KeySpan Energy Delivery
52 Second Avenue Waltham, MA 02451 Tel 781 466-5136 Fax 781 290-4965
E-mail toneill@keyspanenergy.com

Thomas P. O'Neill Senior Counsel

Via Federal Express

August 21, 2006

Debra A. Howland, Executive Director and Secretary
New Hampshire Public Utilities Commission
21 South Fruit Street
Concord, NH 03301
Re: EnergyNorth Natural Gas, Inc. d/b/a KeySpan Energy Delivery New England Integrated Resource Plan DG 06-105

Dear Ms. Howland:
In accordance with the Company's previous conversation with attorney Damon enclosed please find an original and seven copies of a revised EnergyNorth Integrated Resource Plan for the period November 1, 2006 through October 31, 2011. This filing is intended to replace the filing made by the Company on August 7, 2006. An electronic copy is also being sent.

If you should have any questions, please do not hesitate to contact me at the above number.

TPO:ca
Enclosures
Cc: Office of Consumer Advocate

TABLE OF CONTENTS

Executive Summary

I. Introduction
A. Company Background
B. Summary of the IRP Process
C. Organization of the Filing

1I. Overview of the KeySpan Process for Identifying and Meeting Customer Requirements
III. Forecast Methodology
A. Introduction
B. Forecast of Incremental Sendout
C. Regression Analysis
D. Normalized Forecasts of Customer Requirements by Year
E. Planning Standards
F. Forecasts of Design Year Customer Requirements by Year
IV. Design of the Resource Portfolio
A. Portfolio Design
B. Analytical Process and Assumptions
C. Expected Available Resources
D. Adequacy of the Resource Portfolio
E. Cold Snap Analysis
F. Contingency Planning
V. Management of the Resource Portfolio
A. Introduction
B. Portfolio Management
C. Benefits of a Coordinated KeySpan New England Portfolio
D. Storage Management
E. Managing Volatility

VI Summary of Compliance with the Terms of the August 19, 2005 Settlement

Appendices
A. Econometric Model-Input/Output Data
B. Portfolio Management Plan of EnergyNorth Natural Gas, Inc. d/b/a KeySpan Energy Delivery New England dated December 8, 2005

EXECUTIVE SUMMARY

This Integrated Resource Plan ("IRP" or "Plan") for the period November 1, 2006 through October 31, 2011 is filed with the New Hampshire Public Utilities Commission ("Commission") by EnergyNorth Natural Gas, Inc. d/b/a KeySpan Energy Delivery New England ("EnergyNorth" or the "Company") in compliance with the Commission's Order No. 24,531 dated October 21, 2005 in Docket DG 04-133/DG 04-175 approving a settlement among EnergyNorth, the Office of the Consumer Advocate and the Commission Staff.

This IRP demonstrates that the Company's planning process ensures that it maintains a reliable resource portfolio and energy supply to meet the forecasted needs of its customers at the lowest possible cost. The Plan includes: (i) a step-by-step description of the methodology the Company uses to forecast demand on its system, (ii) a detailed description of the analysis the Company employs to determine its normal and design planning standards, (iii) a detailed description of how the Company develops its resource portfolio to meet customer requirements under design conditions, (iv) a complete inventory of the expected available resources in the Company's portfolio and a demonstration of the adequacy of the portfolio to meet customer demands under a range of weather and economic conditions, and (v) a description of the Company's portfolio management activities that minimize the cost of maintaining an adequate portfolio.

The Company's planning process begins with its methodology for forecasting demand using an econometric demand model to determine annual
incremental growth for the traditional residential, and commercial industrial markets, and specific market analysis for non-traditional markets, including natural gas vehicles and large scale cogeneration projects. The econometric model uses the SAS statistical software package to perform data analysis that relates sales by class to factors such as population, labor force, gross state product and economic forecasts to develop annual incremental sales projections. The Company then deducts any savings expected to be achieved through the implementation of its energy efficiency programs approved by the Commission in Order No. 24,636 dated June 8, 2006 in Docket DG 06-032. The results of the incremental demand forecasting methodology indicate that, over the five year forecast period, sales in the residential market are projected to grow by an average of 167,317 MMBtu per year and sales in the commercial/industrial market are projected to grow by an average of 264,356 MMBtu per year. The Company projects no incremental growth opportunities in non-traditional markets over the forecast period. The savings resulting from the energy efficiency program are projected to reduce growth by $77,573 \mathrm{MMBtu}$ per year over the forecast period for a total net sales gain of 354,100 MMBtu per year. These incremental growth projections are added to the base line, or "springboard," normalized sendout figures from the May 2005 to April 2006 split year to generate the forecasted total demand requirements. The normalized sendout springboard figures are the result of a detailed regression analysis of daily sendout versus daily effective degree days ("EDD") that establishes a strong statistical relationship between weather and load on the Company's system. The
end result of the demand forecasting process projects sendout growth over the forecast period to average 361,200 MMBtu, or 2.6%, per year under normal weather conditions.

To ensure that the Company maintains adequate supplies in its portfolio to meet customer demand, the planning process continues with a detailed costbenefit analysis that defines the design year and design day planning standards. This cost-benefit analysis weighs the cost of not having sufficient resources against the cost of maintaining a level of reliability. The cost of not having sufficient resources is measured as the cost of customer outages including relight costs, damage repair and lost economic output. The cost of maintaining reliability is measured as the cost of procuring an increment of supply to prevent the outage. The results of the analysis help the Company define a design year at 7,680 EDD with a probability of occurrence of 1 in 47.32 years and a design day at 80 EDD with a probability of occurrence of 1 in 42.49 years. Combining the results of the design planning standards definition and the load forecasting process, the Company is projecting design year sendout to increase over the forecast period by an average of $382,100 \mathrm{MMBtu}$, or 2.5%, per year, and design day sendout to increase by an average of 3,100 MMBtu, or 2.2%, per year. After the forecast of customer requirements are determined, the Company's planning process continues with the design of a resource portfolio to meet those requirements in the most reliable and least cost manner possible. To do this the Company uses the SENDOUT ${ }^{\circledR}$ Model (a proprietary linear programming model developed by New Energy Associates) to determine the adequacy of the existing
portfolio in meeting the forecasted requirements and to identify any shortfalls during the forecast period. SENDOUT ${ }^{\circledR}$ allows the Company to determine the least-cost, economic dispatch of its existing resources subject to contractual and operating constraints, and identifies the need for, and type of additional resources during the forecast period, if any. The resources available to the Company include domestic long-haul and short-haul transportation contracts, underground storage contracts, Canadian and domestic gas supply contracts, and supplemental resources. The results of this step of the process show that the existing resource portfolio is adequate to meet base case customer requirements on a design day through the 2008/09 heating season, after which it identifies the need for an additional 5,310 MMBtu per day increasing to $19,660 \mathrm{MMBtu}$ per day by the 2010/11 heating season

The next step in the planning process is to test the adequacy of the portfolio design by evaluating how it would perform under high and low alternative demand scenarios, and a cold snap weather scenario. Under the high demand scenario, the Company assumes that the annual sendout requirements under design conditions increase by 532,225 MMBtu per year on average. The Company's resource plan shows that the portfolio can meet this increased demand under design conditions with 730 MMBtus per day in 2007/08 and, 40,000 MMBtus per day in 2009/10 of incremental capacity or citygate delivered supply. In the low demand case, the Company assumes that annual sendout requirements under design conditions increase by 237,825 MMBtu per year on average. The resource plan shows that the portfolio can meet this demand with
no additional incremental capacity or citygate delivered supply through the forecast period. For the cold snap weather scenario, the Company assumes that the coidest seven-day period experienced in the last twenty-three years will occur in January during an otherwise normal winter. The Company's resource plan shows that it has adequate resources available to meet cold snap sendout requirements.

Given that the Company's resource planning process results in a resource portfolio that is adequate to meet the projected requirements of its customers, the final step in the process involves the Company's portfolio management activities that minimize the cost of maintaining an adequate portfolio. These activities are described in detail in Appendix B which is the Company's Portfolio Management Plan that was filed with the Commission on December 8, 2005 in accordance with the Settlement.

In conclusion, EnergyNorth's Integrated Resource Plan demonstrates that the Company's planning process ensures that it maintains a reliable resource portfolio and energy supply to meet the forecasted needs of its customers at the lowest possible cost.

I. INTRODUCTION

This is the Integrated Resource Plan (the "IRP" or "Plan") for EnergyNorth Natural Gas, Inc. d/b/a KeySpan Energy Delivery New England ("EnergyNorth" or the "Company") ${ }^{1}$ for the five-year forecasting period 2006/07 through 2010/11 ${ }^{2}$. This filing is made in accordance with the requirement of New Hampshire Public Utilities Commission (the "Commission") Order No. 24,531, dated October 21, 2005 in Docket DG 04-133/DG 04-175, approving a settlement agreement (the "Settlement") among EnergyNorth, the Office of the Consumer Advocate, and the Commission Staff ("Staff") dated August 17, 2005. The persons to whom communications should be addressed concerning this IRP are:

Thomas P. O'Neill
Senior Counsel
KeySpan Energy Delivery New England
52 Second Avenue
Waltham, Massachusetts 02451
and
Steven V. Camerino, Esq.
McLane, Graf, Raulerson \& Middleton
15 North Main Street
Concord, New Hampshire 03301

[^0]
A. Company Background

EnergyNorth is a local distribution company that provides natural gas sales and transportation service to nearly 84,000 residential and commercial customers in thirty cities and towns in the state of New Hampshire. Since 2000, EnergyNorth is a wholly owned subsidiary of KeySpan New England, LLC which is itself a subsidiary of KeySpan Corporation. The Company's core obligation is to provide safe, reliable and least-cost gas service to its customers.

B. Summary of the IRP Process

The purpose of this IRP is to document the process undertaken by the Company to forecast customer sendout requirements and manage its gas resource portfolio to meet that obligation.

The IRP process begins with the development of a long-range forecast of customer demand. Next, the Company matches its available resources against expected demand to determine if incremental resources are required over the forecast period. If so required, the Company would identify the resources available to meet the incremental demand requirements and procure a least-cost asset or mix of assets available. In determining the least cost available assets, the Company analyzes both price and non-price factors. Examples of non-price factors include diversity of supply source, flexibility and reliability. Next, the Company looks at its currently available assets and determines if there are any "decision points" with respect to any of its contracts such as expiration dates or options to increase or decrease voiumes. If so, the Company determines
whether to renew those supplies or replace them with an available alternative. Finally, the Company analyzes its portfolio of expected resources against a range of weather scenarios to determine if those resources are sufficient to reliably meet sendout requirements.

C. Organization of the Filing

This document is organized into the following principal sections:

- Section II provides an overview of the KeySpan process for identifying and meeting customer requirements;
- Section III reviews the Company's demand forecasting methodology and discusses the development of the forecast of customer sendout requirements;
- Section IV discusses the design of the resource portfolio, the expected available resources, and the adequacy of the portfolio in terms of meeting forecasted requirements; and,
- Section V discusses the Company's management of its resource portfolio.
- Section VI summarizes the Company's compliance with the terms of the Settlement.

II. OVERVIEW OF THE KEYSPAN PROCESS FOR IDENTIFYING AND MEETING CUSTOMER REQUIREMENTS

The principal objective of KeySpan's gas management process is the creation and utilization of a portfolio of gas supply, interstate pipeline transportation, underground storage and supplemental resources to meet daily and seasonal firm demand requirements in the most cost-effective manner while maintaining reliability. KeySpan's process of planning for and meeting customer load requirements on a daily basis involves the coordination of a number of activities including demand forecasting, long-term resource planning, gas supply management and gas distribution. The majority of these activities are centralized within the Regulatory Strategy and Relations Department, which includes the Company's Forecasting and Gas Supply Planning and Customer Choice groups. Regulatory Strategy and Relations coordinates closely with the Gas Control Department, which is responsible for gas deliveries across the KeySpan distribution system in New England. Both of these departments operate from the Company's Waltham, Massachusetts facility.

Among the responsibilities of Regulatory Strategy and Relations are to project the resource requirements of the KeySpan system and to assemble a least-cost portfolio of reliable resources to meet those requirements. The projection of resource requirements requires two steps: (1) the preparation of forecasts of long-term trends in customer requirements under normal weather conditions; and, (2) the preparation of forecasts of customer requirements under defined (design day and design year) weather conditions. Assembling the least-
cost portfolio is also a two-step process involving: (1) the procurement of a sufficient and appropriate portfolio of resources to meet the design sendout requirements resulting from the demand forecasting process; and, (2) the economic dispatch of those volumes given available resources. The Company's resource portfolio provides a range of flexibility in making these determinations in the course of the day-to-day management of the portfolio.

KeySpan's forecasting and gas supply planning activities are complemented by a centralized dispatch and control center. The daily process of obtaining sufficient resources to meet predicted customer needs requires a high level of coordination between Regulatory Strategy and Relations and Gas Control. Each day, Gas Control provides Energy Supply with projected sendout requirements that are developed based on the results of the demand forecasting process. Regulatory Strategy and Relations determines the availability, reliability and pricing information necessary to satisfy the predicted customer loads taking into account both currently available projections of weather and prices as well as the possibility of design-forward conditions for the remainder of the heating season (design-forward planning). Regulatory strategy and Relations and Gas Control then establish a daily "Game Plan" that matches available resources with sendout requirements for the KeySpan system. The Game Plan is designed to balance the demand requirements of the system for the current gas day with scheduled supply volumes and also projects a three-day supply/demand balance.

EnergyNorth customers receive significant benefits as a result of the coordinated and centralized gas management process because resource planning and purchasing decisions are made from an overall system perspective to meet customer requirements. Given the diversity and flexibility of the resource portfolio, this decision-making framework allows EnergyNorth's resources to be utilized on the basis of efficiency rather than mere availability.

III. FORECAST METHODOLOGY

A. Introduction

EnergyNorth developed its five-year forecast of customer requirements under
design weather planning conditions using the following process:

1. Forecast Incremental Sendout

Incremental sendout is the additional sendout that EnergyNorth forecasts to occur over the five-year forecast period above the level established for an identified actual reference year, which was 2005/06 for purposes of this plan. ${ }^{1}$ The Company used econometric models to develop a forecast of incremental sendout for traditional markets (i.e., residential, and commercial and industrial customers). Incremental sendout forecasts of non-traditional markets, such as natural-gas vehicles ("NGVs") and largescale power generation, and demand-side management savings ("DSM") were developed outside of the econometric models because the sendout associated with these markets is not included in the historical data used to develop the econometric equations. Forecasts of incremental sendout for traditional and non-traditional markets were summed and reductions from DSM were subtracted to determine the total incremental sendout over the forecast period.

2. Develop Reference Year Sendout Using Regression Equations

The Company then developed the reference year sendout using regression equations. The level of EnergyNorth's sendout in the 2005/06 reference year served as the "springboard" to which incremental sendout was added. The actual sendout data used for the springboard are a function of the weather conditions experienced in the reference year. Therefore, the Company uses regression equations to normalize the sendout in the reference year based on normalized weather data.

3. Normalize Forecast of Customer Requirements

The Company summed the incremental sendout requirements with the weather-normalized springboard sendout requirements to determine EnergyNorth's total normalized forecast of customer requirements over the five-year forecast period.
4. Determine Design Weather Planning Standards

EnergyNorth performed a cost-benefit analysis to determine the appropriate design day and design year planning standards for the development of a least-cost reliable supply portfolio over the forecast period. In accordance with the Settlement Agreement in DG 04-133/DG 04-175, the probability distribution of the effective degree days used in this analysis was determined using Monte Carlo techniques.
5. Determine Customer Requirements Under Design Weather Conditions

Using the applicable design day and design year weather planning standards, EnergyNorth determined the design year sendout requirements and the design day (peak day) sendout requirements. These design sendout requirements established the Company's resource requirements over the forecast period.

Based on the foregoing process, EnergyNorth projects incremental throughput of $1,444,800$ MMBtu over the forecast period assuming normal weather (see Chart III-A-1). Overall, this growth in firm sales represents a 10.5 percent total increase in sendout requirements over the forecast period, or 2.6 percent per year on average. The development of EnergyNorth's five-year forecast of customer sendout requirements, based on the steps set forth above is described in the following sections

B. Forecast of Incremental Sendout

1. Introduction

The first step in EnergyNorth's forecast process is to prepare a five-year forecast of annual incremental sendout. Annual incremental sendout is the net increase in load that the Company expects to experience over the forecast period. This annual projection of incremental sendout is then added to the reference or "springboard" year sendout, which is derived from EnergyNorth's regression analysis of the latest split-year
daily sendout and weather data, as described in Section III.C., to determine total firm sendout requirements.

The process used to forecast incremental sendout over the forecast period consists of five components. First, EnergyNorth develops a demand forecast of loads associated with traditional residential and commercial/industrial markets. To accomplish this, EnergyNorth developed econometric models, which are discussed in Section III.B.2(a). Throughput in the residential sector is discussed in Sections III.B. 2 (b)(i-iii), below, and the commercial/industrial sector is discussed in Sections III.B.2. (b)(iv-vi), below.

Second, EnergyNorth develops a forecast for non-traditional markets that includes NGVs and large-scale power generation. While non-traditional markets are part of EnergyNorth's forecasting process, the Company is forecasting no demand in the NGV and large-scale cogeneration markets (Sections III.B.3.(a) and III.B.3.(b), respectively) based on the current and anticipated lack of activity in those markets. EnergyNorth's natural gas demand forecast for traditional customers, together with its forecasts of non-traditional market demands, results in a total forecast of incremental customer demand over the 2006/07 through 2010/11 forecast period.

Third, EnergyNorth accounts for the load reductions forecasted to result from the implementation of DSM, also known as gas energy efficiency programs, because these reductions are exogenous to the demand forecast generated by the econometric model. These load reductions are based on the estimated reductions prepared in conjunction with EnergyNorth's approved market transformation program (discussed in Section III.B.4, below).

Fourth, EnergyNorth monitors migration of sales customers to transportation service to determine if adjustments to its forecast are warranted (discussed in Section III.B.5, below).

Finally, EnergyNorth develops two alternatives to the base case demand forecast, that represent high and low sendout cases (discussed in Section III.B.6, below). The development of these alternative forecasts enables the Company to evaluate its ability to meet customer requirements with portfolio resources under a range of weather and economic conditions.

2. Demand Forecast for Traditional Markets

As mentioned above, the first step of the forecasting process is to prepare a fiveyear forecast of annual incremental sendout. To prepare this forecast, the Company first develops a demand forecast of loads associated with traditional residential and commercial/industrial markets using econometric models. ${ }^{2}$ The Company began by reviewing the models specified in its 1998 Integrated Resource Plan filed with the Commission on November 30, 1998 in DR-98-134, and then updated those models by re-estimating the parameters of the models using updated historical data.

(a) The Econometric Models

The statistical models used by the Company relate sales by class to factors such as population, labor force, gas price and gross state product. Annual sales data were expanded to cover the twenty-two year period of January 1984 through December

[^1]2005. This information was used in conjunction with forecasts of economic factors provided by Global Insight, Inc. to develop the sales forecast.

The Company used the SAS statistical software package to perform the statistical data analysis that determined the relationships between the dependent variables and the explanatory variables in each of the equations used in the econometric models.
(b) The Forecast

The Company segmented its sales forecast by sector producing one forecast for residential sales and another for commercial and industrial sales.

For the residential sector, the Company tested two modeling structures. The first structure begins with forecasts of both number of residential customers and the use per residential customer. The number of customers is based on growth rates of generally available variables such as population, employment, while use per customer captures price effects, appliance saturation, and efficiency improvements. Multiplying the results of these two forecasts creates the forecast of residential sales. This structure assumes that it is easier to forecast each component separately. The second structure produces a forecast of residential sales directly, by relating total residential sales to independent variable such as gross state product and gas price. However, if one forecasts sales directly, it is possible that the effects of variables such as degree days, population and employment will overwhelm the effect of variables such as price. Because it is not clear which structure will produce the best forecast, the Company combined the results of the two models to minimize the errors that might be inherent in either one of them

For the residential sector, the Company developed a broad range of explanatory variables from sources such as the US Bureau of the Census, the US Bureau of Labor Statistics, the US Bureau of Economic Analysis, the Energy Information Administration of the US Department of Energy and the Company's own database. In nearly all cases, the Company collected statewide New Hampshire data because data specific to EnergyNorth's service territory were limited or non-existent. These variables were:

- State population
- State personal income
- State per capita income
- State wage and salary disbursement
- Statewide employment
- Statewide housing units and statewide households
- Statewide residential fuel oil sales and unit cost
- Statewide residential natural gas sales and unit cost
- Manchester, NH normal and actual degree days
- EnergyNorth therm sales and average rates to residential customers
- New Hampshire City Gate gas price

Table III-I gives additional details on these variables. Similar variables were identified for the commercial and industrial (C\&I) sector:

- All of the above variables except those relating specifically to the residential sector
- EnergyNorth average rates for commercial and industrial customers
- EnergyNorth therm sales and customer totals for commercial and industrial customers
- Other EIA energy consumption and unit cost data for commercial and industrial sector

Table III-1

Variables Analyzed in Forecasting Practices

Index	Variable Name	Unit	Description	Source	Period Covered
1	CUSN	Customers	ENGI Number of Non-Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
2	CUSH	Customers	ENG\| Number of Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
3	CUSR	Customers	ENGI Number of Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
4	CUSI	Customers	ENGI Number of Industrial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
5	CUSC	Customers	ENGI Number of Commercial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q44 } \end{aligned}$
6	CUSCI	Customers	ENG\| Number of Commercial and Industrial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
7	USEN	DTH/Customer	ENGI Gas Consumption per Non-Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
8	USEH	DTH/Customer	ENGI Gas Consumption per Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q44 } \end{aligned}$
9	USER	DTH/Customer	ENGI Gas Consumption per Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
10	USEC	DTH/Customer	ENGI Gas Consumption per Commercial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
11	USEI	DTH/Customer	ENGI Gas Consumption per Industrial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
12	USECI	DTH/Customer	ENGI Gas Consumption per C\&I Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
13	USNN	DTH/Customer	ENGI Gas Consumption per Non-Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
14	USNH	DTH/Customer	ENGI Gas Consumption per Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q44 } \end{aligned}$
15	USNR	DTH/Customer	ENGI Gas Consumption per Residential Customers	EnergyNorth internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
16	USNC	DTH/Customer	ENGI Gas Consumption per Commercial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
17	USNI	DTH/Customer	ENGI Gas Consumption per Industrial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
18	USNCI	DTH/Customer	ENGI Gas Consumption per C\&I Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q44 } \end{aligned}$
19	GASN	DTH	ENGI Gas Consumption of Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
20	GASH	DTH	ENGI Gas Consumption of Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$

21	GASR	DTH	ENGI Gas Consumption of Non-Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
22	GASC	DTH	ENGI Gas Consumption of C\&I Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
23	GASI	DTH	ENGI Gas Consumption of Commercial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005QQ4 } \end{aligned}$
24	GASCI	DTH	ENGI Gas Consumption of Industrial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
25	GSNN	DTH	ENGI Normal Gas Consumption of Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
26	GSNH	DTH	ENGI Normal Gas Consumption of Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
27	GSNR	DTH	ENGI Normal Gas Cons. of Non-Heating Residential Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
28	GSNC	DTH	ENGI Normal Gas Consumption of C\&I Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
29	GSNI	DTH	ENGI Normal Gas Consumption of Commercial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
30	GSNCI	DTH	ENGI Normal Gas Consumption of Industrial Customers	EnergyNorth Internal Historical Records	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
31	CPI	$1982-84=100$	Consumer Price Index	Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q44 } \end{aligned}$
32	GSP	Millions of \$	NH Gross State ProductAggregate	Bureau of Economic Analysis, Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
33	RGSP	Millions of 2000 \$	NH Real Gross State Product-Aggregate	Bureau of Economic Analysis, Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
34	POP	Thousands	NH Total Population	Bureau of Census, Current Population Reports	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \\ & \hline \end{aligned}$
35	NMIG	Thousands	NH Net Migration	Bureau of Census, Current Population Reports	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q44 } \end{aligned}$
36	EMP	Thousands	NH Employment, Total NonAgriculture	Bureau of Labor Statistics	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
37	RUEM	Percent	NH Unemployment Rate	Bureau of Labor Statistics	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
38	UEMP	Thousands	NH Number Unemployed	Bureau of Labor Statistics	$\begin{aligned} & \text { 1984Q1 } \\ & \text { 2020Q4 } \end{aligned}$
39	REMP	Thousands	NH Resident Employment	Bureau of Labor Statistics	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
40	LBFC	Thousands	NH Total Labor Force	Bureau of Labor Statistics	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
41	HH	Thousands	NH Households, Family and Non-Family	Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
42	HSTM	Thousands	NH Housing Starts, Private Multi-Family	Globai Insight	$\begin{aligned} & \text { 1984Q1- } \\ & 2020 Q 4 \end{aligned}$
43	HSTS	Thousands	NH Housing Starts, Private	Global Insight	1984Q1-

			Single Family		2020Q4
44	HSTT	Thousands	NH Housing Starts, Total Private	Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
45	HSOLD	Thousands	NH Home Sales, Existing Single-family units	Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
46	HINC	Thousands of \$	NH Average Household Income	Global Insight	1982Q1-
47	PCl	Thousands of \$	NH Per Capita Personal Income	Bureau of Economic Analysis, Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q44 } \end{aligned}$
48	RPCl	Thousands 2000 \$	NH Real Per Capita Personal Income	Bureau of Economic Analysis	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
49	PINC	Millions of \$	NH Personal Income, Total, By Place of Residence	Bureau of Economic Analysis, Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
50	RPINC	Millions of 2000 \$	NH Real Personal Income, Total	Bureau of Economic Analysis, Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \\ & \hline \end{aligned}$
51	RPIR	Millions of $2000 \$$	NH Real Income, Residence Adjustment	Bureau of Economic Analysis, Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
52	RPTR	Millions of 2000 \$	NH Real Nonfarm Proprietors Income	Bureau of Economic Analysis	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
53	PITP	Millions of \$	NH Personal Income, Total Proprietors Income,	Bureau of Economic Analysis, Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
54	TPTR	Millions of $2000 \$$	NH Real Total Proprietors Income	Bureau of Economic Analysis, Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
55	PINF	Millions of \$	NH Personal Income, Nonfarm Proprietors Income	Bureau of Economic Analysis	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q4 } \end{aligned}$
56	INDX	$(2002=100)$	NH Industrial Production Index, Total	Global Insight	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2020Q44 } \end{aligned}$
57	PRCO	(\$/MCF)	New Hampshire \#2 Heating Oil Production Price For residential Heating	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
58	PRCG	(\$/MCF)	New Hampshire Natural Gas City Gate Price	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
59	PRCR	(\$/MCF)	New Hampshire Residential Natural Gas Price Updated on 9/14/2005	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
60	PRCC	(S/MCF)	New Hampshire Commercial Natural Gas Price Updated on 9/14/2005	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
61	PRCI	(\$/MCF)	New Hampshire Industrial Natural Gas Price Updated on 9/14/2005	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
62	PRCCI	(\$/MCF)	New Hampshire C\&I Natural Gas Price Updated on 9/14/2005	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
63	EGYO	(MMCF)	New Hampshire \#2 Heating Oil consumption For residential Heating	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
64	EGYG	(MMCF)	New Hampshire Natural Gas consumption by All Updated on 9/14/2005	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
85	EGYR	(MMCF)	New Hampshire Residential Natural Gas consumption Updated on 9/14/2005	U.S. Energy Information Administration	$\begin{array}{\|l} \text { 1984Q1- } \\ \text { 2005Q4 } \\ \hline \end{array}$
66	EGYC	(MMCF)	New Hampshire Commercial	U.S. Energy	1984Q1-

			Natural Gas consumption Updated on 9/14/2005	Information Administration	2005Q4
67	EGYI	(MMCF)	New Hampshire Industrial Natural Gas consumption Updated on 9/14/2005	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & 2005 \mathrm{Q} 4 \\ & \hline \end{aligned}$
68	RPRR	PRCR/PRCO	Price Ratio: Res. Natural Gas Price: \#2 Oil Price	U.S. Energy Information Administration	$\begin{array}{\|l\|} \text { 1984Q1- } \\ \text { 2005Q4 } \\ \hline \end{array}$
69	RPRC	PRCC/PRCO	Price Ratio: Commercial Gas Price: \#2 Oil Price	U.S. Energy Information Administration	$\begin{array}{\|l} \text { 1984Q1- } \\ \text { 2005Q4 } \\ \hline \end{array}$
70	RPRI	PRCI/PRCO	Price Ratio: Industrial Gas Price: \#2 Oil Price	U.S. Energy Information Administration	$\begin{array}{\|l\|l} \text { 1984Q1- } \\ \text { 2005Q4 } \end{array}$
71	REGR	EGYR/EGYO	Energy Use Ratio: Res. Natural Gas: \#2 Oil	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
72	REGC	EGYC/EGYO	Energy Use Ratio: Commercial Gas: \#2 Oil	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
73	REG\|	EGYI/EGYO	Energy Use Ratio: Industrial Gas: \#2 Oil	U.S. Energy Information Administration	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
74	REVN	(\$)	ENGI Revenue to Residential Non-Heating Customers (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q44 } \\ & \hline \end{aligned}$
75	REVH	(\$)	ENGI Revenue to Residential Heating Customers (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q44 } \\ & \hline \end{aligned}$
76	REVR	(\$)	ENGI Revenue to Residential Customers (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
77	REVC	(\$)	ENGI Revenue to Commercial Customers (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
78	REVI	(\$)	ENGI Revenue to Industrial Customers (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
79	REVCl	(\$)	ENGI Revenue to Commercial and Industrial Customer (\$)	EnergyNorth Billing Frequency Record	$\begin{array}{r} \text { 1984Q1- } \\ \text { 2005Q4 } \\ \hline \end{array}$
80	RVNN	(\$)	ENGI Revenue (Normal) to Residential Non-Heating Customer (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
81	RVNH	(\$)	ENGI Revenue (Normal) to Residential Heating Customer (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
82	RVNR	(\$)	ENG\| Revenue (Normal) to Residential Customer (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
83	RVNC	(\$)	ENGI Revenue (Normal) to Commercial Customer (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
84	RVNI	(\$)	ENG\| Revenue (Normal) to	EnergyNorth Billing	1984Q1-

			Industrial Customer (\$)	Frequency Record	2005Q4
85	RVNCI	(\$)	ENGI Revenue (Normal) to C\&I Customer (\$)	EnergyNorth Billing Frequency Record	$\begin{aligned} & 1984 \mathrm{Q} 1- \\ & 2005 \mathrm{Q} 4 \\ & \hline \end{aligned}$
86	CHGN	(\$/MMBTU)	ENGI Company Charge to Residential Non-Heating Customer =\$/MMBTU	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
87	CHGH	(\$/MMBTU)	ENGI Company Charge to Residential Heating Customer =\$/MMBTU	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
88	CHGR	(\$/MMBTU)	ENGI Company Charge to Residential Customer =\$/MMBTU	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
89	CHGC	(\$/MMBTU)	ENGI Company Charge to Commercial Customer $=\$ / \mathrm{MMBTU}$	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
90	CHGI	(\$/MMBTU)	ENGI Company Charge to Industrial Customer $=\$ / \mathrm{MMBTU}$	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
91	CHGCl	(\$/MMBTU)	ENGI Company Charge to C\&I Customer =\$/MMBTU	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
92	CHNN	(\$/MMBTU)	ENGI Company charge (Normal) to Res. Non-Heating Customer $=\$ /$ MMBTU	EnergyNorth Billing Frequency Record	$\begin{array}{\|l\|} \hline \text { 1984Q1- } \\ \text { 2005Q4 } \end{array}$
93	CHNH	(\$/MMBTU)	ENGI Company charge (Normal) to Res. Heating Customer =\$/MMBTU	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
94	CHNR	(\$/MMBTU)	ENGI Company charge (Normal) to Residential Customer =\$/MMBTU	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \\ & \hline \end{aligned}$
95	CHNC	(\$/MMBTU)	ENGI Company charge (Normal) to Commercial Customer = $\$ /$ MMBTU	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
96	CHNI	(\$/MMBTU)	ENGI Company charge (Normal) to Industrial Customer = $\$ / \mathrm{MMBTU}$	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
97	CHNCl	(\$/MMBTU)	ENGI Company charge (Normal) to C\&I Customer $=\$ / \mathrm{MMBTU}$	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
98	CDDN		Normal Calendar Degree Days	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
99	CDDA		Actual Calendar Degree Days	EnergyNorth Billing Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
100	BDDN		Normal Billing Degree Days	EnergyNorth Bilting Frequency Record	$\begin{aligned} & \text { 1984Q1- } \\ & \text { 2005Q4 } \end{aligned}$
101	BDDA		Actual Billing Degree Days	EnergyNorth Billing	1984Q1-

| | | | Frequency Record | 2005Q4 |
| :--- | :--- | :--- | :--- | :--- | :--- |

As was done in the 1998 forecast, the Company developed models based on quarterly data. This approach accounts for the seasonality of both customer and sales data. For some variables, such as population and employment, data were only available annually. In these instances, the Company assumed that the data were for quarter four, and interpolated for quarters one, two and three. Although, SAS offers a variety of forecasting models including dynamic regression, Box-Jenkins, exponential smoothing, and moving averages, the Company focused on dynamic regression (i.e. econometrics) because it is the most commonly used method in the utility industry and allows the user to develop relationships between independent or explanatory variables and energy sales.

In addition to the explanatory variables, SAS allows the user to incorporate both lagged variables and autocorrelation functions into the models. When developing a forecasting model, there will always be "error" when comparing the "fit" of the model to the actual data. One would expect, however, that these errors (or residuals) would be relatively small and random in nature. If the errors are not random (e.g., every fourth quarter the forecast is too high and every second quarter it is too low), then a pattern exists and the error terms are not random. In these instances better models should be designed. Both lagged variables and autocorrelation functions are intended to eliminate the nonrandom components of the errors.

Because SAS allows the user to develop a large number of models, it is important to develop criteria regarding what constitutes a "good" model. In general the Company applied the following criteria:

- The t-tests for all explanatory variables are significant (i.e. exceed 1.0$)^{3}$
- The relationship between the dependent and explanatory variable is logical and of the correct sign (e.g., higher gas prices should produce lower sales)
- The resulting forecast is reasonable (e.g., a forecast that shows sales decreasing to zero by year 2010 would be eliminated regardless of the power of the other statistics).
- That significant autocorrelation between the residuals (errors) has been eliminated (i.e. Durbin-Watson statistic is insignificant)
- The addition of new variables does not improve model performance
- Reliable forecasts of the independent variables are available.

i. Residential Customer Forecast

The Company found that there is significant seasonality to the residential customer data with a higher customer base in the winter than in the summer. Therefore, each of the econometric models developed for residential customers contained a term for residential customers lagged one period and an autocorrelation function of period four. These were by far the most significant variables for all models tested.

Following these adjustments, the most significant variables in order were population (Pop), employment (EMP) and gross state product (GSP). The four models specified passed the criteria mentioned above. One contains gross state product as the primary explanatory variable, the second employment, the third population, and the fourth contains both gross state product and population. In addition, the Company chose the Box-Jenkins ARIMA method in SAS as the time-series model and estimated an equation consistent with this approach. An additional time series model, Winter's Exponential

[^2]Smoothing, was chosen as a final model for each forecast segment. The details of these models is contained in Appendix A.

After completing the estimation of the parameters for each equation in the above models, the Company then applied a forecast of the explanatory variables to the model to produce the forecast of residential customers. The forecasts of the explanatory variables were provided by Global Insight, Inc., with which the Company has a contract to provide forecasts of energy, economic, and demographic variables for its service territory.

Three sources were used for forecasted data:

- The US Bureau of Economic Analysis - this source provided forecasts for population, gross state product, employment and wages for 1998, 2000, 2005 and 2010 at the state level.
- The Energy Information Agency — this source provided NH pricing data for natural gas city gate plus average MMBtu unit pricing and consumption data by end user classification for electricity, \#2 fuel oil; \#6 residual oil, LPG and natural gas, forecast annually for 2006 through 2030.
- SAS was used to produce its own forecasts of independent variables where no other forecast existed.

Using the model specifications described above, six residential customer forecasts were produced:

1. Forecast A1 used a model specification containing NH gross state product (GSP), an autoregressive term of period four (AUTO(-4)), and residential customers lagged one period (CUSR-1) as the independent variables. The GSP forecast was from the US Bureau of Economic Analysis. This forecast predicts a growth rate of 3.0 percent from year 2005/06 to year 2010/2011 and a total number of residential customers in 2010/11 of 84,172 .
2. Forecast A2 used a model specification containing NH employment (EMP), an autoregressive term of period four (AUTO(-4)), and residential customers lagged one period (CUSR-1) as the independent variables. The EMP forecast was from the US Bureau of Economic Analysis. This forecast predicts a growth rate of 0.8 percent with a total number of residential customers in year 2010/11 of 74,772.
3. Forecast A3 used a model specification containing population (POP), an autoregressive term of period four (AUTO(-4)), and residential customers lagged one period (CUSR-1). The population forecast was from the US Bureau of Economic Analysis, This forecast predicts a 2005/06 to 2010/11 growth rate of 0.7 percent with the total number of residential customers in 2010/11 of 74,660 .
4. Forecast A4 is the same as A3 except that NH gross state product (GSP) was added. This forecast predicts a growth rate of 2.5 percent with a total number of residential customers in 2010/11 of 81,918 .
5. Forecast A5 uses the SAS Box-Jenkins ARIMA model. This forecast predicts a growth rate of 2.1 percent with the expected number of residential customers in 2010/11 being 80,612.
6. Forecast A6 uses a multiplicative Winter's exponential smoothing model with linear trend and multiplicative seasonality. It forecasts a growth rate of 2.1 percent and a total of 79,981 residential customers by 2010/11.

These forecasts were then combined to produce the aggregate residential customer forecast for EnergyNorth (see Table III-2). Each econometric model specification received a weight of 0.15 and each time series model received a weight of 0.20 . Forecasts Al through A4 were averaged and given a combined weighting of 0.60 . The time series forecasts A5 and A6 were also averaged and received a combined weighting of 0.40 .

Table III-2
 EnergyNorth Forecast Results
 Residential Customer Forecast

Model	A1	A2	A3	A4	ARIMA	Winter's	Weighted Residential Customers
Dependent	CUSR	CUSR	CUSR	CUSR	CUSR	CUSR	
independent	Intercept	CUSR_1	CUSR_1	CUSR_1			
	CUSR_1	EMP	POP	GSP			
	GSP	AUTO(-4) A	AUTO(-4)	POP			
	AUTO(-4)			AUTO(-4)			
Weight	15.00\%	15.00\%	15.00\%	15.00\%	20.00\%	20.00\%	100.00\%
Residential Customer Forecast -- Percent Growth from Base Year (2005)							
2006Q4-2007Q3	2.90\%	0.78\%	0.83\%	2.49\%	2.79\%	2.40\%	2.09\%
2007Q4-2008Q3	3.03\%	0.80\%	0.79\%	2.52\%	2.21\%	2.02\%	1.93\%
2008Q4-2009Q3	3.15\%	0.77\%	0.71\%	2.59\%	1.56\%	1.98\%	1.81\%
2009Q4-2010Q3	3.06\%	0.74\%	0.66\%	2.47\%	1.83\%	1.94\%	1.82\%
2010Q4-2011Q3	2.94\%	0.77\%	0.68\%	2.35\%	1.95\%	1.91\%	1.81\%
Average	3.02\%	0.77\%	0.73\%	2.48\%	2.07\%	2.05\%	1.89\%
Residential Customer Forecast (Annual)							
2005Q4-2006Q3	72,552	71,950	71,981	72,470	72,768	72,263	72,349
2006Q4-2007Q3	74,659	72,510	72,575	74,273	74,799	73,995	73,861
2007Q4-2008Q3	76,917	73,089	73,150	76,145	76,449	75,492	75,283
2008Q4-2009Q3	79,342	73,653	73,672	78,114	77,644	76,988	76,644
2009Q4-2010Q3	81,772	74,197	74,155	80,039	79,067	7 78,485	78,035
2010Q4-2011Q3	84,172	74,772	74,660	81,918	80,612	2 79,981	79,447
Average	78,236	73,362	73,366	77,160	76,890	76,201	75,937

The result shown in Table III-2 is a forecasted growth rate in residential customers from 2005/06-2010/11 of 1.9 percent with a total of 79,447 residential customers expected in 2010/11. See the complete residential customer forecast results Appendix A.

ii. Residential Use Per Customer Forecast

For the residential use per customer forecast, there was a strong relationship between normalized use per customer and normal degree days. Therefore, each of the models
developed for use per customer used normal degree days as an independent variable. The Company also applied an autocorrelation term of period four. Following these adjustments, the econometric models included variables for NH GSP and natural gas city gate price NH and then again with per capita income replacing NH GSP.

Using the model specifications described above, four residential use per customer forecasts were produced:

1. Forecast B1 used a model specification containing NH gross state product (GSP), natural gas city gate price lagged one quarter (PRCG_1), normal degree days (CDDN), and an autoregressive term of period four (AUTO(-4)). Again, the GSP forecast was from the US Bureau of Economic Analysis, natural gas city gate price was from the Energy Information Administration, and normal degree days are a thirty year average based on National Weather Service data for Manchester, NH. This forecast predicts a growth rate of 1.2 percent from year 2005/06 to year 2010/11 and a total annual residential use per customer in 2010/11 of 91 MMBtu.
2. Forecast B2 used a model specification containing NH per capita income (PCl), natural gas city gate price lagged one quarter (PRCG_1), normal degree days (CDDN), and an autoregressive term of period four (AUTO(-4)). The NH per capita income forecast was calculated using population and personal income data from the US Bureau of Economic Analysis, natural gas city gate price and normal degree day data was the same as described in description of the B1 forecast. This forecast predicts a growth rate of 0.95 percent from year 2005/06 to year 2010/11 and a total annual residential use per customer in 2010/11 of 89 MMBtu.
3. Forecast B3 uses the Box-Jenkins ARIMA model. This forecast predicts a growth rate of -0.2 percent with the total annual residential use per customer declining from 88 MMBtu per year in 2005/06 to 86 MMBtu in 2010/11.
4. Forecast B4 uses a multiplicative Winter's exponential smoothing model with linear trend and multiplicative seasonality. It also forecasts a declining growth rate of 0.1 percent and a total residential use per customer holding virtually steady at 85 MMBtu per year from 2005/06 to 2010/11.

These forecasts were then combined to produce the aggregate residential use per customer forecast for EnergyNorth (see Table III-3). Both of the econometric models received a weight of 0.20 and each time series model received a weight of 0.30 . Forecasts B 1 and B2 were averaged and given a combined weighting of 0.40 . The time series forecasts, B3 and B4, are also averaged and received a combined weighting of 0.60.

See the complete residential use per customer forecast results in Appendix A.

Table III-3

EnergyNorth Forecast Results

Residential Gas Use Per Customer Forecast

Model	B1	B2	ARIMA	Winter's	Weighted Residentia Use Per
Dependent	USNR	USNR	USNR	USNR	
Independent	PRCG_1	PRCG_1			
	GSP	PCl			
	CDDN	CDDN			
	AUTO(-4)	AUTO(-4)			
Weight	20.00\%	20.00\%	30.00\%	30.00\%	100.00\%

Residential Use Per Customer Forecast -- Percent Growth from Base Year (2005)

2006Q4-2007Q3
2007Q4-2008Q3
2008Q4-2009Q3
2009Q4-2010Q3
2010Q4-2011Q3
Average

1.21%	0.97%	-2.13%	2.81%	0.77%
1.24%	1.00%	3.34%	-0.84%	1.17%
1.34%	1.03%	-0.76%	-0.84%	0.39%
1.22%	0.94%	-1.09%	-0.85%	0.26%
1.14%	0.81%	-0.59%	-0.86%	0.31%
1.23%	0.95%	-0.24%	-0.11%	0.58%

Residential Use Per Customer Forecast (Annual)

2005Q4-2006Q3	85	85	88	85	86
2006Q4-2007Q3	86	86	86	88	86
2007Q4-2008Q3	87	86	89	87	87
2008Q4-2009Q3	88	87	88	86	88
2009Q4-2010Q3	90	88	87	86	88
2010Q4-2011Q3	91	89	86	85	88
Average	88	87	87	86	87

iii. Residential Sales Forecast

As mentioned previously, residential sales forecasts were developed by (1) combining the residential customer and use per customer forecasts and (2) by independently forecasting residential sales. All data on residential sales were normalized by EnergyNorth to account for deviations in weather.

