and Liberty Preferred Practices

Safety clearances based on NESC 2017 and Liberty Preferred Practices

NYE indicates values not yet established in either C37.32 or IEEE 1427

(1) - Entries from IEEE 1427 that exceed the requirements of ANCI C37.32

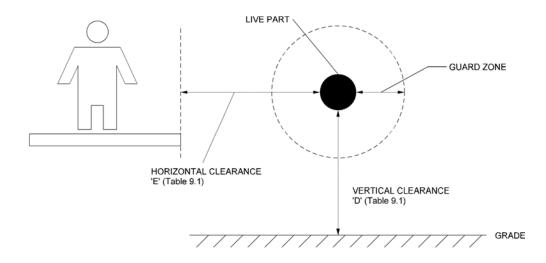
(2) - Entries based on IEEE 1427 for 2.5 per unit switching surge factor (BSL 760 kV) to qualify Liberty practices that are less than ANSIC37.32

(3) - A minimum of 8' - 6" shall be maintained to the bottom of porcelain or other parts of indeterminate potential

(4) - At voltages of 34.5 kV and less, if the phase to phase spacing and/or clearance to ground is less than that required for animal deterrents then animal guards should be installed on the bus.

(5) - This spacing may be reduced as long as the minimum clearance between live parts is maintained.

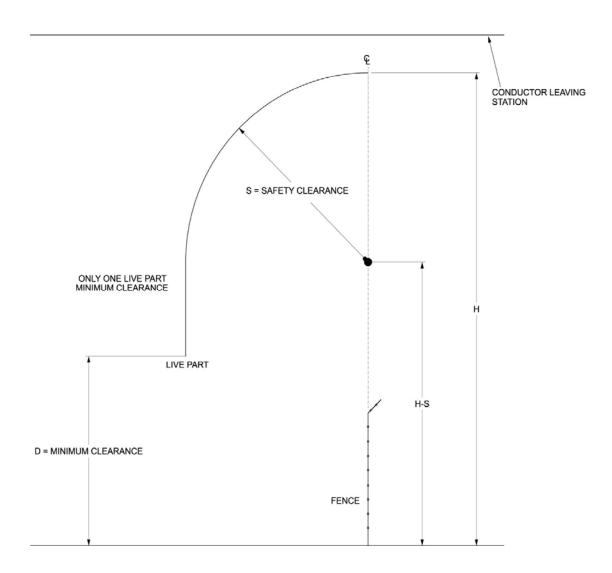
(6) - The values of S in the table meet or exceed the Minimum Clearances to Fences in accordance with NESC Table 110-1


PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.					
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: Robert J Johnson			

238

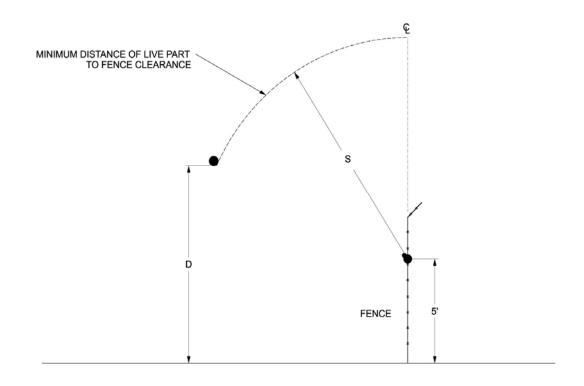
		Docket No. DE 19-064 Attachment F Page 13 of 19
	ENGINEERING DOCUMENT	Doc.# ENG-SUB006
Liberty Utilities	General Standard	Page 13 of 19
	Electrical Substation Clearances	Version 1.0 – 08/01/20

Figure 8.2 - Clearance From Live Parts


Figure 8.2 should be used in conjunction with Table 8.1 to obtain the indicated horizontal and vertical clearances.