Two econometric models were developed for residential sales using quarterly data. In each case an autoregressive term of period four was used. The first model also included a term for NH gross state product (GSP). This forecast, C1, produced a 2005/062010/11 growth rate of 2.8 percent with total residential sales of 7.38 million MMBtu in 2010/11. The second model, C2, was the similar to C1, but also included the term natural gas city gate price. The resulting forecast C 2 showed a growth rate of 3.0 percent and total residential sales in 2010/11 of 7.37 million therms.

A time series forecast, C3, uses the ARIMA model. This forecast predicts a growth rate of 1.6 percent, with total annual residential sales of 6.90 million MMBtu in 2010/11 These forecasts were then combined to produce the weighted residential therm sales forecast for EnergyNorth (see Table III-4 and Figure III-1). Both of the econometric models received a weight of 0.30 resulting in forecasts C 1 and C 2 . These were then averaged and given a combined weighting of 0.60 . The time series model C3 received a weight of 0.40 . The weighted residential sales forecast shows a growth rate of 2.5 percent and sales of 7.19 million MMBtu in the year 2010/11.

Next, the Company produced a forecast of residential sales using the aggregate of the residential customer models (A1 through A6) multiplied times the aggregate of the residential use per customer models ($B 1$ through $B 4$). The product of these two aggregated forecasts yielded a calculated residential sales forecast reflecting an overall growth rate of 2.4 percent and MMBtu sales forecast of 6.98 million in the year 2010/11. Combining the calculated residential sales forecast with the weighted (C1 through C 3) sales forecast on an equal $(50 \% / 50 \%)$ basis, produced a final residential sales forecast of 7.08 million therms in 2010/11 for an annualized growth rate of 2.5 percent from 2005/06-2010/11.

Table III-4
 EnergyNorth Forecast Results

Residential Gas Sales Forecast

Model	C1	C2	ARIMA	Weighted Residential Sales	Calculated Sales	Combined (50/50)
Dependent	GSNR	GSNR	GSNR			
Independent	GSP	PRCG				
	Auto(-4)	GSP				
		Auto(-4)				

Weight	30.00%	30.00%	40.00%	100.00%		
Residential Gas Sales Forecast -- Percent	Growth from Base Year (2005)					
2006Q4-2007Q3	2.57%	2.86%	0.80%	1.96%	2.80%	2.37%
2007Q4-2008Q3	2.65%	2.91%	3.65%	3.12%	3.08%	3.10%
2008Q4-2009Q3	3.02%	3.23%	3.07%	3.10%	2.21%	2.66%
2009Q4-2010Q3	2.86%	3.00%	0.69%	2.05%	2.04%	2.05%
2010Q4-2011Q3	2.79%	2.88%	1.56%	2.34%	2.14%	2.24%
Average	2.78%	2.98%	1.95%	2.51%	2.45%	2.48%

Residential Gas Sales Forecast (Dth) (Annual)					
2005Q4-2006Q3	$6,440,173$	$6,373,218$	$6,267,804$	$6,351,139$	$6,190,483$
2006Q4-2007Q3	$6,605,996$	$6,555,369$	$6,318,014$	$6,475,615$	$6,363,654$
$6,419,635$					
2007Q4-2008Q3	$6,780,906$	$6,745,872$	$6,548,691$	$6,677,510$	$6,559,457$
2008Q4-2009Q3	$6,985,470$	$6,963,457$	$6,749,937$	$6,884,653$	$6,704,409$
2009Q4-2010Q3	$7,185,317$	$7,172,667$	$6,796,495$	$7,025,993$	$6,841,297$
201,531					
2010Q4-2011Q3	$7,385,507$	$7,379,427$	$6,902,273$	$7,190,389$	$6,987,414$
Average	$6,897,228$	$6,865,002$	$6,597,202$	$6,767,550$	$6,607,786$
A,		$6,687,668$			

See the complete residential load forecast results in Appendix A.

Figure III-1
Residential Natural Gas Sales Forecast

iv. C\&I Customer Forecast

Sirnilar to the residential customer models, the C\&l customer models show seasonality as well as a strong relationship to population, employment and NH gross state product. Three econometric models were developed for C\&l customers. All three models included autoregressive terms of period four (AUTO(-4)) and a lagged term of period one (CUSCI_1). Forecast D1, which includes the U.S. Bureau of Economic Analysis population data (POP), results in 11,448 commercial and industrial customers in 2010/11, equivalent to an annualized growth rate of 1.8 percent.

The second model substitutes labor force (LBFC) for population. This forecast, D2, predicts a growth rate of 1.7 percent per year from 2005/06-2010/11 with a total commercial and industrial customer population of 11,413 by 2010/11.

The third model substitutes NH gross state product (GSP) for employment. This forecast, D3, predicts a growth rate of 6.3 percent per year from 2005/06-2010/11 with a total commercial and industrial customer population of 14,425 by 2010/11.

The Box-Jenkins ARIMA Model is the fourth C\&I customer forecast, and is designated D4. This forecast, D4, predicts a growth rate of 2.5 percent per year from 2005/06-2010/11 with a total commercial and industrial customer population of 11,942 by 2010/11.

A Winter's Exponential Smoothing Model was used as the fifth model of C\&l customers. This produced a 2010/11 forecast of C\& customers of 11,843 with a growth rate of 2.6 percent through the year 2010/11.

Forecasts DI, D2 and D3, the econometric models, are based on population, employment and state GSP projections. Forecasts D4 (Box-Jenkins) and DS (Winters Exponential Smoothing) are time series projections. All five forecasts were given weights of 20 percent each and then were averaged, with the result giving the econometric models a weight of 60 percent and the time series models a weight of 40 percent. The combination of these forecasts produces a final prediction of commercial and industrial customers for EnergyNorth for 2010/11 of 12,214 or 3.0 percent growth per year from 2005/06-2010/11.

The annual forecast results for commercial and industrial customers can be seen in Table III-5. Complete details of the C\&I customer forecast results can be found in Appendix A.

Table III-5

EnergyNorth Forecast Results

Commercial and Industrial Customer Forecast

						Weighted
Model					C\&l	

Weight $20.00 \% \quad 20.00 \% \quad 20.00 \% \quad 20.00 \% \quad 20.00 \% \quad 100.00 \%$

Commercial \& Industrial Customer Forecast -- Percent	Growth from Base Year (2005)					
2006Q4-2007Q3	2.04%	1.95%	5.87%	2.55%	2.69%	3.03%
2007Q4-2008Q3	1.77%	1.70%	6.33%	2.63%	2.61%	3.04%
2008Q4-2009Q3	1.88%	1.83%	6.54%	2.53%	2.55%	3.13%
2009Q4-2010Q3	1.69%	1.67%	6.44%	2.43%	2.48%	3.04%
2010Q4-2011Q3	1.47%	1.43%	6.19%	2.42%	2.42%	2.91%
Average	1.77%	1.72%	6.27%	2.51%	2.55%	3.03%

Commercial \& Industrial Customer Forecast (Annual)

2005Q4-2006Q3	10,486	10,482	10,643	10,549	10,442	10,520
2006Q4-2007Q3	10,700	10,687	11,267	10,818	10,723	10,839
2007Q4-2008Q3	10,890	10,869	11,980	11,102	11,003	11,169
2008Q4-2009Q3	11,094	11,068	12,764	11,382	11,283	11,518
2009Q4-2010Q3	11,281	11,253	13,585	11,659	11,563	11,868
2010Q4-2011Q3	11,448	11,413	14,425	11,942	11,843	12,214
Average	10,983	10,962	12,444	11,242	11,143	11,355

v. C\&I Use Per Customer

For C\&l use per customer, the Company developed three econometric models and one time series model. All three econometric models included autoregressive terms of period four, the Energy Information Agency's natural gas city gate price projections for NH and normal degree days for Manchester, NH. Forecast E1, which also includes U.S. Bureau of Economic Analysis NH GSP data, results in 805 arınual commercial and industrial

MMBtu use per customer in 2010/11, equivalent to an annualized growth rate of 1.9 percent.

Forecast E2, substitutes U.S. Bureau of Economic Analysis employment data in place of NH GSP. This forecast, E2, shows a decline from 2005/06 to 2010/11 to 702 annual commercial and industrial MMBtu use per customer in 2010/11, equivalent to an average rate of -0.6 percent.

Forecast E3 substitutes per capita income data in place of employment. This forecast, E3, show an average growth rate of 1.4 percent with 779 annual commercial and industrial MMBtu use per customer in 2010/11.

The Box-Jenkins ARIMA model for the time series forecast, model, E4 produced a forecast of C\&I use per customer of 747 MMBtu in 2010/11, reflecting a slight decrease in C\&I use per customer growth, -0.5 percent through 2010/11.

All four forecasts were combined and averaged using a weighting of 75 percent econometric and 25 percent time series. . The results produced a forecast of $758 \mathrm{C} \&$ MMBtu per customer in 2010/11 that is equivalent to a 0.6 percent annualized growth rate from 2005/06 through 2010/11.

See Table III-6 for the C\&I use per customer forecast results and appendix A for complete forecast results.

Table III-6

EnergyNorth Forecast Results
Commercial and Industrial Gas Use Per Customer Forecast

					Weighted C
Model	E1	E2	E3	ARIMA	\& I Use Per
Dependent	USNCI	USNCI	USNCI	USNCI	
Independent	PRCG	PRCG	PRCG		
	GSP	EMP	PCI		
	CDDN	CDDN	CDDN		
	AUTO(-4)	AUTO(-4)	AUTO(-4)		
	25.00%	25.00%	25.00%	25.00%	100.00%

Commercial \& Industrial Use Per Customer	Forecast	--	Percent Growth from Base	Year (2005)	
2006Q4-2007Q3	1.45%	-0.86%	0.98%	0.93%	0.63%
2007Q4-2008Q3	1.77%	-0.63%	1.28%	-1.74%	0.15%
2008Q4-2009Q3	2.19%	-0.53%	1.56%	-1.71%	0.38%
2009Q4-2010Q3	2.09%	-0.50%	1.54%	-0.30%	0.74%
2010Q4-2011Q3	2.05%	-0.49%	1.37%	0.43%	0.88%
Average	1.91%	-0.60%	1.35%	-0.48%	0.56%

Commercial \& Industrial Use Per Customer Forecast (Annual)					
2005Q4-2006Q3	733	724	728	765	738
2006Q4-2007Q3	743	718	735	773	742
2007Q4-2008Q3	756	713	745	759	743
2008Q4-2009Q3	773	709	756	746	746
2009Q4-2010Q3	789	706	768	744	752
2010Q4-2011Q3	805	702	779	747	758
Average	767	712	752	756	747

vi. C\&I Sales Forecast

As with the residential models, the Company forecast C\&l sales in MMBtu normalized for weather. Models were developed by combining the C\&l customer and use per customer data, as well as directly using econometric and time series methods. Using quarterly data, the Company developed an econometric model with autoregressive terms of period four (AUTO(-4)) along with natural gas city gate price data (PRCG) collected from the EIA. In the first econometric model, F1, a lagged term of period one (GSNCI_1) was also included. This model produced a forecast of 9.52 million

MMBtu for the C\&l sector in 2010/11 equivalent to a 3.8 percent growth rate for the period 2005/06 through 2010/11.

The second econometric model, F2, replaces the lagged term of period one with an autoregressive term of period eight (AUTO(-8)). This model produced a forecast of 9.47 million MMBtu for the C\&l sector in 2010/11 equivalent to a 1.9 percent growth rate for the period 2005/06 through 2010/11.

The third econometric model, F3, reinserts the lagged term of period one (GSNCl_1) and continues using natural gas city gate prices (PRCG) and the autoregressive terms of periods four (AUTO(-4)) and eight (AUTO(-8)). This model produced a forecast of 9.47 million MMBtu for the $C \& l$ sector in $2010 / 11$ equivalent to a 3.7 percent growth rate for the period 2005/06 through 2010/11.

The Box-Jenkins ARIMA model, F4, produced a forecast of 9.27 million MMBtu for the C\&I sector in 2010/11 or an annualized growth rate of 2.8 percent.

The final C\&l therm load weighted forecast was an average of Forecast Fl through F3 (the econometric models) at 20 percent each, with Forecast F4 (the time series forecast) weighted at 40%. Then, the weighted C\&l sales forecasts and the product of the number of customers times the use per customer forecast were combined equally (50/50). The result was a forecast of 9.32 million MMBtu in 2010/11, equivalent to a 3.8 percent growth rate from 2005/06 through 2010/11.

See Figure III-2 and Table III-7 for the C\&I therm load forecast summary and Appendix A for complete details of the forecast.

Table III-7

EnergyNorth Forecast Results

Commercial and Industrial Gas Sales Forecast

				Weighted C	Calculated	Combined	
Model	F1	F2	F3	ARIMA	\& I Sales	Sales	$(50 / 50)$
Dependent	GSNCI	GSNCI	GSNCI	USNCI			
Independent	GSNCI_1	PRCG	GSNCI_1				
	PRCG	AUTO(-4)	PRCG				

Weight $\quad 20.00 \% \quad 20.00 \% \quad 20.00 \% \quad 40.00 \% \quad 100.00 \%$

Commercial \& Industrial Gas Sales Forecast (Percent	Growth from Base Year (2005)						
2006Q4-2007Q3	5.34%	2.73%	5.55%	5.46%	4.87%	3.57%	6.85%
2007Q4-2008Q3	4.03%	1.56%	3.78%	2.75%	2.96%	3.34%	3.15%
2008Q4-2009Q3	3.53%	1.60%	3.33%	0.09%	1.72%	3.51%	2.59%
2009Q4-2010Q3	3.09%	1.71%	2.95%	2.20%	2.43%	3.85%	3.12%
2010Q4-2011Q3	2.75%	1.81%	2.64%	3.69%	2.90%	3.84%	3.36%
Average	3.75%	1.88%	3.65%	2.84%	2.98%	3.62%	3.81%

| Commercial \& Industrial Gas Sales Forecast (Dth) (Annual) | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2005Q4-2006Q3 | $7,924,343$ | $8,628,982$ | $7,919,898$ | $8,067,522$ | $8,121,654$ | $7,734,162$ | $7,734,162$ |
| 2006Q4-2007Q3 | $8,347,166$ | $8,864,129$ | $8,359,073$ | $8,508,086$ | $8,517,308$ | $8,010,453$ | $8,263,881$ |
| 2007Q4-2008Q3 | $8,683,945$ | $9,002,617$ | $8,675,271$ | $8,742,207$ | $8,769,249$ | $8,278,350$ | $8,523,800$ |
| 2008Q4-2009Q3 | $8,990,327$ | $9,146,297$ | $8,964,552$ | $8,749,767$ | $8,920,142$ | $8,569,259$ | $8,744,701$ |
| 2009Q4-2010Q3 | $9,268,498$ | $9,302,969$ | $9,228,745$ | $8,942,571$ | $9,137,071$ | $8,898,799$ | $9,017,935$ |
| 2010Q4-2011Q3 | $9,523,502$ | $9,471,707$ | $9,472,064$ | $9,272,510$ | $9,402,459$ | $9,240,153$ | $9,321,306$ |
| Average | $8,789,630$ | $9,069,450$ | $8,769,934$ | $8,713,777$ | $8,811,314$ | $8,455,196$ | $8,600,964$ |

Figure III-2
Commercial \& Industrial Firm Sales \& Transportation Forecast

vii. Summary of Final Forecast

For the final forecast, the Company averages of forecasts developed using the several equations specified to produce a more accurate forecast than using a single equation. In this way, the forecast minimizes the forecast error associated with any single equation.

The range of forecasts produced by these models creates a distribution around the final forecast. This provides the Company with an assessment of uncertainty and allows it to plan for high growth and low growth conditions. These high growth and low growth scenarios are discussed in more detail in Section 6, Sensitivity Analysis.

Table III-8 summarizes the ENGI forecast by sector.

Table III-8
EnergyNorth Natural Gas, Inc. - Five Year Forecast

Five Year Forecast (2005-2010) (MMBtu)						
	Year	Residential	Commercial \& Industrial	DSM	Total Demand	\% Change
		(MMBtu)	(MMBtu)	(MMBtu)	(MMBtu)	
	2005Q4-2006Q3	6,270,811	7,924,379	-77573	14,117,617	
1	2006Q4-2007Q3	6,419,635	8,263,881	-77573	14,605,942	3.46\%
2	2007Q4-2008Q3	6,618,483	8,523,800	-77573	15,064,710	3.14\%
3	2008Q4-2009Q3	6,794,531	8,744,701	-77573	15,461,659	2.63\%
4	2009Q4-2010Q3	6,933,645	9,017,935	-77573	15,874,007	2.67\%
5	2010Q4-2011Q3	7,088,902	9,321,306	-77573	16,332,634	2.89\%
	Average	6,771,039	8,774,324	-77573	15,467,790	2.96\%

(c) Forecast of Incremental Demand for Traditional Markets

EnergyNorth's incremental demand forecasts (base case) for traditional markets are presented in Chart III-B-1. The incremental demand forecast is calculated as the year-to-year change in demand that results from the econometric forecast models. The Company adds the annual incremental demand determined in this way to the reference year sendout described in Section III C. As set forth in Chart III-B-1, EnergyNorth projects total net throughput additions over the forecast period (2006/07 through 2010/11) of $1,416,400$ MMBtu for traditional core markets. Overall, this growth in traditional-market firm sales represents a 10.0 percent increase in sendout requirements over the forecast period, or 2.5 percent per year on average (see Chart III-A-1).

The following sections describe the specific steps involved with the development of EnergyNorth's incremental demand forecast for traditional market segments, including residential, and commercial and industrial customers.

(i) Residential Market

Chart III-B-1 presents EnergyNorth's demand forecast for residential customers. This forecast shows 573,247 MMBtu of net incremental load additions over the forecast period. Chart III-B-1 shows that EnergyNorth is projected to add an average of 143,312 MMBtu net load annually, between 2006/07 and 2010/11. As shown on Chart III-A-1, this growth in residential sales represents an overall increase in residential sendout of 2.3 percent per year on average or 9.3 percent over the forecast period.

(ii) Commercial and Industrial Market

Chart III-B-1 presents EnergyNorth's updated commercial and industrial demand forecast. This forecast shows 843,153 MMBtu of net incremental load over the forecast period. Chart III-B-1 shows that EnergyNorth is projected to add an average of 210,788 MMBtus net load annually between 2006/07 and 2010/11. As shown on Chart III-A-1, this increase in commercial/industrial sales represents an overall increase in commercial/industrial sendout of 2.6 percent per year on average, or 10.6 percent over the forecast period.

3. Demand Forecast for Non-Traditional Markets

(a) Natural Gas Vehicles

As shown on Chart III-B-1, the Company's forecast indicates no demand in the natural gas vehicle market in the EnergyNorth service territory. The Company's forecast of demand in the NGV market is driven by governmental regulations requiring or encouraging NGV use among certain commercial and governmental vehicle fleets, and the Company's marketing efforts with those vehicle fleet operators. At the time that this
forecast was prepared, the Company's marketing representatives did not anticipate any significant demand in this market.

(b) Large-Scale Cogeneration Market

EnergyNorth's assessment of the large-scale cogeneration market is that the natural gas required to meet the demands of the potential customers in this market during the forecast period will not have an impact on EnergyNorth's sendout requirements or resource plan. EnergyNorth is not currently aware of any large-scale gas-fired cogeneration facilities planned for locations within the EnergyNorth service territory over the forecast period that do not yet have their natural gas requirements in place. However, consistent with EnergyNorth's recent experience, if a new gas-fired cogeneration power plant were to be located in EnergyNorth's service territory, EnergyNorth believes that the gas requirements of such facilities would likely be served by third-party gas suppliers in conjunction with Supplier Service provided by EnergyNorth from the city gate to the facility. Accordingly, EnergyNorth's forecast shows no demand for the large-scale cogeneration market and no impact on the resource plan.

4. Demand-Side Management

EnergyNorth is in the first year of a three-year extension of its energy efficiency program approved by the Commission in Order No. 24,636 dated June 8, 2006 in Docket DG 06-032. Subject to Commission review and approval, EnergyNorth expects to continue its efficiency program beyond the April 30, 2009 expiration of the current plan through to the end of the forecast period. EnergyNorth estimates volume reductions of 77,573 MMBtus per year on average from DSM measures during the
forecast period (see Chart III-B-1). To develop projections of future energy-savings impacts of the DSM programs, EnergyNorth utilized a spreadsheet developed within the NSTAR Energy Efficiency Collaborative (hereinafter referred to as the "Energy Efficiency Model"). ${ }^{4}$ The Energy Efficiency Model is used to track costs and benefits relating to energy efficiency and market transformation programs. Once data is input to the Energy Efficiency Model it calculates the present value of program benefits and costs and produces a cost/benefit ratio. In addition, the output of the model also includes a projection of future energy savings for each program analyzed. In addition, EnergyNorth updated the Energy Efficiency Model in 2004 to reflect current assumptions relating to program costs and benefits, program participation, the discount rate, and avoided natural gas costs. For the analyses conducted to estimate the future savings from EnergyNorth's DSM programs, funding for all programs was assumed to continue through the forecast period ending October 2011. Savings from program measures are reflected in the model over the entire useful life of measures.

[^3]
5. Sensitivity Analysis

(a) Overview

EnergyNorth's resource portfolio must be designed to have adequate and reliable resources available to meet forecasted demand at the lowest possible cost. Because the future cannot be predicted with precision, the Company must evaluate whether the portfolio resources will be adequate and reliable when actual experience departs from the forecast. Specifically, EnergyNorth considered the levels of uncertainty in the demand and sendout forecasts and developed high- and low-demand scenarios relative to the base case forecast to determine the impact a range of alternatives would have on its resource portfolio. A comparison of the average annual load additions for the base case, high- and low-demand scenarios is presented in Chart III-B-2.

(b) Development of Demand Scenarios

EnergyNorth used the results of the econometric models to develop the high and low demand scenarios. Each econometric model for customers, use per customer and sales, for both the residential and commercial/industrial classes, generates a 95 percent confidence interval around the forecasted values. For the high case, the Company used the higher bounds of the interval for each model to calculate the high demand values. Similarly, for the low case, the Company used the lower bounds of the interval for each model to calculate the low demand values.

The high-demand scenario, shown in Chart III-B-3, results in net additions of $1,975,243$ MMBtu compared to $1,416,400$ MMBtu in the base case (see Chart III-B-1). For the high-demand scenario, EnergyNorth incorporates the upper bound of the 95 percent confidence interval on the number of residential customer models (A1 - A4, ARIMA and Winters Smoothing) and commercial/industrial models (D1 - D3, ARIMA and Winters Smoothing) and weighted the results as it did in the base case to forecast the high case number of customers for each class respectively. It used similar upper bounds of the residential use per customer models (B1, B2, ARIMA and Winters Smoothing) and commercial/industrial models (E1 - E3 and ARIMA) and weighted the results to forecast the higher case use per customer for each class. It used the upper bound of the confidence interval on the residential sales models (C1, C2 and ARIMA) and commercial/industrial models (F1-F3 and ARIMA) and weighted the results to forecast sales. Finally, it combined $50 / 50$ the results of the calculated sales, based on the weighted average number of customers and use per customer, and the weighted results of the sales forecast models to determine the overall high case forecast.

(ii) Low-Demand Scenario

The low-demand scenario, shown in Chart III-B-4, results in net additions of 877,322 MMBtu compared to $1,416,400$ MMBtu in the base case (see Chart III-B-1). For the low-demand scenario, EnergyNorth incorporated the lower bound of the 95 percent confidence interval on the number of residential customer models (A1 - A4, ARIMA and Winters Smoothing) and commercial/industrial models (D1 - D3, ARIMA and Winters Smoothing) and weighted the results as it did in the base case to forecast
the low case number of customers for each class respectively. It used similar lower bounds of the residential use per customer models (B1, B2, ARIMA and Winters Smoothing) and commercial/industrial models (E1 - E3 and ARIMA) and weighted the results to forecast the lower case use per customer for each class. It used the lower bound of the confidence interval on the residential sales models (C1, C2 and ARIMA) and commercial/industrial models (F1 - F3 and ARIMA) and weighted the results to forecast sales. Finally, it combined 50/50 the results of the calculated sales, based on the weighted average number of customers and use per customer, and the weighted results of the sales forecast models to determine the overall low case forecast.

6. Transportation Migration

(a) Introduction

With the introduction of the EnergyNorth's commercial/industrial (C\&I) transportation program in 2001, EnergyNorth has gained a number of years of experience with unbundled transportation service in New Hampshire. See Chart III-B-5 for the Company's transportation customer activity since 2001. EnergyNorth currently has in place a comprehensive customer-choice program that provides C\&l customers with an opportunity to share in the benefits provided by increased competition in the retail market for natural gas.
(b) Impact of Transportation Migration on Sendout

Requirements

The Company's resource portfolio is currently structured to have a high level of flexibility to adapt to changing market conditions and regulatory obligations. This is especially true with respect to the Company's domestic gas commodity commitments.

Generally speaking, EnergyNorth enters into agreements that allow it the flexibility to eliminate up to 100 percent of its existing domestic gas commodity purchases in less than a twelve-month period. With respect to capacity resources, EnergyNorth currently has an obligation to plan for the needs of firm customers. Therefore, the Company plans for the needs of sales customers and assigns a pro-rata share of pipeline capacity, underground storage capacity and supplement resources to third-party suppliers ("Suppliers") on behalf of those sales customers who convert to Supplier Service. ${ }^{5}$ Under the Company's Delivery Terms and Conditions, capacity is assigned to Suppliers, on behalf of migrating sales customers, in block increments based on the profile of the aggregated customer group served by the Supplier (rather than on a customer-bycustomer basis). The Supplier is assigned an initial block of capacity that is subject to monthly changes consistent with increases or decreases (in increments of 200 MMBtu) in the customer load served by the Supplier. EnergyNorth retains recall rights on the capacity contracts that are released to Suppliers on behalf of their customers to ensure that the capacity remains available to serve load within the EnergyNorth service territory. In addition, the Company monitors the addition of transportation customers, who elect Supplier Service directly and are not eligible for mandatory capacity assignment. . For EnergyNorth, the customer load opting directly for Supplier Service (without first becoming a Sales Service customer) is relatively small in proportion to the Company's overall firm sendout. For the annual period May 2003 through April 2004, such load represented approximately 1.4% of the Company's total firm sendout and for

[^4]the annual period May 2004 through April 2005 there were no new customers who opted to go directly to Supplier Service. For the period May 2005 through April 2006, one customer representing less than 0.03% of the Company's total load went directly to Supplier Service

On March 3, 2006, the Commission issued an Order of Notice in docket DG 0633 regarding Northern Utilities' proposal regarding planning for Grandfathered Customer transportation load. KeySpan was made a mandatory party. During the course of that proceeding, the Company agreed to include in its IRP filing a discussion of the issues raised by Northern Utilities with regard to whether it is appropriate to begin planning for all or at least a portion of grandfathered customers' gas supply needs. ${ }^{6}$ As noted above, EnergyNorth is not currently responsible for planning for the gas supply needs of Grandfathered Customers. Rather, the Company's obligation is limited to ensuring adequate on-system capacity for these customers.

The Company has considered the Northern Utilities proposal and believes that there are two key factors that must be seriously considered before a change in the Commission's policy regarding an LDC's obligation to plan for the upstream capacity resource requirements of Grandfathered customers is implemented. First: does the level of grandfathered transportation load and the historical performance of marketers supplying that load threaten the reliability of the local distribution system? And second: What is the appropriate cost recovery mechanism for the cost of planning for the upstream capacity requirements of Grandfathered Customers.

[^5]At this time, based on the historical performance of Grandfathered Customers and the volumes represented by those customers, EnergyNorth does not believe that a change in the Commission's unbundling policy as it applies to EnergyNorth is warranted. First, as noted above, Grandfathered Customer load has remained constant since 2003/04. Second, the Company reviewed the daily delivery history of Suppliers doing business on the Company's system during the winter periods of November through March for the years 2003 through 2006. ${ }^{7}$ As shown in Charts III-B-6, III-B-7 and III-B-8 there have been minimal delivery failures attributable to underdeliveries by Suppliers on behalf of transportation customers. Moreover, it is impossible to separate the underdeliveries for Grandfathered Customers deliveries from the non-Grandfathered Customer deliveries as Suppliers balance at the pool level.

If despite this data, the Commission determines that it is appropriate for the Company to plan for the upstream capacity needs of grandfathered customers, the Company suggests that it would be appropriate to plan for 100% of those needs rather than only a portion of it and to require that all customers pay for the cost of acquiring any necessary incremental resources. Regarding the level of need to plan for, assuming the Commission determines as a matter of policy that the Company should plan for the needs of Grandfathered Customer load to ensure system reliability, the Company can determine no practical or historical basis to choose a level less than 100% of that load. With regards to cost allocation, if the Company were responsible for planning for the capacity requirements of formerly Grandfathered Customers, the Company would include this load as part of its normal planning process and combine

[^6]this need with the needs of the Company's remaining customers. As the capacity and any associated supply would be contracted for as part of the Company's overall needs, and available for use by all customers, it would be impractical to allocate specific 'pieces' of capacity to certain customers. Accordingly, the Company would propose to have the incremental cost paid for by all customers, including Grandfathered Customers.

The Company will continue to monitor growth in new transportation load opting directly for Supplier Service to determine whether, in the future, the Company's growth forecasts should be adjusted. To the extent that the Company projects a need for incremental capacity on the peak day, the Company will consider the trend in these transportation loads as a factor in determining the best way to meet that need. In the interim, the Company will rely on the Commission approved penalties for underdeliveries by suppliers serving the Company's customers as an appropriate deterrent to prevent suppliers from failing to meet their supply obligation to customers.

C. Regression Analysis

In the second step of EnergyNorth's forecasting methodology set forth in Section III.A, above, the Company uses regression equations of daily sendout versus daily temperature for the most recent twelve months to calculate the reference-year "springboard." This serves as the most accurate starting point for EnergyNorth to forecast its future customer requirements. Once this step is completed, the incremental sendout requirements developed in Section III.B are added to the reference-year

Customers and customers who were assigned capacity by the Company.
sendout requirements to determine EnergyNorth's total normalized forecast of customer requirements over the forecast period.

To establish normal-year springboard sendout requirements, the Company developed a linear-regression equation using data for the reference-year period May 1, 2005 through April 30, 2006 ${ }^{8}$. Through the use of the linear-regression equation, the Company is able to normalize daily sendout. Specifically, the actual daily firm sendout is regressed against the daily effective degree day ("EDD") data provided by the Company's weather services provider, Meteorologix, EDD data lagged by one day, and a weekend dummy variable. These data elements were selected for the regression analysis since these elements have been, and continue to be, the major explanatory variables underlying EnergyNorth's sendout requirements.

In this filing, EnergyNorth has selected the Manchester, New Hampshire weather station as the source of the weather data that is used as the principal explanatory variable in its regression equations. The Manchester weather station is close to the center of the Company's service territory, on a load-weighted basis, and it does not have temperature biases that other weather stations (e.g. Concord) have due to topography. Specifically, the Company used the EDD value that is measured for each 24 -hour period of 10 a.m. to 10 a.m., which constitutes KeySpan's Gas Day. EDD captures both the average temperature of the day as well as the effect that the wind has in increasing customer requirements.

Each year, EnergyNorth observes seasonal variations in the use-per-EDD requirements of its firm sales customers. These requirements increase going into the

[^7]heating season, plateau in the December through February time period, and then decrease in the later months of the heating season. To capture this experience within the regression equation, EnergyNorth used monthly independent variables for September through June to model this seasonal change. Each monthly variable has a coefficient of zero for all days not in its respective time period and a coefficient of the actual EDD value for the days within its time period. The resulting coefficient is then the heating increment for the given time period. The positive signs on the coefficients imply that as EDD increases, the Company's sendout requirements increase as well, which corresponds with the experience of KeySpan.

EnergyNorth also observed the increase in the explanatory power of the regression equation through the inclusion of the one-day lagged EDD value. The underlying theory of this analysis is that heating requirements increase as two consecutive days of cold weather occur, which cools down structures to a greater degree than would be experienced on a single day. The variable contains the prior day's EDD value, except for the months of July and August where this value is set to zero to reflect the fact that there is no heating requirement in the summer. The positive sign of the coefficients indicates that two days of cold weather increases the heating requirement over that experienced for one cold day.

Finally, EnergyNorth observes changes in sendout requirements between weekdays and weekends, which can be attributed to differences in load requirements occurring during the workweek as compared to the weekend. To model this, the regression equation includes a weekend dummy variable that is set to 1 on Saturdays and Sundays and 0 on weekdays. A negative coefficient for the weekend variable
implies a load reduction on weekend days versus weekday days, all other factors being equal. The functional form of the equation is given in Chart III-C-1. Chart III-C-2 sets forth the regression coefficients for the EnergyNorth system. The adjusted R-square is 0.982 , and all of the t-statistics of the independent variables are greater than 2.0 , indicating that these variables are significant to the explanatory power of the equation.

This regression equation captures the observed characteristics of the Company's sendout requirements. The observed characteristics include the following: (1) sendout requirements are directly related to EDD; (2) sendout requirements change on a seasonal basis; (3) sendout requirements are affected by EDDs that occur over a multiday period; and (4) sendout requirements differ by day of the week. Thus, EnergyNorth has developed a set of reliable regression equations to establish the basis upon which future sendout requirements can be forecast. Using its forecast of load additions and an appropriate set of daily EDD values for a design year, the Company can successfully plan its operational requirements to provide a low-cost, adequate and reliable supply of natural gas to its customers.

D. Normalized Forecasts of Customer Requirements By Year

In the third step of the Company's forecasting methodology set forth in Section III.A, above, the Company combines the May 2005 - April 2006 reference-year sendout, which is derived from the regression analysis, with the annual incremental sendout forecast discussed in Section III.B, to yield the following forecast of customer requirements under normal weather conditions:

Base Case Demand Scenario Customer Requirements (MMBtu)

	2006-07	2007-08	2008-09	2009-10	2010-11
Heating Season	9,441,300	9,757,800	9,904,300	10,125,700	10,377,200
Non-Heating Season	3,813,000	3,950,100	4,064,600	4,184,600	4,321,900
Total	13,254,300	13,707,900	13,968,900	14,310,300	14,699,100
Per-Annum Growth		3.4 \%	1.9 \%	2.4 \%	2.7 \%

The heating season is defined as the months of November through March; the nonheating season is defined as the months of April through October.

High Case Demand Scenario Customer Requirements (MMBtu)					
	$\underline{\mathbf{2 0 0 0 6 - 0 7}}$	$\underline{\mathbf{2 0 0 7 - 0 8}}$	$\underline{\mathbf{2 0 0 8 - 0 9}}$	$\underline{\mathbf{2 0 0 9 - 1 0}}$	$\underline{\mathbf{2 0 1 0 - 1 1}}$
Heating Season	$9,691,000$	$10,114,200$	$10,341,000$	$10,647,900$	$10,986,400$
Non-Heating Season	$\underline{3,957,600}$	$\underline{4,155,700}$	$\underline{4,318,400}$	$\underline{4,488,600}$	$\underline{4,677,000}$
Total	$13,648,600$	$14,269,900$	$14,659,400$	$15,136,500$	$15,663,400$
Per-Annum Growth		4.6%	2.7%	3.3%	3.5%

Low Case Demand Scenario Customer Requirements (MMBtu)

	$\underline{\mathbf{2 0 0 6 - 0 7}}$	$\underline{\mathbf{2 0 0 7 - 0 8}}$	$\underline{\mathbf{2 0 0 8 - 0 9}}$	$\underline{\mathbf{2 0 0 9 - 1 0}}$	$\underline{\mathbf{2 0 1 0 - 1 1}}$
Heating Season	$\underline{9,179,000}$	$\underline{9,394,000}$	$9,465,300$	$\underline{9,606,700}$	$\underline{9,777,500}$
Non-Heating Season	$\underline{3,659,300}$	$\underline{3,734,700}$	$\frac{3,800,500}{}$	$\frac{3,870,000}{}$	$\underline{3,955,500}$
Total	$12,838,300$	$13,128,700$	$13,265,800$	$13,476,700$	$13,733,000$
Per-Annum Growth		2.3%	1.0%	1.6%	1.9%

E. Planning Standards

In the fourth step of the Company's forecasting methodology, the Company performs a cost-benefit analysis to determine the appropriate design-day and designyear planning standards to develop a least-cost reliable supply portfolio over the forecast period.

1. Incorporation of the Monte Carlo Methodology

a. Background

In its previous IRP filing, the Company relied on a cost/benefit analysis methodology for the purposes of establishing design planning standards. This cost/benefit methodology used, as input data, time series of actual EDD observations that begin in January 1981 to estimate frequencies of occurrence of two types of extreme weather events: a design day and a design year. These two types of standards are significant in that the design day standard determines the most costeffective amount of transportation capacity (both interstate and supplemental) and the design year standard determines the most cost-effective amount of storage supply to maintain to ensure reliable service to the Company's customers.

The design day standard, which specifies the most cost-effective amount of transportation capacity (both interstate and supplemental), has been based on the statistical distribution of the coldest day of each calendar year. The design year standard, which specifies the most cost-effective amount of storage supply, has been based on the statistical distribution of the total EDDs in each calendar year. The mean and standard deviation of the normal distribution of each of these data sets has been used as the weighing factor in the probability-weighted 'benefit' estimate, i.e. the value of the avoidance of damages were the Company to plan for a design day/year lower than what might occur.

b. The Theory of the Company's Monte Carlo Methodology

For its 2006 IRP, KeySpan has used a Monte Carlo simulation method to generate synthetic daily EDD values for Manchester, NH for purposes of establishing design planning standards. The application of this Monte Carlo method provides the Company with a much larger time series of daily EDD values on which to base the theoretical 'benefit' values of its cost/benefit analysis.

The Monte Carlo methodology generally implies the generation of a dataset of synthetic values, larger than a given dataset of actual observations, based on the observed statistical properties of the actual dataset. The larger size of the synthetic dataset (3,000 simulated years) can assist in the determination of the likelihood of extreme weather events, such as those the Company seeks to define in its cost/benefit analysis of its design standards.

In developing a time series of daily EDD values much larger than the Company's existing actual historical observations from 1981-present, greater consideration had to be given than to generate 365 random values for each year of the synthetic dataset. First, consideration of the seasonality of EDD values had to be given. Second, consideration of the interdependence of one day's EDD value with the prior day's value had to be given, as well. To generate its set of synthetic data values, the Company chose to model its EDD data using a first-order autoregressive process (denoted $A R(1))$. Such a model has been commonly assumed for meteorological time series.

Letting X_{t} denote the EDD value on the $t^{\text {th }}$ day, the $A R(1)$ process requires that the conditional probability distribution of X, given the past record of observed EDD, X_{t-1},
X_{t-2}, \ldots, depends only on X_{t-1}, the observed EDD value for the previous day. This property can be expressed as:
$X_{t}-\mu=\Phi\left(X_{t-1}-\mu\right)+\epsilon_{t}$,
where the daily EDD values are expressed in terms of deviations from their common mean μ, and Φ denotes the first-order autocorrelation coefficient. The error terms $\left(\epsilon_{\mathrm{t}}\right)$ in equation (1) are assumed to constitute a "white-noise process"; that is, they are uncorrelated random variables with zero mean and constant variance $\sigma_{\epsilon}{ }^{2}$. It is further assumed that the ϵ_{t}, are normally distributed [denoted $\mathrm{N}\left(0, \sigma_{\epsilon}{ }^{2}\right)$].

The first-order autocorrelation coefficient Φ measures the degree of dependence between the EDD values on consecutive days, X_{t-1} and X_{t}. A value of $\Phi=0$ implies that X_{t-1} and X_{t} are uncorrelated (i.e., X_{t} is completely unpredictable from the past record of daily EDD), whereas a value of $\Phi=1$ or -1 implies that the X_{t} are perfectly correlated (i.e., X_{t} is completely predictable). For daily EDD time series, typically $0<\Phi<1$, meaning that the X_{t} are positively, but not perfectly, correlated. An $A R(1)$ process is stationary (i.e., all the joint probability distributions of the X, are time invariant) if | Φ | < 1. Although daily EDD time series are clearly nonstationary because seasonal cycles are present, the stationarity assumption is a reasonable approximation when dealing with a single month. Besides this day-to-day stationarity, it is also assumed that the monthly time series are stationary from year to year; in other words, that the climate over its recent history (since 1981, say) has not changed in a statistical sense.

The requirement that the error term ϵ_{t} is normally distributed implies that the daily EDD X_{t} also is normally distributed. Letting σ^{2} denote the variance of X_{t}, it is straightforward to show that σ^{2} is related to σ_{ϵ}^{2}, the variance of an error term, by
$\sigma_{\epsilon}{ }^{2}=\left(1-\phi^{2}\right) \sigma^{2}$

We see by equation (2), that the stronger the dependence between X_{t-1} and X_{t}, the greater the reduction in the variance of an error term relative to the variance of daily EDD. More importantly, (2) implies that an $\operatorname{AR}(1)$ process can be completely characterized in terms of three parameters, μ and, say Φ and σ^{2}.

c. The Application of the Company's Monte Carlo Methodology: Introduction

To determine the three parameters, μ, Φ and σ^{2} required for the $\operatorname{AR}(1)$ process, while considering the seasonality of EDD values, the Company began by determining the mean observed EDD value for each calendar day within its existing dataset (Figure 1).

Figure 1: 25-Year Mean Observed EDD Value By Calendar Day

To calculate its synthetic EDD series, the Company first divided its process into two subsets: heating season (October-May) and non-heating season (June-September). This was necessary to properly account for the fact that EDD values are not a continuous number series, i.e. while, theoretically EDD values can grow infinitely positive, by definition, they have a lower limit of zero.

d. The Application of the Company's Monte Carlo Methodology: Heating Season

For each day of observed EDD for the heating season, the Company then computed the difference from that day's actual EDD and the 25 -year mean EDD value for the same calendar day. From these daily deviation values, the Company calculated mean and standard deviation values, for each calendar month, to establish the μ and σ^{2} parameters required for its $A R(1)$ process. From the time series of these daily deviation
values, the Company calculated Pearson correlation coefficient, for each calendar month, to establish the Φ parameter required for its $\operatorname{AR}(1)$ process.

	$\underline{\mu}$	$\underline{\Sigma}$	$\underline{\Phi}$
October	0.00	7.17	0.541
November	0.00	8.68	0.536
December	0.00	9.86	0.631
January	0.00	11.54	0.671
February	0.00	10.10	0.618
March	0.00	8.65	0.583
April	0.00	7.61	0.555
May	0.00	5.91	0.499

Table 1: μ, Φ and σ^{2} parameters for the $\operatorname{AR}(1)$ heating season process

To create 3,000 years of synthetic daily EDD time series, the Company generated 243 random EDD deviation values (October $1^{\text {st }}-$ May $31^{\text {st }}$) denoted by $\mathrm{X}_{1}{ }_{1}$, $X^{\prime}, \ldots, X_{n}^{\prime}$, from the $\operatorname{AR}(1)$ process and added each day's deviation to the established mean EDD value for the same calendar day. The initial daily EDD deviation value (for the day of October $\left.1^{\text {st }}\right), X_{1}{ }_{1}$ was produced from the $N\left(\mu, \sigma^{2}\right)$ normal distribution by means of a random number generator. Each subsequent daily EDD deviation value, $X_{n}{ }_{n}$ was produced using Equations (1) and (2) from the $N\left(\mu, \sigma^{2}\right)$ normal distribution by means of a random number generator and the first-order autocorrelation coefficient Φ.

e. The Application of the Company's Monte Carlo Methodology: Non-Heating Season

To account for the fact that EDD values will frequently be zero during the nonheating season months of June through September, the Company modified the approach for the heating season and determined the actual monthly values of μ and σ, by matching the tail end of each month's actual observed distribution over the 25 -year
historical period with a normal distribution. Therefore, the Company could bypass the step of applying random errors to the 25-year mean EDD value for each calendar day and generate the synthetic values themselves with the and σ values and the monthly Pearson correlation coefficients of the deviation-from-mean values.

	$\underline{\mu}$	$\underline{\Sigma}$	Φ
June			
July	1.00	5.50	0.541
August	-1.50	3.00	0.536
September	-1.20	4.50	0.631

Table 2: μ, Φ and σ^{2} parameters for the $\operatorname{AR}(1)$ non-heating season process

To create 3,000 years of synthetic daily EDD time series, the Company generated 122 random EDD values (June $1^{\text {st }}-$ September $30^{\text {th }}$) denoted by $X^{\prime}{ }_{1}, X^{\prime}{ }_{2}, \ldots$, X_{n}^{\prime}, from the $A R(1)$ process. The initial daily EDD value (for the day of June $1^{\text {st }}$), $X^{\prime}{ }_{1}$ was produced from the $N\left(\mu, \sigma^{2}\right)$ normal distribution by means of a random number generator. Each subsequent daily EDD value, X_{n}^{\prime}, was produced using Equations (1) and (2) from the $N\left(\mu, \sigma^{2}\right)$ normal distribution by means of a random number generator and the first-order autocorrelation coefficient Φ.

f. Results of the Company's Monte Carlo Methodology: Peak Day

For each of the 3,000 synthetic heating seasons (October-May), the greatest EDD value was selected, with the minimum value of 52 EDD, the maximum value of 95 EDD, the mean value of 66.98 EDD and the standard deviation of 5.99 EDD. These statistics can be compared to the actual observed values from 1981-2005: the
minimum value of 55 EDD, the maximum value of 80 EDD, the mean value of 68 EDD and the standard deviation of 6.39 EDD.

Table 3 below lists the EDD values from 67 through 90, along with the number of occurrences exceeding each EDD value, and the probability of exceeding each EDD value, based on the synthetic dataset.

Greatest Heating Season EDD Value	Number of Occurrences Exceeding	Probability of Exceeding
67	1,288	0.4293
68	1,088	0.3627
69	903	0.3010
70	769	0.2563
71	631	0.2103
72	503	0.1677
73	403	0.1343
74	323	0.1077
75	264	0.0880
76	207	0.0690
77	163	0.0543
78	125	0.0417
79	93	0.0310
80	74	0.0247
81	57	0.0190
82	43	0.0143
83	29	0.0097
84	24	0.0080
85	16	0.0053
86	11	0.0037
87	8	0.0027
88	3	0.0010
89	3	0.0010
90	3	0.0010

Table 3: Peak Day Results Generated From Synthetic Dataset

g. Results of the Company's Monte Carlo Methodology: Peak Years

For each of the 3,000 synthetic years, the annual total EDDs were calculated, with the minimum value of 6,021 EDD, the maximum value of $8,081 \mathrm{EDD}$, the mean value of 7,079 EDD and the standard deviation of 291.29 EDD. These statistics can be compared to the actual observed calendar year values from 1981-2005: the minimum value of $6,450 \mathrm{EDD}$, the maximum value of $7,700 \mathrm{EDD}$, the mean value of $7,108 \mathrm{EDD}$ and the standard deviation of 332.38 EDD.

Table 4 below lists the EDD values from 7,100 through 8,300, along with the number of occurrences exceeding each EDD value, and the probability of exceeding each EDD value, based on the synthetic dataset.

Greatest Annual EDD Value	Number of Occurrences Exceeding	Probability of Exceeding
7,100	1,401	0.4670
7,200	989	0.3297
7,300	650	0.2167
7,400	396	0.1320
7,500	220	0.0733
7,600	113	0.0377
7,700	51	0.0170
7,800	15	0.0050
7,900	5	0.0017
8,000	3	0.0010
8,100	0	0.0000
8,200	0	0.0000
8,300	0	0.0000

Table 4: Peak Year Results Generated From Synthetic Dataset

The Company then proceeded to use the 'Probability of Exceeding' values from its synthetic dataset in its cost/benefit analyses of Design Day and Design Year determination.

2. Normal Year Standards

From Section III.C.1.g above, it was determined that the normal year is 7,079 EDD with a standard deviation of 291.29 EDD

EnergyNorth then prepared a "Typical Meteorological Year" (Chart III-E-1) by selecting, for each calendar month, the month in the Manchester, NH weather database that most closely approximated the average EDD and standard deviation for each month.

3. Design Year and Design Day Planning Standards

EnergyNorth's planning standards represent the defined weather conditions and consequent sendout requirement that must be met by the Company's resource portfolio. EnergyNorth's design year and design day standards are listed in Chart III-E-2.

Because EnergyNorth must demonstrate that there are adequate resources available to meet design conditions, while minimizing costs in a normal year, the Company periodically reassesses the appropriateness of these standards. As described below, the Company's analysis of the design year and design day standards demonstrate that these standards are appropriate.
(a) Design Day Standard

The purpose of a design day standard is to establish the amount of system-wide throughput (interstate pipeline and underground-storage capacity plus local supplemental capacity) that is required to maintain the integrity of the distribution system. In this filing, EnergyNorth defines its design day standard as 80.2 EDD with a probability of occurrence of once in 42.49 years.

EnergyNorth established its design day standard using a three-step process. First, the Company performed a statistical analysis of the coldest days derived from its Monte Carlo analysis. Second, the Company conducted a cost-benefit analysis to evaluate the cost of maintaining the resources necessary to meet design day demand versus the cost to customers of experiencing service curtailments. Third, the Company identified a design-day standard that would maintain reliability at the lowest cost.

For the first step, Section III.C.1.f (above), the Company identified the probability of occurrence of the coldest day of a heating season.

For the second step, EnergyNorth examined the cost of potential customer curtailments through a cost-benefit analysis. Chart III-E-3 shows the cumulative probability distribution and the frequency of occurrence of EDD levels greater than the mean peak day. Chart III-E-3 also shows, given the peak period heating coefficient of 1,463 MMBtu/EDD, the supply ("Delta Supply") required at these levels. The Company then translated these supply levels into the "Equivalent Number of Customers" that would be represented by a shortfall at a given EDD level. ${ }^{9}$

[^8]In the event of a service disruption, there are several types of damages that customers could experience. For example, EnergyNorth's residential customers would potentially incur re-light costs and freeze-up damages. EnergyNorth's commercial/industrial customers would potentially incur economic damages associated with the loss of production on the day of the event (which is further documented in Section III.E.2(b) - Design Year Standard).

There are three potential re-light cost values for three different building densities where the re-lights may occur: (1) congested areas; (2) moderately congested areas; and (3) non-congested areas. The re-lighting cost per establishment rises as the building density decreases to account for the increased time that is required to travel between establishments. The cost estimate for moderately congested areas was chosen as representative for EnergyNorth's planning standards.

EnergyNorth obtained a cost estimate for freeze-up damages from KeySpan's Risk Management Group. The current cost estimate of remodeling is $\$ 44,631 /$ customer. The Company made the assumption that, in the event of freeze-up damages, only a portion of a residence would require remodeling. This provides a range of possible outcomes, due to the uncertainty of what might occur in the event of such freeze-ups. Accordingly, the Company used this cost estimate to represent the cost of a full remodel, which was then adjusted to represent the portion of the residence requiring remodeling.

Given the ratio of $\mathrm{C} \& \mathrm{l}$ customers to the total number of customers at year-end 2005, EnergyNorth divided the "Equivalent Number of Customers" into the number of residential and C\&I customers. For the C\&I customers, the Company computed the
cost of the service disruption by multiplying the ratio of affected customers by the total number of C\&l customers by the estimated cost of one day's service disruption to EnergyNorth's entire group of C\&l customers. Since the actual number of residential customers that would suffer freeze-up damage in a real emergency is unknown, EnergyNorth analyzed three levels of damages assuming 25 percent, 50 percent, and 75 percent of potentially-affected residential customers suffer damages. The computed values for these three scenarios of probability-weighted costs of damages are presented in Chart III-E-4 and are shown graphically in Chart III-E-5.

Chart III-E-6 takes the EDD levels and the associated Delta Supply (i.e. the implicit supply shortfall - the EDDs above the mean peak day value times the overall heating increment) to estimate the costs associated with maintaining adequate deliverability at the EDD levels. The low-upgrade cost scenario is based on the cost of adding propane vaporization capacity and the high—upgrade cost scenario is based on the cost of adding 365-day interstate pipeline service (with many other potential options falling in between). This is shown graphically in Chart III-E-7. In Chart III-E-7, the cost of maintaining adequate throughput capacity and the benefit of avoiding damage costs that would be incurred in relation customer premises are compared.

The intersection of the curves sets a range of solutions for design day planning purposes from approximately 75 to 87 EDD with the center of the geometric shape located at 80.2 EDD. The Company then rounded this to the nearest integer value (80 EDD).

(b) Design Year Standard

In this filing, EnergyNorth defines its design year standard as 7,680 EDD with a probability of occurrence of once in 47.32 years.

EnergyNorth maintains a design year standard for planning purposes to identify the amount of seasonal supplies of natural gas that will be required to provide continuous service under all reasonably anticipated weather conditions. If EnergyNorth were to have a shorffall in supply during the winter season, the amount of supply in deficit can be translated into an equivalent number of customers whose service would be disrupted for more than one day. For a supply disruption of a multi-day duration, service would be curtailed on a priority basis and would likely fall on commercial and industrial establishments before affecting the residential sector, since supply to the residential sector is more likely to involve health and personal safety concerns. To establish an estimated annual level of EDD for which EnergyNorth should plan, the Company compared the benefit of maintaining an adequate quantity of natural gas supply under all reasonably anticipated weather conditions to the probability-weighted cost of losses that might occur if supplies are not adequate.

EnergyNorth has established its design-year standard using a three-step process. First, the Company performed a statistical analysis of annual EDD data recorded over a historical period. Second, the Company conducted a cost-benefit analysis to evaluate the cost of maintaining the resources necessary to meet designyear demand versus the cost to customers of experiencing service curtailments. Third, the Company identified a design-year standard that would maintain reliability at the lowest cost.

To complete the first step in the process of determining EnergyNorth's designyear standard, the Company relied on the results of its Monte Carlo analysis as found in Section III.C.1.g above. To evaluate the design-year standard, EnergyNorth analyzed a range of annual EDD values from the mean value to 1,200 EDD greater than the mean.

To complete the second step in the development of the design-year standard, EnergyNorth performed a cost-benefit analysis by examining the cost of potential customer curtailments in relation to the cost of maintaining adequate supplies to meet the design-year standard. Because a failure to perform on a seasonal basis would mean that adequate supplies were not available to meet customer needs, EnergyNorth views the cost of failure to deliver as the economic penalty within the service territory associated with the need to curtail gas sales for a period of time. Service would be rationed among EnergyNorth customers for a number of days in order to preserve any remaining gas supplies. EnergyNorth estimated the potential losses based on the product of the potential economic cost per day of interruption, times the number of days of interruption.

To calculate this estimate of potential losses, EnergyNorth determined the average Gross State Product per day (GSP/day) for the state of New Hampshire for 2005 from data available from the U.S. Bureau of Economic Analysis. The economic cost to EnergyNorth's customer base per day was then calculated on the basis of the total GSP/day. First, the value for the GSP/day for EnergyNorth's service territory was estimated by multiplying the GSP/day by the ratio of the number of employees within the service territory to the total number of employees within the state, based on 2005 employment data from the New Hampshire Economic and Labor Market Information

Bureau. Then, the value for the GSP/day in 2005 for EnergyNorth's customer base was estimated by multiplying the GSP/day figure for the EnergyNorth service territory by the estimated market share of natural gas in relation to all fuel types in the service territory.

To determine the number of days of interruption that a supply shorffall would represent, EnergyNorth analyzed its supply requirements at various EDD levels, assigned requirements to supply sources, and, using the average annual EDD as the baseline, estimated when supply sources would be in deficit, as well as the quantity and duration of such deficit.

EnergyNorth established a baseline of the normal annual EDD $(7,079)$ and then determined sendout requirements for the split year 2005/06 by assigning all sendout requirements below the daily deliverability of its Canadian and domestic long-haul pipeline capacity to pipeline supply; all requirements greater than its pipeline supply up to its underground storage deliverability to underground storage supplies; and all requirements above that to supplemental resources. EnergyNorth then analyzed the sendout requirements for EDD levels of 7,079 to 8,300 on 100 EDD increments. EnergyNorth computed these EDD scenarios by multiplying each of the days of its normal EDD days by the ratio of the desired annual total to 7,079 EDD. Using the same method of assignment of supply sources, EnergyNorth determined the annual shortfalls by supply source (Chart III-E-8).

Chart III-E-9 shows that the timing of when the shorffalls occur varies among the supply sources. Pipeline shortfalls occur late in the heating season. The underground storage and supplemental-resource shortfalls occur during the heating season. Chart

III-E-10 summarizes the EDD levels, the probabilities of occurrence, and the shortfall by supply type.

Analysis indicates that sendout for EnergyNorth during the heating season is 49 percent residential and 51 percent C\&I. In examining its calculations of shortfalls versus the daily sendout requirements to each of these customer classes, the total daily shortfall of underground storage and supplemental supplies at all EDD levels in this study can be assigned to C\&I customers. For each forecast day under each EDD scenario, the daily sendout requirement was multiplied by 51 percent to derive the $C \& /$ portion. If the day had a supply shortfall, the shortfall value was divided by the C\&l requirement to derive that day's fractional amount of EnergyNorth's C\&I customers that would suffer curtailment. Summing all of these values for a given EDD scenario, EnergyNorth determined the total number of day-equivalents of interruption. This value is less than or equal to the number of calendar days during which interruption occurred since not all days will have 100 percent interruption. Multiplying the number of dayequivalents by the GSP/day for the C\&l customer base yields an estimate of the economic damage that would occur. Chart III-E-11 lists the EDD levels, the probabilities of occurrence, the days of interruption, the cost of the interruption, the probability-weighted cost of the interruption, and the quantity of interrupted winter supply (underground storage and supplemental resources).

There are two damages scenarios presented here: one where 25 percent of the C\&I establishments are actually affected, and one where 75 percent of the establishments are affected. Chart III-E-11 also sets forth two scenarios of satisfying the deficit: a 365-day long-haul capacity contract based on the required incremental
throughput capacity, and a 365 -day short-haul capacity contract meeting the required incremental throughput capacity plus an underground storage contract with adequate capacity to meet the required incremental winter volume. Chart III-E-12 demonstrates that a planning range of 7,590 to 7,740 EDD, with the center of the geometric shape located at 7,680 EDD is appropriate.

F. Forecasts of Design Year Customer Requirements By Year

In the fifth and final step of the Company's forecasting methodology set forth in Section III.A above, the Company uses the applicable design day and design year planning standards to determine the design day and design year sendout requirements. To accomplish this, the Company combines the 2005/06 reference-year sendout, which is derived from the regression analysis, with the annual incremental sendout forecast discussed in Section III.B, to yield the following forecast of customer requirements under design weather conditions:

Base Case Demand Scenario Customer Requirements (MMBtu)

| | $\underline{2006-07}$ | $\underline{2007-08}$ | $\underline{\mathbf{2 0 0 8 - 0 9}}$ | $\mathbf{2 0 0 9 - 1 0}$ | $\underline{\mathbf{2 0 1 0 - 1 1}}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Heating Season | $10,451,700$ | $10,795,100$ | $10,946,700$ | $11,183,400$ | $11,452,000$ |
| Non-Heating Season | $\underline{4,089,700}$ | $\underline{4,232,000}$ | $\underline{4,350,800}$ | $\underline{4,475,400}$ | $\underline{4,617,800}$ |
| Total | $14,541,400$ | $15,027,100$ | $15,297,500$ | $15,658,800$ | $16,069,800$ |
| Per-Annum Growth | 3.3% | 1.8% | 2.4% | 2.6% | |

High Case Demand Scenario Customer Requirements (MMBtu)
Heating Season
Non-Heating Season
Total
Per-Annum Growth

$\underline{\mathbf{2 0 0 6 - 0 7}}$	$\underline{\mathbf{2 0 0 7}-08}$
$10,764,700$	$11,221,900$
$\underline{4,264,200}$	$\underline{4,469,300}$
$15,028,900$	$15,691,200$
	4.4%

Low Case Demand Scenario Customer Requirements (MMBtu)

Heating Season
Non-Heating Season Total
Per-Annum Growth

$\underline{\mathbf{2 0 0 6 - 0 7}}$	$\underline{\mathbf{2 0 0 7 - 0 8}}$	$\underline{\mathbf{2 0 0 8 - 0 9}}$	$\underline{\mathbf{2 0 0 9 - 1 0}}$	$\underline{\mathbf{2 0 1 0 - 1 1}}$
$\mathbf{1 0 , 1 2 3 , 2 0 0}$	$10,358,400$	$10,430,400$	$10,582,000$	$10,765,200$
$\frac{3,904,200}{14,027,400}$	$\frac{3,983,100}{14,341,500}$	$\frac{4,051,700}{14,482,100}$	$\underline{4,124,400}$	$\underline{4,213,500}$
	2.2%	1.0%	1.5%	1.9%

KeySpan Sendout Requirements Forecast

EnergyNorth Natural Gas, Inc.
2006/07-2010/11 Base Case

Normal Weather	2006/07	2007/08	2008/09	2009/10	2010/11	Average Increment Or Percent	Total Increment Or Percent
Sendout (MMBtu)							
Residential	5,804,058	6,012,112	6,136,364	6,253,751	6,387,670	145,903	583,612
Commercial \& Industrial	7,450,242	7,695,788	7,832,536	8,056,549	8,311,430	$\underline{215,297}$	861,188
Traditional Market	13,254,300	13,707,900	13,968,900	14,310,300	14,699,100	361,200	1,444,800
NGV	0	0	0	0	0	0	0
Seasonal	0	$\underline{0}$	$\underline{0}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$
Total	13,254,300	13,707,900	13,968,900	14,310,300	14,699,100	361,200	1,444,800
Growth Rate (\%)							
Residential		3.58\%	2.07\%	1.91\%	2.14\%	2.43\%	9.71\%
Commercial \& Industrial		3.30\%	1.78\%	2.86\%	3.16\%	2.77\%	11.10\%
Traditional Market		3.42\%	1.90\%	2.44\%	2.72\%	2.62\%	10.49\%
NGV		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Seasonal		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Total		3.42\%	1.90\%	2.44\%	2.72\%	2.62\%	10.49\%

| Average | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Design Weather | $2006 / 07$ | $\mathbf{2 0 0 7 / 0 8}$ | $\underline{2008 / 09}$ | $\mathbf{2 0 0 9 / 1 0}$ | Total
 Increment
 Increment | |
| Sendout (MMBtu) | | | | | | |
| Residential Percent OrPercent | | | | | | |

Residential	3.50\%	1.96\%	183\%	205\%	234\%	9.35\%
Commercial \& Industrial	3.21\%	1.67\%	2.78\%	3.07\%	2.68\%	10.73\%
Traditional Market	3.34\%	1.80\%	2.36\%	2.62\%	2.53\%	10.13\%
NGV	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Seasonal	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Total	3.34\%	1.80\%	2.36\%	2.62\%	2.53\%	10.13\%

EnergyNorth Natural Gas, Inc.

d/b/a KeySpan Energy Delivery New England
Demand Projections

Base Case

2006-2010 (MMBtu)

TOTAL ANNUAL LOAD ADDITIONS (2006-2010)
2006 FORECAST
Annual
Average

EnergyNorth Natural Gas, Inc. d/b/a KeySpan Energy Delivery New England Demand Projections Base Case vs. Low Case and High Case

2006-2010
(MMBtu)
TOTAL ANNUAL LOAD ADDITIONS (2006-2010)
2006 FORECAST

		2007-2008	2008-2009	2009-2010	2010-2011	Total	Annual Average
NET ANNUAL ADDITIONS							
Base Case vs Low Case							
	Base Case						
	Residential	174,844	152,043	115,109	131,251	573,247	143,312
	Commercial/Industrial	206,351	167,333	219,666	249,803	843.153	210,788
	Traditional Total	381,195	319,376	334,775	381,054	1,416,400	354,100
	Low Case						
	Residential	161,170	140,073	100,844	\{13,637	515,723	128,931
	Commercialifndustria!	62,664	55,312	106,050	137,571	361,599	90,400
	Traditional Total	223,834	195,385	206,894	251,208	877,322	219,330
	Difference (Base vs. Low)						
	Residential	13,674	11,970	14,266	17,615	57,524	14,381
	Commercial/Industrial	143,687	112,021	113,516	112,231	481,554	120,389
	Traditional Total	157,360	123,991	127,881	129,846	539,078	134,770
	Difference as \% of Base Case						
	Residential	7.82\%	7.87\%	12.39\%	13.42\%	10.03\%	10.03\%
	Commercial/industrial	69.63\%	66.94\%	51.72\%	44.93\%	57.11\%	57.11\%
	Traditional Total	41.28\%	38.82\%	38.20\%	34.08\%	38.06\%	38.06\%
Base Case vs High Case							
	Base Case						
	Residential	174,844	152,043	115,109	131,251	573,247	143,312
	Commercial/Industrial	206,351	167,333	219,666	249,803	843,153	210,788
	Traditional Total	381,195	319,376	334,775	381,054	1,416,400	354,100
	High Case						
	Residential	190,133	165,488	131,184	151,023	637,828	159,457
	Commercial/Industrial	353.008	282,460	336,395	365,553	1,337,415	334,354
	Traditional Total	543,140	447,948	467.580	516,576	1,975,243	493,811
	Base vs. High						
	Residential	$(15,289)$	$(13,445)$	$(16,075)$	$(19,772)$	$(64,581)$	$(16,145)$
	Commercial/industrial	$(146,656)$	$(115,127)$	$(116,729)$	$(115,750)$	(494,262)	(123,566)
	Traditional Total	$(161,946)$	$(128,572)$	$(132,804)$	$(135,522)$	$(558,843)$	(139,711)
	\% of Base Case						
	Residential	-8.74\%	-8.84\%	-13.97\%	-15.06\%	-11.27\%	-11.27\%
	Commercial/Industrial	-71.07\%	-68.80\%	-53.14\%	-46.34\%	-58.62\%	-58.62\%
	Traditional Total	-42.48\%	-40.26\%	-39.67\%	-35.56\%	-39.46\%	-39.46\%

EnergyNorth Natural Gas, Inc. d/b/a KeySpan Energy Delivery New England Demand Projections

High Case
2006-2010
(MMBtu)
TOTAL ANNUAL LOAD ADDITIONS (2006-2010) 2006 FORECAST

2007-2008 2008-2009 2009-2010 2010-2011 Total | Annual |
| :---: |
| Average |

NET ANNUAL ADDITIONS

Residential	214,138	189,493	155,189	175,028	733,848	183,462
DSM Reduction	$(24,005)$	$(24,005)$	$(24,005)$	$(24,005)$	$(96,020)$	$(24,005)$
Total Residential	190,133	165,488	131,184	151,023	637,828	159,457
Commercial/Industrial	406,576	336,028	389,963	419,121	1,551,687	387,922
DSM Reduction	$(53,568)$	$(53,568)$	$(53,568)$	$(53,568)$	$(214,272)$	$(53,568)$
Total Commercial/Industrial	353,008	282,460	336,395	365,553	1,337,415	334,354
Traditional Total	543,140	447,948	467,580	516,576	1,975,243	493,811
Natural Gas Vehicles	0	0	0	0	0	0
Seasonal Firm Contracts	0	0	0	0	0	0
TOTAL NET	543,140	447,948	467,580	516,576	1,975,243	493,811

EnergyNorth Natural Gas, Inc. d/b/a KeySpan Energy Delivery New England Demand Projections
Low Case
2006-2010
(MMBtu)

TOTAL ANNUAL LOAD ADDITIONS (2006-2010) 2006 FORECAST

2007-2008 2008-2009 2009-2010 2010-2011 Total | Annual |
| ---: |
| Average |

NET ANNUAL ADDITIONS

Residential DSM Reduction	$\begin{aligned} & 185,175 \\ & (24,005) \end{aligned}$	$\begin{aligned} & 164,078 \\ & (24,005) \end{aligned}$	$\begin{aligned} & 124,849 \\ & (24,005) \\ & \hline \end{aligned}$	$\begin{aligned} & 137,642 \\ & (24,005) \\ & \hline \end{aligned}$	$\begin{aligned} & 611,743 \\ & (96,020) \\ & \hline \end{aligned}$	$\begin{array}{r} 152,936 \\ (24,005) \end{array}$
Total Residential	161,170	140,073	100,844	113,637	515,723	128,931
Commercial/Industrial	116,232	108,880	159,618	191,139	575,871	143,968
DSM Reduction	$(53,568)$	$(53,568)$	$(53,568)$	$(53,568)$	$(214,272)$	$(53,568)$
Total Commercial/Industrial	62,664	55,312	106,050	137,571	361,599	90,400
Traditional Total	223,834	195,385	206,894	251,208	877,322	219,330
Natural Gas Vehicles	0	0	0	0	0	0
Seasonal Firm Contracts	0	0	0	0	0	0
TOTAL NET	223,834	195,385	206,894	251,208	877,322	219,330

Underdelivenes are imbalances where marketer has been assessed a penalty charge for underdeliveries outside
of the respective peak season tolerances. There were no penalties assessed for underdeliveries during Critical Day/OFO periods.

KeySpan Energy Delivery
Energy North
Marketer Underdeliveries
Peak Season Periods
Nov 04 - Mar 05
(MMBtu)

Marketer:	Daily Metered Service										Non-Daily Metered Service									
	A	B	C	D	E	F	G	Total UnderDeliv	Total Markoter Delivaries	$\begin{gathered} \% \\ \text { Imbalanca } \end{gathered}$	A	B	C	D	E	F	G	Total UnderDeliv	Total Marketer Dellveries	\% Imbalance
Imbaiance Date																				
11/9/2004	n/a	n/a	0.	1	72	0	0	73	6,959	1.05\%	n/a	n/a	0	0	0	0	0	0	Na	n/a
1215/2004	n/a	n/a	34	57	228	33	0	352	5,275	6.67\%	n/a	N/a	0	0	0	0	0	0	Na	n/a
12/7/2004	n/a	n/a	5	48	0	0	0	53	6,395	0.83\%	n/a	Na	0	0	0	0	0	0	n/a	n/a
12/20/2004	n/a	n/a	0	39	0	105	0	144	7,697	1.87\%	n/a	n/a	0	0	0	0	0	0	Na	nfa
12/21/2004	n/a	n/a	0	62	0	79	0	141	7,206	1.96\%	n/a	ra	0	0	0	0	0	0	Na	n/a
1/12/2005	n/a	n/a	0	46	237	0	0	283	5,834	4.85\%	Na	N/a	0	0	0	0	0	0	n/a	n/a
1/31/2005	n/a	n/a	0	0	40	0	0	40	6,895	0.58\%	n/a	n/a	0	0	0	0	0	0	n/a	n/a
Total Nov 04 - Mar 05	n/a	n/a	39	253	577	217	0	1,086	46,261	2.35\%	n/a	n/a	0	0	0	0	0	0	n/a	n/a

Underdeliveries are imbalances where marketer has been assessed a penalty charge for underdeliveries outside
of the respective peak season tolerances. There were no penalties assessed for underdeliveries during Critical Day/OFO periods.

KoySpan Energy Delivery

Energy North
Marketer Undardeliveries
Peak Season Periods
Nov 05 - Mar 06
(MMBtu)

Marketer:	Daily Metared Service										Non-Daily Metered Sorvice									
		B	C	D	E	F	G	Total UnderDeliv	Total Marketer Delivaries	$\begin{gathered} \% \\ \text { Imbalance } \\ \hline \end{gathered}$	A	B	C	D	E	F	G	Total UnderDeliv	Total Marketer Deliveries	$\begin{gathered} \% \\ \text { Imbalance } \\ \hline \end{gathered}$
Imbalance Date																				
11/2/2005	n/a	n/a	0	68	0	0	0	68	6,758	1.01\%	n/a	na	0	0	0	0	0	0	n/a	n/a
11/11/2005	n/a	n/a	0	69	0	0	0.	69	6,232	1.11\%	nia	Na	0	0	0	0	0	0	n/a	n/a
11/12/2005	n/a	n/a	0	49	0	0	0	49	4,430	1.11\%	n/a	ra	0	0	0	0	0	0	n/a	n/a
11/24/2005	n/a	n/a	0	152	0	0	0	152	4,039	3.76\%	n/a	na	0	0	0	0	0	0	n/a	n/a
11/25/2005	n/a	n/a	0	43	0	0	0	43	4,779	0.90\%	n/a	n/ ${ }^{\text {a }}$	0	0	0	0	0	0	n/a	n/a
12/4/2005	n/a	n/a	3	129	7	0	0	139	5,822	2.39\%	n / a	no	0	0	0	0	0	0	n/a	n/a
12/31/2005	$\mathrm{n} / \mathrm{3}$	n/a	0	0	0	16	0	16	4,595	0.35\%	n/a	nja	0	0	0	0	0	0	$n / 3$	n/a
1/1/2006	n / a	n/a	0	0	0	432	0	432	3,830	11.28\%	no	n/a	0	0	0	0	0	0	n / a	n/a
1/15/2006	n/a	n/a	10	58	0	210	33	311	5,637	5.52\%	n / a	n/a	0	0	0	0	0	0	n/a	n/a
2/18/2006	$n / 2$	n/a	0	0	0	825	0	825	4,624	17.84\%	n/a	n/a	0	0	0	0	0	0	n/a	n/a
2/28/2006	n / a	n/a	0	68	0	0	0	68	7,140	0.95\%	n/a	nia	0	0	0	0	0	0	n/a	n/a
3/30/2006	n/a	n/a	0	0	0	0	0	0	n/a	n/a	n/a	n/a	0	0	0	1	0	1	1,703	0.06\%
Total Nov 04 - Mar 05	n/a	n/a	13	636	7	1.483	33	2,172	57,886	3.75\%	n/a	n/a	0	0	0	1	0	1]	1,703	0.06\%

Underdeliveries are imbalances where marketer has been assessed a penatty charge for underdeliveries outside
of the respective peak season tolerances. There were no penalties assessed for underdeliveries during Critical Day/OFO periods.

Functional Form of Regression Equation

Coefficient

Firm Sendout $=f\left(\begin{array}{l}\text { Base Load, } \\ \\ \text { September EDD, } \\ \text { October EDD, } \\ \\ \text { November EDD, } \\ \text { December EDD, } \\ \\ \text { January EDD, } \\ \\ \text { February EDD, } \\ \\ \text { March EDD, } \\ \\ \text { April EDD, } \\ \\ \text { May EDD, } \\ \\ \text { June EDD, } \\ \\ \text { Lagged EDD, } \\ \\ \text { Weekend Dummy })\end{array}\right.$

In the regression equation, the units of the coefficients are in MMBtu/day for the Base Load and the Weekend Dummy and in MMBtu/EDD for the EDD-related variables.

Chart III-C-2

Regression Coefficients for KeySpan

Coefficient	EnergyNorth
Base Load	$9,446.702$
September EDD	349.568
October EDD	896.779
November EDD	$1,100.642$
December EDD	$1,259.716$
January EDD	$1,264.454$
February EDD	$1,251.669$
March EDD	$1,180.541$
April EDD	926.163
May EDD	793.901
June EDD	404.185
Lagged EDD	216.750
Weekend Dummy	$-2,264.001$
R-squared	0.990
Std Error of the Equation	$2,483.750$

Average Monthly EDD and Average of Monthly Standard Deviations
 For The
 Manchester, NH Weather Site

	EDD	Standard Deviation
January	1,348	11.0
February	1,106	10.2
March	977	9.5
April	601	8.0
May	310	6.0
June	83	3.5
July	19	1.3
August	39	2.1
September	163	5.0
October	504	7.4
November	780	9.0
December	$\underline{1,149}$	9.7
Total	7,079	

Design Year and Design Day Criteria

Manchester, NH
Weather Site
Design Year EDD 7,680
Frequency of Occurrence
Design Day EDD
80.2
Frequency of Occurrence
1/42.49 years

EnergyNorth Natural Gas, Inc. 2006 Integrated Resource Plan

Assumptions:

Mean Peak Day $=$	67.0 EDD
Std Dev Peak Day $=$	6.0 EDD
Heating increment $=$	$1,463 \mathrm{MMB}$ 价/EDD
No. of Firm Customers $=$	80,303

EDD Level	Cumulative Probability Of Occurrence (p)	Probability Of Exceeding (1-p)	Frequency of Occurrence 1/(1-p) (years)	EDD Excess	Delta Supply (MMBtu)	Requirements Of An Average Customer At EDD Level (MMBtu/cust)	Equivalent Number of Customers
67.0		0.4293	2.33	0.0	23	1.22	19
68.0		0.3627	2.76	1.0	1.487	1.24	1,200
69.0		0.3010	3.32	2.0	2.950	1.26	2,346
70.0		0.2563	3.90	3.0	4,413	1.28	3,460
71.0		0.2103	4.75	4.0	5.877	1.29	4,542
72.0		0.1677	5.96	5.0	7,340	1.31	5,594
73.0		0.1343	7.44	6.0	8,803	1.33	6.618
74.0		0.1077	9.29	7.0	10,266	1.35	7,614
75.0		0.0880	11.36	8.0	11.730	1.37	8,583
76.0		0.0690	14.49	9.0	13,193	1.38	9.526
77.0		0.0543	18.40	10.0	14,656	1.40	10.446
78.0		0.0417	24.00	11.0	16,120	1.42	11,341
79.0		0.0310	32.26	12.0	17.583	1.44	12,214
80.0		0.0247	40.54	13.0	19,046	1.46	13,065
81.0		0.0190	52.63	14.0	20,509	1.48	13,895
82.0		0.0143	69.77	15.0	21,973	1.49	14,705
83.0		0.0097	103.45	16.0	23,436	1.51	15,496
84.0		0.0080	125.00	17.0	24,899	1.53	16,267
85.0		0.0053	187.50	18.0	26,363	1.55	17,020
86.0		0.0037	272.73	19.0	27,826	1.57	17,756
87.0		0.0027	375.00	20.0	29,289	1.59	18,475
88.0		0.0010	1000.00	21.0	30,753	1.60	19,178
89.0		0.0010	1000.00	22.0	32,216	1.62	19,865
90.0		0.0010	1000.00	23.0	33,679	1.64	20.536
80.2		0.0235	42.49	(EDD Level MINUS Mean Peak)	(EDD Excess TIMES Heating Increment) (MMBtu)	(Heating increment DIVIDED BY No. of Firm Customers times EDD Level)	(Delta Supply DIVIDED BY Requirements of Average Customer)

EnergyNorth Natural Gas, Inc.
2006 Integrated Resource Plan
Assumptions:

Mean Peak Day =	67.0 EDD
Std Dev Peak Day =	6.0 EDD
Heating Increment $=$	1,463 MMBtu/EDD
No. of Firm Customers =	80,303
GDP Deflator (1991-2005) $=$	1.35