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.			
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: 239 Robert J Johnson	

		Docket No. DE 19-064 Attachment F Page 14 of 19
	ENGINEERING DOCUMENT	Doc.# ENG-SUB006
Liberty Utilities	General Standard	Page 14 of 19
	Electrical Substation Clearances	Version 1.0 – 08/01/20


Figure 8.3 - Safety Clearance to Substation Fences for Conductors Leaving the Station

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.			
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: 240 Robert J Johnson	

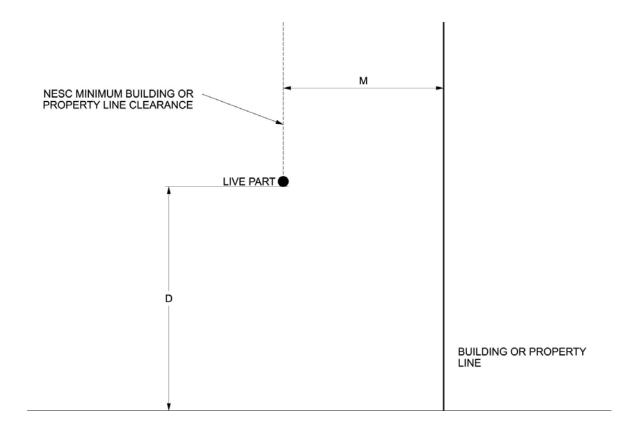

		Docket No. DE 19-064 Attachment F Page 15 of 19
	ENGINEERING DOCUMENT	Doc.# ENG-SUB006
Liberty Utilities	General Standard	Page 15 of 19
	Electrical Substation Clearances	Version 1.0 – 08/01/20

Figure 8.4 - Safety Clearance to Substation Fences for Conductors Not Leaving the Station

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.			
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: 241 Robert J Johnson	

Figure 8.5 - Safety Clearance to Building on Property Line for Conductors Not Leaving Station

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.			
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: 242 Robert J Johnson	

Table 8.2 - Indoor Phase Spacing and Clearances for Bare Conductors

kV Class	7.5	15	23	34.5	
BIL (kV Crest) ¹		60	110	125	150
Rated Maximum Voltage		2400 V 4160 V 4800 V	8320 V 12 kV 13.2 kV 13.8 kV	23 kV	34.5 kV 38 kV
Spacing of Buses	Rec. ⁵	12"	18"	20"	24"
Spacing of Buses	Min. ⁵	9"	12"	14"	18"
Clearance Between	Rec. ⁵	8"	14"	16"	20"
Live Parts	Min. ²	4 1⁄2"	9"	13"	18"
Clearance From Live	Rec. ⁵	6"	10"	18"	24"
Parts to Ground	Min. ³	4 ½"	8"	11"	15"
Minimum Clearance to	Vert. ⁴	8' - 10"	9' - 0"	9' - 1"	9' - 3"
Unguarded Live Parts	Horz. ⁴	3' - 4"	3' - 6"	3' - 7"	3' - 9"

Notes for Table 8.1

- 1. Based on ANSI C37.32 Table 12
- 2. Based on ANSI C37.32 Table 14
- 3. Based on IEEE 1427 Table 3
- 4. Based on NESC Table 124-1
- 5. Based on Liberty Preferred Practices
- 6. Any reduction in clearances or spacing of conductors allowed by covering them is determined by a number of factors (material used, conductor shape, installation geometry, thickness of the covering, etc.) and can only be established by test for specific cases. Covered conductors shall be treated as bare conductors for clearance and spacing purposes unless otherwise established by vendor's guideline or testing specific to the covering used.

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.			
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: 243 Robert J Johnson	

Table 8.3 - Electrical Power Equipment BIL Ratings (kV)

Max. System				witches C37.32)	Transfo (IEEE C57		
Voltage (kV)	Indoor Oil	Indoor Oil-less	Outdoor Table 4	Indoor Table 12	Outdoor Table 6	Power Table 3	Distribution Table 3
4.76	60	60		60		60/75	60
8.25	75	95		75	95	75/95	75
15	95	95	110	95/110	110	95/110	95
25.8	125		150	125	150	150	125
38	150	150	200	150	200	200	150
48.3			250		250	200/250	200/250
72.5			350		350	250/350	250/350
121			550		550	350/450/550	
145			650		650	450/550/650	
242			900		900/1050	650/750/825/900	
372			1300		1050/1300	900/1050/1175	

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.			
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: 244 Robert J Johnson	

9.0 REVISION HISTORY

Date	Rev #	Description	Lead/Author
08/01/2020	1.0	Initial Version of Liberty Utilities document. Updated from National Grid document to be NH Specific.	Robert J Johnson

PRINTED COPIES ARE NOT DOCUMENT CONTROLLED. FOR THE LATEST AUTHORIZED VERSION PLEASE REFER TO THE APPROPRIATE DEPARTMENT WEBSITE.			
ENG-SUB006 Electrical Substation Clearance	Originating Department: Substation Engineering and Design	Sponsor: 245 Robert J Johnson	