	1991 dollars	2005 dollars
Relight Costs $=$		\$80.01 icustomer
```Freeze-Up Damages = Total =```	\$33,000.00 /customer	$\$ 44,631.19$ /customer \$44,711.20 /customer
Year-End 2005:		
Comm/ind Customers	9,640	
Total Customers	80,303	
Percent C\&I of Total	12.0\%	
Cost of Interruption/Day =	\$27,039,948	


EDD Level	Probability Of   Exceeding $(1-p)$	Equivalent Number of Customers	Residential Customers	Comm/Ind Customers	Cost Of Interruption to Comm/ind Customers	Probability-Weighted Cost Of Damages Given X\% of Residential Customers With Damages PLUS Cost of interruption to Commind Customers (2005 dollars)		
						25\%	50\%	75\%
67.0	0.4293	19	17	2	\$6,457	83.754	164,736	245,718
68.0	0.3627	1,200	1,056	144	\$404,009	4,426,492	8,706,463	12,986,435
69.0	0.3010	2,346	2,065	282	\$790,037	7,184,146	14.130,491	21,076,837
70.0	0.2563	3,460	3,045	415	\$1,165,035	9,022,058	17,745,478	26,468,899
71.0	0.2103	4,542	3.997	545	\$1,529,471	9,718,756	19,115,814	28,512,871
72.0	0.1677	5,594	4,923	672	\$1,883,783	9,541,991	18,768,134	27,994,277
73.0	0.1343	6,618	5.823	794	\$2,228,388	9,043,488	17,787,630	26,531,772
74.0	0.1077	7.614	6,700	914	\$2,563,679	8,338,854	16,401,685	24,464,516
75.0	0.0880	8,583	7,552	1,030	\$2,890,030	7,683,274	15,112,226	22.541.178
76.0	0.0690	9,526	8,383	1.144	\$3,207,792	6,686,774	13,152,210	19,647.646
77.0	0.0543	10.446	9,192	1,254	\$3,517,300	5,773,473	11,355,840	16,938,207
78.0	0.0417	11,341	9,980	1,361	\$3,818,873	4,807,124	9,455,128	14,103,132
79.0	0.0310	12.214	10,748	1,466	\$4,112,810	3,851,782	7,576,068	11,300,353
80.0	0.0247	13,065	11,497	1,568	\$4,399,399	3,278,425	6.448,331	9,618,238
81.0	0.0190	13.895	12,227	1,668	\$4,678,912	2,685,715	5,282,530	7,879,346
82.0	0.0143	14,705	12,940	1.765	\$4,951,608	2,144,148	4,217,324	6,290.499
83.0	0.0097	15,496	13,635	1,860	\$5,217,733	1,523,772	2,997,106	4,470,439
84.0	0.0080	16,267	14,314	1.953	\$5,477,521	1,323,840	2,603,859	3,883,879
85.0	0.0053	17,020	14,977	2,043	\$5,731,196	923,433	1,816,300	2,709,166
86.0	0.0037	17,756	15,625	2.132	\$5,978,973	662,307	1,302,691	1,943,075
87.0	0.0027	18,475	16,257	2,218	\$6,221,053	501,180	985,771	1.470,362
88.0	0.0010	19,178	16,876	2,302	\$6,457.631	195,090	383.722	572,354
89.0	0.0010	19.865	17,480	2,385	\$6,688,893	202,076	397,464	592,851
90.0	0.0010	20,536	18,071	2.465	\$6,915,016	208,908	410,901	612,893
						(Proba   [Comm/l   No. Of Resident	Excoeding of Interrupti omers TIME mage Costs]	S   nt TIMES

## Chart III-E-5

## Probability-Weighted Damage Costs



EnergyNorth Natural Gas, Inc. 2006 Integrated Resource Plan
Assumptions:

Mean Peak Day =	67.0 EDD		
Std Dev Peak Day =	6.0 EDD		
GDP Deflator (1994-2005) =	1.26		
	1994 d	ollars	2005 dollars
Cost of Add'I Propane Capacity $=$ Cost of New Pipeline Capacity =	\$43.86	/MMBtu /MMBtu	$\$ 55.40$ /MMBtu $\$ 558.52$ /MMBtu


EDD ${ }^{\text {a }}$		Low Upgrade Costs Case	High Upgrade Costs Case
	Delta Supply (MMBtu)	Propane Capacity Costs	Pipeline Capacity Costs
67.0	23	\$1,297	\$13,076
68.0	1,487	\$82,357	\$830,358
69.0	2,950	\$163,417	\$1,647,639
70.0	4,413	\$244,477	\$2,464,920
71.0	5,877	\$325,537	\$3,282,201
72.0	7,340	\$406,596	\$4,099,483
73.0	8,803	\$487,656	\$4,916,764
74.0	10,266	\$568,716	\$5,734,045
75.0	11,730	\$649,776	\$6,551,326
76.0	13,193	\$730,836	\$7,368,608
77.0	14,656	\$811,896	\$8,185,889
78.0	16,120	\$892,956	\$9,003,170
79.0	17,583	\$974,016	\$9,820,451
80.0	19,046	\$1,055,076	\$10,637,732
81.0	20,509	\$1,136,136	\$11,455,014
82.0	21,973	\$1,217,196	\$12,272,295
83.0	23,436	\$1,298,255	\$13,089,576
84.0	24,899	\$1,379,315	\$13,906,857
85.0	26,363	\$1,460,375	\$14,724,139
86.0	27,826	\$1,541,435	\$15,541,420
87.0	29,289	\$1,622,495	\$16,358,701
88.0	30,753	\$1,703,555	\$17,175,982
89.0	32,216	\$1,784,615	\$17,993,264
90.0	33,679	\$1,865,675	\$18,810,545

## Probability-Weighted Damage Costs vs System Upgrade Costs EnergyNorth




## Chart III-E-9

## EnergyNorth Natural Gas, Inc.

 2006 Integrated Resource PlanPipeline Shortfall At EDD Level Above 7,079 Normal Annual EDD By Month

	Annual EDD Level													
	7,077	7.100	7.200	7,300	7.400	7.500	7.600	7.700	7.800	7.900	8.000	8.100	8.200	8,300
Nov	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jan	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oct	0	2,745	15,696	28,357	40,341	52,180	63.896	75,163	86.174	97.185	108,196	119,207	129,989	140,221
Total	0	2,745	15,696	28.357	40.341	52.180	63,896	75,163	86,174	97,185	108,196	119,207	129,989	$140.22\}$

Storage Shortfall At EDD Level Above 7.079 Normal Annual EDD By Month

	Annual EDD Level													
	7,077	7,100	7.200	7,300	7,400	7.500	7,600	7.700	7,800	7,900	8,000	8,100	8,200	8.300
Nov	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jan	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	35,911	108.441	179,254	249,827	319.477	388.415	455.501	519.663	583,343	645.958
Apr	0	0	30,687	114,890	163.132	171.303	179,568	188,008	196,447	204,886	213,325	221,765	230.204	238.643
May	0	0	0	144	423	703	983	1,269	1.812	2.355	2.898	3,441	4.129	5,202
Jun	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oct	0	18,834	77,102	81,888	87.037	92,232	97,427	102,622	107,817	113.011	118,206	123,401	128.596	133.797
Total	0	18,834	107,789	196,922	286,503	372,679	457,232	541,725	625.552	708,667	789.930	868.269	946.271	1.023,592

Supplementals Shortfall At EDD Level Above 7,079 Normal Annual EDD By Month

	Annual EDD Level													
	7.077	7,100	7.200	7.300	7,400	7.500	7,600	7,700	7.800	7.900	8,000	8,100	8.200	8.300
Nov	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jan	0	0	0	0	0	13.375	35,735	58,601	82,391	106.528	131,727	159,248	187.010	215.461
Feb	0	411	28,579	56,861	85,371	104,056	115,503	126.951	138.399	150.210	162.557	174,903	187,250	199,596
Mar	0	5.762	7.833	9,904	11.976	14,047	16.118	18,190	20,261	22,332	24,660	27.589	30.842	34,639
Apr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oct	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	6.172	36,412	66.765	97.347	131.478	167.356	203.742	241,050	279.074	318,944	361,740	405,103	449,697

## Chart III-E-10

EnergyNorth Natural Gas, Inc.

## 2006 Integrated Resource Plan

## Assumptions:

Mean Annual EDD $=$	7,079 EDD
Std Dev Annual EDD $=$	291.29 EDD
Heating Increment $=$	1,463 MMBtu/EDD
No. of Firm Customers $=$	80,303



EnergyNorth Natural Gas, Inc. 2006 Integrated Resource Plan										
Assumptions:										
Mean Annual EDD $=$	7,079.0									
Std Dev Annual EDO $=$	291.3									
Cost of Interruption/Day $=$	\$27,039,948									
Supply Cost	\$7.500 S/MMBtu									
Long-Haul Capacity Cost	\$583.58 \$/MMBtu									
Short-Haul Capacity Cost	\$70.680 \$/MMBtu									
Storage D1 Cost	\$13.800 S/MMBtu$\mathbf{\$ 0 . 2 2 2}$ S/MMBtu									
Storage D2 Cost										
					Costs in 2005 Dollars				Costs in 2005 Doilars	
	Probability   Or   Occurrence   (p)	Probability   Of   Exceeding   (1-p)	Frequency of Occurrence 1/(1-p) (years)	Days of Interruption	$\begin{array}{r} \text { Cost of } \\ 25 \% \\ \text { Interruption } \\ \hline \end{array}$	Prob Wghted Cost	Required Incremental Capacity (MMBtu)	Required Incremental Winter Volume (MMBtu)	Short-Haul Supply Cost	Long-Haul Supply Cost
7,100		0.4670	2.14	1	\$7.619,357	\$3.558.240	124	25,006	\$203,615	\$260,199
7,200		0.3297	3.03	6	\$42,372.049	\$13,968.652	719	144.201	\$1,174,221	\$1,500,825
7.300		0.2167	4.62	11	\$76,929,747	\$16.668,112	1,314	283.687	\$2,147.194	\$2,744,453
7,400		0.1320	7.58	16	\$110.152.494	\$14.540.129	1.911	383,849	\$3.125.527	\$3,994.098
7.500		0.0733	13.64	20	\$138.479,257	\$10,155,146	2,510	504,457	\$4,105,105	\$5,245,690
7.600		0.0377	26.55	25	\$165,855,802	\$6,247,235	3,110	624,588	\$5,085,818	\$6,499,462
7.700		0.0170	58.82	29	\$193,409,949	\$3,287,969	3.713	745,467	\$6,070,185	\$7,757,960
7,800		0.0050	200.00	32	\$217,335,205	\$1,086,676	4,318	866,602	\$7,056,657	\$9.019.209
7.900		0.0017	600.00	36	\$240,357,380	\$400,596	4,922	987,738	\$8,043.129	\$10,280,458
8,000		0.0010	1000.00	39	\$261,000,226	\$261,000	5.526	$1,108.874$	\$9,029,582	\$11.541,581
8,100		0.0000	100000.00	42	\$281.139,916	\$2,811	6,129	1230.009	\$10,015,876	\$12,801,602
8.200		0.0000	100000.0	44	\$300,089,449	\$3,001	6.728	1,351,374	\$11.003.680	\$14,061,557
8,300		0.0000	100000.00	47	\$318,033,986	\$3,180	7.322	1,473,288	\$11,995,331	\$15,322,887
					Days Of Interruption times Cost of Interruption/Day	Cost of Interruption times Prob. of Exceeding			(incremental Vol tumes Supply+D2 Costs) + (Incr Capacity times Shori-Hault D1 Costs)	(Incremental Vol times Supply Cost $)+($ Incr Capacity times Long-haul Cost)
					Cost of 75\%	Prob Wghted				
EDD Level					Interruption	Cost				
7.100					\$22,858,072	\$10,674,720				
7,200					\$127,116,148	541,905,957				
7.300					\$230,789,240	\$50,004,335				
7.400					\$330,457,481	543,620,388				
77500					\$415,437,772	\$30,465,437				
7.600					5497,567,406	\$18,741,706				
7,700					\$580,229,848	\$9,863,907				
7,800					\$652,005,616	\$3,260,028				
7.900					\$721,072,140	\$1,201,787				
8.000					\$783,000,677	\$783.001				
8,100					\$843.419.748	\$8.434				
8,200					\$900.268.346	\$9.003				
8,300					\$954,101.957	\$9.541				

## Probability-Weighted Damages Costs vs

 Cost of Replacement Volumes

## IV. DESIGN OF THE RESOURCE PORTFOLIO

## A. Portfolio Design

To generate the long-term resource plan, the Company evaluates the current resource portfolio in relation to the firm-sendout forecast developed in Section III above. Specifically, the Company evaluates the possible strategies for meeting demand with current resources and identifies the sensitivities and contingencies that need to be tested. Using the SENDOUT ${ }^{\circledR}$ model (described below), the Company is able to determine the least-cost portfolio that will meet the forecasted demand and test the sensitivity of the portfolio to key inputs and assumptions, as well as its ability to meet all of the Company's planning standards and contingencies. Based on the results of this analysis, the Company then makes preliminary decisions on the adequacy of the resource portfolio and its ability to meet system requirements in the longer term.

KeySpan has been using the New Energy Associates SENDOUT ${ }^{\circledR}$ model as its primary analytical tool in the portfolio design process in Massachusetts since 1996. Following the KeySpan merger, the SENDOUT ${ }^{\circledR}$ model was adopted for use in the EnergyNorth service territory. The SENDOUT ${ }^{\circledR}$ model is a linear programming optimization software tool used to assist in evaluating and selecting long-term portfolio strategies. SENDOUT ${ }^{\circledR}$ has several advantages over the ithink ${ }^{\text {tm}}$-based dispatch model previously used by EnergyNorth. Foremost, SENDOUT ${ }^{\circledR}$ has the ability to examine the daily sendout requirements over an entire year simultaneously and select the optimum use of its portfolio of
resources. This allows SENDOUT ${ }^{\circledR}$ to specify operating constraints such as the utilization of underground storage and supplemental supplies in design-forward planning instead of requiring such constraints to be input data.

The SENDOUT ${ }^{\circledR}$ model can be used in one of two ways. First, the model can be used to determine the best use of a given portfolio of supply, capacity and storage contracts to meet a specified demand. That is, it can solve for the dispatch of resources that minimizes the cost of serving the specified demand given the existing resource and system-operating constraints. The model dispatches resources based on the lowest variable cost to meet demand, assuming that demand charges are fixed. Second, the SENDOUT ${ }^{\circledR}$ model can be used to determine the optimal portfolio to meet a given demand. To do this, the model uses a linear programming algorithm to analyze the combination of contracts and the size of each contract (i.e., MDQ) to determine the combination that results in the lowest total cost, taking into account both variable and fixed costs.

## B. Analytical Process and Assumptions

In preparing this IRP, the Company analyzed three demand scenarios: a low-demand case, a base case and a high-demand case, as described in Section III. In addition, the Company analyzed a cold-snap scenario and a contingency scenario using the Companies' current supply and capacity portfolio. The examination of these various scenarios enables the Company to test the adequacy and flexibility of the resource portfolio.

In this IRP, the Company has incorporated several key assumptions. First, the Company has assumed that, throughout the forecast period, there is no change in its current service obligation and that, as a result, it is responsible for plarıning for the capacity requirements for all firm customers. ${ }^{1}$. Second, the 2005/06 long-term, short-term and market-area portfolio was used as a proxy for the gas supply portfolio that will be used in all years of the forecast ${ }^{2}$. Although the actual contracts and contract terms will differ in every year, the Company believes that the current resource mix is representative of the actual supplies that the Company will use over the forecast period. Therefore, gas commodity costs were estimated using NYMEX futures prices for natural gas. All other costs represent actual contract costs including transportation and storage, fixed charges, variable charges, and other related costs. Fixed costs were not escalated over the forecast period because escalating all fixed costs at the same rate would maintain the relative ranking of the resources and would not, therefore, alter the decisions that the Company would make with respect to resource dispatch. Also, there is no indication that annual pipeline and underground-storage rate increases are a reasonable assumption.

## C. Expected Available Resources

[^9]This section describes EnergyNorth's current resource portfolio and discusses the modifications that the Company anticipates making to the portfolio during the forecast period to meet sendout requirements. As discussed below, to meet design day and design year sendout requirements, the Company's resource portfolio is composed of the following categories of available resources: (1) long-haul and short-haul transportation; (2) underground storage services; (3) gas supply contracts; (4) supplemental resources; and (5) market area supply purchases. Chart IV-C-1 is a schematic of the Company's transportation and underground storage contracts effective November 1, 2006. Chart IV-C-2 is a table listing and description of the Company's resource portfolio.

## 1. Long-haul and Short-haul Transportation

EnergyNorth has capacity entitlements on multiple upstream pipelines that provide access to various production areas that afford the Company a level of operational flexibility to ensure the least-cost and reliable delivery of gas supplies.

The Company's pipeline capacity contracts fall into three primary categories. First, the Company has contract entitlements to long-haul capacity from the lower 48 states that is used to transport gas from production areas located in the Gulf of Mexico to the Company's New Hampshire citygates. The long-haul transportation capacity from the Gulf of Mexico is also used to transport gas from the production areas to the Company's underground storage facilities in Pennsylvania and New York. By using long-haul capacity to fill storage, the

Company is able to use these resources at a higher load factor. Second, the Company has contract entitlements to short-haul capacity that is used to transport gas from the underground storage fields in Pennsylvania and New York to the Company's citygates. These short-haul capacity entitlements are also used to transport non-storage supplies from the storage market area to the Company's citygates when the capacity is not being used to transport underground storage supplies. Third, the Company has a short-haul contract with entitlements to transport gas from the Dracut, Massachusetts interconnect on Tennessee Gas Pipeline to the Company's citygates. Lastly, effective November 1, 2006, the Company's capacity on Union Gas Limited ("Union") and TransCanada Pipelines Limited ("TransCanada") will become effective". This new capacity path has entitlements from Dawn, Ontario to Kirkland/Parkway on Union and from Parkway to Waddington on TransCanada. The gas will then be transported to EnergyNorth's citygates using existing Iroquois and Tennessee capacity. The Company's long-haul and short-haul transportation contracts are described in more detail below:

- Iroquois Gas Transmission System

EnergyNorth has contract entitlements to 4,047 MMBtus/day of firm transportation service on the Iroquois Gas Transmission System ("Iroquois") on a 365-day basis. Firm Canadian supplies are transported from the Canadian/New York border from Waddington, New York via the

[^10]Iroquois system to the Tennessee Gas Pipeline ("Tennessee") interconnect at Wright, New York.

- Portland Natural Gas Transmission System

EnergyNorth has contract entitlements to 1,000 MMBtus/day of firm transportation service on the Portland Natural Gas Transmission System ("PNGTS") on a 365-day basis. PNGTS transports gas from Pittsburg, New Hampshire to the Company's city gate in Berlin, New Hampshire.

- Tennessee Gas Pipeline

In the production area, the Tennessee Gas Pipeline system splits into three legs: the 100 leg, the 800 leg, and the 500 leg. In addition, the Tennessee system is divided into six market zones, from Zone 0 and Zone 1 in Texas and Louisiana to Zone 6 in New England. See Chart IV-C-3 for a map showing the Tennessee Zone locations. EnergyNorth has capacity entitlements of 76,833 MMBtus/day on the Tennessee to its New Hampshire citygates. The Company's contract entitlements consist of transport volumes from Zone 0 and Zone 1 of up to 21,596 MMBtus/day to the Company's citygates in New Hampshire located in Zone 6 and to the Company's storage fields located in Zone 4 and Zone 5; from the Zone 4 and Zone 5 storage market area the Company's contract entitlement consists of transport volumes of up to 28,115 MMBtus/day to the Company's citygates; from the interconnect at Niagara in Zone 5 the Company's contract entitlements transport volumes of up to 3,122

MMBtus/day to the Company's citygates; from the interconnect at Wright, New York with Iroquois in Zone 5 the Company's contract entitlements transport volumes of up to 4,000 MMBtus/day to the Company's citygates; and finally, the Company has contract entitlements of up to 20,000 MMBtus/day from Dracut, Massachusetts located in Zone 6 to the Company's citygates.

- TransCanada Pipelines Limited

Effective November 1, 2006 EnergyNorth will have contract entitlements to $4,047 \mathrm{MMBtu} /$ day of firm transportation service on TransCanada on a 365-day basis. Firm Canadian supplies are transported from the receipt point Parkway-Union, Ontario, to the interconnection between TransCanada and Union, to the interconnection with Iroquois at Waddington.

- Union Gas Limited

Effective November 1, 2006 EnergyNorth will have contract entitlements to 4,092 MMBtu/day of firm transportation service on Union on a 365-day basis. Firm Canadian supplies are transported from the receipt point at Dawn, Ontario to the interconnection with TransCanada at Parkway.

## 2. Underground Storage Services

EnergyNorth's underground storage contracts provide the Company with the ability to meet winter-season loads, while avoiding the expense of adding 365-day long-haul transportation capacity. These contracts enable EnergyNorth to store approximately 2.5 million MMBtus of gas. These underground storage supplies allow EnergyNorth to serve a percentage of the winter period requirements with gas injected during the off- peak period and to manage shortterm fluctuations in demand during the winter period. It is the Company's practice to have storage inventories approximately $95 \%$ full as of November $1^{\text {st }}$ of each year, thus leaving approximately $5 \%$ of the storage capacity available for balancing purposes.

The Company contracts with the following storage providers;

- Dominion Transmission, Incorporated

Under rate schedule GSS which provides 102,700 MMBtus of storage capacity with a withdrawal rate of 934 MMBtus/day and an injection rate of 934 MMBtus/day.

- Honeoye Storage Corporation

Under rate schedule SS-NY that provides 245,280 MMBtus of storage capacity with a withdrawal rate of $1,957 \mathrm{MMBtus} /$ day and an injection rate of 1,362 MMBtus/day.

- National Fuel Supply Corporation

Under rate schedule FSS that provides 670,800 MMBtus of storage capacity with a withdrawal rate of $6,098 \mathrm{MMB}$ us/day and an injection rate of 4,472 MMBtus/day. Along with this storage service, the Company also contracts for 365-day firm transportation under rate schedule FST in order to transport the storage gas into and out of the storage field.

- Tennessee Gas Pipeline

Under rate schedule FS-MA that provides 1,560,391 MMBtus of Storage capacity with a withdrawal rate of 21,844 MMBtus/day and an injection rate of 10,404 MMBtus/day.

## 3. Gas Commodity

Prior to March 2006, EnergyNorth was a party to a contract with Merrill Lynch Commodities, Inc. ("MLCl") whereby MLCl both managed the resource portfolio and provided citygate gas supplies to EnergyNorth's firm sales customers. Under this arrangement, MLCl was obligated to deliver up to 77,833 MMBtus/day of citygate supplies. Effective April1, 2006, the Company terminated its agreement with MLCl and is now responsible for contracting for the necessary gas supply to meet firm sendout requirements. In order to meet customer requirements the Company will contract for a mix of seasonal, monthly and daily supplies from a diverse group of suppliers that are designed to take advantage of the interstate pipeline capacity paths held by the Company.
(a) Domestic Gas Supply

As described above, the Company's resource portfolio is currently structured to have a high level of flexibility to adapt to changing market conditions and regulatory obligations as they relate to Supplier Service. This is especially true with respect to the Company's domestic gas commodity commitments. Generally speaking, EnergyNorth enters into agreements that allow it the flexibility to eliminate up to 100 percent of its existing domestic gas commodity purchases in less than a twelve-month period. As of the date of this filing, the Company is in the process of issuing Request For Proposals ("RFPs") for seasonal supplies sourced from domestic gas supply markets to meet customer requirements for the upcoming winter season. These seasonal volumes will later be supplemented as necessary with index-based first of the month and/or daily market purchases.
(b) Market Area Supply

Market area purchases are short-term arrangements that the Company makes in order to achieve a higher utilization of existing portfolio resources and prolong the effective utilization of the Company's short-haul capacity. On a daily basis during the peak period, the Company has the opportunity to take advantage of market-area resource opportunities to bring gas supplies to the Company's citygates or to inject them into the Company's underground storage fields. In the past, gas injected into storage during the off-peak season was
generally lower priced than gas purchased in the peak season. However, experience indicates that market prices during the winter period can drop below storage inventory costs. Furthermore, prices in the later part of the winter season can be higher or lower than prices in the early part of the winter season, depending on market conditions. Market-area purchases generally refer to purchase in either Tennessee Zone 4 at or near the storage region or Zone 6 at Dracut, MA, or at the Company's citygates. These purchases minimize the cost of the resource portfolio because: (1) the Company is avoiding demand charges for capacity that is not needed on a design-day or design-season basis; and (2) the Company is able to better utilize existing transportation capacity that is available when underground storage supplies are not being transported to the Company's citygates.
(c) Canadian Gas Supply

In addition to domestic gas supplies, the Company currently holds several long-term supply contracts with Canadian suppliers. One of the Canadian gas supply contracts consists of a bundled capacity and gas commodity from western Canada pursuant a contract with Alberta Northeast, Ltd. ("ANE"), which is set to expire on November 1, 2006. This contract has been replaced with two separate agreements for the purchase of gas at Dawn, Ontario. Supply contracts have been executed with DTE Energy for up to 1,986 MIMBtu/day and Sempra for up to $2,106 \mathrm{MMBtu} /$ day both commencing on November 1, 2006. The supply will be transported on Union from Dawn to the interconnect with TransCanada at

Parkway, and then transported by TransCanada from Parkway to the Iroquois interconnect at Waddington.

The Company also holds contracts with BP Canada Energy Company for 1,599 MMBtu/day and with Nexen Marketing for 1,600 MMBtu/day. Both of these contracts deliver into Tennessee at Wright, NY.

Lastly, for the 2006/07 peak season, the Company is pursuing a replacement contract for its CoEnergy Trading Company ("CoEnergy") supply contract that expired on February 28, 2006.

These Canadian gas supplies represent an important component in maintaining the diversity, flexibility and reliability of the resource portfolio. Specifically, the Company's new supply and capacity resources effective November 1, 2006 that replaced the Company's expiring bundled ANE arrangement allow the Company to access a new and liquid supply point at Dawn.

## 4. Supplemental Resources

In addition to interstate pipeline and storage resources, EnergyNorth utilizes supplemental peaking supplies to meet its design day and design season requirements in excess of pipeline resources. Peaking supplies are an important component of the resource mix because these supplies provide the Company with the ability to respond to fluctuations in weather, economics and other factors driving the Company's sendout requirements. The Company utilizes both offsystem and on-system supplemental resources.

Off system supplemental resources include the Company's contract with Granite Ridge, L.L.C. ("Granite Ridge," formerly "AES Londonderry") as well as the Company's firm vapor service ("FVS") contract with Distrigas of Massachusetts ("DOMAC"). The Company is currently pursuing a replacement contract for its DOMAC FVS-256 contract that expires on October 31, 2006.

On-system supplemental resources are the local production plants that store LNG and liquid propane until vaporized. It is the Company's practice to have its supplemental storage facilities full as of November $1^{\text {st }}$ of each year. ${ }^{4}$ EnergyNorth's on-system supplemental facilities are distributed strategically across the service territory, which enhances service reliability and provides a source of supply for the entire distribution system. Chart IV-C-4 shows the locations of these facilities. Because these resources can be brought on line quickly, these plants can be used to meet hourly fluctuations in demand, maintain deliveries to customers and balance pressures across portions of the distribution system during periods of high demand. Most importantly, these resources are vital in preserving delivery pressures in the event that an off-system resource becomes unavailable. The Company's forecasted need for on-system supplemental supplies over the maximum pipeline availability is $305,000 \mathrm{MMBtu}$ for the 2006/07 peak season (see Chart IV-D-1). These supplemental volumes are the supplies that must be available to the Company's distribution system to ensure service to customers when the Company has exhausted its available pipeline supplies. Thus, the availability of liquid natural gas and propane gas to

[^11]refill the Company's local storage tanks throughout the winter season is an everincreasing necessity. The Company's DOMAC contracts (FLS-160 and FLS-162) are currently the primary sources of LNG refill throughout the winter season. The Company is currently pursuing a replacement contract for its DOMAC FLS162 contract that expires on October 31, 2006. In addition, as it has for the last several years, the Company has contracted for a dedicated trucking arrangement in order to guarantee the availability of both trailers and drivers to truck the LNG from the source point to the Company's facilities during the upcoming winter season. Lastly, the Company contracts seasonally for propane supplies with Eastern Propane Company. When contracting for propane supplies, the Company also firms up the necessary trucking arrangements for delivery of these supplies.,

## 5. Pending Contract Negotiations

At the time of this filing, the Company is currently in the process of finalizing its portfolio for the 2006/07 winter season. The Company is seeking to renew and/or replace the following resources which expire before November 1, 2006:

Contract	MDQ	Annual   Quantity   (MMBtu)	Description
DTE Energy Trading	20,000	$1,800,000$	Seasonal winter supply   received at TGP/Dracut   meter station.
Distrigas of Massachusetts   Corporation FVS256	8,000	$1,208,000$	Firm vapor service with   varying monthly take   quantities.
Distrigas of Massachusetts   Corporation FLS162	6,300	50,000	Firm liquid service   available during winter   season for LNG refill

In addition, as discussed above, now that the Company is managing its portfolio in-house, the Company will need to contract directly for its own domestic winter supply resources.

## 6. Replacement and Incremental Resources

Changes in EnergyNorth's resource needs are caused by changes in its firm demand, (i.e., load growth, load loss and changes in load shape). The Company differentiates incremental and replacement resource needs primarily in terms of how a need arises. The need to increase (or decrease) resources arises when the capacity of the Company's resource portfolio is not substantially equivalent to its firm demand requirements. A replacement resource need occurs when the term of an existing resource comes up for expiration and the Company's firm demand requirements are substantially the same (i.e., the resource is not avoidable). The Company applies the same decision-making process to meet replacement needs as it applies to incremental needs.

A critical component of identifying a resource need is defining the load shape of the demand that needs to be met. "Shape" refers to the degree of uniformity that a resource need exhibits throughout the course of a year. In characterizing the shape of resource needs, three general terms are applied herein: "baseload," "seasonal," and "peaking". A need that is substantially uniform throughout the year is described as a "baseload" need; a need that is driven by temperature fluctuations, and is therefore concentrated in a finite
portion of the year (i.e. 60-180 days), is described as a "seasonal" need; a need that is observed at the very upper limits of the demand profile (i.e., the coldest days of the year) is described as a "peaking" need. The Company notes specific resource needs do not necessarily fall discretely into one of these categories, but rather can exhibit characteristics of any or all of these classifications.

Determining the shape of a need is also important in terms of narrowing the range of possible resource options that may be able to satisfy the need. Baseload needs for example, tend to be best met through pipeline supply options. On the other hand, 365-day pipeline resources tend to be less efficient in meeting seasonal needs because the fixed capacity charges become concentrated across a relatively short demand period, which drives the unit cost up. Conversely, resources that can be inventoried and dispatched in response to temperature variations (such as underground storage and LNG) tend be costeffective in meeting seasonal demands. Finally, peaking demands are likely to be best met by on-system LNG or propane facilities because of the flexibility with which these resources can be dispatched.

When a resource need arises, the Company attempts to identify all of the possible resource options that may be able to meet that need. The Company regularly requests, receives and reviews promotional material regarding new or revised services from various supply-related entities. In addition, the Company endeavors to maintain continuous contact with suppliers, pipelines operators and other service providers. Through these efforts, the Company has compiled and continually updates a library of service providers and resource alternatives.

Using this information, the Company is able to develop a list of potential service providers to whom Requests for Proposals ("RFPs") will be sent. The RFP process effectively generates tailored service bids from potential service provides at market prices. The responses to an RFP establish the set or "universe," of potential resource options available to meet a particular need at a given point in time. The Company then performs a preliminary review to narrow the set down to an appropriate range for further analysis. This preliminary screening is dictated in part by the nature of the demand (i.e., the size and shape of the need) and by the planning time horizon. The time horizon is also an important element because the availability of specific resource alternatives may not perfectly coincide with the initial timing of an identified need. For example, an incremental seasonal need arising four years into the future may be met best by a storage option that will become available in three years if no other storage alternatives are available until the fifth year.

During the forecast period, EnergyNorth is faced with key decisions regarding the expiration and renewal of a number of contracts in its resource portfolio. Existing resources from the Company's 2006/07 portfolio that are set to expire during the five-year forecast period include:

Contract	MDCQ	Annual Quantity (MMBtu)	Date of Expiration
Granite Ridge Energy, LLC	15,000	450,000	9/30/07
BP Canada Energy Company	1,599	583,635	4/01/07
Distrigas of Massachusetts Corporation FLS160		100,000	10/31/10
Dominion Transmission 300076	934	102,700	3/31/2011
DTE Energy Trading	1,986	724,890	10/31/2007
Honeoye Storage Corporation	1,957	245,280	04/01/08 Evergreen
Iroquois Gas Transmission 47001	4,047	1,477,155	10/31/2011
National Fuel Company N02358	6,098	2,225,770	$\begin{gathered} 3 / 31 / 08 \\ \text { Evergreen } \end{gathered}$
National Fuel Company 002357	6,098	670,800	$\begin{gathered} 3 / 31 / 08 \\ \text { Evergreen } \end{gathered}$
NEXEN Marketing	1,600	584,000	4/01/07
Sempra Energy Trading	2,106	768,690	10/31/2007
Tennessee Gas 523	21,844	1,560,391	10/31/2010
Tennessee Gas 632	15,265	5,571,725	10/31/2010
$\begin{gathered} \text { Tennessee Gas } \\ 2302 \end{gathered}$	3,122	1,139,530	10/31/2010
$\begin{gathered} \text { Tennessee Gas } \\ 8587 \end{gathered}$	25,407	9,273,555	10/31/2010
Tennessee Gas	9,039	3,299,235	10/31/2010


Contract	MDCQ	Annual   Quantity   (MMBtu)	Date of   Expiration
11234	4,000	$1,460,000$	$10 / 31 / 2011$
Tennessee Gas   33371	20,000	$7,300,000$	$10 / 31 / 2010$
Tennessee Gas   42076	4,092	$1,493,580$	$10 / 31 / 2007$
Union Gas   M1200			

Following the Company's planning process described above, during the forecast period, the Company will employ a three-step analysis to reach its conclusions on contract renewals. First, the Company will evaluate the need to maintain the contracts as part of the resource portfolio. As part of this need analysis, the Company will consider the trends in transportation migration and the growth in transportation relating to new customers that have not previously been served by the Company, and therefore, are not subject to the assignment of capacity. If the Company determines that the resource is needed to meet firm sendout requirements, the Company will consult with competitive suppliers serving customers on EnergyNorth's system to solicit their input on the Company's contract renewals. Second, depending on the type of need, the Company will canvas the marketplace to determine the availability of a replacement resource. And, where appropriate, the Company will solicit competitive bids to determine the lowest-cost available resource. Finally, the Company wiil evaiuate non-price factors associated with the available
replacement options such as flexibility, diversity, reliability and contract term to determine the least-cost, most reliable option to meet the Company's resource need.

This same approach will be implemented when the need for a new resource to be added to the portfolio arises. As discussed in Section IV.D below, the Company is forecasting a need for incremental capacity or citygate-delivered supplies to meet customer requirements during the forecast period. The Company has already initiated discussion with Tennessee regarding incremental capacity additions. Currently, incremental capacity is not available on Tennessee's Concord lateral, the lateral which provides service to the Company's distribution system. Preliminary discussion with Tennessee has yielded estimates in the $\$ 12 \mathrm{M}-\$ 16.5 \mathrm{M}$ range for the needed upgrades to the lateral in order to provide incremental volumes to the Company's citygates.

## D. Adequacy of the Resource Portfolio

Although the base case scenario is intended to represent the most probable demand case, customer demand could vary within the range of the lowdemand and high-demand case. Accordingly, the resource plan must possess a level of flexibility to adjust to changing economic conditions, while ensuring that adequate resources are available to meet customer requirements on the peak day. As described below, the EnergyNorth resource portfolio currently possesses the flexibility to meet design-year requirements on a reliable basis.

To ensure the delivery of needed supplies on the peak day, however, the Company anticipates that it will need to obtain additional firm capacity or citygate-delivered supply during the forecast period.

## 1. Base Case

The Company's resource plan shows that it can meet base case design year load requirements throughout the forecast period. However, to do so, the Company will need to supplement its resource portfolio with additional firm capacity or citygate-delivered supply beginning in the year 2008/09. The daily contracted quantities required to adequately meet the anticipated sendout requirements are set forth in Chart IV-D-3 and are summarized as follows:

Other Purchased Resources

## Base Case

YEAR	Design Day   Capacity   (MMBtu/day)	Design Heating   Season Volume   (MMBtus)
$2006 / 07$	0	0
$2007 / 08$	0	0
$2008 / 09$	0	53,300
$2009 / 10$	5,310	48,000
$2010 / 11$	19,660	128,000

The projected incremental requirement for the design day begins in 2009/10 as relatively small in relation to the Company's total peak-day requirement (i.e., approximately three percent in 2009/10 rising to thirteen
percent in 2010/11), but grows over time. The Company plans to monitor the factors that drive the need for incremental capacity and to begin plans for addressing these needs.

These factors include: (a) realization of the load growth that is forecasted by the Company's demand model; (b) migration of new load directly to Supplier Service over the next two years; (c) customer participation in DSM programs over the forecast period; and (d) other social and political factors that influence the demand for natural gas, such as energy legislation and environmental considerations. If events warrant, the Company will prepare an analysis of need and available alternatives and procure the necessary capacity to serve the needs of customers.

## 2. High-Demand Case

The Company's resource plan shows that it can meet high-demand case design year load requirements throughout the forecast period. In this scenario, as in the base case, the Company will need to supplement its resource portfolio with additional firm capacity or citygate-delivered supply beginning in 2007/08. These additional purchases are set forth in Chart IV-D-18 and are summarized as follows:

## Other Purchased Resources

High Case

YEAR
2006/07
2007/08
2008/09
2009/10
2010/11
Design Day
Capacity
(MMBtu/day)

0
730
22,140
40,000
40,000

Design Heating
Season Volume (MMBtus)

0
145,000
311,600
245,700
376,400

In the high-demand case, the amount of Other Purchased Resources needed to meet design day incremental capacity requirements is greater than that relied upon in the base case (i.e., less than one percent in 2007/08 rising to twenty-five percent in 2010/11). Should incremental demand increase consistent with the high-demand case projections, the Company would acquire adequate, least-cost capacity resources to address this need.

## 3. Low-Demand Case

As shown in Chart IV-D-33, the Company's resource portfolio is adequate to meet total low-demand case system requirements in the forecast period.

Under any of these three scenarios, the Company believes that sufficient capacity and supplies will be available in the market to meet its customers' needs. The Company will follow its resource planning process to evaluate and fill
identified needs with a least-cost, reliable mix of contracted capacity and/or citygate delivered gas supplies. This approach provides a high level of flexibility to meet uncertainties in future demand, while ensuring the adequacy of the overall resource portfolio.

## E. Cold Snap Analysis

In addition to the design day, design year and normal year planning standards, the Company also evaluates the capability of the resource portfolio to meet sendout requirements during a protracted period of very cold weather, which is referred to as a "cold snap."

To generate its cold-snap scenario, the Company selected the actual seven-day period of coldest weather experienced by the Company leading to the highest supplementals requirement. This seven-day period, from the Company's twenty-three year historical effective degree day (EDD) database for Manchester, NH, was January 9, 2004 through January 15, 2004. ${ }^{5}$

The Company then analyzed the effectiveness of the portfolio with an EDD pattern of (a) normal EDD through January $2^{\text {nd }}(b)$ the cold-snap EDD on January $3^{\text {rd }}$ through January $9^{\text {th }}$ followed by (c) normal EDD. In doing this, the Company substituted the coldest seven-day period in its normal weather scenario with the cold-snap scenario.

[^12]Using base case demand, the Company analyzed the effectiveness of the portfolio in meeting the requirements of the cold-snap scenario. The results of the simulation, using the SENDOUT ${ }^{\circledR}$ model, showed that the Company's portfolio can meet the cold-snap requirement adequately (see Chart IV-E-1).

## F. Contingency Planning

As part of the settlement agreement dated August 19, 2005, the Company agreed to include in this IRP, a contingency plan that would address the following supply/capacity interruptions:
(1) Displacement of gas from the Company's Massachusetts affiliates to New Hampshire to the extent feasible under the combined OBA on the Tennessee Gas Pipeline Company system;
(2) The potential for and related cost if the Company were to increase the level of dedicated trucking to deliver liquid supplies to New Hampshire during periods when vaporized LNG from its Massachusetts affiliates' facilities cannot be displaced via pipeline from Massachusetts to New Hampshire;
(3) A reasonable range of potential supply or capacity disruptions under design day weather conditions and the Company's response
to each specified situation, including a loss of pipeline and LNG or propane supplies;

Each of these scenarios is discussed in detail below.

1. Displacement of gas from the Company's Massachusetts affiliates to New Hampshire to the extent feasible under the combined OBA on the Tennessee Gas Pipeline Company system;

When both EnergyNorth and the Company's Massachusetts affiliates were parties to their respective Asset Management Agreements with Merrill Lynch, from time to time, when capacity was available, the Company would temporarily displace gas across the territories to the extent possible using the Company's Operational Balancing Agreement ("OBA") with Tennessee Gas Pipeline ("Tennessee"). This activity was possible because both parties had similar pricing structures in the agreements with Merrill whereby imbalances from volumes transferred between the territories would be paid back in-kind within days and certainly before month-end. Now that EnergyNorth is no longer a party to such an agreement with Merrill, the Company no longer intentionally displace volumes between the territories. Thus, since this activity no longer transpires, the Company does not develop a contingency plan for it.
2. The potential for and related cost if the Company were to increase the level of dedicated trucking to deliver liquid supplies to New Hampshire during periods when vaporized LNG from its Massachusetts affiliates' facilities cannot be displaced via pipeline from Massachusetts to New Hampshire;

From time to time, the Company seeks to displace liquid supplies delivered via truck to New Hampshire with vaporized LNG from certain of its Massachusetts tanks. The vaporized LNG is "delivered" to New Hampshire via the Company's OBA with Tennessee, whereby EnergyNorth increases its volume taken from the pipeline and the Massachusetts companies correspondingly decrease their volumes taken from the pipeline by the same amount. By implementing this strategy, the Company reduces the number of trucks dispatched to New Hampshire and minimizes the associated logistics of trucking deliveries. This activity is performed to the extent the resources are available. However, the Company does not rely on this activity to meet either its design day or design season needs. Therefore the Company did not develop a contingency plan for the absence of it.

## 3. Potential Supply or Capacity Disruptions

## 3a. Disruption at DOMAC

Throughout the forecast period, EnergyNorth relies on peaking supplies from DOMAC, now known as Tractebel LNG North America, to meet both the
design year and design day needs of customers. Therefore, the loss of these resources would cause a supply deficit during the forecast period. KeySpan has had experience in dealing with the disruption of its DOMAC supplies. In light of a ban imposed by the U.S. Coast Guard on LNG vessels in entering Boston Harbor following the events of September 11, 2001, KeySpan was forced to implement a contingency plan to address this supply disruption.

In this filing, EnergyNorth addresses a contingency plan to meet a supply deficit similar to that created by the loss of DOMAC LNG supplies in 2001. For this analysis, EnergyNorth considers three scenarios: (1) no LNG shipments for the month of October, (2) no LNG shipments or sporadic shipments for the winter period; and (3) no shipments for the long term. For the first scenario the Company determined that there would not be a material effect on EnergyNorth, since the Company's tanks are full in early fall. In addressing the other scenarios, EnergyNorth would first need to distinguish between its liquid and vapor needs for the season. To determine liquid needs, the Company would consider its immediate need to fill the tanks to their maximum capacity, as well as the shortterm, minimum liquid needs for a design winter.

The vapor supplies that the Company would need to replace for the design winter would also need to be determined. In general, incremental pipeline deliveries can be substituted for these volumes, assuming that the pipelines are able to make such deliveries. The Company would engage in discussions with various service providers to meet this need in a number of ways. For example, there may be an opportunity to increase deliveries from the Iroquois pipeline into

TGP, or to effect modifications to underground storage contracts to provide excess deliverability out of storage, as well as an opportunity to secure additional deliveries on the Tennessee pipeline.

With respect to the immediate and short-term liquid needs, the Company would immediately implement its contingency plan. This plan would call for liquid deliveries from various LNG facilities including, but not limited to; the NSTAR Gas facility in Hopkinton, Massachusetts, the Philadelphia Gas Works facility in Philadelphia, Pennsylvania, the Transco facility in Carlstadt, New Jersey, and/or the Gaz Metropolitain facility in Montreal, Canada. In addition to LNG deliveries, the Company would also call for incremental propane deliveries from its regional propane supplier as well as other suppliers in the northeast corridor.

In the event of a long-term supply disruption, the Company would need to replace all of its existing DOMAC LNG contracts with another source of supply and related transportation. Should this become a reality, the Company would act immediately and initiate discussions with suppliers and Tennessee Gas Pipeline.

## 3b. Supply Disruption at Dracut

Throughout the forecast period, EnergyNorth relies on gas supplies being sourced from the Dracut, MA interconnect on Tennessee Gas Pipeline to the Company's citygates to meet both the design-year and design-day needs of customers. Therefore, the loss of these resources would cause a supply deficit during the forecast period. The timing of the disruption as well as the extent of
the disruption would determine the actions taken by the Company to fill the void.
A disruption to this pipeline delivered supply could be replaced with a mix of various gas supplies available to the Company. These supplies include but are not limited to:

- Citygate delivered spot-market purchases;
- Incremental long-haul supplies delivered from the Gulf using the Company's long-haul capacity;
- Underground storage volumes delivered from the storage fields using the Company's short-haul storage capacity;
- TGP Zone 4 market area supplies transported on the Company's shorthaul capacity from zone 4 to zone 6 ;
- The Company's existing DOMAC FVS contract; and
- On-system resources of both LNG and propane

Lastly, should the Company exhaust all of the above mentioned options, the Company would then look to its Massachusetts and New York affiliates for assistance in supplying the needed volumes in order to maintain system integrity.

## 3c. Supply and Capacity Disruptions in the Gulf of Mexico

Throughout the forecast period, EnergyNorth relies on gas supplies being sourced from the Gulf of Mexico on Tennessee Gas Pipeline to the Company's citygates to meet both the design-year and design-day needs of customers. Therefore, the loss of these resources would cause a supply deficit during the
forecast period. In the aftermath of Hurricanes Katrina and Rita in 2005, KeySpan took several steps in order to ensure supply reliability for the 2005/2006 winter season for its New Hampshire and Massachusetts customers. Should a similar event again occur the Company would follow the same process it implemented following Hurricanes Katrina and Rita ("2005 Hurricanes"). First the Company would determined its overall supply capabilities on a peak day and peak season basis, from "at risk" locations, i.e., Tennessee's 500-leg and Texas Eastern's ELA and WLA regions during the 2005 Hurricanes. Next the Company would fill both its underground and LNG storage facilities going into the winter and implement a conservative storage withdrawal strategy in order to guarantee maximum storage withdrawals as far into the winter as possible. Finally, the Company would firm-up winter supplies traditionally sourced in the Gulf Coast at points upstream of the constrained points. Specifically, in the fall of 2005 , KeySpan secured 131,000 MMBtu/day, from sources located downstream of the affected areas as well as an additional 20,000 MMBtu/day directly from DOMAC (9,502 MMBtu/day was secured on behalf of EnergyNorth). These volumes equated to 98 percent of the "at risk" New England volume.

It is also important to note that the Company is an active member of the Northeast Gas Association's ("NGA") Gas Supply Task Force. ${ }^{6}$ The Task Force meets periodically throughout the winter season, and more often if the situation warrants. As a member of this Task Force, the Company can request to
convene a meeting in order address either a regional or a Company-specific issue and seek the assistance of fellow members if needed.

## 3d. Emergency Curtailment Plan

In the event that despite all reasonable efforts, a force majuere event prevents the Company from securing adequate supply to maintain deliverability to customers, the Company would implement its emergency curtailment plan. A copy of that plan was filed with the Commission on November 1, 2005.

[^13]ENERGYNORTH NATURAL GAS
iNCORPORATH


# Chart IV-C-2 <br> (Page 1 of 4 ) 

EnergyNorth Natural Gas Incorporated Resource Listing

Long-haul and Short-haui Transportation Contracts

Shipper	Pipeline   Company	$\begin{gathered} \hline \text { Contract } \\ \text { No. } \end{gathered}$ No.	Rate Schedule	$\begin{array}{c\|} \hline \text { City Gate } \\ \text { MDQ } \\ \hline \end{array}$	Annual Quantity	$\begin{array}{c\|} \hline \text { Expiration } \\ \text { Date } \\ \hline \end{array}$	Notes
EnergyNorh Natural Gas Incorporated	Iroquois	47001	RTS-1	4,047	1,477,155	10131/2011	Par-284 transportation service ( 365 -day). This contract is used to transport volumes from Waddington, NY to the Iroquois interconnect with TGP at Wright, NY.
EnergyNorh Natural Gas Incorporated	National Fuel	N02358	FST	6,098	2,225,770	3/31/2008	Par-284 transportation service ( 365 -day) associated with the FSS service 002357 , used for storage injection and or withdrawal across National Fuel pipeline system and into and out of the FSS storage.   The contract term and associated discounted rate were extended through March 31, 2004, and then year to year thereafer unless one-year writen notice is provided by cither party.   Amendment dated March 21, 2002 gives National Fuel the option of notifying the company by February 28th to discontinue the discounted rate. The Company has been notified by National Fuel effective April 1, 2007 the discounted rate will $n$ o longer be in effect.
EnergyNorh Natural Gas incorporated	Porland Natural Gas	1999-001	FT	1,000	365,000	10/31/2019	Part-284 transportation service ( 365 -day). This contract is used to transport volumes from Pitsburg, New Hampshire to EnergyNorth citygatc locased in Berlin, New Hampshire.
EnergyNorh Natural Gas Incorporated	Tennessee	632	FT-A	15,265	5.571,725	10/31/2010	Pan- 284 transportation service ( 365 -day). This conrract is used to transpor volumes from FS-MA storage (zone 4) to EnergyNorth city gates.
EnergyNorh Natural Gas Incorporated	Tennessee	2302	FT-A	3,122	1,139,530	10/31/2010	Part-284 transportation service ( 365 -day). This contract is used to iransport Canadian supply (BP Canada \& NEXEN) from Niagara, New York (zone 5) to EnergyNorth city gates.
EnergyNorth Namral Gas Incorporated	Tennessee	8587	FT-A	25,407	9.273.555	10/31/2010	Part 284 transporation service ( 365 -day). This contract is used to transport volumes from the access area (zones 0 and 1 ) and storage (zone 4 ) to EnergyNorth city gates (zone 6) with primary receipt points of 21.596 MMBtu/day from zones 0 and 1 and 3,811 MMBtu from zone 4. The contract term has been extended from October 31, 2003 to October 31, 2010.
EnergyNorth Natural Gas Incorporated	Tennessee	11234	FT-A	9.039	3,299,235	10/31/2010	Part 284 ransporation service ( 365 -day). This contract is used to transpor volumes from three storage fields (Honeoye, National Fuel and Dominion) to EnergyNorth's city gates (zone 6).
EnergyNorth Natural Gas Incorporated	Tennessee	33371	NET-NE	4,000	1,460,000	10/31/2011	Part 284 transportation service ( 365 -day) used to transport gas from Iroquois at Wright, NY to EnergyNorth city gates. Effective November 1, 2006 the contract will be converted from a NET-NE agreement to a service agreement under Rate Schedule FT-A.
EnergyNorh Natural Gas Incorporated	Tennessee	42076	FT.A	20,000	7.300,000	10/31/2010	Part 284 transportation service (365-day). This contract is used to transpor volumes from Dracui, MA (zone 6) to the EnergyNorth city gates (zone 6)
EnergyNorth Natural Gas Incorporated	TransCanada		FT	4,047	1,477,155	10/31/2016	Canadian Transportation service ( 365 -day). This conract is used to transpor volumes from Parkway-Union to TransCanada interconnect with Iroquois.
EnergyNorth Natural Gas incorporated	Union Gas	M12100	M12	4,092	1,493,580	10/31/2007	Canadian transportation service ( 365 -day). This contract is used to ranspor volumes from Dawn to Union interconnect with TransCanada

## Chart IV-C-2 (Page 2 of 4 )

EnergyNorth Natural Gas Incorporated
Resource Listing
Underground Storage Services

Shipper	Pipeline Company	Contract No.	Rate Schedule	City Gate MDWQ	Annual Quantity MSQ	Expiration Date	Notes
EnergyNorth Natural Gas Incorporated	Dominion	300076	GSS Storage	934	102,700	3/31/2011	Part-284 storage service that provides $102,700 \mathrm{MMBtu}$ of storage capacity at a withdrawal rate of 934 MMB u/day and an injection rate of 934 MMBtw/day. Injection ratchets if inventory is under $50 \%$ the calculation is $1 / 180 \times 102,700$ for injection rights. If the inventory is above $50 \%$ the calculation is $1 / 214 \times 102,700$. April to July Dominion allows for $115 \%$ of the daily injection rights The contract term has been extended from March 31,2006 to March 31, 2011.
EnergyNorth Natural Gas Incorporated	Honeoye		SS-NX   Storage	1,957	245,280	4/1/2008	Part-157 (7C) storage service that provides $145,280 \mathrm{MMB}$ M of storage capacity at a withdrawal rate of $1,957 \mathrm{MMBtu} /$ day and an injection rate of 1,957 MMBtu/day. The company is currently exercising the evergreen provision provided in the contract and extending the contract on a year to year basis. If operational integrity should be in jeopardy Honeoye reserves the right to institute a storage ratchet calculation as follows MSQ/210 days.
EnergyNorth Natural Gas Incorporated	National Fuel	002357	FSS Storage	6.098	670.800	3/31/2008	Part-284 storage service ( 150 -day) that provides 670,800 MMBtu of storage capacity, with a withdrawal rate of $6,098 \mathrm{MMBru} /$ day and an injection rate of $4,472 \mathrm{MMBtu} /$ day. The 110 -day service has injection ratchets 0 to $70 \%$ the calculation is $1 / 170 \times \mathrm{MSQ}$ and $70 \%$ to $100 \%$ the calculation is $1 / 200 \times$ MSQ. The contract is associated with National Fuel transportation contract (No. N02358). The Company is currently exercising the evergreen provision provided in the contract and is extending the contract on a year to year basis.
EnergyNorth Natural Gas Incorporated	Tennessce	523	FS-MA Storage	21,844	1,560,391	10/31/2010	Part-284 storage service that provides $1,560,391 \mathrm{MMB}$ u of storage capacity with a withdrawal rate of $21,844 \mathrm{MMBtw} /$ day and an injection rate of $10,404 \mathrm{MMBtw} /$ day or $1 / 150$ of Shipper's MSQ. The contract term has been extended from October 31, 2003 to October 31, 2010.

## EnergyNorth Natural Gas Incorporated

 Resource Listing
## Supnly Contracts

Shipper	Supplier	Contract No.	MDCQ	Annual Quantity	Expiration Date	Notes
EnergyNorth Natural Gas Incorporated	BP Canada Energy Company		1,599	583,635	4/1/2007	Supply Agreement beween EnergyNorth and BP Canada Energy Company that provides gas commodity from western Canada at the Canadian-US border near Niagra, New York on Tennessee for transportation to EnergyNorth citygates.
EnergyNorth Natural Gas Incorporated	DTE Energy Trading		1.986	724,890	30/31/2007	Supply Agreement between EnergyNorth and DTE Energy Trading that provides gas commodity at the Union Pipeline interconnection at Dawn, Ontario. This contract replaces the ANE contract that expires on October 31, 2006. This contract will commence on November 1, 2006.
EnergyNorh Natural Gas Incorporated	Nexen Marketing		1,600	584.000	4/1/2007	Supply Agreement berween EnergyNorth and Nexen Markeing Corporation that provides gas commodity from western Canada at the Canadian-US border near Niagra. New York on Tennessee for transportation to EnergyNorth cirygates.
EnergyNorth Natural Gas Incorporated	Sempra Energy Trading		2,106	768,690	10/31/2007	Surpply Agreement between EnergyNorth and Sempra Energy Trading that provides gas commodity at the Union Pipeline interconnection at Dawn, Ontario. This contract replaces the former ANE contract. This contract will commence on November I, 2006

Chart IV-C-2
(Page 4 of 4 )

EnergyNorth Natural Gas Incorporated
Resource Listing
Supplemental Resources

Shipper	Supplier	Contract No.	MDCQ	Annual Quantity	Expiration Date	Notes
EnergyNorth Natural Gas incorporatod	Granite Ridge Energy, L.L.C.		15,000	450,000	9/30/2007	Peaking Supply Agreement between Granite Ridge Energy L.L.C. and EnergyNorth that provides up to $15.000 \mathrm{MMBn} /$ day for a total of 450,000 MMBrus during the months of December, January and February.
EnergyNorth Natural Gas lucorporated	Distrigas	FLS 160	Monthly Take Quantities	1,000,000	10/31/2010	Distrigas of Massachusetts FLS (Fim Liquid Service) is a winter liquid refill conract with an annual quantity of $1,000,000 \mathrm{MMB}$ 保 of which $100,000 \mathrm{MM}$ Brus is allocated to EnergyNorth


Location	Facility Type	Maximum   Vaporization   (MMBtu/day)	Storage Capacity   (MMBtu/day)


Concord. NH	LNG	4,800	4.200
Tilton, NH	LNG	9,600	4.200
Manchester, NH	LNG	8.400	4.200
Nashua, NH	Propane	11.000	23.672
Amherst. NH	Propane	0	28.450
Manchesier. NH	Propane	21.600	47.317
Tiiton, NH	Propane	2.000	4.730
Haverhill, MA	Propane	0	42.216




## EnergyNorth Base Case Resources and Requirements 2006-07 Through 2010-11

# COMPARISON OF RESOURCES AND REQUIREMENTS Base Case Design Year (MMBtu) 

Heating Season (Nov-Mar)

REQUIREMENTS		2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout		10,451,700	10,795,100	10,946,700	11,183,400	11,452,000
Refill	Underground Storage	200	0	0	0	0
	LNG	131,200	138,300	142,800	146,400	148,800
	Propane	93,400	93,400	93,500	93,500	93,500
Total Requirements		10,676,500	11,026,800	11,183,000	11,423,300	11,694,300
RESOURCES						
PNGTS		21,000	21,200	21,000	21,000	21,000
TGP	AES-Londonderry	299,000	405,000	450,000	437,800	450,000
	ANE	584,700	597,200	593,300	593,300	593,300
	BP / Nexen	447,200	450,200	447,200	447,200	450,200
	CoEnergy	1,784,000	1,783,900	1,783,900	1,784,000	1,784,000
	Gulf Supply	3,124,900	3,118,500	3,099,700	3,160,700	3,162,100
	Market Area -- Zone 4	560,300	746,600	802,900	853,500	937,400
	Market Area -- Zone 6	0	0	0	131,500	208,100
	Storage	2,483,900	2,471,600	2,472,400	2,487,700	2,487,700
Other Purchased Resources		0	0	53,300	48,000	128,000
DOMAC	Vapor	842,200	888,700	906,700	898,800	934,200
	Liquid	131,200	138,300	142,800	146,400	148,800
LNG From Storage		138,400	145,500	150,000	153,500	156,000
Propane	Vapor	166,600	166,600	166,700	166,600	140,400
	Truck	93,400	93,400	$\underline{93,500}$	93,500	93,500
Total Res	ources	10,676,800	11,026,700	11,183,400	11,423,500	11,694,700

# COMPARISON OF RESOURCES AND REQUIREMENTS Base Case Design Year (MMBtu) Non-Heating Season (Apr-Oct) 

REQUIREMENTS		2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout		4,089,700	4,232,000	4,350,800	4,475,400	4,617,800
Refill	Underground Storage	2,564,800	2,552,100	2,552,800	2,568,800	2,568,600
	LNG	27,300	27,300	27,300	27,300	27,300
	Propane	73,300	73,300	73,300	73,300	46,900
Total Requirements		6,755,100	6,884,700	7,004,200	7,144,800	7,260,600
RESOURCES						
PNGTS		12,600	12,600	12,600	12,600	12,600
TGP	AES-Londonderry	0	0	0	0	0
	ANE	840,900	840,900	840,900	840,900	840,900
	BP / Nexen	668,300	668,300	668,300	668,300	665,200
	CoEnergy	0	0	0	0	0
	Gulf Supply	3,920,800	4,382,800	4,431,700	4,467,100	4,510,200
	Market Area -- Zone 4	826,100	540,300	628,800	726,200	863,400
	Market Area -- Zone 6	0	0	0	0	0
	Storage	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	365,800	319,200	301,300	309,200	273,900
	Liquid	27,300	27,300	27,300	27,300	27,300
LNG From Storage		20,000	20,000	20,000	20,000	20,000
Propane	Vapor	0	0	0	0	0
	Truck	73,300	73,300	73,300	73,300	46,900
Total Resources		6,755,100	6,884,700	7,004,200	7,144,900	7,260,400

# COMPARISON OF RESOURCES AND REQUIREMENTS Base Case Design Year (MMBtu) 

Peak Day

REQUIREMENTS	2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout	138,600	142,000	144,800	147,700	151,000
Refill Underground Storage	0	0	0	0	0
LNG	2,000	2,000	2,000	2,000	2,000
Propane	1,730	8,000	8,000	8,000	$\underline{0}$
Total Requirements	142,330	152,000	154,800	157,700	153,000
RESOURCES					
PNGTS	160	160	160	160	160
TGP AES-Londonderry	15,000	15,000	15,000	15,000	15,000
ANE	3,970	3,970	3,970	3,970	3,970
BP / Nexen	3,120	3,120	3,120	3,120	3,120
CoEnergy	20,000	20,000	20,000	20,000	20,000
Gulf Supply	21,600	21,600	21,600	21,600	21,600
Market Area -- Zone 4	0	0	0	0	0
Market Area -- Zone 6	0	0	0	0	0
Storage	28,110	28,110	28,110	28,110	28,110
Other Purchased Resources	0	0	0	5,310	19,660
DOMAC Vapor	8,000	8,000	8,000	8,000	8,000
Liquid	2,000	2,000	2,000	2,000	2,000
LNG From Storage	3,770	7,100	9,900	7,530	5,810
Propane Vapor	35,000	35,000	35,000	35,000	25,690
Truck	1,730	8,000	8,000	8,000	$\underline{0}$
Total Resources	142,460	152,060	154,860	157,800	153,120

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> Base Case Design Year 2006-07 <br> (MMBtu)

REQUIREMENTS		11/2006	12/2006	01/2C07	$02 / 2007$	$03 / 2007$	042007	05/2007	$06 / 2007$	$07 / 2007$	08/2007	09/2007	$10 / 2007$
Firm Sendout		1.476.900	2.265,300	2,645,100	2.201 .100	1.863.300	1.105 .500	644,300	380,800	293.800	291,800	408,700	864,800
Reftil	Underground Storage	200	0	0	0	0	465,100	531,300	514,300	531.300	515.100	7.700	0
	LNG	16.200	14.400	40.000	35,600	25,000	0	13.000	2,800	2.900	2,900	2.800	2.900
	Propane	$\underline{0}$	3.700	$\underline{27,100}$	$\underline{62,600}$	$\bigcirc$	$\bigcirc$	22.000	22.000	$\underline{22,000}$	73,300	$\underline{0}$	-
Total Requrements		1.493 .300	2.283,400	2,712,200	2,299,300	1,888,300	1.570,600	1,210,800	919,800	850.000	817,100	419.200	967.700
Resources													
PNGTS		3,300	4,600	5,100	3.900	4.100	2,800	2,000	1.300	1,100	1,300	1.500	2.600
TGP	AES-Londonderry	0	74.400	150,500	32,100	42.000	0	0	0	0	0	0	0
	ANE	117.900	121.800	121.800	101.400	121,800	117.900	121,800	117,900	121,800	121,800	197,900	121,800
	8P/Nexen	93,700	96.700	96.700	63.400	96,700	93.700	96,800	93,700	96,800	96.800	93.700	96,800
	CoEnergy	0	604.500	619,500	560.000	0	0	0	0	0	0	0	-
	Gutf Supply	640.700	637,700	636.000	574.500	636.000	647.800	669,400	624,800	602,500	584,100	200.600	591,600
	Markel Area - Zone 4	397.600	111.500	0	0	51.200	475,700	282,600	15,300	0	0	0	52,500
	Markel Area -- Zone 6	0	0	0	0	0	0	0	$\bigcirc$	0	0	0	0
	Storage	200	343.600	771.700	677,700	690,700	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	207.500	248,000	144,700	89.800	152,100	229,900	0	39,300	0	0	0	96.600
	Lquid	16.200	14.400	40,000	35,600	25,000	0	13.000	2.800	2.900	2,900	2,800	2,900
LNG from Storage		16,200	18,700	35,700	35.600	32,200	2,800	2.900	2.800	2,900	2,800	2,800	2,900
Propane	Vapor	0	3.700	63.700	62,600	36,600	0	0	0	0	0	0	0
	Truck	0	3.700	27,100	62,600	$\underline{9}$	$\underline{0}$	22.000	22,000	22,000	7.300	0	0
Tolal Resources		1,493.300	2,293.300	2,712,500	2.299,300	1,888,400	1.570.600	1,210,500	\$19,900	850,000	817.100	418.300	967,700

COMPARISON OF RESOURCES AND REQUIREMENTS
Base Case Design Year 2007-08
(MMBtu)

REQUIREMENTS		11/2007	$12 / 2007$	01/2008	02/2008	03/2008	04/2008	0512008	0682008	07/2008	08/2008	09/2008	10/2008
Firm Sendout		1.518.800	2,322,400	2,710,600	2.329.800	1,913,500	1,139,900	667.400	394.300	305,100	303,900	425,600	995,800
Refill	Underground Storage	0	0	0	0	0	46.200	531,300	514,300	531,300	515,100	413.900	0
	LNG	21.100	16,500	40,000	35.700	25.000	0	13.000	2,800	2,900	2,900	2.800	2,900
	Propane	$\underline{0}$	11600	41300	40,500	$\bigcirc$	-	22.000	22,000	22.000	7.300	$\bigcirc$	0
Total Requirements		1,539,900	2.350,500	2.791.000	2.406.000	1,938,500	1.186 .100	1,233,700	933.400	861.300	829,200	842.300	998.700
RESOURCES													
PNGTS		3,300	4,600	5,100	4.100	4,100	2.800	2.000	1.300	1.100	1,300	3.500	2.600
rge	AES-Lordonderry	1,100	81,500	179,200	78.400	64,800	0	0	0	0	0	0	0
	ANE	117,500	121,800	121,800	113,900	121.800	117,900	121.800	117,900	121,800	121,800	117,900	121.800
	EP/Nexen	93,700	96,700	96,700	66.400	96,700	33.700	96.800	93.700	96,800	96.800	93.700	96,800
	CoEnergy	0	617.200	620.000	546,700	0	0	0	0	0	0	0	0
	Gulf Suppiy	615.500	636,000	636,000	595,000	636.000	647.800	669.400	630.400	613,700	596.200	623,600	601.700
	Market Area -- Zone 4	421,000	265,400	0	0	60.200	137.800	305.800	30,200	0	0	0	66,500
	Market Area -- Zone 6	0	-	0	0	0	0	,	0	0	0	0	0
	Slorage	7.500	218.700	790,800	752,500	701.700	0	0	$\bigcirc$	0	0	0	0
Oner Purcnased Resources		0	0	0	0	0	0	0	0	0	0	0	0
dOMAC	Vapor	237,700	248,000	147,300	96,400	159,300	183.400	0	32,300	0	0	0	103.500
	Liquxd	21,100	16,500	40,000	35,700	25,000	0	13,000	2,800	2.900	2.900	2.800	2.900
LNG From Storage		21,100	20,800	35,900	35,400	32,200	2,800	2,900	2,800	2.800	2,900	2.800	2.900
Propane	Vapor	0	11,800	77,900	40,500	36,600	0	0	0	0	0	0	0
	Truck	0	11,600	41,300	40,500	$\underline{0}$	0	22,000	22.000	$\underline{22.000}$	7,300	Q	0
Total Resources		1,539,900	2,350,500	2,782,000	2.405 .900	9,938.400	1,186,200	1.233,700	933.400	881.200	829,200	842,300	988.700

COMPARISON OF RESOURCES AND REQUIREMENTS Base Case Design Year 2008-09 (MMBtu)

REQUIREMENTS		11/2009	12/2008	01/2009	02/2009	03/2009	04/2009	05/2009	08,2009	0772099	06/2009	09/2009	10/2009
Firm Sendoul		1,553.900	2,370,400	2,765,600	2,301,100	1,855,700	1,188,800	686,800	405,500	314.400	313.900	439.600	1,021,800
Reful	Underground Storage	0	0	0	0	0	57,000	531,300	501.200	531.300	528.800	403,200	0
	LNG	23.200	19,000	40,000	35,600	25,000	0	13,000	2.800	2,900	2.900	2.800	2.900
	Propane	0	$\underline{\square}$	54,400	39,100	0	0	$\underline{22,000}$	22,000	22,000	7300	9	$\bigcirc$
Tolal Requirements		1.577.100	2.389 .400	2,860.000	2.375 .800	1.980 .700	1,225,800	1,253.100	931.500	870.600	852,900	845,600	1,024,700
RESOURCES													
PNGTS		3,300	4.600	5.100	3.900	4,100	2.800	2.000	1.300	1,100	1,300	1.500	2,600
TGP	AES-Londonderry	0	64,400	197,100	101,600	80,600	0	0	0	0	0	0	0
	ANE	117.900	121,800	121.800	110,000	121,800	117.900	121,800	117,900	121.800	121,800	117.900	121,800
	BP/Nexen	93.700	96.700	86,700	63.400	96.700	93,700	96.800	93,700	96.800	96,800	93,700	96.800
	CoEnergy	0	613.200	618.000	552.700	0	0	0	0	0	0	0	0
	Guli Supply	617.200	636.000	636,000	574.500	636,000	647,900	669,400	635,000	623.000	619,900	626,900	609.600
	Markel Area - Zone 4	441.700	294.400	0	0	66,800	168,800	325.100	56,000	0	0	0	78,900
	Markel Area -- Zone 6	0	0	0	0	0	0	0	0	0	0	0	0
	Storage	9.400	226.600	809,000	719.400	708.000	0	0	0	0	0	0	0
Oiter Purchased Resources		7.600	45.700	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	240,000	248.000	149,100	103,000	166,600	192.100	0	0	0	0	0	109,200
	Liquid	23.200	19,000	40.000	35,600	25.000	0	13,000	2.800	2,900	2,900	2.800	2.900
LNG Fiom Storage		23,200	19,000	41,900	33,700	32,200	2.800	2,900	2,800	2.900	2.900	2.800	2.900
Propane	Vapor	0	0	91,000	39,100	36,600	0	0	0	0	0	0	0
	Truck	0	0	54,400	39,100	0	$Q$	22,000	22,000	22.000	7,300	$\underline{0}$	0
Totat Resources		1.577.200	2,389,400	2,860,400	2,376,000	1,980,700	1,226,000	1,253,000	931,500	870.500	852.900	845,600	1.024.700

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> Base Case Design Year 2009-10 (MMBtu)

REQUIREMENTS		11/2009	12/2009	01/2010	$02 / 2010$	03/2010	04/2010	05v2010	$08 / 2010$	$07 / 2010$	002010	29\%010	10/2010
Firm Sendout		1.580 .800	2.420,600	2,823,200	2.348 .900	1,990.900	1.190.100	707.100	417,200	324,200	324,500	454.300	1.049,000
Retils	Underground Storage	0	0	0	0	0	85,300	531.300	500,100	531,300	528,300	391.500	0
	LNG	25,000	20.100	40,000	36,300	25,000	0	13,000	2,800	2,900	2.900	2,800	2,900
	Propane	Q	$\bigcirc$	88,300	4,200	O	$\bigcirc$	22,000	22,000	22,000	7300	$\underline{0}$	0
Total Requrements		1,615,800	2.440,700	2,952,500	2,389,400	2.024.900	1.284,400	1,273,400	942.100	880.400	864,000	848.600	1.051,900
RESOURCES													
PNGTS		3,300	4,600	5,100	3.900	4.100	2,800	2,000	1,300	1.100	1.300	1,500	2.600
TGP	AES-Londonderry	0	90.000	222.700	125.100	0	0	$\bigcirc$	0	0	0	0	0
	ANE	117,900	121.800	121.800	140,000	121.800	117.900	121,800	117.900	121,800	121.800	117.900	121.800
	BP/Nexen	83.700	96,700	96,700	83,400	96,700	93.700	96,800	83.700	96,800	96,800	93,700	98.800
	CoEnergy	0	604.000	620.000	580,000	0	O	0	0	0		0	0
	Gulf Supply	644.700	669.500	636,000	574.500	636,000	647.900	869.400	638,800	632,900	630,800	629,900	617,300
	Market Area -- Zone 4	463.600	313,300	0	0	76.600	225,900	345,500	62,900	0	0	0	91.900
	Markel Avea - Zone 6	17.100	0	0	0	114.400	0	0	-	0	0	0	0
	Storage	9.400	216,800	822.300	731,400	707,800	0	0	0	0	0	0	0
Other Purchased Resources		0	32,100	15,900	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	216.200	248.000	152,900	108.200	173.500	193,500	0	0	0	0	0	195,700
	Liquid	25,000	20,100	40.000	36,300	25,000	0	13.000	2,800	2,900	2.900	2.800	2.800
LNG From Storage		25,000	23,900	40,700	31,700	32,200	2,800	2,900	2.800	2.900	2,900	2.800	2,500
Propane	Vapor	0	0	89.300	40.700	36,600	0	0	0	0	0	0	0
	Truck	@	0	89,300	4.200	$\bigcirc$	$\bigcirc$	22,000	$\underline{22,000}$	22,000	7,300	0	$\underline{0}$
Tolal Resources		1,615,900	2.440 .500	2.952 .700	2.389,400	2.024.700	1.284.500	1,273,400	942,200	880,400	863,900	848,600	1,051,000

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> Base Case Design Year 2010-11 <br> (MMBtu)

REQUREMENTS		1912010	12/2010	0012019	$02 / 2011$	03/2019	0a/2011	05/2011	06/2011	$07 / 2011$	082011	09/2011	102011
Firm Sencout		1.632,600	2.477 .600	2,888,600	2,403,200	2,050,000	1.233,600	730,300	430.700	335.500	336,600	471.100	1,080.000
Refill	Underground Slorage	0	0	0	0	0	98.600	531.300	499.200	531,300	530,100	378,100	0
	LNG	25.000	21,300	40.000	37.500	25.000	0	13.000	2.800	2,900	2.900	2,800	2,900
	Propane	$\underline{\square}$	$\underline{0}$	42.400	51,100	$\underline{0}$	$\underline{0}$	22,000	$\underline{22,000}$	2.900	$\underline{0}$	$\bigcirc$	$\bigcirc$
Total Requrements		1.657.600	2.498 .900	2.971,000	2.491,800	2.075.000	1,332,200	1,296.600	954,700	872,600	869,600	852,000	1.082 .500
RESOURCES													
PNGTS		3.300	4.600	5,100	3,900	4.100	2.800	2.000	1,300	1.100	1.300	1.500	2.600
TGP	AES-Londonderty	0	68,100	242,300	139,600	0	0	0	0	0	0	0	0
	ANE	117.900	121,800	121.800	110,000	121,800	117,900	121.800	117.900	121,800	121.800	117.900	121.800
	BP/Nexen	93.700	96,700	96,700	66,400	96,700	93,700	96,800	90.600	96,800	96.800	93.700	96,800
	CoEnergy	0	604,000	620.000	560.000	0	0	0	0	0	0	0	0
	Gulf Supply	646,100	689,500	636.000	574,500	636.000	647.800	669.400	845,900	644.200	643,800	633.400	625.700
	Markel Area -- Zone 4	486,400	368,100	$\bigcirc$	0	81,900	315.700	368.600	71.400	0	0	0	107,700
	Markel Asea -- Zone 6	32,700	0	0	0	175.400	0	0	0	0	0	0	0
	Storage	9.400	197,500	836.100	748,000	696,700	0	0	0	0	0	0	0
Oner Purchased Resources		0	77.000	51,000	0	0	0	0	0	0	0	0	0
DOMAC	Vacor	218.200	248.000	160.100	113.000	194.900	151.500	0	0	0	0	0	122,400
	Liquid	25.000	21.300	40.000	37.500	25.000	0	13,000	2,800	2.900	2.900	2.800	2,900
LNG From Storage		25,000	21,300	40,700	36,800	32,200	2.800	2,900	2.800	2,900	2,900	2,800	2.900
Propane	Vapor	0	0	78,000	51,400	10,300	0	0	0	0	0	0	0
	Truck	0	$\bigcirc$	42,400	51,100	$\bigcirc$	0	22,000	$\underline{22,000}$	2,900	$\bigcirc$	-	0
Tolal Resources		1.657.700	2,498,900	2,971.200	2.491,900	2,075,000	1.332.200	1,296,500	954.700	872.500	869.500	852.100	1,082,800

# COMPARISON OF RESOURCES AND REQUIREMENTS <br> Base Case Normal Year (MMBtu) <br> Heating Season (Nov-Mar) 

REQUIREMENTS
Firm Sendout

Refill | Underground Storage |
| :--- |
| LNG |
| Propane |

Total Requirements

$\underline{2006-07}$	$\underline{2007-08}$	$\underline{2008-09}$	$\underline{2009-10}$	$\underline{2010-11}$	
$9,441,300$	$9,757,800$	$9,904,300$	$10,125,700$	$10,377,200$	
		0	0	0	0
600	$\underline{05,600}$	114,400	122,300	125,000	131,200
$\underline{93,500}$	$\underline{93,500}$	$\underline{93,500}$	$\underline{93,500}$	$\underline{93,400}$	
$9,601,000$	$9,965,700$	$10,120,100$	$10,344,200$	$10,601,800$	

## RESOURCES

PNGTS		21,000	21,200	21,000	21,000	21,000
TGP	AES-Londonderry	0	12,100	70,900	111,500	178,100
	ANE	584,700	588,600	593,300	593,300	593,300
	BP / Nexen	447,200	450,200	447,200	447,200	447,200
	CoEnergy	1,784,000	1,784,100	1,784,000	1,784,000	1,784,000
	Gulf Supply	3,098,000	3,118,500	3,098,000	3,122,800	3,129,600
	Market Area -- Zone 4	327,500	360,100	382,800	435,700	549,700
	Market Area -- Zone 6	0	0	0	34,600	92,000
	Storage	2,406,300	2,488,400	2,475,300	2,487,700	2,471,700
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	538,900	646,800	736,100	789,400	842,600
	Liquid	65,600	114,400	122,300	125,000	131,200
LNG From Storage		72,900	121,500	129,500	132,200	138,400
Propane	Vapor	161,800	166,700	166,700	166,700	130,000
	Truck	$\underline{93,500}$	93,500	93,500	93,500	93,400
Total Resources		9,601,400	9,966,100	10,120,600	10,344,600	10,602,200

# COMPARISON OF RESOURCES AND REQUIREMENTS <br> Base Case Normal Year <br> (MMBtu) 

Non-Heating Season (Apr-Oct)

REQUIREMENTS		2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout		3,813,000	3,950,100	4,064,600	4,184,600	4,321,900
Refill	Underground Storage	2,483,600	2,569,500	2,556,000	2,568,700	2,551,900
	LNG	27,300	27,300	27,300	27,300	27,300
	Propane	68,400	73,300	73,300	73,300	36,600
Total Requirements		6,392,300	6,620,200	6,721,200	6,853,900	6,937,700
RESOURCES						
PNGTS		12,600	12,600	12,600	12,600	12,600
TGP	AES-Londonderry	0	0	0	0	0
	ANE	840,900	840,900	840,900	840,900	840,900
	BP / Nexen	668,300	668,300	668,300	668,300	668,300
	CoEnergy	0	0	0	0	0
	Gulf Supply	3,679,900	4,230,200	4,380,500	4,436,200	4,478,800
	Market Area -- Zone 4	405,900	186,300	226,300	356,700	487,800
	Market Area -- Zone 6	0	0	0	0	0
	Storage	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	669,100	561,200	472,000	418,600	365,400
	Liquid	27,300	27,300	27,300	27,300	27,300
LNG From Storage		20,000	20,000	20,000	20,000	20,000
Propane	Vapor	0	0	0	0	0
	Truck	68,400	73,300	73,300	73,300	36,600
Total Resources		6,392,400	6,620,100	6,721,200	6,853,900	6,937,700

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> Base Case Normal Year 2006-07 <br> (MMBtu)

REQUIREMENTS		11/2006	12/2006	01/2007	022007	03/2007	$0 \times 12007$	O5/2007	$06 / 2007$	0712007	08/2007	09/2007	1026007
Firm Sendout		1.347,600	2,052,800	2,366.400	1,956,700	1.717.800	1,004,100	620,600	340.800	293,000	289.700	381.000	883.800
Refal	Underground Slorage	600	0	0	0	0	396,600	531.300	514,300	531.300	502.400	7.700	0
	LNG	3.800	14.400	22.400	0	25,000	0	13,000	2.800	2.900	2.900	2,800	2,900
	Propane	0	17.100	76,400	$\underline{0}$	$\bigcirc$	$\underline{0}$	22,000	22.000	22.000	2.400	0	$\bigcirc$
Total Requrements		1.352 .000	2.094.300	2,465,200	1,956,700	1,742,800	1,400,700	1.188.900	878.900	849,200	797.400	381,500	886,700
RESOURCES													
PNGTS		3,300	4.600	5. 100	3.900	4.100	2.800	2.000	1,300	1.100	1.300	1.500	2.600
tGP	AES-Londonderry	0	0	0	0	0	0	0	0	0	0	0	0
	ANE	117.900	121,800	121.800	101.400	121,800	117.000	121,800	117,000	121.800	121,800	117.900	121.800
	BP/ Nexem	93,700	96.700	56.700	63.400	96,700	93.700	96,800	93,700	96,800	96.800	93.700	86.800
	CoEnergy	0	610.200	618.700	555,100	0	0	0	0	0	0	0	0
	Guli Supply	615.500	636,000	636,000	574,500	636.000	647.800	869.400	620.800	601,700	569,300	172,800	388.100
	Markel Asea- Zone 4	298.000	0	0	0	29.500	304,600	79.100	0	0	0	0	22,200
	Market Area -- Zone 6	0	0	0	0	0	0	0	0	0	0	0	0
	Storage	600	499,900	690,300	559,400	856,400	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
dOMAC	Vapor	215,500	45.500	105.100	53.400	\$19.400	231,200	179.800	18,700	0	0	0	239.400
	Liquid	3,800	14,400	22.400	0	25,000	0	13.000	2.800	2,800	2.900	2,800	2.900
LNG From Slorage		3,800	21.100	15,700	10.100	22.200	2,800	2.800	2.800	2,900	2,900	2.800	2.900
Propane	Vapor	0	17.100	77.100	35.900	31.700	0	0	0	0	0	0	0
	Truck	$Q$	17,100	76,400	$\underline{0}$	$\underline{0}$	0	22,000	22.000	22,000	2400	$\bigcirc$	$\underline{0}$
Total Resources		1.352.100	2,084,400	2.465,300	1,956,800	1.742 .800	1,400,800	1,186,800	880,000	849.200	787.400	391.500	886.700

## COMPARISON OF RESOURCES AND REQUIREMENTS Base Case Normal Year 2007-08 (MMBtu)

REQUIREMENTS		11/2007	12/2007	$01 / 2008$	02/2008	03/2008	04/2008	05/2008	06/2008	07/2008	08/2008	09/2008	10/2008
Firm Sendout		1,386,900	2,108,300	2,427,300	2,072,500	1,764,800	1,036,800	642,700	354,100	304,300	301.700	397,300	913,200
Refill	Underground Storage	0	0	0	0	0	124,000	531,300	514,300	531,300	513,000	355,600	0
	LNG	5,700	14,400	37,300	32,000	25,000	0	13,000	2,800	2.900	2,900	2,800	2,900
	Propane	$\bigcirc$	15,800	48,200	$\underline{29,500}$	Q	$\bigcirc$	$\underline{22,000}$	$\underline{22.000}$	$\underline{22.000}$	7.300	$\underline{\square}$	$\bigcirc$
Tolal Recurements		1,392.600	2.136,500	2.512.800	2,134,000	1,789,800	1,160,800	1,209,000	893.200	860.500	824.900	755.700	916,100
RESOURCES													
PNGTS		3,300	4.600	5.100	4,100	4,100	2,800	2,000	1,300	1.100	1,300	1.500	2.600
TGP	AES-Londonderry	0	12,100	0	0	0	0	0	0	0	0	0	0
	ANE	117,900	121,800	121,800	105,300	121,800	117,900	121,800	117.900	121,800	121,800	117,900	121,800
	BP/Nexen	93,700	96,700	96,700	66,400	96,700	93,700	96,800	93,700	96,800	96,800	93,700	96,800
	CoEnergy	-	608,800	610,300	565.000	0	0	0	0	0	0	0	0
	Gull Supply	615.500	636,000	636,000	595,000	636,000	647,900	669,400	627,300	612,900	591,900	537,000	543.800
	Market Area - Zone 4	321,500	0	0	0	38,600	63.200	93,700	0	0	0	0	29,400
	Market Area - Zone 6	0	0	0	0	0	-	0	-	0	0	0	0
	Storage	7.500	481,800	720,400	617,500	661,400	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	221,900	106,800	121,600	60,100	136,400	232,600	187,400	25,400	0	0	0	115.800
	Liquid	5,700	14.400	37,300	32,000	25,000	0	13.000	2,800	2.900	2,900	2,800	2.900
LNG From Storage		5,700	18,200	39,000	29,700	28,900	2,800	2,900	2,800	2,900	2,900	2,800	2,900
Propane	Vapor	0	19,700	76.600	29,500	40,900	0	0	0	0	0	0	0
	Ituck	$\underline{\square}$	15,800	48,200	29,500	$\underline{0}$	$\underline{0}$	$\underline{22,000}$	$\underline{22.000}$	$\underline{22.000}$	7.300	$\underline{0}$	$\underline{0}$
Total Resources		1,392,700	2,136,500	2,513,000	2,134,100	1,789,800	1,160,900	1,209,000	893,200	860,400	824,900	755,700	916,000

COMPARISON OF RESOURCES AND REQUIREMENTS
Base Case Normal Year 2008-09
(MMBtu)

REQUIREMENTS		11,2008	12/2009	012009	$02 / 2009$	03/2009	042009	05/2009	06/2009	$07 / 2009$	0e82099	09/2009	10/2009
Firm Sendoul		1,420.000	2,151.200	2.478,500	2.050,300	1,804,300	1,064.200	681,200	365,200	313,600	311,700	410.900	937,800
Refill	Underground Slorage	0	0	0	0	0	43.600	531,300	510,400	531,300	522,900	416.500	0
	LNG	7.300	14,400	40,000	35.600	25.000	0	13,000	2,800	2,900	2.900	2.800	2,900
	Propane	$\bigcirc$	O	56,000	37,500	$\bigcirc$	$\underline{0}$	22,000	22.000	22,000	2300	$\underline{0}$	$\underline{\square}$
Tolal Requirements		1,427,300	2,165.600	2.574.500	2,123,400	1,829,300	1,107.800	1,227,500	900,400	869,800	844.800	830,200	940.700
RESOURCES													
PNGTS		3.300	4.600	5,100	3,900	4,100	2.800	2.000	1,300	1.100	1.300	1,500	2,600
tgp	AES-Londonderry	0	45000	8.200	0	16,700	0	0	0	0	0	0	0
	ANE	117,900	129.800	121,800	110,000	121,800	117.900	121,800	117,900	121,800	121.800	117.500	121,800
	BP/ Nexen	23,700	96.700	96,700	68.900	91,200	93.700	96.800	93,700	96.800	96,800	93.700	96,800
	CoEnergy	0	617.600	620,000	546.400	0	0	-	-	0	0	0	0
	Gulf Supply	615.500	636.000	636.000	574.500	636.000	647.800	669.400	632,500	622,300	811.700	611.500	585,300
	Market Area -- Zone 4	345,200	0	0	0	37.600	81,100	106.900	0	0	0	0	38,300
	Markel Area - Zone ó	0	0	0	0	0	0	0	0	0	0	0	0
	Storage	9,400	443,100	727.700	608.600	686,500	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	227.800	169,900	131.200	85,600	141.600	181,700	192.700	27.500	0	0	0	90.100
	Liquid	7.300	14,400	40.000	35.600	25.000	0	13.000	2,800	2,900	2.900	2,800	2.900
LNG From Storage		7,300	16.500	38.500	35,000	32.200	2,800	2,900	2.800	2.900	2.900	2.800	2,900
Propane	Vapor	0	0	92,600	37.500	36,600	0	0	0	0	0	0	0
	Iruck	$\bigcirc$	$\underline{9}$	56,000	37500	$\underline{0}$	$\underline{0}$	22,000	22.000	22.000	7,309	$\bigcirc$	0
Total Resources		1,427,400	2,165.600	2,574,800	2,123,500	1.829.300	1,107,800	1.227.500	900,500	869.800	844.700	830.200	940,700


		COMPARISON OF RESOURCES AND REQUIREMENTS Base Case Normal Year 2009-10   (MMBtu)											
REQUIR	ments	11/2009	122009	Q1/2010	022010	$03 / 2010$	0420010	$\underline{05 / 2010}$	068010	0732010	088010	923030	1022010
Firm Sen	out	1,454,600	2,198,300	2.532.100	2,095,000	1.845.700	1,082,000	B60,600	376.800	323.400	322,200	425,100	983.600
Refill	Underground Slorage	0	0	0	0	0	56,900	531,300	502,200	531.300	527,200	419.800	0
	LNG	10.000	14.400	40,000	35.600	25.000	0	13,000	2,800	2,900	2,900	2,800	2.900
	Propane	$\bigcirc$	Q	42.100	55.400	9	$\bigcirc$	22,000	22.000	$\underline{32.000}$	7.300	0	Q
Tolal Req	uiverments	1.464,600	2,212.700	2.614.200	2.182 .000	1,870,700	1,149,800	1,246,900	903.800	879,600	859.600	847.700	968,500
RESOURCES													
PNGTS		3,300	4.600	5,100	3.900	4,900	2,800	2.000	1.300	1,100	1,300	1,500	2.600
TGP	AES-Londorderty	0	59,400	52.100	0	0	0	0	0	0	0	0	0
	ANE	117,900	121,800	121,800	110,000	121.800	117,900	121,800	117.900	121,800	121,800	117.900	123.800
	BP/Nexen	90,700	96.700	96.700	63,400	90.700	93.700	96.800	93,700	96,800	98,800	93.700	85.800
	CoEnergy	0	609,400	615,400	559.200	0	0	0	0	0	0	0	0
	Guif Supply	640,300	636.000	636,000	574,500	836.000	647,900	669.400	637,300	632,100	828,500	629,100	593.900
	Markel Area - Zone 4	371,600	13.800	0	0	50,300	100,600	207.600	0	0	0	0	48.500
	Market Area .. Zone 6	0	0	0	0	34,600	0	0	0	0	0	0	0
	Slorage	9.400	418,700	750,100	625,800	683,700	0	0	0	0	0	0	0
Other Pu	chased Resources	0	0	0	0	0	0	0	0	0	0	-	0
DOMAC	vapor	208,500	223,500	136,400	79.400	149,600	184,200	111,400	26,000	0	0	$\mathfrak{0}$	97.000
	Liquid	10,000	14.400	40.000	35.600	25,000	0	13,000	2,800	2.900	2.800	2.800	2,900
LNG Fro	Storage	10,000	14,400	40.000	35.600	32.200	2.800	2,900	2.800	2,900	2.900	2.800	2,900
Propane	Vapor	0	0	78.700	51,400	36,600	0	0	0	0	0	0	0
	Inuck	$\bigcirc$	$\bigcirc$	42,100	51,400	0	$\bigcirc$	22000	22,000	23,000	7300	0	0
Total Resources		1,464,700	2.212.700	2,614,400	2.182,200	1,870.600	1.148,900	1,246,900	903,800	879,600	889.500	847,800	966.400

## COMPARISON OF RESOURCES AND REQUIREMENTS Base Case Normal Year 2010-11 (MMBtu)

REQUIREMENTS		11/2010	12/2010	01/2011	Q272019	03/2011	042011	05/2011	062011	0772011	Q82011	0922012	10/2011
Firm Sendoul		1,493,500	2,251,700	2,593,000	2,44,900	1,892,700	1,125,500	702.800	300,200	334.700	334.200	441.500	\$98,000
Refill	Underground Storage	0	0	0	0	0	53,000	531,300	500.600	531,300	528.700	407.000	0
	LNG	16,200	14.400	40.000	35.600	25.000	0	13.000	2,800	2.900	2,900	2.800	2.900
	Propane	$\bigcirc$	600	$\underline{24.500}$	68.300	$\bigcirc$	$\bigcirc$	22,000	14,600	$\bigcirc$	9	9	$Q$
Total Requiremenis		1,510,100	2.266,700	2,657.500	2,249,800	1,917,700	1,178,500	1,269,100	908.200	888.900	865,800	851.300	995.900
Resources													
PNGTS		3,300	4.600	5,100	3,900	4,100	2,800	2.000	1,300	1,900	1.300	1,500	2,600
tgp	AES-Londondery	-	72.700	105,400	0	0	0	0	0	0	0	0	0
	ANE	117.900	121.800	121,800	110,000	121,800	117,900	121,800	117,900	121,800	127,800	117,900	121,800
	BP/Nexen	93.700	96.700	96,700	63,400	96,700	99,700	96.800	93.700	96,800	96.800	93.700	96,800
	CoEnergy	0	604,000	620,000	560.000	0	$\bigcirc$	0	-	0	0	0	0
	Gulf Supply	641.900	641,200	636,000	574.500	636.000	647,800	669.400	642,200	643.400	640.100	632,600	603.300
	Markel Area - Zone 4	399,700	97,000	0	0	52,400	122,700	303.900	0	0	0	0	61,200
	Markel Area -- Zone 6	0	0	0	0	92,000	0	0	0	0	0	0	0
	Slorage	9.400	350,200	764.800	647.900	699,600	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	$\bigcirc$	0	0	0	0	0	0	0
DOMAC	Vapor	211,900	248,000	142.400	82,400	157,800	190.900	37.200	32.900	0	0	0	104.400
	Lquid	16.200	14,400	40,000	35.600	25,000	$\bigcirc$	13,000	2.800	2,900	2.900	2.800	2.000
LNG From Siorage		16.200	14,400	40,000	35.600	32,200	2,800	2.900	2.800	2.900	2.900	2.800	2.900
Propane	Vapor	0	000	69,100	68.300	0	0	0	0	0	0	0	0
	Truck	$\underline{0}$	600	24,500	68.300	$\bigcirc$	$\underline{0}$	$\underline{22.000}$	14,600	$\underline{0}$	$\bigcirc$	$\underline{0}$	$\bigcirc$
Total Resources		1,510,200	2,266,800	2.657,600	2,249,900	1,917,700	1.178,600	1,269,000	903,200	868.500	885.800	851.300	995.300

## EnergyNorth High Case <br> Resources and Requirements 2006-07 Through 2010-11

# COMPARISON OF RESOURCES AND REQUIREMENTS High Case Design Year (MMBtu) <br> Heating Season (Nov-Mar) 

## REQUIREMENTS <br> Firm Sendout <br> 

Total Requirements

## RESOURCES

PNGTS		21,000	21,200	21,000	21,000	21,000
TGP	AES-Londonderry	424,100	450,100	450,100	450,000	450,000
	ANE	584,700	597,200	593,300	593,300	593,300
	BP / Nexen	447,200	450,200	447,200	471,200	469,500
	CoEnergy	1,784,000	1,783,900	1,784,000	1,784,000	1,784,000
	Gulf Supply	3,149,400	3,123,500	3,107,100	3,163,200	3,163,900
	Market Area - Zone 4	705,900	921,300	972,700	1,008,700	1,105,600
	Market Area -- Zone 6	0	0	0	249,200	343,900
	Storage	2,470,100	2,487,700	2,487,700	2,487,600	2,487,700
Other Purchased Resources		0	145,000	311,600	245,700	376,400
DOMAC	Vapor	867,800	920,300	960,800	988,800	1,035,300
	Liquid	139,400	147,900	150,000	150,000	150,000
LNG From Storage		146,600	155,200	157,300	157,200	157,300
Propane	Vapor	166,600	166,700	166,700	166,700	160,200
	Truck	93,400	93,500	93,500	93,500	93,500
Total Resources		11,000,200	11,463,700	11,703,000	12,030,100	12,391,600

# COMPARISON OF RESOURCES AND REQUIREMENTS High Case Design Year (MMBtu) 

Non-Heating Season (Apr-Oct)
REQUIREMENTS
Firm Sendout

Refill | Underground Storage |
| :---: |
| LNG |
| Propane |

Total Requirements

$\underline{2006-07}$	$\underline{2007-08}$	$\underline{2008-09}$	$\underline{2009-10}$	$\underline{2010-11}$
$4,264,200$	$4,469,300$	$4,638,200$	$4,814,700$	$5,009,900$
$2,548,200$	$2,568,800$	$2,568,900$	$2,568,900$	$2,568,700$
27,300	27,300	27,300	27,300	27,300
$\underline{73,300}$	$\underline{73,300}$	$\underline{73,300}$	$\underline{73,300}$	$\underline{66,900}$
$6,913,000$	$7,138,700$	$7,307,700$	$7,484,200$	$7,672,800$

RESOURCES

PNGTS		12,600	12,600	12,600	12,600	12,600
TGP	AES-Londonderry	0	0	0	0	0
	ANE	840,900	840,900	840,900	840,900	840,900
	BP / Nexen	668,300	668,300	668,300	644,200	645,800
	CoEnergy	0	0	0	0	0
	Gulf Supply	3,991,900	4,455,500	4,517,500	4,583,300	4,613,300
	Market Area -- Zone 4	938,200	753,000	900,400	1,063,200	1,273,000
	Market Area -- Zone 6	0	0	0	0	0
	Storage	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	340,200	287,700	247,300	219,100	172,700
	Liquid	27,300	27,300	27,300	27,300	27,300
LNG From Storage		20,000	20,000	20,000	20,000	20,000
Propane	Vapor	0	0	0	0	0
	Truck	73,300	73,300	73,300	73,300	66,900
Total Resources		6,912,700	7,138,600	7,307,600	7,483,900	7,672,500

# COMPARISON OF RESOURCES AND REQUIREMENTS High Case Design Year (MMBtu) 

Peak Day

REQUIREMENTS	2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout	143,000	147,700	151,500	155,600	160,000
Refill Underground Storage	0	0	0	0	0
LNG	2,000	2,000	2,000	2,000	2,000
Propane	4,640	$\underline{0}$	0	$\underline{0}$	$\underline{0}$
Total Requirements	149,640	149,700	153,500	157,600	162,000
RESOURCES					
PNGTS	160	160	160	160	160
TGP AES-Londonderry	15,000	15,000	15,000	15,000	15,000
ANE	3,970	3,970	3,970	3,970	3,970
BP / Nexen	3,120	3,120	3,120	3,120	3,120
CoEnergy	20,000	20,000	20,000	20,000	20,000
Gulf Supply	21,600	21,600	21,600	21,600	21,600
Market Area -- Zone 4	0	0	0	0	0
Market Area -- Zone 6	0	0	0	0	0
Storage	28,110	28,110	28,110	28,110	28,110
Other Purchased Resources	0	730	22,140	40,000	40,000
DOMAC Vapor	8,000	8,000	8,000	8,000	8,000
Liquid	2,000	2,000	2,000	2,000	2,000
LNG From Storage	8,100	12,060	2,000	5,810	12,060
Propane Vapor	35,000	35,000	27,510	9,880	8,080
Truck	4.640	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$
Total Resources	149,700	149,750	153,610	157,650	162,100

## COMPARISON OF RESOURCES AND REQUIREMENTS

High Case Design Year 2006-07
(MMBtu)

REQUIREMENTS		1172006	1212006	01/2007	Q22007	03/2007	$04 / 2007$	05/2007	96/2007	0778007	Q8/2007	092007	102007
Firm Sendout		1.525.700	2,331,600	2,721.700	2.254,200	1,921,500	1,146,100	872.400	398,100	308.700	307,600	429,700	1,001,600
Refill	Underground Storage	2,400	0	0	0	0	448.500	531,300	514,300	531,300	515.400	7.700	0
	LNG	22.000	16,800	40.000	35,600	25,000	0	13,000	2,800	2,900	2.900	2,800	2,900
	Propane	$\bigcirc$	13,100	44,600	35,700	Q	$\underline{0}$	22,000	22,000	22,000	7300	$\underline{0}$	$\bigcirc$
Total Requirements		1.550.100	2,361,500	2,806.300	2,335,500	1.946,500	1,594,600	1.238,700	937.200	884.000	832,500	440.200	1,004,500
Resources													
PNGTS		3.300	4.600	5,100	3,900	4,100	2,800	2.000	1.300	1.100	1.300	1,500	2.600
TGP	AES-Londonderry	2,300	82.300	183,400	87.700	68.400	0	0	0	0	0	0	0
	ANE	177.900	121.800	121,800	101.400	121,800	117.300	121,800	117.900	121,800	121,800	117,900	121.800
	BP/Nexen	93,700	96,700	96,700	63,400	96,700	93,700	96,800	93.700	96,800	96,800	93,700	96,800
	CoEnergy	0	604.000	620,000	580.000	0	-	0	0	0	0	0	0
	Gull Supply	642,400	660.500	636,000	574,500	836.000	647,900	669,400	632.200	617.300	599.900	227.500	603,700
	Market Area - Zone 4	430,000	216.600	0	0	59,300	497,900	310,700	60,700	0	0	0	68,900
	Market Area-Zone 6	0	-	0	0	0	0		-	0	0	0	0
	Storage	2.400	262.600	793,900	705,200	706.000	0	0	0	0	$\bigcirc$	0	$\bigcirc$
Oner Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	214,300	248,000	147,600	97,600	160.300	231.500	0	3,800	0	0	0	104,800
	Liqurd	22,000	16.800	40.000	35.600	25,000	0	13,000	2.800	2,900	2,900	2.800	2.900
LNG From Storage		22,000	21.400	36,100	34,900	32,200	2,800	2.900	2.800	2.900	2,900	2,800	2.900
Fropane	Vapor	0	13,100	81,200	35.700	36,600	0	0	0	0	0	0	0
	Inck	Q	13.100	44.600	35.700	0	$\underline{0}$	22,000	22.000	22,000	7300	0	Q
Total Resources		1.550.300	2,301,500	2,806.400	2,335,600	1.946,400	1,584,800	1.238.600	937.200	604,800	832,900	440,200	1.004,400

## COMPARISON OF RESOURCES AND REQUIREMENTS High Case Design Year 2007-08 (MMBtu)

REQUIREMENTS		11,2007	12/2007	01/2009	022008	03/2008	042008	05/2008	$06 / 2008$	0772008	08/2008	$09 / 2008$	102008
Firm Sendout		1.585,100	2,412,200	2,814.000	2,418,100	1,992,500	1.195.900	705,700	417.800	325.400	325,400	454.100	1,045,800
Refiil	Underground Storage	0	0	0	0	0	84,700	531,300	514,300	531,300	515.100	392.100	0
	LNG	25.000	21.800	40,000	36.100	25,000	0	13,000	2,800	2.900	2.900	2.800	2.900
	Propane	$\underline{0}$	0	60,500	34,000	0	0	$\underline{22,000}$	22,000	22,000	7.300	$\bigcirc$	Q
Total Requirements		1,610.100	2.434.000	2.923.500	2.478.200	2,017.500	1,279,800	1.272 .000	956,900	881,800	850.700	849.000	1,048,700
resources													
PNGTS		3.300	4.800	5.100	4,100	4.100	2.800	2.000	1,300	1.100	1,300	1.500	2.600
tap	AES-Londonderry	0	4,600	214.800	121,500	109.200	0	0	0	0	0	0	0
	ANE	117.960	121,800	121.800	113.900	121,800	\$17,900	121.800	117,900	121,800	121.800	117.900	121,800
	BP/Nexen	93.700	96,700	96.700	66,400	96.700	93.700	86.800	93.700	86,800	56,800	93,700	96.800
	CoEnergy	0	584,000	619,900	580,000	0	0	0	0	0	0	$\bigcirc$	0
	Gulf Supply	620.500	636,000	636.000	585,000	636,000	647.000	669.400	639,300	634,000	617,700	630,400	618,800
	Markel Area - Zone 4	462,400	380,200	0	0	78,700	242,000	344,000	77.100	0	0	0	B9,200
	Markel Area -- Zone 6	0	-	0	0	0	0	0	0	0	0	0	0
	Storage	7,500	197.700	820,200	757,700	704,600	0	0	0	0	0	0	0
Oiner Purchased Resources		13,100	118.500	13.400	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	240,000	248,000	151,800	107,800	172.600	172.800	0	0	0	0	0	114.900
	Liquxd	25.000	21,800	40.000	36,100	25.000	0	13,000	2.800	2,900	2,900	2.800	2,900
LNG From Storage		26.800	20,900	44.200	31,900	32,200	2,800	2,900	2,800	2,900	2.900	2.800	2.900
Propane	vapor	0	0	90,200	39,900	36,600	0	0	0	0	0	0	0
	Truck	9	0	69,500	24,000	$\bigcirc$	$\bigcirc$	$\underline{22.000}$	32.000	22,000	7300	¢	Q
Total Resources		1.610,200	2,434,000	2,923,700	2.478 .300	2.017 .500	1,279,900	1.271,900	956.900	881,500	850,700	849.900	1,048.600

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> High Case Design Year 2008-09 (MMBtu)

REQUREMENTS		11/2008	$12 / 2009$	01/2009	022000	03/2009	0442009	05/2009	06/2009	2772009	1092009	09/2009	102009
Firm Sendout		1,630,200	2.478.800	2,850,300	2,404,300	2,051.200	1,235,600	733,100	434,000	339.000	340,000	474,200	1,082,300
Reidl	Underground Storage	0	0	0	0	0	100,700	531,300	499.500	531,300	529,900	376.200	0
	UNG	25.000	22.500	40,000	37.500	25,000	0	13.000	2,800	2,900	2.900	2,800	2,900
	Prepane	$\underline{0}$	0	53,500	40,000	$\underline{\square}$	$\bigcirc$	22,000	22.000	22.000	7300	$\underline{0}$	O
Total Requirerrents		1,659,200	2.501.300	2,983.800	2.481.800	2,076.200	1.336.300	1.299,400	958.300	895,200	880.100	853.200	1,085,200
RESOURCES													
PNGTS		3,300	4,600	5.100	3.900	4,100	2,800	2.000	1.300	1.100	1,300	1,500	2,600
TGP	AES-Lonconderry	0	0	242.400	139,700	68,000	0	0	0	0	0	0	0
	ANE	117.900	121,800	121.800	110,000	121,800	117,900	121.800	117,900	121,800	121,800	117.900	121,800
	BP/Nexen	93.700	96,700	96,700	63,400	66,700	93,700	96,800	83,700	96,600	96,800	93.700	96,800
	CoEnergy	0	604.000	620.000	560,000	0	0	0	0	0	0	0	0
	Gul! Supply	624.600	636,000	636.000	574,500	636.000	647,900	689.400	644,200	647,700	647,100	634.500	626.700
	Market Area - Zone 4	487.400	403,400	0	0	81.900	347.400	371,400	73.600	0	0	0	108,300
	Markel Area -- Zone 6	0	0	0	0	0	0	0	0	0	0	0	0
	Storage	9,400	197,500	836,400	750.300	694,100	0	0	0	0	0	0	0
Other Purchased Resources		31,800	145,500	52,700	0	81.600	0	0	0	0	0	0	0
DOMAC	Vapor	240,000	248,000	160,200	114.300	198,300	124.200	0	0	0	0	0	123.100
	Liquid	25,000	22,500	40,000	37.500	25,000	0	13,000	2.800	2,900	2.800	2,800	2.900
LNG From Storage		26,200	21.400	41,700	35.800	32,200	2.800	2.900	2.800	2,900	2,900	2.800	2.900
Propane	Vapor	0	0	77.500	52,600	36,600	0	0	0	0	0	0	0
	Truck	$\underline{0}$	0	53,500	40,000	$\underline{0}$	$\bigcirc$	22.000	22,000	$\underline{22,000}$	7300	$\underline{0}$	$\bigcirc$
Total Resources		1,659.300	2,501,400	2,984.000	2.482,000	2.076 .300	1,336,400	1.299.300	958,300	885,200	880.100	853.200	1.085.100



## COMPARISON OF RESOURCES AND REQUIREMENTS <br> High Case Design Year 2010-11 <br> (MMBtu)

REQUIREMENTS		11/2010	$12 / 2010$	01/2011	Q27019	03/2011	$04 / 2011$	05/2011	062011	$07 / 2011$	0802011	09/2011	102011
Firm Sendout		9.741,900	2,625.000	3,057.600	2.543.400	2.180,000	1.324.400	793.500	469.700	369.200	372.300	518,400	1,162,400
Refill	Underground Storage	0	0	0	0	0	139,300	531.300	514,200	523.300	519,400	341,200	0
	LNG	20,800	34,900	40,000	29,300	26,000	0	13.000	2,800	2.000	2.900	2.800	2.900
	Propare	0	$Q$	$\underline{0}$	933,500	0	0	22.000	22000	$\underline{22,000}$	900	0	$\underline{0}$
Tolal Requirements		1.762.700	2,659,900	3.097.600	2,666.200	2,205.000	1.463.700	1,359,800	\$.008.700	917.400	895,500	862.400	1,165,300
RESOURCES													
PNGTS		3,300	4,800	5.100	3,500	4.100	2,800	2.000	1,300	1.100	1,300	1,500	2,600
tGp	AES-Londonderry	0	7,200	272,700	170.100	0	0	0	0	0	0	0	0
	ANE	117,900	121,800	121.800	110,000	121,800	117,900	121,800	717.900	121.800	121.800	117.800	121.860
	BP/ Nexen	93,700	96,700	96.700	85,700	96.700	83,700	96,800	93.700	98.800	96.200	88,500	80.100
	CoEnergy	0	604.000	620.000	560,000	0	0	0	-	0	0	0	0
	Gulf Supply	647.900	663,500	636.000	574,500	836,000	647,800	669,400	648.000	669.400	669,400	647.800	661,500
	Markel Area -- Zone 4	538,600	450,700	0	0	116.300	571.600	431,600	120.200	400	0	0	149,200
	Markel Area - Zone 6	87,000	0	0	0	258.500	0	0	0	0	0	0	0
	Storage	9,400	197,500	865.200	754,900	600,700	0	0	0	0	0	0	0
Other Purchased Resources		0	190.100	186,300	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	223.300	248.000	181,400	147.500	235.100	27,200	200	0	0	0	1.100	144.200
	Liquid	20.800	34,900	40.000	29,300	25,000	$\bigcirc$	13.000	2,800	2,900	2.900	2,800	2,900
LNG From Slorage		20,800	34,900	40.000	39,400	22.200	2,800	2.900	2.800	2,900	2.900	2,800	2.800
Propane	Vapor	0	0	32.600	97.400	30.200	0	0	0	0	0	0	0
	Truck	0	$\bigcirc$	$\underline{0}$	93,500	$\bigcirc$	$\bigcirc$	22,000	22,000	23.000	000	0	0
Tolal Resources		1,762,700	2.859.900	3.097 .800	2.688 .200	2,205,000	1.463.800	1,359,700	1,008.700	917,300	895,400	862.400	1,165,200

# COMPARISON OF RESOURCES AND REQUIREMENTS High Case Normal Year (MMBtu) Heating Season (Nov-Mar) 

REQUIREMENTS		2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout		9,691,000	10,114,200	10,341,000	10,647,900	10,986,400
Refill	Underground Storage	600	0	0	0	0
	LNG	114,100	123,500	130,100	137,700	143,900
	Propane	93,500	93,500	93,400	93,400	93,500
Total Requirements		9,899,200	10,331,200	10,564,500	10,879,000	11,223,800
RESOURCES						
PNGTS		21,000	21,200	21,000	21,000	21,000
TGP	AES-Londonderry	11,100	118,000	219,000	253,500	356,100
	ANE	584,700	597,200	593,300	593,300	593,300
	BP/Nexen	447,200	450,200	447,200	447,200	447,200
	CoEnergy	1,783,900	1,784,000	1,784,000	1,784,000	1,784,000
	Gulf Supply	3,098,000	3,118,500	3,098,000	3,133,800	3,161,400
	Market Area -- Zone 4	358,200	420,900	530,500	678,500	810,300
	Market Area - Zone 6	0	0	0	82,400	161,600
	Storage	2,451,700	2,487,900	2,486,900	2,474,700	2,471,500
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	648,200	819,300	857,600	868,600	892,900
	Liquid	114,100	123,500	130,100	137,700	143,900
LNG From Storage		121,200	130,700	137,300	144,900	151,200
Propane	Vapor	166,700	166,700	166,600	166,600	136,200
	Truck	93,500	93,500	93,400	93,400	93,500
Total Re	ources	9,899,500	10,331,600	10,564,900	10,879,600	11,224,100

# COMPARISON OF RESOURCES AND REQUIREMENTS High Case Normal Year (MMBtu) <br> Non-Heating Season (Apr-Oct) 

REQUIREMENTS
Firm Sendout

Refill | Underground Storage |
| :---: |
| LNG |
| Propane |

Total Requirements

| $\underline{2006-07}$ | $\underline{2007-08}$ |
| ---: | ---: | ---: |
| $3,957,600$ | $4,155,700$ |
|  |  |
| $2,530,800$ | $2,569,100$ |
| 27,300 | 27,300 |
| $\underline{73,300}$ | $\underline{73,300}$ |
| $6,589,000$ | $6,825,400$ |


$\underline{2008-09}$	$\underline{2009-10}$	$\underline{2010-11}$
$4,318,400$	$4,488,600$	$4,677,000$
$2,567,900$	$2,555,200$	$2,552,200$
27,300	27,300	27,300
73,300	$\underline{73,300}$	$\underline{42,700}$
$6,986,900$	$7,144,400$	$7,299,200$

RESOURCES

PNGTS		12,600	12,600	12,600	12,600	12,600
TGP	AES-Londonderry	0	0	0	0	0
	ANE	840,900	840,900	840,900	840,900	840,900
	BP / Nexen	668,300	668,300	668,300	668,300	668,300
	CoEnergy	0	0	0	0	0
	Gulf Supply	3,890,200	4,420,300	4,482,600	4,531,900	4,568,500
	Market Area - Zone 4	496,400	373,900	511,500	630,600	803,600
	Market Area - Zone 6	0	0	0	0	0
	Storage	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	559,800	388,800	350,400	339,600	315,000
	Liquid	27,300	27,300	27,300	27,300	27,300
LNG From Storage		20,000	20,000	20,000	20,000	20,000
Propane	Vapor	0	0	0	0	0
	Truck	73,300	73,300	73,300	73,300	42,700
Total Resources		6,588,800	6,825,400	6,986,900	7,144,500	7,298,900

COMPARISON OF RESOURCES AND REQUIREMENTS
High Case Normal Year 2006-07
(MMBtu)

11/2006	12/2006	01/2007	022007	03/2007	04/2007	05/2007	068007	07/2007	08/2007	09/2007	1012007
1,387,100	2.105.800	2,426.500	2,007.000	1,764,600	1,037,200	643.700	355.400	305.800	303,200	398,500	913.800
600	0	0	0	0	433.300	531,300	514.300	531,300	512.900	7.700	0
5,700	14,400	37.300	31,700	25,000	0	13,000	2.800	2.900	2,900	2,800	2.900
$\bigcirc$	18.600	74.900	$\bigcirc$	$\bigcirc$	$\underline{0}$	22,000	22,000	22,000	72300	0	$\bigcirc$
1,393.400	2.138.800	2.538 .700	2.038,700	1,780,600	1,470,500	1,210.000	894,500	862.000	826,300	409,000	996.700

resources

PNGTS	
TGP	AES-Londonderry
	ANE
	BP/Nexen
	CoEnergy
	Gull Suppty
	Markel Area -- Zone 4
	Markel Area - Zone 6
	Storage
Other Purchased Resources	
DOMAC	Vapor
	Liquid
LNG From Storage	
Propare	Vapor
	Trucx


3.300	4,600	5,100	3.800	4,100	2,800	2.000	1.300	1,100	1,300	1.500	2.600
0	11.100	0	0	0	0	0	0	0	0	0	0
117,900	121,800	121,800	101,400	121.800	117.900	121,800	117.900	121,800	121,800	117.900	121,800
93,700	96.700	96,700	73,800	86.300	93,700	96,800	93.700	96,800	96,800	93.700	96,800
0	607.300	620,000	556,600	0	0	0	0	0	0	0	0
615,500	636.000	636,000	574,500	636.000	647.800	669,400	628.200	614.400	593,200	190.300	546,900
328,400	0	0	0	29.800	372,900	94, 100	0	0	0	0	29.400
0	0	0	0	0	0	0	0	0	0	0	0
600	476.400	710.500	578,000	685.200	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
222.700	113,200	121.400	60,000	130,900	232.700	187.900	25,900	0	0	0	113,300
5.700	14,400	37.300	31.700	25,000	0	13,000	2,800	2.900	2.900	2,800	2,900
5.700	20,100	37,000	28.500	28,900	2,800	2.900	2,800	2,900	2.500	2,800	2.900
0	18.600	78,100	29.300	40.700	0	0	0	0	0	0	0
0	18.600	74.900	$\bigcirc$	$\underline{0}$	$\bigcirc$	32.000	$\underline{22000}$	23.000	7,300	0	0
1,393,500	2.138 .800	2.538,800	2,038,700	1,789,700	1,470,600	1,209,900	894,600	881.900	826.200	409,000	916.600


		COMPARISON OF RESOURCES AND REQUIREMENTS High Case Normal Year 2007-08   (MMBtu)											
REQUIR	MENTS	112007	1220007	01/2008	022008	03/2008	$04 / 2008$	05/2008	0062008	07/2008	0812008	09/2008	10/2008
Firm Sen	dout	1,442,900	2.181,400	2.512.500	2.146 .100	1.839,300	1.083,700	675,600	375.000	322,500	320.900	422.200	955.800
Refir	Underground Storage		0	0	0	0	53,400	531,300	514.300	531.300			0
	LNG	$8,400$	14.400	40,000	35,700	25.000	0	13.000	2,800	2.900	$2,900$	$2,800$	$2,900$
	Propane			$45,000$	$48,500$	$0$		$22,000$	$\underline{22,000}$	$\underline{22,000}$	$7,300$	$\bigcirc$	0
Total Reg	urements	1.451.300	2.195.800	2,597.500	2,230,300	1.856.300	$\bigcirc .137,100$	1,241,900	914,900	878,700	847,400	847.500	958.700
RESOURCES													
PNGTS		3.300	4.600	5.100	4,100	4.100	2,800	2.000	1,300	1,100	1.300	1.500	2.600
TGP	AES-LIndonderry	0	54.800	35,200	0	28,000	0	0	0	0	0	0	0
	ANE	117.900	121,800	121,800	113,800	121,800	117,900	121.800	197,900	121.800	121.800	117.800	121,800
	ap / Nexen	93.700	96.700	96,700	73.400	89,700	93.700	96.800	93,700	96.800	06.800	93,700	06.800
	CoEnergy	$\bigcirc$	584.900	619.100	580,000	0	0	0	0	0	${ }^{\circ}$	0	0
	Gulf Supply	615,500	636.000	636,000	585,000	636.000	647,900	669.400	637.000	631.100	614,400	628.800	591,700
	Market Area -- Zone 4	364,700	13.100	0	0	43.100	94,100	234,700	0	0	0	0	45.100
	Market Area - Zone 6	0	0	0	0	0	0	-	0	0	0	0	0
	Slorage	7.500	418,600	740,100	629,200	602.500	0	$\bigcirc$	0	0	0	0	0
Oner Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	232.100	236,800	134,500	88,900	147,200	178.100	79.200	36.600	0	0	0	94.900
	Liqua	8.400	14.400	40,000	35.700	25,000	0	13,000	2,800	2.900	2.900	2,800	2.900
LNG From Storage		8,400	14.400	42,600	33,100	32,200	2,800	2.900	2,800	2.900	2.900	2,800	2.800
Propare	Vapor	$\bigcirc$	0	87,600	48.500	36,600	0	0	0	0	0	0	0
	Truck	$\bigcirc$	$\underline{0}$	45,000	48,500	$\underline{\square}$	$\bigcirc$	22,000	22.000	$\underline{23,000}$	73.300	$\underline{9}$	$Q$
Total Resources		1.451.500	2,195,000	2.597.700	2,230,300	1,856.200	1,137,300	1,241,800	914,100	878,600	847.400	847.500	958.700

## COMPARISON OF RESOURCES AND REQUIREMENTS High Case Normal Year 2008-09 (MMBtu)

REquir	MENTS	91/2008	1212008	012009	022009	03/2009	042009	05/2009	08/2009	07/2009	O8, 2009	0920009	10/2009
Firm Sendout		1,489,000	2,243,900	2.583,600	2.138,200	1,886,300	1,122,100	701.800	391,000	336.100	335.400	441.600	390,400
Refinl	Underground Storage	0	0	0	0	0	68.500	531,300	500.400	531,300	529,000	407,400	0
	LNG	15.100	14,400	40,000	35.600	25.000	0	13.000	2.800	2,900	2,900	2.800	2,900
	Propane	$\underline{\square}$	$\underline{\square}$	28.200	65,200	$\underline{\square}$	$\underline{0}$	22.000	22.000	22,000	7.300	$Q$	$\bigcirc$
Total Requrements		1,504,100	2.258.300	2.651 .800	2,239,000	1,911,300	1.190.600	1,268,100	816.200	892,300	874,600	851.800	993.300
RESOURCES													
PNGTS		3,300	4,600	5,100	3,900	4,100	2,800	2.000	1.300	1,100	$\uparrow .300$	1,500	2,600
tgp	AES-Londonderry	0	71.100	95,700	0	52.200	0	0	0	0	0	0	0
	ANE	117,900	121,800	121,800	110,000	121,800	117,900	121.800	197,900	121,800	127,800	117,900	121,800
	BP/Nexen	83,700	06,700	96,700	63,400	96.700	93.700	98.800	93,700	96,800	86.800	93,700	96,800
	CoEnergy	0	604,000	620,000	560,000	0	0	0	0	0	0	0	0
	Gut Supply	615,500	636.000	636.000	574,500	636.000	647.900	658.400	642,800	644,800	641.800	633,200	602.900
	Market Area - Zone 4	396,200	81,300	0	0	53.000	120,000	331,900	0	0	0	0	59.800
	Markel Area -- Zone 6	0	0	0	0	0	0	0	0	0	0	0	0
	Storage	9.400	373.900	762.100	644,800	606.700	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	238,000	240.100	141,500	81,000	157,000	205.600	8.200	32,900	0	0	0	103.700
	Liquid	15.100	14.400	40,000	35.600	25,000	0	13.000	2,800	2.000	2.900	2.800	2.900
LNG From Slorage		15,100	14,400	40,000	35.600	32.200	2.800	2.960	2,800	2.900	2,900	2.800	2.800
Propane	Vapor	0	$\bigcirc$	64,800	65,200	36.600	0	$\bigcirc$	0	0	0	0	0
	Truck	$\bigcirc$	9	$\underline{28.290}$	65,200	0	$\underline{0}$	$\underline{22000}$	32.000	32.000	7300	9	Q
Total Resources		1,504.200	2,258,300	2,651,900	2,239.200	3,911.300	1,900,700	1,288,000	916,200	892,300	874,600	851,900	993.200

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> High Case Normal Year 2009-10 <br> (MMBtu)

REQUIREMENTS		112009	1232009	$01 / 2010$	022010	Q3/2010	042010	0512010	062010	07/2010	O8/2010	09/2010	102010
Firm Sendout		1.537,200	2.309,100	2,657.700	2.200 .200	1,943,700	1,162,200	728,200	407.700	350,400	350.600	462,000	1,020,500
Refill	Underground Slorage	0	0	0	0	0	69.000	531,300	503,800	531.000	528,900	391.200	0
	LNG	21,700	15.400	40.000	35.600	25.000	0	13,000	\%,800	2.900	2.900	2.800	2.900
	Propane	$\underline{0}$	Q	13,600	79,800	$\bigcirc$	Q	22,000	22,000	22.000	7.300	$\underline{9}$	$\underline{0}$
Tolad Requrements		1.558.900	2,324,500	2.711 .300	2.315,600	1.968 .700	1,231,200	1,285.500	936,300	906,300	889.700	856.000	1.029,400
RESOURCES													
PNGTS		3.300	4.600	5,100	3.900	4,100	2.800	2,000	1.300	1.100	1,300	1.500	2,600
tgp	AES-Londondery	0	79,800	164,900	8.800	0	0	0	0	0	0	0	0
	ANE	117.900	121,800	121.800	110.000	121,800	117.900	121,800	117,900	121.800	121,800	117.900	121,800
	8P/Nexen	93,700	96.700	96,700	63.400	96,700	93.700	96,800	93.700	90,800	96,800	83.700	96,800
	CoEnergy	0	609.800	619,700	554.500	0	0	0	0	0	0	0	0
	Guil Supply	643,500	643.800	636,000	574,500	636,000	647,000	689,400	848,000	658.800	656,700	637.300	613.800
	Maskel Avea - Zone 4	429,300	185.400	0	0	63,800	149.200	367.500	37,600	0	0	0	76,300
	Market Area -- Zone 6	3,300	0	0	0	78,100	0	0	0	0	0	0	0
	Storage	8.400	295.600	784,800	678.200	706,700	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
domac	vapor	215.100	248.000	147.000	91,600	166.900	217.000	0	10,300	0	0	0	112,300
	Liquid	21.700	15,400	40,000	35,600	25.000	0	13.000	2.800	2,900	2.900	2.800	2.900
LNG From Storage		21.700	19.700	35,700	35.600	32.200	2.800	2.900	2.800	2.900	2.900	2,800	2.900
Propane	Vapor	0	4,000	46.200	79,800	36,600	0	0	0	0	0	0	0
	Truck	0	Q	13.600	79,800	$\underline{0}$	$\underline{0}$	22,000	22.000	23.000	7,300	0	$\underline{0}$
Yoial Resources		1,558,900	2,324,600	2,711.500	2,315.700	1,988,900	1,231,300	1,295,400	936,400	906,300	889,700	856,000	1,029,400

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> High Case Normal Year 2010-11 <br> (MMBtu)

REQUREMENTS		112010	12/2010	012011	022011	03/2011	Q4/2011	Q5/2011	062011	$07 / 2011$	Qa/2011	09/2011	1022011
Firm Serroul		1.590.300	2,381,000	2.739,500	2.268 .500	2,007,100	1,206,400	759,500	426,300	366,300	367.500	484,500	1,066,500
Retul	Underground Storage	0	0	0	0	0	88,800	531,300	510.500	525.960	522.700	373.000	0
	LMG	25.000	18,300	40.000	35.600	25,000	0	13,000	2.800	2.900	2,900	2.800	2,900
	Propane	Q	12.500	27.700	48.300	$\bigcirc$	0	22,000	20.700	g	$\underline{Q}$	$\underline{0}$	$\bigcirc$
Total Requirements		1.615,300	2.410.800	2,807,200	2.352 .400	2.032,100	1.295.200	1,325,800	\$60,300	895.100	893,100	860.300	1.069 .400
RESOURCES													
PNGTS		3.300	4,600	5.100	3,900	4.100	2,800	2.000	1,300	1.100	1.300	1,500	2,600
TGP	AES-Lonconderry	0	85,600	198,400	72,100	0	0	0	0	0	0	0	0
	ANE	117.900	121,800	121.800	110,000	121,800	197.300	121,800	117.900	121.800	121.800	117.900	121,800
	BP/Nexen	93.700	96,700	96,700	63,400	96,700	93.700	96,800	93.700	96,800	96,800	93,700	96,800
	CoEnergy	0	614,500	620,000	549.500	0	0	0	0	0	0	0	0
	Gull Suppay	645,400	669.500	636.000	574,500	636.000	647.900	669,400	647.900	660.500	667,300	641.600	624,900
	Markel Area -- Zone 4	463.300	278.900	0	0	68,900	237,400	397.800	73,200	100	0	0	95,100
	Market Area - Zone 6	14.500	0	0	0	\$47,900	0	0	0	0	0	0	0
	Storage	9,400	221.800	808.700	714,000	717.600	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	217,900	248,000	150,000	99,700	177,300	192,800	0	0	0	0	0	122.200
	Liquid	25.000	18,300	40,000	35.600	25.000	0	13,000	2,800	2,900	2,900	2.800	2.900
LNG From Slorage		25.000	22,200	38,600	33.200	32.200	2,800	2,900	2.800	2.900	2.900	2.800	2,900
Propane	Vapor	0	17.500	64,300	48,300	6.100	0	0	0	0	0	0	0
	Truck	$\bigcirc$	17.500	27.700	48,300	$\underline{0}$	$\underline{1}$	22.000	20,700	0	0	0	$\underline{0}$
Total Resources		1.615.400	2.416 .900	2,807,300	2,352,500	2,032,000	3.295.300	1,325,700	960,300	895,100	883.000	860.300	1.069.200

# EnergyNorth <br> Low Case <br> Resources and Requirements 2006-07 Through 2010-11 

# COMPARISON OF RESOURCES AND REQUIREMENTS Low Case Design Year (MMBtu) 

Heating Season (Nov-Mar)

REQUIREMENTS	2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout	10,123,200	10,358,400	10,430,400	10,582,000	10,765,200
Refill Underground Storage	600	0	0	0	0
LNG	123,600	125,600	128,600	134,000	139,000
Propane	93,500	93,500	93,500	93,400	93,500
Total Requirements	10,340,900	10,577,500	10,652,500	10,809,400	10,997,700
RESOURCES					
PNGTS	21,000	21,200	21,000	21,000	21,000
TGP AES-Londonderry	179,000	238,000	292,200	298,000	355,000
ANE	584,700	597,200	593,300	593,300	593,300
BP / Nexen	447,200	450,200	447,200	447,200	447,200
CoEnergy	1,784,000	1,784,000	1,784,000	1,784,000	1,784,000
Gulf Supply	3,120,600	3,118,500	3,098,000	3,125,000	3,140,800
Market Area -- Zone 4	416,800	518,500	552,700	614,900	699,900
Market Area -- Zone 6	0	0	0	53,300	108,700
Storage	2,484,400	2,489,600	2,488,400	2,486,800	2,474,300
Other Purchased Resources	0	0	0	0	0
DOMAC Vapor	789,200	841,800	851,700	851,200	865,200
Liquid	123,600	125,600	128,600	134,000	139,000
LNG From Storage	130,800	132,700	135,800	141,200	146,200
Propane Vapor	166,700	166,700	166,600	166,600	130,100
Truck	93,500	93,500	93,500	93,400	93,500
Total Resources	10,341,500	10,577,500	10,653,000	10,809,900	10,998,200

# COMPARISON OF RESOURCES AND REQUIREMENTS Low Case Design Year (MMBtu) 

Non-Heating Season (Apr-Oct)
REQUIREMENTS
Firm Sendout

Refill $\quad$| Underground Storage |
| :---: |
| LNG |
| Propane |

Total Requirements

| $\underline{2006-07}$ | $\underline{2007-08}$ | $\underline{2008-09}$ | $\underline{2009-10}$ | $\underline{2010-11}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $3,904,200$ | $3,983,100$ | $4,051,700$ | $4,124,400$ | $4,213,500$ |
| $2,564,800$ | $2,570,800$ | $2,569,300$ | $2,567,800$ | $2,554,900$ |
| 27,300 | 27,300 | 27,300 | 27,300 | 27,300 |
| $\underline{73,300}$ | $\underline{73,300}$ | $\underline{73,300}$ | $\underline{73,300}$ | $\underline{36,600}$ |
| $6,569,600$ | $6,654,500$ | $6,721,600$ | $6,792,800$ | $6,832,300$ |

$\left.\begin{array}{lrrrrr}\text { RESOURCES } \\ \text { PNGTS } \\ & & 12,600 & 12,600 & 12,600 & 12,600\end{array}\right) 12,600$

# COMPARISON OF RESOURCES AND REQUIREMENTS Low Case Design Year (MMBtu) 

Peak Day

REQUIREMENTS		2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout		134,100	136,200	138,000	139,900	142,300
Refill	Underground Storage	0	0	0	0	0
	LNG	2,000	2,000	2,000	2,000	2,000
	Propane	$\underline{0}$	2,390	$\underline{0}$	$\underline{0}$	$\underline{0}$
Total Requirements		136,100	140,590	140,000	141,900	144,300
RESOURCES						
PNGTS		160	160	160	160	160
TGP	AES-Londonderry	15,000	15,000	15,000	15,000	15,000
	ANE	3,970	3,970	3,970	3,970	3,970
	BP / Nexen	3,120	3,120	3,120	3,120	3,120
	CoEnergy	20,000	20,000	20,000	20,000	20,000
	Gulf Supply	21,600	21,600	21,600	21,600	21,600
	Market Area -- Zone 4	0	0	0	0	0
	Market Area -- Zone 6	0	0	0	0	0
	Storage	28,110	28,110	28,110	28,110	28,110
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	8,000	8,000	8,000	8,000	8,000
	Liquid	2,000	2,000	2,000	2,000	2,000
LNG From Storage		2,000	1,310	3,140	5,060	7,380
Propane	Vapor	32,240	35,000	35,000	35,000	35,000
	Truck	$\underline{0}$	2,390	$\underline{0}$	$\underline{0}$	$\underline{0}$
Total Resources		136,200	140,660	140,100	142,020	144,340


		COMPARISON OF RESOURCES AND REQUIREMENTS   Low Case Design Year 2006-07   (MMBtu)											
requir	ments	11/2006	122006	012007	028007	$03 / 2007$	Q4/200?	0553007	0672007	0772007	Qar200?	29/3007	107007
Firm Sen		1,425,400	2.195.800	2.564,900	2.134.900	1,802,200	1,062,700	614.400	362.300	277.800	274,800	388,300	S25,900
Refill	Underground Storage	600	0	0	0	0	465,100	531.300	514.300	531,300	515,100	7,700	0
	LNG	8.600	14.400	40.000	35.600	25,000	0	13.000	2.800	2.900	2.900	2.800	2,900
	Propane	$\bigcirc$	$\underline{0}$	24.500	69,000	$\bigcirc$	@	22000	$\underline{22,000}$	22.000	7.300	-	@
Total Req	urements	1.434.600	2.210 .200	2.629.400	2,239.500	1,827,200	1,527,880	1.880.700	901.400	833,000	800, 100	396.800	928.800
resources													
PNGTS		3.300	4,600	5,100	3.900	4.100	2.800	2,000	1.300	1.100	1,300	1.500	2,600
TGP	AES-LOndondery	0	64.000	99.300	0	15.700	0	$\bigcirc$	0	$\bigcirc$	$\bigcirc$	0	0
	ANE	117,900	121,800	121,800	101.400	121.800	117,900	121,800	117,900	121,800	121,800	117,900	121,800
	BP/ Nexen	93,700	96,700	96,700	63.400	06.700	93,700	06,800	93,700	96.800	96.800	93.700	${ }_{96,800}$
	CoErergy	0	608,900	615.100	560.000	0	0	0	$\bigcirc$	0		0	0
	Gull Supdy	638,100	835.000	636.000	574,500	636.000	647,800	669,000	616.000	586.400	567,100	178,200	576,400
	Markel Area - Zone 4	360,400	14,500	0	0	41,900	434,800	193,500	2.400	0	0	0	37.000
	Markel Area-Zone 6	${ }^{0}$		-	-	0	$\bigcirc$	$\bigcirc$	$\bigcirc$	0	$\bigcirc$	0	0
	Slorage	600	412.700	751.200	648,000	671,900	0	0	0	0	0	0	-
Oiner Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	$\bigcirc$
domac	vapor	203.800	222,300	138,800	78.200	145,300	228,000	59.700	42.500	0	0	0	88.700
	Lquid	8,600	14,400	40.000	35.600	25.000	$\bigcirc$	13.000	2,800	2.800	2.900	2.850	2.900
LNG From Siorage		8.800	14,400	40,000	35,800	32.200	2.800	2.900	2,800	2.900	2.900	2.800	2.800
Propane	Vapor	0	0	61,100	69,000	36.600	0	0	0	0	0	0	$\bigcirc$
	Truck	@	@	24,500	$\underline{69,000}$	$\bigcirc$	$\bigcirc$	$\underline{22,000}$	22.000	22.900	7,300	$\bigcirc$	O
Total Resources		1,434,800	2.210300	2.629.600	2.239,600	1,827,200	1.527.800	1,180,700	901.400	833.900	800,100	396,900	929.800

COMPARISON OF RESOURCES AND REQUIREMENTS Low Case Design Year 2007-08 (MMBtu)

REQUIREMENTS		11/2007	$12 / 2007$	012008	022009	03/2008	0442008	0582008	0612008	0772008	08/2009	09/2008	1022008
Firm Sendout		1,450.600	2.230.600	2,605,000	2,239,600	1,832,600	1.1083,000	627.500	369.200	283,200	280,800	395,400	944,000
Refil	Underground Storage	0	0	0	0	0	45.500	531,300	514,300	531,300	517,200	431.200	0
	LNG	10.500	14.400	40,000	35.700	25.000	0	13.000	2.800	2.900	2.800	2.800	2.800
	Propane	0	$\bigcirc$	17,500	75,900	0	$\underline{0}$	22.000	22.000	22,000	7300	0	0
Total Requiremenis		1,481,100	2,245,000	2.662 .500	2,351.200	1.857,600	1.128.500	1,193,800	908,300	839.400	808.200	829.400	946,900
RESOURCES													
PNGTS		3.300	4,600	5.100	4,100	4.100	2,800	2.000	1,300	1.100	1,300	1.500	2,600
TGP	AES-Londonderry	0	70.200	133.400	5,600	28,800	0	0	0	0	0	0	0
	ANE	117.800	121,800	121,800	113,900	121,800	117.900	129,800	117.200	121,800	121.800	117.900	121.800
	BP/Nexen	93.700	06.700	96,700	66,400	96,700	93,700	96.800	23.700	96.800	96,800	93,700	96,800
	CoEnergy	0	603.900	606.400	573.700	0	0	0	0	0	0	0	0
	Guif Supply	615.500	636,000	636,000	595,000	636.000	647,800	669,200	619.100	591,900	575.200	610.700	583.500
	Markel Area - Zone 4	373.400	97,200	0	0	47,900	98,200	203,300	3.100	0	$\bigcirc$	0	44,300
	Markel Area -- Zone 6	0	0	0	0	0	0	$\bigcirc$	0	0	0	$\bigcirc$	0
	Storage	7.500	344,600	772.800	684.200	680.500	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	-	0	0	0	0	0	0
DOMAC	Vapor	228,900	238,000	141.800	85.100	148,000	165,400	63,000	45,700	0	0	0	92.000
	Liquid	10.500	14.400	40.000	35.700	25,000	0	13.000	2.800	2.000	2,900	2,800	2,800
LNG From Storage		10,500	17,400	36.900	35,700	32,200	2,800	2.900	2,800	2,900	2,900	2.800	2.900
Propane	Vapor	0	0	54.200	75,900	36,600	0	0	0	0	0	0	0
	Truck	$\underline{0}$	$\underline{0}$	17.600	75,909	0	0	22.000	$\underline{22,000}$	22.000	7.300	0	9
Total Resources		1,461.200	2,244,800	2,662.700	2,351,200	1.857.600	1,128.600	1.193.800	908.400	839,400	808,200	829,400	946,800

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> Low Case Design Year 2008-09 <br> (MMBtu)

REQUIREMENTS		11/2008	12/2008	01/2009	02R009	03/2009	04/2000	056009	96/2009	Q772009	0208009	09/2009	10/2009
Firm Sendout		1,472,600	2.261.100	2,640.300	2.197 .200	1.859.200	1.100 .800	638,900	375,200	287.900	285.900	403,200	959,800
Refil	Underground Storage	0	0	0	0	0	48,200	531,300	503,100	531,300	526.900	428.500	0
	LNG	13,600	14.400	40.000	35.800	25,000	0	13.000	2,800	2.900	2.900	2.800	2.900
	Propane	$\underline{0}$	3.000	25,400	65,100	$\bigcirc$	$\bigcirc$	22.000	22,000	22,000	7.300	Q	$\underline{0}$
Total Requremenis		1.486.200	2.278 .500	2.705,700	2,297,900	1,884,200	1,149,000	1,205,200	903.100	844.100	823,000	834.500	\$62,700
RESOURCES													
PNGTS		3.300	4.600	5,100	3.900	4,100	2.800	2.000	1,300	1.100	1,300	1.500	2,600
TGP	AES-Londonderry	0	74,100	148.200	28.200	40,700	0	0	0	0	0	0	0
	ANE	117,900	221,800	121,800	110,000	121,800	117,900	121.800	117.900	121,800	121,800	117.900	121,800
	BP/Nexen	93,700	96,700	96.700	83.400	96,700	93,700	96.800	93.700	96,800	96,800	93,700	96,800
	CoEnergy	$\bigcirc$	615,100	620,000	548.900	0	0	0	0	0	0	0	0
	Gut Supply	615,500	636.000	636.000	574,500	636,000	647.800	669.300	621.700	596.500	590.000	615.900	589.100
	Market Area -- Zone 4	387.800	109,200	0	0	55,700	110.500	228.500	2,400	0	0	0	51,000
	Markel Area -- Zone 6	0	0	0	0	0	$\bigcirc$	0	0	0	0	0	0
	Storage	9,400	347,000	769.600	678.400	684,000	0	0	0	0	0	0	0
Other Purchased Resources		$\bigcirc$	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	231.500	234.800	144,400	89.500	151,500	173.500	48,800	38.500	0	0	0	95.500
	Liquid	13.600	14.400	40,000	35,600	25.000	0	13,000	2.800	2.900	2,900	2.800	2.900
LNG From Storage		13.600	18,700	35.700	35,600	32.200	2,800	2,900	2.800	2.000	2,900	2.800	2.900
Propane	Vapor	0	3.000	61,000	65.100	36,600	0	0	0	0	$\bigcirc$	$\bigcirc$	0
	Truck	$\bigcirc$	3,000	25,400	65,100	Q	$\bigcirc$	22000	$\underline{22,000}$	32,000	7,300	$\bigcirc$	$\bigcirc$
Total Resources		1,486,300	2.278,400	2,705,800	2.288.200	1,884,300	1.149,000	1.205 .100	903,100	844,000	823,000	834.600	962,600

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> Low Case Design Year 2009-10 <br> (MMBtu)

REQUIREMENTS		11/2009	12 r 0009	012010	$\underline{0212010}$	0312010	04/2010	$05 / 2010$	$\underline{06 / 2010}$	073010	082010	0972010	10/2010
Firm sendoul		1.485.800	2,293,300	2.677,500	2.228,000	1,887,400	1,199,700	650.900	381,500	292,800	291.400	411.600	976.500
Retill	Underground Storage	0	0	0	0	0	52,900	531,300	502,700	531,300	526.700	422,900	0
	LNG	17,800	15.500	40.000	35,600	25,000	0	13.000	2.800	2.900	2.900	2.800	2,900
	Propane	$\underline{0}$	7.500	33,500	52,400	g	$\underline{0}$	22,000	22,000	$\underline{22.000}$	7.300	Q	-
Total Requrements		1.513,700	2,316,300	2, 751.000	2,316.000	1.972 .400	1.172.600	1,217,200	909,000	849.000	828.300	837,300	979.400
RESOURCES													
PNGTS		3,300	4,600	5,100	3.900	4,100	2,800	2.000	1,300	1.100	1,300	1,500	2,600
tgp	AES-Lonconderry	0	78,100	165,400	54.500	0	0	0	0	0	0	0	0
	ANE	117,800	121.800	121.800	110,000	121,800	117.800	121,800	117.900	121,800	121,800	117.900	121.800
	BP/Nexen	93.700	96.700	96,700	64,800	95,300	83,700	\$6,800	93.700	56,800	96.800	93.700	96.800
	CoEnergy	0	604.000	620,000	560,000	0	0	$\bigcirc$	0	0	0	0	0
	Gull Supply	641.100	637.400	636,000	574,500	636,000	847.800	669,400	624,100	601,500	595.200	618.600	594,500
	Markel Area .. Zone 4	404,000	153,800	0	0	57,000	123.500	257,300	2.900	0	0	0	56,600
	Market Area -- Zone 6	0	0	0	0	53,300	0	$\bigcirc$	0	0	0	0	0
	Storage	9.400	321,400	780,600	679,400	696,000	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
dCMAC	Vapor	208,700	248.000	146,300	93.000	155,200	184.100	31.900	41.500	0	0	0	99.300
	Liquid	17.900	15,500	40,000	35.600	25,000	0	13,000	2.800	2.900	2.900	2.800	2.900
LNG From Slorage		17.900	19,800	35.700	35,600	32.200	2,800	2.900	2,800	2.900	2.900	2.800	2.900
Propane	Vapor	0	7.500	70.100	52.400	36,600	0	0	0	0	0	0	0
	Truck	0	7.500	33,500	52,400	$\underline{9}$	$\underline{0}$	23,000	32,000	22,000	7,300	$Q$	0
Total Resources		1.513 .900	2,316,200	2,751.200	2.316,100	1.912.500	1.172.600	1,217,100	909.000	849,000	828,200	837,300	979,400

## COMPARISON OF RESOURCES AND REQUIREMENTS

Low Case Design Year 2010-11
(MMBtu)

REQUIREMENTS		11/2010	$12 / 2010$	01/2011	022011	03/2011	$04 / 2011$	05/2011	$06 / 2011$	07/2011	Q12011	0982011	102011
Firm Sendout		1,524.000	2,332,200	2.722.400	2,265,200	1,921,400	1,142,500	665,700	389,400	299.100	298,200	421.800	996,800
Refill	Underground Storage	0	0	0	0	0	44.700	531,300	502,200	531,300	529,900	415.500	0
	LNG	21.400	17,000	40,000	35.600	25,000	0	13,000	2,800	2.900	2,900	2.800	2.900
	Propane	9	13.000	43,400	37,900	0	0	22,000	14.600	$\underline{0}$	$\bigcirc$	$\underline{9}$	0
Total Requrements		1,545,400	2.362,200	2,805,800	2,337.900	1.946 .400	\$.187.200	1.232 .000	909,000	833,300	831.000	840,100	999,700
RESOURCES													
PNGTS		3.300	4,600	5,100	3,900	4,100	2,800	2,000	1.300	1.100	1,300	1.500	2,600
TGP	AES-Londonderry	0	82,600	¢ 85.300	87,100	0	0	0	0	0	0	0	0
	ANE	117,900	121,800	121,800	110,000	121,800	117,900	121,800	117.900	121.800	121,800	117.900	121,800
	BP/ Nexen	93,700	96,700	96,700	83.400	96,700	83.700	96,800	93.700	96,800	96.800	93.700	96,800
	CoEnergy	0	609.800	619.700	554,500	0	0	0	0	0	0	0	0
	Gulf Supply	642.000	652.300	636,000	574,500	636,000	647,900	660.400	627,200	607,700	605,200	621,500	600,800
	Market Area -- Zone 4	422.700	214.800	0	0	62.400	140.900	291.000	3,900	0	0	0	68.200
	Markel Area -- Zone 6	2.600	0	0	0	106.100	0	0	0	0	0	0	0
	Slorage	9.400	267,000	794.200	702.200	701,500	0	0	0	0	0	0	$\bigcirc$
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	211.100	248.000	147,700	97,900	160,500	181,300	13.000	44,900	0	0	0	103,700
	Liquid	21,400	17.000	40,000	35.600	25,000	$\bigcirc$	13.000	2,800	2.900	2,900	2,800	2,900
LNG From Storage		21,400	21,700	36,100	34,800	32,200	2.800	2,900	2,800	2.900	2.900	2.800	2,900
Propane	Vapor	0	13,000	80,000	37.100	0	0	0	0	0	0	0	0
	Truck	$\bigcirc$	13,000	43,400	37,400	$\underline{0}$	$\underline{\square}$	22.000	$\underline{14.600}$	$\bigcirc$	$\bigcirc$	$\underline{0}$	$\bigcirc$
Total Resources		1.545,500	2,362,300	2,806,000	2,338.100	1,846,300	1,987.300	1.231.900	809,100	833.200	830,900	840.200	999.700

# COMPARISON OF RESOURCES AND REQUIREMENTS Low Case Normal Year (MMBtu) <br> Heating Season (Nov-Mar) 

REQUIREMENTS		2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout		9,179,000	9,394,000	9,465,300	9,606,700	9,777,500
Refill	Underground Storage	0	0	0	0	0
	LNG	42,200	36,400	68,400	107,400	119,100
	Propane	93,500	93,400	93,500	93,400	93,500
Total Requirements		9,314,700	9,523,800	9,627,200	9,807,500	9,990,100
RESOURCES						
PNGTS		21,000	21,200	21,000	21,000	21,000
TGP	AES-Londonderry	0	0	0	0	28,000
	ANE	584,700	588,600	584,700	584,700	584,700
	BP / Nexen	447,200	450,200	447,200	447,100	447,200
	CoEnergy	1,783,900	1,784,000	1,784,000	1,783,900	1,784,000
	Gulf Supply	3,098,000	3,118,500	3,098,000	3,098,000	3,098,000
	Market Area -- Zone 4	279,900	209,000	250,100	332,800	369,500
	Market Area -- Zone 6	0	0	0	0	45,300
	Storage	2,309,000	2,490,000	2,490,400	2,488,800	2,490,900
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	478,200	522,700	547,900	571,400	652,900
	Liquid	42,200	36,400	68,400	107,400	119,100
LNG From Storage		49,400	43,600	75,500	114,600	126,300
Propane	Vapor	128,000	166,600	166,700	164,500	130,100
	Truck	93,500	93,400	93,500	93,400	93,500
Total Resources		9,315,000	9,524,200	9,627,400	9,807,600	9,990,500

# COMPARISON OF RESOURCES AND REQUIREMENTS Low Case Normal Year (MMBtu) 

Non-Heating Season (Apr-Oct)

REQUIREMENTS		2006-07	2007-08	2008-09	2009-10	2010-11
Firm Sendout		3,659,300	3,734,700	3,800,500	3,870,000	3,955,500
Refill	Underground Storage	2,383,200	2,571,200	2,571,900	2,569,900	2,572,300
	LNG	27,300	27,300	27,300	27,300	27,300
	Propane	34,500	73,300	73,300	71,200	36,600
Total Requirements		6,104,300	6,406,500	6,473,000	6,538,400	6,591,700
RESOURCES						
PNGTS		12,600	12,600	12,600	12,600	12,600
TGP	AES-Londonderry	0	0	0	0	0
	ANE	840,900	840,900	840,900	840,900	840,900
	BP / Nexen	668,300	668,300	668,300	668,300	668,300
	CoEnergy	0	0	0	0	0
	Gulf Supply	3,520,700	3,949,000	4,021,800	4,092,100	4,233,200
	Market Area -- Zone 4	250,100	129,800	148,600	169,400	197,600
	Market Area -- Zone 6	0	0	0	0	0
	Storage	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0
DOMAC	Vapor	729,700	685,400	660,100	636,500	555,100
	Liquid	27,300	27,300	27,300	27,300	27,300
LNG From Storage		20,000	20,000	20,000	20,000	20,000
Propane	Vapor	0	0	0	0	0
	Truck	34,500	73,300	73,300	71,200	36,600
Total Resources		6,104,100	6,406,600	6,472,900	6,538,300	6,591,600

## COMPARISON OF RESOURCES AND REQUIREMENTS Low Case Normal Year 2006-07 (MMBtu)

REQUIREMENTS		11/2006	122006	01/2007	022007	$03 / 2007$	04,2007	05/2007	$06 / 2007$	07/2007	082007	09/2007	10/2007
Firm Sendoul		1,306,000	1.997.200	2.303,400	1,903.900	1,668.500	969,200	598,100	325,100	279.300	275.200	362.300	852.100
Refill	Underground Storage	0	0	0	0	0	206,200	531,300	514,300	531.300	502.400	7.700	0
	LNG	2.800	14.400	0	0	25,000	0	13,000	2.800	2.900	2.000	2.800	2.900
	Propane	0	11,000	66,500	16,000	$\underline{0}$	0	$\underline{22.000}$	12.500	$\bigcirc$	0	-	O
Tolal Requrements		1.308,800	2,022,600	2,369,900	1,918,900	1.693.500	1.265,400	1.162,400	854.700	813,500	780,500	372.800	855.000
RESOURCES													
PNGTS		3,300	4.600	5,100	3.900	4.100	2.800	2,000	1.300	1,100	1.300	1,500	2.600
tge	AES-Londonderty	0	0	0	0	0	0	0	0	0	0	0	0
	ANE	117.900	121.800	123.800	109.400	121.800	117.900	121,800	117.900	121,800	121,800	117.900	121.800
	BP/Nexen	93,700	96.700	96.700	63.400	96.700	93,700	96,800	93,700	96,800	90.800	93.700	98.800
	CoEnergy	0	812,900	618,800	552.200	0	0	0	0	0	0	0	0
	Gulf Supply	615.500	636,000	636,000	574.500	636.000	647.800	669.000	611,700	587.900	554.800	84.800	364.700
	Marke1 Area - Zone 4	286.600	0	0	0	13,300	170.900	64,000	0	0	0	0	15.200
	Markel Asea -- Zone 5	0	0	0	$\bigcirc$	0		0	0	0	0	0	0
	Storage	0	455.900	664,400	527,200	681.500	0	0	0	0	0	,	0
Olner Purchased Resources		0	0	0	-	0	0	0	0	0	0	0	0
Domac	Vapor	206,300	43,000	88,000	48.600	94,300	229,500	170.900	12.000	0	0	69,300	248.000
	L.qus	2,800	14,400	0	0	25,000	-	13.000	2.800	2.900	2,900	2,800	2,900
LNG From Storage		2.800	15,300	6,100	3,000	22.200	2.800	2,900	2.800	2.900	2,900	2.800	2,800
Propane	Vapor	$\bigcirc$	19.000	66.500	31.800	18.600	0	0	0	0	0	0	0
	Truck	Q	11,000	66,500	16,000	Q	0	22,000	12,500	9	$\underline{0}$	Q	0
Yotal Resources		1.308.900	2.022.600	2.369.900	1.920,100	1,693,500	1,265,400	1,162,400	854.700	813.400	780,500	372.800	857,000

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> Low Case Normal Year 2007-08 <br> (MMBtu)

REQUIREMENTS		11/2007	12/2007	01/2008	02/2000	03/2008	04/2008	05/2000	$06 / 2008$	0712008	0882008	$09 / 2008$	$10 / 2008$
Firm Sendout		1,329,500	2,029,600	2,340,600	1,997,400	1,696,900	988,400	608.500	331,900	284.700	281.100	371.000	869,100
Refill	Underground Storage	0	0	0	0	0	145.700	531.300	514,300	531.300	512.900	335.700	0
	LNG	3.000	14,400	4,600	0	14.400	0	13,000	2.800	2.900	2.900	2.800	2.900
	Propane	$\underline{0}$	Q	$\underline{56,000}$	37,400	$\bigcirc$	0	22,000	22.000	22.000	7.300	$\underline{0}$	$\underline{0}$
Total Requirements		1.332.500	2.044,000	2,401.200	2,034,800	1.711,300	1.134,100	1,174.800	871,000	840,000	804.200	709,500	872.000
RESOURCES													
PNGTS		3,300	4,600	5.100	4,100	4,100	2.800	2.000	1,300	1,100	1,300	1.500	2.600
TGP	AES-Londonderry	0	0	0	0	0	0	0	0	0	0	0	0
	ANE	117,900	121.800	121.800	105,300	121,800	117,900	121,800	117,900	121.800	121.800	117.900	121,800
	BP/Nexen	93,700	96,700	96.700	66,400	96.700	93,700	\$8,800	93,700	96.800	96,800	93,700	96,800
	CoEnergy	0	610,500	618,500	555.000	0	0	0	0	0	-	0	0
	Guif Supply	645.500	636,000	636,000	595,000	636,000	647,800	669,100	815,700	593,400	571.200	473,900	377,800
	Markel Area -- Zone 4	175.500	0	0	0	33.500	38,900	71.900	0	0	0	-	19.000
	Markel Area -- Zone 6	0	0	0	0	0	0	0	0	0	0	0	-
	Storage	109,800	482,100	680.000	579,800	638.300	0	0	0	0	$\bigcirc$	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	vapor	211.000	44.600	98.000	50.700	118.400	230.300	175.200	14,900	0	0	17,000	248,000
	Liquid	3.000	14,400	4.600	0	14.400	0	13.000	2,800	2.900	2,900	2.800	2,900
LNG From Storage		3.000	21,700	3.700	3.700	11,500	2,800	2,900	2.800	2.900	2,900	2.800	2,900
Propane	Vapor	0	\$1,600	81,000	37.400	36,600	0	0	0	0	0	0	0
	Truck	$\bigcirc$	0	56,000	37400	$\underline{0}$	$\underline{0}$	22,000	22,000	22,000	7.300	$\underline{0}$	$\underline{0}$
Total Resources		1.332 .700	2,044.000	2.401.400	2,034.800	1.711.300	1.134.200	1.174.700	871,100	840.900	804.200	709.600	871.900

COMPARISON OF RESOURCES AND REQUIREMENTS
Low Case Normal Year 2008-09
(MMBtu)

REQUIREMENTS		112008	1272008	01/2009	02/2009	03/2099	04/2009	05/2009	$06 / 2009$	0772009	¢8/2009	09/2009	10/2009
Firm Sendout		1.350.100	2.058,100	2.373.300	1,962,100	4.721,700	1,005,200	619.300	337,800	289,400	286,200	378.600	884.000
Refill	Underground Storage	0	0	0	0	0	137,500	531.300	514.300	531,300	513,000	344,500	0
	LNG	4,000	14.400	28.300	0	21.700	0	13.000	2.800	2.900	2,900	2.800	2.900
	Propane	$\underline{0}$	19900	67,900	6.300	$\underline{0}$	Q	$\underline{22,000}$	$\underline{22,000}$	22,000	7300	$\bigcirc$	Q
Tolal Requrements		1,354,100	2,091,900	2,469,500	1,568,300	1,743,400	1,142.700	1.185.600	876.000	845.600	809.400	725,900	886,900
RESOURCES													
PNGTS		3.300	4.800	5.100	3.900	4.100	2.800	2,000	1,300	1,100	1,300	1.500	2.600
TGP	AES-Londonderry	0	0	0	0	0	0	0	0	0	0	0	0
	ANE	117,900	121.800	121.800	101.400	121,800	117.900	121.800	117.900	121.800	121.800	117,900	121.800
	BP/Nexen	93,700	06,700	06,700	63.400	96.700	93,700	96,800	93.700	96,800	96,800	93,700	96.800
	CoEnergy	0	618,800	620,000	545.200	0	0	0	0	0	0	0	$\bigcirc$
	Gulf Supply	615,500	636,000	636,000	574.500	636.000	647.900	669.300	618.500	598.000	576.400	507.200	404.500
	Market Area -- Zone 4	213.700	0	0	0	36,400	46,800	79.100	0	0	0	$\bigcirc$	22.700
	Market Area -- Zone 6	0	0	0	0	0	0	0	0	0	0	$\bigcirc$	0
	Storage	87.300	494.700	690,900	572,000	645,500	0	0	0	0	0	0	0
Other Purchased Resources		0	0	0	0	0	0	0	0	0	0	$\bigcirc$	0
DOMAC	Vapor	214,800	45.800	107.400	54,100	\$25.800	230,900	178,600	17.900	0	0	0	232.700
	Liquid	4,000	14,400	28.300	0	21.700	0	13,000	2.800	2.900	2.900	2,800	2.900
LNG From Storage		4,000	20,300	27,500	4.800	18,900	2.800	2,900	2.800	2.900	2.900	2,800	2,900
Propane	Vapor	0	19,400	67,900	42,800	36.600	0	0	0	0	0	0	0
	Inuck	$\underline{0}$	19,400	67,900	6.200	Q	$\bigcirc$	$\underline{22.000}$	32.000	22,000	7300	0	-
Total Resources		1,354,200	2,091,900	2.469.500	1,968,300	1.743,500	1.142.800	1.185.500	876.900	845.500	809.400	725.900	886,800

COMPARISON OF RESOURCES AND REQUIREMENTS
Low Case Normal Year 2009-10 (MMBtu)

REQUIREMENTS		11/3000	12/2009	$01 / 2010$	022010	03/2010	04/2010	05/2010	062019	$07 / 2010$	Q82010	0982010	$10 / 2010$
Furm Sendout		1,371,800	2,088,200	2,407,900	1,880,800	1,748,000	1,023,000	630,700	344,000	294.300	291.500	388.600	899,800
Refitil	Underground Storage	0	0	0	0	0	129,600	531,300	514,300	531.300	513,500	349,900	0
	LNG	5.100	14,400	35,500	27,400	25.000		13,000	2,800	2.900	2,900	2,800	2,900
	Propane	$\bigcirc$	28,300	62,600	$\underline{0}$	2.500	$\bigcirc$	22,000	22.000	$\underline{22,000}$	5,200	$\bigcirc$	$\underline{0}$
Total Requrements		1,376,900	2,130,900	2.506 .000	2.018.200	1.775.500	1,152,600	1.197,000	883,100	850,500	813.200	739,300	902,700
RESOURCES													
PNGTS		3.300	4.600	5,100	3,900	4,100	2,800	2.000	1,300	1,100	1,300	7.500	2,600
TGP	AES-Londanderty	0	0	0	0	0	0	0	0	0	0	0	0
	ANE	117.900	121,800	121,800	101,400	121.800	117,900	121,800	117,900	121,800	123.800	117.900	121.800
	BP/ Nexen	93.700	96.700	96.700	68,000	94,000	93,700	06.800	93,700	96.800	96,800	93.700	96.800
	CoEnergy	0	613.800	810.100	560,000	0	0	0	0	0	0	0	0
	Guil Supply	615,500	636,000	636,000	574,500	636,000	647.800	660,400	621,500	603,000	582.300	520.700	447.400
	Market Area -- Zone 4	297,800	0	0	0	35,000	56.100	86,700	0	0	0	0	26,600
	Market Area -- Zone 6	0	0	0	0	0	0	0	0	0	0	0	0
	Storage	20,000	520,900	713,300	572.000	862.600	0	0	0	0	0	0	0
Other Purchased Rescurces		0	0	0	0	0	0	0	0	0	0	0	0
DOMAC	Vapor	218,600	47,900	116.500	58.200	130,200	231,500	182,300	21.100	0	0	0	201.600
	Liquid	5.100	24.400	35.500	27.400	25,000	0	13,000	2.800	2,900	2,900	2,800	2.900
LNG From Storage		5.100	18.200	36,500	27.600	27,200	2,800	2.900	2,800	2.900	2.900	2,800	2,900
Propane	Vapor	0	28,300	71.800	27,300	37,000	0	0	0	0	0	0	0
	Truck	$\bigcirc$	28,300	$\underline{62.600}$	$\bigcirc$	$\underline{2500}$	0	22.000	$\underline{22,000}$	$\underline{22,000}$	5.200	$\bigcirc$	$\bigcirc$
Yotal Resources		1,377,000	2,130,900	2,506,000	2,018.300	1,775,400	1.152.600	1,196,900	883,900	850.500	813.200	739.400	902.600

## COMPARISON OF RESOURCES AND REQUIREMENTS

 Low Case Normal Year 2010-11 (MMBtu)| REQUIREMENTS |  | 11/2010 | $12 / 2010$ | $01 / 2011$ | 028011 | 03/2011 | 04/2011 | 05/2011 | 0812011 | 072011 | O8/2011 | 09/2011 | 1012011 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Firm Sendou: |  | 1,398,200 | 2,124,600 | 2,449,500 | 2.025,400 | 1,779,800 | 1,044,600 | 644,700 | 351,800 | 300,600 | 298,400 | 396.500 | 918,900 |
| Refill | Underground Slorage | 0 | 0 | 0 | 0 | $\bigcirc$ | 121,700 | 531,300 | 514.300 | 531,300 | 515,700 | 358.000 | 0 |
|  | LNG | 8,400 | 14,400 | 38.900 | 34.400 | 25,000 | 0 | 13,000 | 2,800 | 2.900 | 2.900 | 2,800 | 2.900 |
|  | Propane | $\underline{0}$ | 7.100 | 53,900 | 32.500 | $\underline{0}$ | 0 | $\underline{22,000}$ | 14,600 | @ | 0 | $\underline{9}$ | $\underline{0}$ |
| Tolal Requrements |  | 1.404.600 | 2.146.100 | 2.542.300 | 2,082,300 | 1.804.800 | 1.168.300 | 3.213,000 | 883.500 | 834,800 | 817,000 | 757.300 | 921,800 |
| RESOURCES |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PNGTS |  | 3,300 | 4,600 | 5,100 | 3.000 | 4.100 | 2.800 | 2,000 | 1.300 | 1,100 | 1,300 | 1,500 | 2.600 |
| tGP | AES-Londonderry | 0 | 28,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | ANE | 117.900 | 121,800 | 121,800 | 101.400 | 121,800 | 117.900 | 121.800 | 117,900 | 121.800 | 121,800 | 117.900 | 121.860 |
|  | BP/Nexen | 93.700 | 96.700 | 86,700 | 63.400 | 96,700 | 93.700 | 96,800 | 93,700 | 96,800 | 96,800 | 93.700 | 96,800 |
|  | CoEnergy | 0 | 606,500 | 617,500 | 580,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Guls Supply | 615.500 | 836.000 | 636,000 | 574.500 | 636.000 | 647,900 | 669,400 | 625,100 | 609,200 | 591,300 | 538,700 | 551.600 |
|  | Market Area - Zone 4 | 329,000 | 0 | 0 | 0 | 40,500 | 68,800 | 96.300 | 0 | 0 | 0 | 0 | 32.500 |
|  | Market Area - Zone 6 | 0 | 0 | 0 | 0 | 45,300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Slorage | 9.400 | 500,500 | 719.600 | 504.500 | 866.900 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Purchased Resources |  | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| DOMAC | vapor | 223,400 | 103,400 | 126,200 | 62,700 | 137,500 | 232400 | 186,700 | 25,300 | 0 | 0 | 0 | 110.700 |
|  | Lquid | 6.400 | 14,400 | 38,900 | 34,400 | 25,000 | 0 | 13,000 | 2,800 | 2,900 | 2.900 | 2,800 | 2,800 |
| LNG From Slorage |  | 6.400 | 20.100 | 36.200 | 32.600 | 31,000 | 2.800 | 2.900 | 2.800 | 2,900 | 2.900 | 2.800 | 2,900 |
| Propane | Vapor | 0 | 7.100 | 90.500 | 32,500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Truck | $\underline{0}$ | 7.100 | 53,900 | 32.500 | $\underline{0}$ | 0 | 22,000 | 14,600 | $\underline{0}$ | $\underline{0}$ | $\underline{0}$ | 0 |
| Tolaj Resources |  | 1,404,700 | 2.146.200 | 2.542.400 | 2,092,400 | 1,804.800 | 1.166.300 | 1.210,900 | 883,500 | 834.700 | 817,000 | 757,400 | 921.800 |

# EnergyNorth <br> Cold Snap Scenario Resources and Requirements 2006-07 

## COMPARISON OF RESOURCES AND REQUIREMENTS <br> Cold Snap Scenario 2006-07 (MMBtu)

REOUIREMENTS		11/2006	1272006	0172007	022007	$03 / 2007$	04/2007	05/2007	$06 / 2007$	07/2007	$08 / 2007$	29/2007	10/2007
Firm Sencout		1.347,600	2.052 .800	2.431 .500	1,956,700	1,717,800	1,004,100	620,600	340,800	293,000	289.700	381.000	883.800
Refill	Undergound Slorage	600	0	0	0	0	389,800	531,300	514.300	530.800	502.400	7.700	0
	LNG	3.800	14.400	34,200	17,200	25,000	0	13,000	2.800	2.900	2.900	2,800	2,900
	Propane	0	$\bigcirc$	93,500	$\bigcirc$	0	$\bigcirc$	22,000	$\underline{22,000}$	$\underline{22,000}$	$\underline{2.400}$	0	$\underline{0}$
Toial Requirements		1,352.000	2,067,200	2,559,200	1,973,900	1,742,800	1.393.900	4.186,900	879,900	848.700	797.400	391.500	886,700
RESOURCES													
PNGTS		3.300	4,600	5.100	3.900	4,100	2.800	2.000	1,300	1,100	1,300	1,500	2,600
TGP	AES-Londonderry	0	20,000	29,100	0	0	0	0	0	0	0	0	0
	ANE	117,000	121.800	121.800	101.400	121,800	117,900	121,800	117,900	121,800	121.800	117,900	121,800
	BP/ Naxen	93,700	96,700	96,700	63,400	96,700	93,700	96,800	93.700	96.800	96,800	93.700	96,800
	CoEnergy	0	609,200	619,800	555,000	0	0	0	0	0	0	0	0
	Guli Supply	615,500	636,000	636.000	574,500	636,000	647,900	669,400	620.800	601.200	\$69,300	172.800	392.200
	Market Area - Z Zone 4	298,000	0	0	0	29.400	297,700	79,100	0	0	0	0	22.200
	Markel Area -- Zone 6	0	0	0	0	0	0	0	0	0	0	0	0
	Slorage	800	500,700	882.100	559,300	656.500	0	0	0	0	0	0	0
Other Purchased Resources		0	0	$\bigcirc$	0	0	0	0	0	0	0	0	0
DOMAC	vacor	215.500	45.500	99,200	53.400	119.400	231,200	179,800	18,700	0	0	0	245.200
	Liqued	3.800	14.400	34,200	17.200	25,000	0	13,000	2,800	2,900	2.900	2,800	2,900
LNG From Storage		3.800	18,200	33,600	24,100	22,200	2.800	2,900	2,800	2.900	2.900	2.800	2.900
Propane	Vapor	0	0	108,200	21,500	31,700	0	0	0	0	0	0	0
	Truck	$\bigcirc$	0	93,500	9	$\underline{0}$	$\underline{0}$	23.000	22.000	$\underline{22,000}$	2400	$\underline{0}$	0
Total Resources		1,352,100	2.067.100	2.559,300	1,974,100	1.742.800	1,394.000	1.186,800	880.000	848.700	797,400	391.500	886.600

## V. MANAGEMENT OF THE RESOURCE PORTFOLIO

## A. Introduction

The Company's resource management effort is a continuous process used by the Company to manage its portfolio in order to: (i) maximize the use of capacity, (ii) minimize the cost of gas, (iii) maintain flexibility to meet changing weather conditions and uncertainties of the competitive demand and supply markets, and (iv) maintain operational integrity of its distribution system. Because the Company must maintain sufficient capacity in its resource portfolio to meet current and expected design day and design year customer requirements, at any given time, it might have resources that are temporarily under-utilized. Through its resource management efforts, the Company seeks to extract the maximum value possible from these under-utilized resources and maintain the lowest cost for its firm customers.

## B. Portfolio Management

As part of the Settlement, the Company agreed not to renew its Gas Resource Portfolio Management and Gas Sales Agreement ("Portfolio Management Agreement") with Merrill Lynch Commodities, LLC ("Merrill") that terminated on March 31, 2006. On December 8, 2005, the Company filed its Portfolio Management Plan with the Commission which provided a detailed plan on how the Company would manage its gas resources effective with the
termination of its Portfolio Management Agreement with Merrill. The Portfolio Management Plan is provided as Appendix B.

## C. Benefits of a Coordinated KeySpan New England Portfolio

There are a number of benefits enjoyed by New Hampshire customers as a result of the coordination of the gas supply planning and acquisition efforts with those of the three KeySpan LDCs in Massachusetts. This coordination has created the opportunity for the Company's customers to benefit from the economies of scale and scope that were not available when the Company performed these functions on its own.

For example, shortly after the KeySpan merger, EnergyNorth coordinated its contract-renewal negotiations with its primary pipeline supplier, Tennessee, with those of the KeySpan Massachusetts LDCs. This greatly increased the Company's bargaining power ${ }^{1}$. One significant benefit resulting from the negotiations was the creation of a single Operational Balancing Agreement ("OBA") with Tennessee for all of the KeySpan New England citygates. This allows the Company and the KeySpan Massachusetts LDCs to balance deliveries across all of its Tennessee citygates in New England.

A second example of the benefits of coordinated portfolios is that of displacement. Displacement combines the benefits of both the single OBA and

[^14]the use of on-system supply and distribution assets between the Company and the KeySpan Massachusetts LDCs. On any given day, the Massachusetts LDCs may make LNG available to EnergyNorth by vaporizing LNG into their systems and "deliver" it to EnergyNorth through displacement on its distribution system and the Tennessee pipeline. Because KeySpan has a single OBA for New England, EnergyNorth incurs only the commodity cost and the LNG trucking costs to the MA facility and avoids the pipeline transportation costs to which it otherwise would have been subject.

A third example of the benefits to the Company from coordination with the KeySpan Massachusetts LDCs is its ability to use a 500,000 gallon propane storage tank in Haverhill, Massachusetts to the extent that is not currently needed to meet sendout requirements in the Massachusetts portfolio. Because of the close proximity of the Haverhill facility to the EnergyNorth service territory, this facility has been made available for propane storage needed to meet peak season sendout requirements for New Hampshire customers. Without this facility, EnergyNorth would be required to contract for an incremental winter refill contract.

A fourth example of the benefits to the Company from coordination with the KeySpan Massachusetts LDCs relates to LNG winter trucking. Each winter season, the Company contracts with Transgas Inc. for a "Dedicated Service" agreement for the months of December, January and February. The agreement provides for a specific level of service including both trailers and drivers for trucking LNG. Each LDC pays a portion of the cost based on its need on the
design day for a portable vaporizer(s) if any, and its design winter season sendout percentage of the total of the total design winter season. Given design conditions, each LDC would be limited to the level of service it pays for. However, in the absence of design conditions, if the resources paid for by one LDC are not being fully utilized on any given day, any of the other LDCs may call upon those temporarily unutilized resources and pay only the variable charges incurred for using those resources. Without this flexibility, each individual LDC would need to contract for incremental trucking service.

## D. Storage Management

Within the overall management of its portfolio, the Company must also adhere to two specific rules as established by the Commission related to the management of storage supplies; (1) Storage Rule Curve and (2) Seven Day Storage Rule.

## 1) Storage Rule Curve

Since the 2004/05 winter period, the Company has implemented a strategy that it agreed upon with Commission Staff regarding the dispatch of underground storage volumes. Under this strategy, during the peak period, the Company computes the cumulative forecasted usage under its design weather scenario of total underground storage volumes for the remainder of the peak period as of the end of each month as listed in Schedule 11B of the September 1st Cost of Gas filing. The Company divides these cumulative volumes by its
total underground storage MSQ and these values ("rule curve") are used by the Company to determine the minimum overall end-of month inventory level for its underground storage fields. Within each month, the Company may withdraw underground storage volumes to levels below the rule curve on any given day, so long as by the last day of each month the Company is at or above the rule curve. ${ }^{2}$

## 2) Seven Day Storage Rule

Puc rule 506.03 ("On-site Storage") directs New Hampshire gas utilities to "maintain an on-site storage capability in connection with the operation of its gas distribution system between December 1 and February 14 of each year which will provide peak shaving supplies for an estimated maximum-design cold period of 7 consecutive days." Under the rule, between February 15 and February 28, the minimum on-site storage capacity may then be reduced to $75 \%$ of the total requirement and between March 1 and March 31 the minimum on-site storage requirement may then be reduced to $50 \%$ of the original total requirement.

## E. Managing Volatility

The natural gas commodity market continues to be volatile. Spiking price increases in the spring and summer of 2005 were exacerbated by the effects of Hurricanes Katrina and Rita, which shut down both offshore gas platforms and onshore gas processing plants, causing gas prices to rise from the $\$ 7-\$ 8 / \mathrm{MMBtu}$

[^15]range into the $\$ 14-\$ 15 / \mathrm{MMB}$ tu range in late September 2005 . Since then, prices have moderated as demand slackened from a combination of conservation and a relatively mild winter and higher levels of storage inventories nationally. At the time of this filing, prices for the upcoming 2006/07 winter remain in the $\$ 9-\$ 10$ range, somewhat below the $\$ 14-\$ 15 / \mathrm{MMBu}$ range of last year.

The Company mitigates volatility in the gas commodity markets in several ways. First, the Company maintains a balanced portfolio that includes contract storage and on-system LNG. These assets allow the Company to inject gas during the off peak season for withdrawal during the peak season, providing a natural pricing hedge. Second, the Company maintains a geographically diverse gas supply portfolio that reduces its exposure to volatility in any single supply region and also minimizes exposure to volatility at a single pricing point or market index. Finally, the Company mitigates price volatility with a formal hedging program, its Natural Gas Risk Management Plan, as well as its Fixed Price Option program.

Under the Natural Gas Risk Management Plan the Company uses two hedging strategies aimed at reducing gas cost volatility or fixing the cost of gas. Under one strategy, financial derivatives are executed before the winter heating season to establish a price or price range for $50 \%$ of the estimated flowing volume for each month from October through May. Under the other strategy, financial derivatives are executed prior to the summer injection season to establish a price or price range for $20 \%$ of the market area storage capacity. The total volume hedged, based on the storage capacity forecast, is divided equally
over the May through October injection period. Lastly, the Company offers a Fixed Price Option ("FPO") program to its customers whereby customers are given the option to fix the price for the gas supply portion of their bills for the winter season. In order to fix the cost of gas supplies for this program, the Company hedges $35 \%$ of its portfolio. The Company received Commission approval on September 16, 2005, Order No. 24,515 in Docket No. DG 05-127, for both its Natural Gas Risk Management Plan and Fixed Price Option program.

## VI. SUMMARY OF COMPLIANCE WITH THE TERMS OF THE AUGUST 19, 2005 SETTLEMENT

On August 19, 2005, the Company, the Commission Staff and the Office of the Consumer Advocate entered into a Settlement to resolve outstanding issue in dockets DG 04-133 and DG 04-175 which was approved by the Commission in Order No. 24,531 dated October 12, 2005. The Settlement requires the Company to incorporate certain information into this IRP filing. This section identifies the information to be included and documents the Company's compliance with the Settlement terms.

## 1. All volumes will be stated in MMBtus;

Throughout the filing, all volume references are stated in MMBtu.
2. For purposes of forecasting average use per customer, the Company will use at least three years' worth of customer usage data;

As documented in Section III Table III-1, the forecast of average use per customer was developed using quarterly data for the twenty- one year period January 1984 through December 2005.
3. The Company will develop an econometric demand forecasting model for use in the IRP in place of the end use forecasting model it currently uses;

The econometric demand forecasting model specified by the Company for this IRP is described in detail in Section III B.
4. For purposes of establishing design planning standards, the Company will utilize a Monte Carlo weather forecasting analysis;

The Monte Carlo weather forecasting analysis used by the Company to develop its design planning standards is described in detail in Section III E.
5. The IRP will include a detailed contingency plan addressing the Company's plans for ensuring adequate supplies and capacity resources for low probability weather scenarios and a range of possible supply/capacity interruptions. Among other things, the contingency plan shall address the following:
(a) Displacement of gas from the Company's Massachusetts affiliates to New Hampshire to the extent feasible under the combined OBA on the Tennessee Gas Pipeline Company system;
(b) The potential for and related cost if the Company were to increase the level of dedicated trucking to deliver liquid supplies to New Hampshire during periods when vaporized LNG from its Massachusetts affiliates' facilities cannot be
displaced via pipeline from Massachusetts to New Hampshire;
(c) A reasonable range of potential supply or capacity disruptions under design day weather conditions and the Company's response to each specified situation, including a loss of pipeline and LNG or propane supplies;

The Company's contingency plan is set forth in Section IV F.
6. The IRP will include a section setting forth the Company's planning practices relating to longer-term portfolio optimization. The section will identify the available and potentially available supply resources and their respective costs. In addition, the section will discuss the opportunities for utilizing these available resources, either as replacements for expiring contracts or meeting load growth, describe the portfolio optimization model, and identify the mix and timing of resource additions and subtractions that are expected to minimize costs over the long-term under a given set of price and demand forecasts. Determination of the optimal portfolio also requires the Company to address the role of its peaking plants in its overall portfolio. Finally, the section will also
identify supply resources that are unlikely to be available to the Company because of its particular circumstances;

The design of the Company's portfolio and the optimization of that portfolio to meet sendout requirements over the forecast period is discussed in Section IV.
7. The IRP will include a section that discusses the extent to which the Company's supply or capacity plans take into account the potential migration of sales service customers to transportation service. In addition, the section will discuss whether and how the Company's plans address the risk that transportation customers migrate to sales service. To the extent that the Company does not plan to serve the gas requirements of all transportation customers, the section will also address how the Company protects customers against a possible reduction in supply reliability resulting from unauthorized gas usage by migrating transportation customers.

A discussion of the Company's historical experience and forecast of transportation migration, including a discussion of planning for "grandfathered transportation load" is contained in Section III B (6).

## 8. The IRP will include a section that describes the

 Company's strategy for managing the short, medium and long term risks arising from volatility in gas commodity costs, such as the potential for entering into fixed price forward contracts and financial hedges or the economic operation of peaking facilities.A discussion of the Company's price volatility management and fixed price option programs is contained in Section $V$.
9. The IRP will include a section discussing the purpose of the Company's curtailment plan and the implications of that plan for supply and/or capacity planning.

The Company filed its New Hampshire Emergency Curtailment plan with the Commission on November 1, 2005. That plan is not designed to address the Company's upstream capacity and supply planning process or the Company's gas supply contingency planning activities. However, as discussed in Section V, in the event that the company is unable to overcome an upstream force majuere event that prevented it from delivering sufficient supply to meet its firm sendout requirements, the Company would look to the curtailment plan for the most orderly and efficient means of curtailing customer load until such time as the emergency event was resolved.

# ENERGYNORTH NATURAL GAS, INC. (d/b/a KeySpan Energy Delivery New England) <br> <br> INTEGRATED <br> <br> INTEGRATED RESOURCE PLAN 

 RESOURCE PLAN}
(November 1, 2006 - October 31, 2011)

DG 06-105
APPENDIX A

Energy Delivery

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Number of Commercial and Industrial Customers Forecasting
Regression Model: D1
Dependent Variable: CUSCI
Independent Variable: CUSCI_1 POP Auto(-4)

Size	85 Parameter:		3
Mean	7462.374 Std Dev	1741.739	
R-Square	0.9994 DW	2.3058	
SSE	3017373 MSE	35499	
Term	CUSCl_1	POP	Auto(-4)
Estimate	0.9309	0.5111	-0.621
Std Error	0.0378	0.25	0.0917
T-Ratio	24.66	2.04	-6.77
Pr $>[t]$	$<.0001$	$0.044<.0001$	

Forecasts (from Base Period 2005-Q4)
Date LCL Forecast UCL
2006 Q1 $9999.551 \quad 10369.02 \quad 10738.49$
2006Q2 $10092.65 \quad 10466.01 \quad 10839.38$
2006Q3 $\quad 10406.78 \quad 10784.19 \quad 11161.6$
2006Q4 $10177.34 \quad 10559.87 \quad 10942.41$
2007Q1 $10234.57 \quad 10620.96 \quad 11007.36$
2007Q2 $10313.82 \quad 10704.07 \quad 11094.33$
2007Q3 $10521.86 \quad 10916.0511310 .25$
2007 Q4 $10389.58 \quad 10788.31 \quad 11187.03$
2008Q1 $10440.19 \quad 10842.68 \quad 11245.16$
2008Q2 $10488.410894 .61 \quad 11300.82$
2008Q3 $10624.57 \cdot 11034.48 \quad 11444.39$
2008Q4 10571.63 10985.53 11399.43
$2009 Q 1 \quad 10635.41 \quad 11052.89 \quad 11470.36$
$\begin{array}{lllll}2009 Q 2 & 10685.06 & 11106.14 & 11527.21\end{array}$
2009Q3 $10807.7711232 .42 \quad 11657.08$
2009Q4 10788.3411216 .8211645 .29
2010 Q1 $10810.611242 .61 \quad 11674.63$
2010Q2 10863.0211298 .4711733 .92
2010Q3 $10928.81 \quad 11367.68 \quad 11806.56$
2010Q4 $10922.47 \quad 11364.8 \quad 11807.14$
2011Q1 10975.0911417 .4311866 .29
2011Q2 11022.87 1146311920.59
2011Q3 11076.43 $11545.11 \quad 11980.63$
2011Q4 $11120.21 \quad 11544.0412030 .91$

## APPENDIXA

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Number of Commercial and Industrial Customers Forecasting


Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	9954.965	10366.26	10777.55
2006Q2	10087.68	10460.75	10833.81
2006Q3	10399.96	10777.05	11154.14
2006Q4	10168.3	10550.49	10932.68
2007Q1	10222.76	10608.78	10994.81
2007Q2	10299.57	10689.42	11079.26
2007Q3	10506.1	10899.83	11293.57
2007Q4	10371.5	10769.71	11167.92
2008Q1	10420.05	10821.96	11223.87
2008Q2	10466.73	10872.3	11277.88
2008Q3	10602.22	11011.42	11420.62
2008Q4	10547.64	10960.76	11373.88
2009Q1	10610.22	11026.85	11443.48
2009Q2	10659.22	11079.38	11499.53
2009Q3	10781.85	11205.52	11629.19
2009Q4	10761.58	11188.99	11616.4
2010Q1	10783.43	11214.32	11645.21
2010Q2	10835.44	11269.69	11703.94
2010Q3	10901.26	11338.86	11776.47
2010Q4	10894.05	11335.05	11776.06
2011Q1	10942.78	11386.98	11831.19
2011Q2	10981.49	11428.88	11876.27
2011Q3	11052.2	11502.73	11953.27
2011Q4	11063.25	11517	11970.74

## APPENDIXA

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Number of Commercial and industrial Customers Forecasting
Regression Model: D3
Dependent Variable: CUSCI
Independent Variable: CUSCI_1 GSP Auto(-4) .

Size	85 Parameter:		3
Mean	7462.374	Std Dev	1741.739
R-Square	0.9994	DW	2.3068
SSE	3105003	MSE	36529
Term	CUSCI_1	GSP	Auto (-4)
Estimate	0.9525	0.0119	-0.6271
Std Error	0.0418	0.008926	0.0916
T-Ratio	22.81	1.33	-6.85
$\operatorname{Pr}>[t]$	<. 0001	0.1871	<. 0001

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	10044.22	10485.04	10925.86
2006Q2	10279.1	10676.89	11074.68
2006Q3	10682.14	11084.72	11487.29
2006Q4	10531.33	10940.22	11349.12
2007Q1	10718.24	11132.39	11546.54
2007Q2	10911.36	11331.28	11751.2
2007Q3	11239.05	11665.27	12091.49
2007Q4	11219.43	11653.11	12086.79
2008Q1	11412.35	11852.97	12293.58
2008Q2	11612.75	12060.79	12508.83
2008Q3	11897.74	12353.71	12809.69
2008Q4	11967.05	12431.87	12896.69
2009Q1	12169.44	12642.92	13116.39
2009Q2	12373.64	12856.25	13338.86
2009Q3	12630.82	13123.02	13615.23
2009Q4	12751.69	13254.19	13756.68
2010Q1	12955.75	13468.54	13981.32
2010Q2	13160.87	13684.34	14207.82
2010Q3	13398.39	13932.94	14467.5
2010Q4	13551.58	14097.74	14643.9
2011Q1	13756.08	14313.93	14871.78
2011Q2	13957.7	14527.57	15097.44
2011Q3	14179.54	14761.73	15343.93
2011Q4	14348.48	14943.37	15538.26

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Customers Forecasting
ARIMA Model $(4,2,0)$
Time Series: . CUSCI

Size	1.331409	Parameter:	5		
Mean	7462.374	Std Dev	1741.739		
R-Square	0.993631		1.331409		
SSE	1096.782	MSE	1724694	RMSE	1313.276
Estimation					
Parameter	MU	AR1_1	AR1_2	AR1_3	AR1_4
Estimate	279.5836	0.627437	0.179011	-0.719115	0.386266
Standard Error	29.68743	0.090442	0.095932	0.10739	0.109028
t Value	9.417574	6.93745	1.866012	-6.696291	3.542809
FACTOR	0	1	1	1	1
Lag	0	1	3	4	5

Forecasts (from Base Period 2005-Q4)

Date	L95				Forecast	U95
2006Q1	10313.73	10601.51	10889.29			
2006Q2	10244.72	10584.46	10924.19			
2006Q3	10325.93	10684.06	11042.19			
2006Q4	10230.52	10609.05	10987.58			
2007Q1	10327.29	10750.86	11174.44			
2007Q2	10318.03	10758.51	11198.98			
2007Q3	10703.85	11152.66	11601.46			
2007Q4	10414.57	10865.49	11316.41			
2008Q1	10578.02	11092.37	11606.72			
2008Q2	10598.54	11136.37	11674.2			
2008Q3	10767.56	11313.08	11858.59			
2008Q4	10615.81	11171.04	11726.27			
2009Q1	10755.25	11352.37	11949.48			
2009Q2	10723.01	11335.58	11948.15			
2009Q3	11049.95	11670.53	12291.12			
2009Q4	10807.54	11431.28	12055.01			
2010Q1	10963.54	11629.54	12295.54			
2010Q2	10994.96	11677.82	12360.68			
2010Q3	11210.52	11898.92	12587.32			
2010Q4	11028.06	11722.3	12416.54			
2011Q1	11191.23	11921.78	12652.33			
2011Q2	11166.34	11910.19	12654.04			
2011Q3	11461.46	12211.95	12962.43			
2011Q4	11243.18	11997.13	12751.08			

## APPENDIXA

KeySpan Energy Delivery New England
EnergyNorth Natural Gas inc.
Number of Commercial and Industrial Customers Forecasting

Model:	Winters Exponential Smoothing Model				
Var:	CUSCI				
Method	Add Winters				
Size	1.86041 Parameter:	6			
Mean	7462.374 Std Dev	1741.739			
R-Square	0.987845 DW	1.86041			
SSE	946.8496 MSE	3244799	RMSE	1801.333	
	Constant Linear	Quarter1	Quarter2	Quarter3	Quarter4
Estimate	10337.6470 .00981	92.29171	-48.25213	-33.26256	-10.77702
Weight	0.1055730 .105573	0.25	0.25	0.25	0.25

Forecasts (from Base Period 2005-Q4)

Date	L95	Forecast	U95
2006Q1	10112.41	10499.94	10887.47
2006Q2	10039.25	10429.4	10819.56
2006Q3	10121.11	10514.4	10907.7
2006Q4	10209.93	10606.9	11003.86
2007Q1	10378.61	10779.98	11181.34
2007Q2	10303.07	10709.44	11115.81
2007Q3	10382.44	10794.44	11206.45
2007Q4	10468.65	10886.94	11305.23
2008Q1	10634.64	11060.02	11485.4
2008Q2	10556.33	10989.48	11422.63
2008Q3	10632.88	11074.48	11516.09
2008Q4	10716.23	11166.98	11617.72
2009Q1	10879.36	11340.06	11800.75
2009Q2	10798.19	11269.52	11740.85
2009Q3	10871.88	11354.52	11837.17
2009Q4	10952.39	11447.02	11941.64
2010Q1	11112.73	11620.1	12127.46
2010Q2	11028.82	11549.56	12070.3
2010Q3	11099.81	11634.56	12169.31
2010Q4	11177.67	11727.06	12276.44
2011Q1	11335.44	11900.13	12464.82
2011Q2	11249.02	11829.6	12410.18
2011Q3	11317.56	11914.6	12511.64
2011Q4	11393.04	12007.1	12621.15

## APPENDIXA

KeySpan Energy Delivery New England
EnergyNorth Natural Gas inc.
Commercial \& Industrial Gas Use Per Customer Forecasting (Dth/Customer)(2006-2010)

Mode Var		E1	E2	E3	ARIMA	Weighted C \& I Use Per
	Dependent independent	USNCI	USNCI	USNCI	USNCI	
		PRCG	PRCG	PRCG		
		GSP	EMP	PCl		
		CDDN	CDDN	CDDN		
		AUTO(-4)	AUTO(-4)	AUTO(-4)		
Weight		25.00\%	25.00\%	25.00\%	25.00\%	100.00\%


Commercial \& Industrial Use	Per Customer	Forecast	Percent	Growth from Base Year (2005)	
2006Q4-2007Q3	$1.45 \%$	$-0.86 \%$	$0.98 \%$	$0.93 \%$	$0.63 \%$
2007Q4-2008Q3	$1.77 \%$	$-0.63 \%$	$1.28 \%$	$-1.74 \%$	$0.15 \%$
2008Q4-2009Q3	$2.19 \%$	$-0.53 \%$	$1.56 \%$	$-1.71 \%$	$0.38 \%$
2009Q4-2010Q3	$2.09 \%$	$-0.50 \%$	$1.54 \%$	$-0.30 \%$	$0.74 \%$
2010Q4-2011Q3	$2.05 \%$	$-0.49 \%$	$1.37 \%$	$0.43 \%$	$0.88 \%$
Average	$1.91 \%$	$-0.60 \%$	$1.35 \%$	$-0.48 \%$	$0.56 \%$


Commercial \& Industrial Use	Per Customer	Forecast (Annual)			
2005Q4-2006Q3	733	$\mathbf{7 2 4}$	$\mathbf{7 2 8}$	$\mathbf{7 6 5}$	$\mathbf{7 3 8}$
2006Q4-2007Q3	743	718	735	773	742
2007Q4-2008Q3	756	713	745	759	743
2008Q4-2009Q3	773	709	756	746	746
2009Q4-2010Q3	789	706	768	744	752
2010Q4-2011Q3	805	702	779	747	758
Average	767	712	752	756	747


Commercial \& Industrial	Use	Per Customer	Forecast (Quarterly)		
2005Q1	395	395	395	395	395
2005Q2	161	161	161	161	161
2005Q3	66	66	66	66	66
2005Q4	137	137	137	137	137
2006Q1	383	380	381	395	385
2006Q2	151	149	150	156	152
2006Q3	62	59	61	78	65
2006Q4	150	143	148	138	145
2007Q1	378	371	375	407	383
2007Q2	150	145	148	155	149
2007Q3	65	59	64	74	65
2007Q4	161	148	158	131	149
2008Q1	375	364	371	402	378
2008Q2	151	142	149	152	149
2008Q3	69	59	67	74	67
2008Q4	172	153	168	128	155
2009Q1	374	358	368	398	374
2009Q2	153	140	150	152	149
2009Q3	74	59	71	67	68
2009Q4	183	157	177	125	161
2010Q1	373	352	365	397	372
2010Q2	156	138	151	150	149
2010Q3	78	59	74	71	71
2010Q4	193	161	186	125	166
2011Q1	372	346	363	401	371
2011Q2	158	136	152	150	149
2011Q3	83	59	78	71	72
2011Q4	202	165	194	124	171

## APPENDIXA

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Number of Commercial and Industrial Customers Forecasting
Regression Model: E1
Dependent Variable: USNCI
Independent Variable: PRCG_1 GSP CDDN Auto(-4)

Size	84 Parameter:		3	
Mean	175.3273 Std Dev	99.54606		
R-Square	0.9936	DW	1.6033	
SSE	2275352 MSE	27088		
Term	PRCG_1	GSP	CDDN	Auto (-4)
Estimate	-31.4242	0.0154	0.7471	-0.9091
Std Error	13.4085	0.005063	0.0826	0.0555
T-Ratio	-2.34	3.05	9.04	
Pr>[t]	0.0215	$0.0031<.0001$	-0001	

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	363.1864	382.9923	402.7981
2006Q2	131.1244	151.3293	171.5342
2006Q3	41.50724	61.60318	81.69913
2006Q4	129.984	150.124	170.2641
2007Q1	358.1547	378.1884	398.2221
2007Q2	129.5283	149.9125	170.2967
2007Q3	44.66131	64.94145	85.22159
2007Q4	140.5037	160.8159	181.1282
2008Q1	354.8179	375.0224	395.227
2008Q2	130.7385	151.2585	171.7785
2008Q3	48.79252	69.2115	89.63049
2008Q4	151.6309	172.0698	192.5088
2009Q1	353.3007	373.6332	393.9658
2009Q2	132.7717	153.3958	174.0199
2009Q3	53.28147	73.8072	94.33292
2009Q4	162.2438	182.7787	203.3136
2010Q1	352.1721	372.6043	393.0364
2010Q2	134.8213	155.5246	176.228
2010Q3	57.56071	78.16843	98.77614
2010Q4	172.1763	192.7846	213.3929
2011Q1	351.5866	372.0974	392.6081
2011Q2	137.0743	157.8396	178.6049
2011Q3	61.87784	82.55008	103.2223
2011Q4	181.6389	202.3044	222.9699

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Number of Commercial and Industrial Customers Forecasting
Regression Model: E2
Dependent Variable: USNCI
independent Variable: PRCG_1 LBFC CDDN Auto(-4)

Size	84 Parameter:	3
Mean	175.3273 Std Dev	99.54606
R-Square	0.9936 DW	1.5239
SSE	2295214 MSE	27324


| Term | PRCG_1 | LBFC | CDDN | Auto(-4) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Estimate | -25.3783 | 1.0834 | 0.6731 | -0.9262 |
| Std Error | 12.9077 | 0.4432 | 0.118 | 0.0513 |
| T-Ratio | -1.97 | 2.44 | 5.7 | -18.04 |
| Pr>[t] | 0.0526 | 0.0166 | $<.0001$ | $<.0001$ |

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	359.98	379.662	399.3441
2006Q2	128.7001	148.7727	168.8454
2006Q3	38.76556	58.73124	78.69691
2006Q4	122.692	142.7091	162.7262
2007Q1	351.3861	371.3021	391.2182
2007Q2	124.4433	144.6866	164.9299
2007Q3	38.74699	58.88999	79.03299
2007Q4	127.5446	147.7343	167.9239
2008Q1	344.1133	364.2019	384.2906
2008Q2	121.7867	142.154	162.5213
2008Q3	38.6808	58.95328	79.22576
2008Q4	132.2109	152.5264	172.8419
2009Q1	337.6502	357.8657	378.0811
2009Q2	119.3455	139.8006	160.2557
2009Q3	38.67126	59.03672	79.40217
2009Q4	136.5994	157.0049	177.4103
2010Q1	331.6812	351.9882	372.2951
2010Q2	117.0984	137.6127	158.127
2010Q3	38.66634	59.09586	79.52538
2010Q4	140.6464	161.1135	181.5805
2011Q1	326.1261	346.4968	366.8674
2011Q2	114.9825	135.5334	156.0842
2011Q3	38.63003	59.10065	79.57127
2011Q4	144.3666	164.8728	185.379

## APPENDIX A

KeySpan Energy Delivery New England EnergyNorth Natural Gas Inc.
Number of Commercial and Industrial Customers Forecasting
Regression Model: E3
Dependent Variable: USNCI
Independent Variable: PRCG_1 PCI CDON Auto(-4)

Size	84 Parameter:	3
Mean	175.3273 Std Dev	99.54606
R-Square	0.9937 DW	1.5946
SSE	2262254 MSE	26932


Term	PRCG_1	PCI	CDDN	Auto(-4)
Estimate	-30.4444	22.9306	0.7175	-0.9097
Std Error	13.19	7.2926	0.0875	0.0557
T-Ratio	-2.31	3.14	8.2	-16.33
Pr>[t]	0.0234	$0.0023<.0001$	$<.0001$	

Forecasts (from Base Period 2005-Q4)
Date LCL Forecast UCL
2006 Q1 $361.2463 \quad 380.9842 \quad 400.7221$
$\begin{array}{lllll}2006 Q 2 & 129.6978 & 149.827 & 169.9561\end{array}$
$\begin{array}{llll}\text { 2006Q3 } & 40.78146 & 60.80308 & 80.8247\end{array}$
2006Q4 $128.1086 \quad 148.1775 \quad 168.2463$
2007Q1 $355.1295 \quad 375.0937 \quad 395.0579$
2007Q2 $127.943 \quad 148.2459 \quad 168.5489$
2007Q3 $43.69852 \quad 63.89892 \quad 84.09931$
$\begin{array}{lllll}2007 Q 4 & 137.7179 & 157.9537 & 178.1896\end{array}$
2008Q1 $\quad 350.6594 \quad 370.7891 \quad 390.9188$
$\begin{array}{llll}\text { 2008Q2 } & 128.3223 & 148.7521 & 169.182\end{array}$
2008Q3 $46.99289 \quad 67.32371 \quad 87.65453$
2008Q4 $147.42 \quad 167.7757 \quad 188.1314$
2009Q1 $\quad 347.5832 \quad 367.8336 \quad 388.0841$
2009Q2 $129.2721 \quad 149.7941 \quad 170.3162$
$2009 \mathrm{Q} 3 \quad 50.62733 \quad 71.05343 \quad 91.47953$
2009Q4 $156.8139 \quad 177.2554 \quad 197.6969$
$\begin{array}{lllll}2010 Q 1 & 345.1363 & 365.4754 & 385.8145\end{array}$
2010Q2 $130.3371 \quad 150.9244 \quad 171.5117$
2010Q3 $\quad 53.93042 \quad 74.4248 \quad 94.91918$
2010Q4 $165.2502 \quad 185.7528 \quad 206.2553$
2011Q1 $342.9017 \quad 363.3059 \quad 383.7101$
2011Q2 $131.3338 \quad 151.9658 \quad 172.5978$
$\begin{array}{llll}\text { 2011Q3 } & 57.06275 & 77.60483 & 98.1469\end{array}$
2011Q4 $173.1455 \quad 193.6898 \quad 214.2342$

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Customers Forecasting
ARIMA Model (4,1,1)
Time Series: USNCI

Size	2.002519	Parameter:	6			
Mean	175.3273	Std Dev	99.54606			
R-Square	0.976265	DW	2.002519			
SSE	1108.223		1954101	RMSE	1397.892	
Estimation						
Parameter	MU	MA1_1	AR1_1	AR1_2	AR1_3	AR1_4
Estimate	5.787166	-0.249354	0.234703	-0.158219	0.115414	0.242861
Standard Error	34.49484	0.112279	0.111248	0.109153	0.10828	0.124106
$t$ Value	0.167769	-2.220848	2.109725	-1.44952	1.065881	0
FACTOR	0	1	1	1	1	1
Lag	0	1	2	4	5	16

Forecasts (from Base Period 2005-Q4)

Date	L95		
Forecast	U95		
2006Q1	364.04	394.8654	425.6907
2006Q2	139.7442	156.2182	172.6922
2006Q3	61.27616	77.65878	94.04139
2006Q4	121.2904	137.6746	154.0588
2007Q1	390.392	406.6973	423.0027
2007Q2	137.841	154.5446	171.2483
2007Q3	56.98285	73.59889	90.21494
2007Q4	114.2049	130.8287	147.4525
2008Q1	385.1663	401.719	418.2717
2008Q2	135.5242	152.4283	169.3324
2008Q3	57.255	74.07523	90.89546
2008Q4	111.4769	128.3023	145.1278
2009Q1	381.3279	398.0864	414.8449
2009Q2	135.2179	152.2925	169.3671
2009Q3	50.3736	67.36704	84.36048
2009Q4	108.149	125.1581	142.1671
2010Q1	380.1741	397.1206	414.0672
2010Q2	133.0103	150.2512	167.492
2010Q3	54.14313	71.30614	88.46916
2010Q4	107.8109	124.9809	142.1509
2011Q1	383.9264	401.0357	418.1449
2011Q2	132.9415	150.3418	167.7421
2011Q3	53.38265	70.70731	88.03196
2011Q4	106.8181	124.1493	141.4805

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Number of Commercial and Industrial Customers Forecasting
Model: Winters Exponential Smoothing Model
Var: USNCI
Method Add Winters

Size	2.003168 Parameter:	5	
Mean	175.3273 Std Dev	99.54606	
R-Square	0.957198 DW	2.003168	
SSE	957.3116 MSE	3732493	RMSE


	Constant	Linear	Quarter1	Quarter2	Quarter3	Quarter4
Estimate	1871.884	0	1810.776	-410.7561	-1179.696	-220.3243
Weight	0.2	0.2	0.25	0.25	0.25	0.25

Forecasts (from Base Period 2005-Q4)

| Date | L95 |  |  |
| :--- | ---: | ---: | ---: | Forecast $l$ U95

## APPENDIXA

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Commercial \& Industrial Gas Consumption Forecasting (Dth) (2006-2010)

Model		F1	F2	F3	ARIMA	Weighted C \& I Sale Calculated Sales	Combined (50/50)
Var	Dependent	GSNCI	GSNCI	GSNCI	USNCI		
	Independent	GSNCI_1	PRCG	GSNCI_1			
		PRCG	AUTO(-4)	PRCG			
		AUTO(-4)	AUTO(-8)	AUTO(-4)			
				AUTO(-8)			


Weight	20.00\%	20.00\%	20.00\%	40.00\%	100.00\%		
Commercial \& Industrial Gas Sales Forecast (Percent Growth from Base Year (2005)							
2006Q4-2007Q3	5.34\%	2.73\%	5.55\%	5.46\%	4.87\%	3.57\%	6.85\%
2007Q4-2008Q3	4.03\%	1.56\%	3.78\%	2.75\%	2.96\%	3.34\%	3.15\%
2008Q4-2009Q3	3.53\%	1.60\%	3.33\%	0.09\%	1.72\%	3.51\%	2.59\%
2009Q4-2010Q3	3.09\%	1.71\%	2.95\%	2.20\%	2.43\%	3.85\%	3.12\%
2010Q4-2011Q3	2.75\%	1.81\%	2.64\%	3.69\%	2.90\%	3.84\%	3.36\%
Average	3.75\%	1.88\%	3.65\%	2.84\%	2.98\%	3.62\%	3.81\%
Commercial \& Industrial Gas Sales Forecast (Dth) (Annual)							
2005Q4-2006Q3	7,924,343	8,628,982	7,919,898	8,067,522	8,121,654	7,734,162	7,734,162
2006Q4-2007Q3	8,347,166	8,864,129	8,359,073	8,508,086	8,517,308	8.010,453	8,263,881
2007Q4-2008Q3	8,683,945	9,002,617	8,675,271	B,742,207	8,769,249	8,278,350	8,523,800
2008Q4-2009Q3	8,990,327	9,146,297	8,964,552	8,749,767	8,920,142	8.569,259	8,744,701
2009Q4-2010Q3	9,268,498	9,302,969	9,228,745	8,942,571	9,137,071	8,898,799	9,017,935
2010Q4-2011Q3	9,523,502	9,471,707	9,472,064	9,272,510	9,402,459	9,240,153	9,321,306
Average	8,789,630	9,069,450	8,769,934	8,713,777	8,811,314	8,455,196	8,600,964
Commercial \& Industrial Gas Sales Forecast (Dth) (Quarterly)							
2005Q1	3,969,780	3,969,780	3,969,780	3,969,780	3,969,780	3,969,780	3,969,780
2005Q2	1,645,482	1,645,482	1,645,482	1,645,482	1,645,482	1,645,482	1,645,482
200503	708,090	708,090	708,090	708,090	708,090	708,090	708,090
2005Q4	1,410,809	1,410,809	1,410,809	1,410,809	1,410,809	1,410,809	1,410,809
2006Q1	3,692,222	3,880,956	3,707,906	4,114,267	3,901,924	4,024,862	3,963,393
2006Q2	1,813,328	2,342,509	1,797,889	1,747,723	1,889,834	1,594,698	1,742,266
2006Q3	1,007,984	994,709	1,003,293	794,723	919,086	696,737	807,911
2006Q4	1,568,394	1,388,746	1,575,371	1,519,931	1,514,475	1,541,227	1,527,851
2007Q1	3,554,583	3,551,825	3,596,040	4,265,976	3,846,880	4,126,266	3,986,573
2007Q2	1,959,766	2,690,215	1,944,099	1,832,279	2,051,727	1,618,709	1,835,218
2007 Q3	1,264,423	1,233,343	1,243,563	889,900	1,104,226	724,251	914,238
2007Q4	1,723,803	1,356,013	1,718,470	1,493,894	1,557,215	1,641,576	1,599,396
2008Q1	3,416,180	3,258,284	3,466,937	4,422,443	3,797,257	4,207,907	4,002,582
2008Q2	2,068,023	2,905,675	2,047,880	1,891,434	2,160,889	1,663,479	1,912,184
2008Q3	1,475,938	1,482,645	1,441,984	934,436	1,253,888	765,388	1,009,638
2008Q4	1,859,170	1,362,417	1,844,405	1,504,657	1,615,061	1,760,113	1,687,587
2009Q1	3,307,383	3,014,925	3,363,528	4,412,323	3,702,096	4,298,721	4,000,409
2009Q2	2,163,409	3,037,947	2,139,859	1,934,546	2,242,061	1,715,810	1,978,936
2009Q3	1,660,365	1,731,008	1,616,760	898,242	1,360,923	794,615	1,077,769
2009Q4	1,983,410	1,407,841	1,961,164	1,512,351	1,675,424	1,879,656	1,777,540
2010Q1	3,218,219	2,816,523	3,276,892	4,471,147	3,650,786	4,400,227	4,025,506
$2010 \mathrm{Q2}$	2,247,336	3,111,583	2,221,393	2,019,492	2,323,859	1,767,483	2,045,671
2010Q3	1,819,534	1,967,022	1,769,296	939,580	1,487,002	851,433	1,169,218
2010Q4	2,093,823	1,486,236	2,066,129	1,587,970	1,764,426	2,002,102	1,883,264
2011Q1	3,149,039	2,658,407	3,207,782	4,555,481	3,625,238	4,518,524	4,071,881
2011Q2	2,321,290	3,143.414	2,293,562	2,099,844	2,391,591	1,821,568	2,106,580
2011Q3	1,959,350	2,183,651	1,904,591	1,029,215	1,621,204	897,959	1,259,581
2011Q4	2,193,962	1,590,689	2,162,153	1,632,147	1,842,220	2,123,846	1,983,033

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Commercial and Industrial Gas Comsumption (Dth) Forecasting
Regression Model: F1
Dependent Variable: GSNCI
Independent Variable: GSNCl_1 PRCCI Auto(-4)

Size		Parameter:	3
Mean	1074400	Std Dev	678186.6
R-Square	0.9802	DW	1.9972
SSE	4.57E+14		5.37E+12
Term	GSNCI_1	PRCCI	Auto(-4)
	00.4874	517287	-0.854699
	00.0921	151317	0.056307
	0.29	3.42	-15.17927
	$0<.0001$	0.001	0

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	3084476	3692222	4299969
2006Q2	1634936	1813328	1991719
2006Q3	830218.9	1007984	1185749
2006Q4	1391476	1568394	1745311
2007Q1	3378544	3554583	3730622
2007Q2	1777443	1959766	2142089
2007Q3	1082543	1264423	1446303
2007Q4	1542883	1723803	1904722
2008Q1	3236017	3416180	3596344
2008Q2	1882995	2068023	2253052
2008Q3	1291220	1475938	1660656
2008Q4	1675385	1859170	2042956
2009Q1	3124226	3307383	3490540
2009Q2	1976404	2163409	2350414
2009Q3	1473558	1660365	1847171
2009Q4	1797443	1983410	2169377
2010Q1	3032751	3218219	3403686
2010Q2	2058789	2247336	2435882
2010Q3	1631094	1819534	2007974
2010Q4	1906105	2093823	2281542
2011Q1	2961702	3149039	3336375
2011Q2	2131452	2321290	2511128
2011Q3	1769546	1959350	2149154
2011Q4	2004756	2193962	2383169

## APPENDIX A

KeySpan Energy Delivery New England EnergyNorth Natural Gas Inc.
Commercial and Industrial Gas Comsumption (Dth) Forecasting
Regression Model: F2
Dependent Variable: GSNCl
Independent Variable: PRCCI Auto(-1) Auto(-2) Auto(-3) Auto(-4)

Size		Parameter:	3		
Mean	1074400	Std Dev	678186.6		
R-Square	0.9691		1.4073		
SSE	7.16E+14	MSE	8.53E+12		
Term	PRCCI	Auto(-1)	Auto(-2)	Auto(-3)	Auto (-4)
	01326293	-0.136698	0.125686	0.017356	-0.780446
	0131058	0.068217	0.069803	0.069803	0.068217
	$0 \quad 10.12$	-2.00387	1.800582	0.248643	-11.44064
	$0<.0001$	0	0	0	0

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	3166714	3880956	4595198
2006Q2	1652030	2342509	3032988
2006Q3	290182.3	994708.6	1699235
2006Q4	657924.3	1388746	2119568
2007Q1	2692828	3551825	4410822
2007Q2	1837167	2690215	3543263
2007Q3	371162.5	1233343	2095524
2007Q4	477569.3	1356013	2234456
2008Q1	2310417	3258284	4206151
2008Q2	1953390	2905675	3857961
2008Q3	523751.6	1482645	2441537
2008Q4	390994	1362417	2333841
2009Q1	2004347	3014925	4025502
2009Q2	2017421	3037947	4058473
2009Q3	705986.5	1731008	2756029
2009Q4	371842.2	1407841	2443840
2010Q1	1758559	2816523	3874487
2010Q2	2041240	3111583	4181925
2010Q3	893877.2	1967022	3040166
2010Q4	402952.9	1486236	2569518
2011Q1	1563150	2658407	3753664
2011Q2	2035333	3143414	4251495
2011Q3	1073917	2183651	3293385
2011Q4	471578.9	1590689	2709799

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Commercial and Industrial Gas Comsumption (Dth) Forecasting
Regression Model: F3
Dependent Variable: GSNCI
Independent Variable: GSNCI_1 PRCCI Auto(-4) Auto(-8)

Size	84 Parameter:	4
Mean	1074400 Std Dev	678186.6
R-Square	0.9806 DW	2.0006
SSE	$4.47 E+14$ MSE	$5.33 E+12$

Term GSNCI 1 PRCCl Auto(-4) Auto(-8)

0	0.4897	501164	-0.816044	-0.045227
0	0.0928	151400	0.108997	0.108997
0	5.28	3.31	-7.486848	-0.414938
$0<.0001$	0.0014	0	0	

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	3100213	3707906	4315599
2006Q2	1618996	1797889	1976783
2006Q3	825052.9	1003293	1181533
2006Q4	1397977	1575371	1752765
2007Q1	3419522	3596040	3772558
2007Q2	1761053	1944099	2127146
2007Q3	1060993	1243563	1426132
2007Q4	1536859	1718470	1900081
2008Q1	3286092	3466937	3647781
2008Q2	1861911	2047880	2233850
2008Q3	1256370	1441984	1627597
2008Q4	1659736	1844405	2029074
2009Q1	3179511	3363528	3547544
2009Q2	1951742	2139859	2327977
2009Q3	1428895	1616760	1804625
2009Q4	1774169	1961164	2148159
2010Q1	3090434	3276892	3463350
2010Q2	2031620	2221393	2411166
2010Q3	1579689	1769296	1958902
2010Q4	1877292	2066129	2254965
2011Q1	3019376	3207782	3396189
2011Q2	2102440	2293562	2484684
2011Q3	1713567	1904591	2095615
2011Q4	1971790	2162153	2352516

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Commercial and Industrial Gas Comsumption (Dth) Forecasting
ARIMA Model $(3,1,0)$
Time Series: GSNCI

Size		Parameters	4		
Mean	1340528.354	Std Dev	902070.4028		
R -Square	0.981428056		1.990617189		
SSE	$1.26604 \mathrm{E}+14$		$1.56301 \mathrm{E}+12$	RMSE	1250206
Estimation					
Parameter	MU	AR1_1	AR1_2	AR1_3	
Estimate	591532.9542	0.13805071	-0.25552873	0.258268	
Standard Error	153261.3229	0.10426159	0.116155612	0.128794	
$t$ Value	3.859636228	1.32408029	-2.199882784	2.005288	
FACTOR	0	1	1	1	
Lag	0	2	10	16	

Forecasts (from Base Period 2005-Q4)

Date	L95	Forecast			U95
2006Q1	3869231	4114267	4359303		
2006Q2	1502687	1747723	1992759		
2006Q3		547363	794723		
2006Q4		1272572	1519931		
2007Q1	3914494	4265976	17672931		
2007Q2	1480796	1832279	217459		
2007Q3	536731	889900	1243069		
2007Q4		1140726	1493894		
2008Q1	3989863	4422443	4847063		
2008Q2	1458854	1891434	2324023		
2008Q3	500942	934436	1367929		
2008Q4	1071163	1504657	1938151		
2009Q1	3920411	4412323	4904235		
2009Q2	1442634	1934546	2426457		
2009Q3	405309	898242	1391174		
2009Q4	1019419	1512351	2005284		
2010Q1	3896615	4471147	5045679		
2010Q2	1444960	2019492	2594024		
2010Q3	364869	939580	1514291		
2010Q4	1013259	1587970	2162682		
2011Q1	3900232	4555481	5210729		
2011Q2	1444596	2099844	2755092		
2011Q3	373928	1029215	1684501		
2011Q4	976861	1632147	2287434		

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Commercial and Industrial Gas Comsumption (Dth) Forecasting
Winters Exponential Smoothing Model
Var: GSNCl

Size		Parameter:	6			
Mean	1340528	Std Dev	902070.4028			
R-Square	0.931591		2.27798452			
SSE	7.16E+15		$4.89869 \mathrm{E}+14$	RMSE	22132979	
	Constant	Linear	Quarter1	Quarter2	Quarter3	Quarter 4
Estimate	20162984	67757.6	17484197.71	-3753627	-11125270	-2605300
Weight	0.105573	0.105573	0.25	0.25	0.25	0.25

Forecasts (from Base Period 2005-Q4)

Date	L95	Forecast	U95
2006Q1	3295338	3771494	4247649.505
2006Q2	1175099	1654487	2133875.159
2006Q3	440859.9	924098.6	1407337.347
2006Q4	1295121	1782871	2270622.101
2007Q1	3305440	3798597	4291754.234
2007Q2	1182282	1681590	2180898.291
2007Q3	444970	951201.7	1457433.374
2007Q4	1296023	1809974	2323925.979
2008Q1	3303034	3825700	4348366.419
2008Q2	1176480	1708693	2240906.72
2008Q3	435704	978304.7	1520905.455
2008Q4	1283246	1837077	2390909.134
2009Q1	3286743	3852803	4418862.767
2009Q2	1156669	1735796	2314923.183
2009Q3	412382.5	1005408	1598432.998
2009Q4	1256436	1864180	2471924.464
2010Q1	3256511	3879906	4503300.701
2010Q2	1123063	1762899	2402735.632
2010Q3	375458.3	1032511	1689563.333
2010Q4	1216258	1891284	2566309.194
2011Q1	3213175	3907009	4600843.61
2011Q2	1076641	1790002	2503363.604
2011Q3	326026.9	1059614	1793200.836
2011Q4	1163894	1918387	2672879.35

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas inc.
Residential Customers Forecasting (2006-2010)

Model		A1 A	A2 A	A3 A		ARIMA	Winter's CUSR	Weighted Residential Customers
Var	Dependent	CUSR C	CUSR CU	CUSR C	USR CU			
	Independent	Intercept C	CUSR_1 CU	CUSR_1	USR_1			
		CUSR_1 E	EMP POP	POP	SP			
		GSP A	AUTO(-4) AU	AUTO(-4)				
		AUTO(-4)			ITO(-4)			
	Weight	15.00\%	15.00\%	15.00\%	15.00\%	20.00\%	20.00\%	100.00\%
	Residential Customer Forecast - Percent Growth from Base Year (2005)							
	2006Q4-2007Q3	2.90\%	0.78\%	0.83\%	2.49\%	2.79\%	2.40\%	2.09\%
	2007Q4-2008Q3	3.03\%	0.80\%	0.79\%	2.52\%	2.21\%	2.02\%	1.93\%
	2008Q4-2009Q3	3.15\%	0.77\%	0.71\%	2.59\%	1.56\%	1.98\%	1.81\%
	2009Q4-2010Q3	3.06\%	0.74\%	0.66\%	2.47\%	1.83\%	1.94\%	1.82\%
	2010Q4-2011Q3	2.94\%	0.77\%	0.68\%	2.35\%	1.95\%	1.91\%	1.81\%
	Average	3.02\%	0.77\%	0.73\%	2.48\%	2.07\%	2.05\%	1.89\%
	Residential Customer Forecast (Annual)							
	2005Q4-2006Q3	72,552	71,950	71,981	72,470	72,768	72,263	72,349
	2006Q4-2007Q3	74,659	72,510	72,575	74,273	74,799	73,995	73,861
	2007Q4-2008Q3	76,917	73,089	73,150	76,145	76,449	75,492	75,283
	2008Q4-2009Q3	79,342	73,653	73,672	78,114	77,644	76,988	76,644
	2009Q4-2010Q3	81,772	74,197	74,155	80,039	79,067	78,485	78,035
	2010Q4-2011Q3	84,172	74,772	74,660	81,918	80,612	79,981	79,447
	Average	78,236	73,362	73,366	77,160	76,890	76,201	75,937
	Residential Customer Forecast (Quarterly)							
	2005Q1	71,607	71,607	71,607	71,607	71,607	71,607	71,607
	2005Q2	71,575	71,575	71,575	71,575	71,575	71,575	71,575
	2005Q3	73,331	73,331	73,331	73,331	73,331	73,331	73,331
	2005Q4	69,487	69,487	69,487	69,487	69,487	68,487	69,487
	2006Q1	72,797	72,391	72,419	72,754	73,887	72,997	72,931
	2006Q2	73,122	72,267	72,305	73,013	72,708	72,921	72,732
	2006Q3	74,803	73,656	73,715	74,626	74,991	73,647	74,248
	2006Q4	71,966	70,425	70,457	71,721	71,279	71,926	71,326
	2007Q1	74,814	72.874	72,944	74,476	75,949	74,493	74,355
	2007Q2	75,191	72,779	72,850	74,758	75,527	74,417	74,326
	2007Q3	76,664	73,963	74,050	76,139	76,440	75,144	75,439
	2007Q4	74,521	71,306	71,344	73,911	73,470	73,423	73,041
	2008Q1	76,957	73,378	73,452	76,240	77,566	75,990	75,715
	2008Q2	77,426	-73,334	73,395	76,599	76,820	75,914	75,660
	2008Q3	78,766	-74,340	74,410	77,829	77,939	76,640	76,718
	2008Q4	77,206	-72,148	72,152	76,165	74,526	74,919	74,540
	2009Q1	79,313	-73,891	73,926	78,148	78,990	77,487	77,087
	2009Q2	79,821	73,857	73,873	78,530	78,049	77,411	77,004
	200903	81,028	74,714	74,736	79,612	79,013	78,137	77,944
	2009Q4	79,891	72,906	72,853	78,356	76,156	76,416	76,115
	2010Q1	81,692	74,380	74,355	80,025	80,125	78,983	78,390
	2010Q2	82,216	-74,384	74,337	80,417	79,426	78,907	78,370
	2010Q3	83,287	75,120	-75,076	81,359	80,559	79,633	79,265
	201004	82,490	-73,648	-73,526	80,437	77.614	77,912	77,621
	2011Q1	84,055	74,908	74,813	81,867	81,904	80,480	79,823
	2011Q2	84,586	74,942	74,826	82,263	80,784	80,404	79,730
	2011 Q3	85,558	75,588	75,477	83,103	82,145	81,130	80,614
	2011Q4	85,030	-74,395	574,208	82,449	79,138	79,409	79,122

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Customers Forecasting
Regression Model: A1
Dependent Variable: CUSR
Independent Variable: Intercept CUSR_1 GSP Auto(-4)

Size	84 Parameter:		3	
Mean	57113.37 Std Dev	8831.98		
R-Square	0.9914 DW	2.4907		
SSE	55608441 MSE	662005		
Term	Intercept	CUSR_1	GSP	Auto(-4)
Estimate	7114	0.802	0.1337	-0.8028
Std Error	2382	0.0698	0.0562	0.0793
T-Ratio	2.99	11.5	2.38	-10.12
Pr>[t]	$0.0037<.0001$	$0.0196<.0001$		

Forecasts (from Base Period 2005-Q4)

| Date | LCL | Forecast | UCL |
| :--- | ---: | ---: | ---: | ---: |
| 2006Q1 | 70595.78 | 72797.39 | 74999 |
| 2006Q2 | 72215.47 | 73122.49 | 74029.51 |
| 2006Q3 | 73890.36 | 74803.28 | 75716.19 |
| 2006Q4 | 71044.64 | 71966.17 | 72887.69 |
| 2007Q1 | 73890.27 | 74814.05 | 75737.84 |
| 2007Q2 | 74260.35 | 75191.17 | 76121.99 |
| 2007Q3 | 75725.88 | 76663.68 | 77601.47 |
| 2007Q4 | 73574.32 | 74521.22 | 75468.11 |
| 2008Q1 | 76005.58 | 76956.64 | 77907.69 |
| 2008Q2 | 76467.36 | 77426.43 | 78385.5 |
| 2008Q3 | 77798.5 | 78765.63 | 79732.77 |
| 2008Q4 | 76229.15 | 77206.07 | 78182.99 |
| 2009Q1 | 78330.05 | 79312.96 | 80295.86 |
| 2009Q2 | 78828.81 | 79820.79 | 80812.78 |
| 2009Q3 | 80026.77 | 81027.89 | 82029 |
| 2009Q4 | 78879.57 | 79891.16 | 80902.75 |
| 2010Q1 | 80673.02 | 81692.09 | 82711.17 |
| 2010Q2 | 81187.02 | 82215.96 | 83244.91 |
| 2010Q3 | 82248.36 | 83287.2 | 84326.04 |
| 2010Q4 | 81440.04 | 82489.77 | 83539.5 |
| 2011Q1 | 82996.91 | 84055.19 | 85113.48 |
| 2011Q2 | 83517.72 | 84586.4 | 85655.07 |
| 2011Q3 | 84478.9 | 85557.96 | 86637.02 |
| 2011Q4 | 83940.14 | 85030.32 | 86120.49 |

## APPENDIX A

KeySpan Energy Delivery New England EnergyNorth Natural Gas Inc.
Residential Customers Forecasting
Regression Model: A2
Dependent Variable: CUSR
Independent Variable: CUSR_1 LBFC Auto(-4)

Size	85 Parameter:		3
Mean	57113.37 Std Dev	8831.98	
R-Square	0.9955 DW	2.4531	
SSE	55010975 MSE	647188	
Term	CUSR_1	LBFC	Auto(-4)
Estimate	0.8242	16.3452	-0.8328
Std Error	0.0595	5.4189	0.0767
T-Ratio	13.85	3.02	-10.86
Pr>[t]	$<.0001$	$0.0034<.0001$	

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	70473.46	72391.32	74309.19
2006Q2	71376.95	72266.65	73156.35
2006Q3	72761.36	73655.72	74550.08
2006Q4	69523.92	70425.04	71326.16
2007Q1	71973.16	72874.47	73775.79
2007Q2	71873.79	72779.1	73684.41
2007Q3	73054.25	73962.82	74871.39
2007Q4	70392.59	71305.98	72219.38
2008Q1	72465.11	73378.43	74291.75
2008Q2	72417.56	73333.7	74249.84
2008Q3	73421.08	74339.51	75257.94
2008Q4	71226.39	72148.28	73070.18
2009Q1	72969.08	73890.71	74812.34
2009Q2	72933.48	73857.05	74780.63
2009Q3	73789.4	74714.49	75639.58
2009Q4	71978.77	72906.27	73833.77
2010Q1	73452.85	74379.9	75306.95
2010Q2	73455.47	74383.77	75312.07
2010Q3	74190.68	75119.92	76049.16
2010Q4	72717.61	73648.47	74579.34
2011Q1	73977.57	74907.87	75838.17
2011Q2	74010.84	74941.91	75872.98
2011Q3	74656.71	75588.32	76519.93
2011Q4	73462.42	74395.11	75327.8

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Customers Forecasting

Regression	Model:	A3		
Dependen	Variable:	CUSR		
Independe	nt Variable:	CUSR_1	POP	Auto(-4)
Size		Parameter:	3	
Mean	57113.37	Std Dev	8831.98	
R-Square	0.9952	DW	2.4606	
SSE	55375565	MSE	651477	
Term	CUSR 1	POP	Auto(-4)	
Estimate	0.8424	8.1299	-0.8383	
Std Error	0.0562	2.8331	0.0767	
T-Ratio	15	2.87	-10.9	
$\operatorname{Pr}>[t]$	<. 0001	0.0052	<. 0001	

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	70475.51	72418.79	74362.08
2006Q2	71414.99	72304.8	73194.61
2006Q3	72820.05	73714.6	74609.15
2006Q4	69555.35	70456.77	71358.19
2007Q1	72042.58	72944.24	73845.91
2007Q2	71944.11	72849.89	73755.67
2007Q3	73141.28	74050.43	74959.58
2007Q4	70429.72	71343.84	72257.96
2008Q1	72537.5	73451.58	74365.66
2008Q2	72478.26	73395.26	74312.26
2008Q3	73490.66	74410.02	75329.38
2008Q4	71229.06	72151.97	73074.89
2009Q1	73003.25	73925.88	74848.51
2009Q2	72948.9	73873.5	74798.1
2009Q3	73810.13	74736.24	75662.35
2009Q4	71924.11	72852.63	73781.16
2010Q1	73427.17	74355.15	75283.13
2010Q2	73407.39	74336.57	75265.74
2010Q3	74145.92	75075.94	76005.97
2010Q4	72594.49	73526.06	74457.62
2011Q1	73882.54	74813.38	75744.23
2011Q2	73894.07	74825.55	75757.03
2011Q3	74544.69	75476.55	76408.42
2011Q4	73274.98	74207.78	75140.59

## APPENDIXA

KeySpan Energy Delivery New England EnergyNorth Natural Gas Inc.
Residential Customers Forecasting
Regression Model: A4
Dependent Variable: CUSR
Independent Variable: CUSR_1 GSP POP Auto(-4)

Size	84 Parameter:	3
Mean	57113.37 Std Dev	8831.98
R-Square	0.9968 DW	2.3198
SSE	51931756 MSE	618235


Term	CUSR 1	GSP	POP	Auto (-4)
Estimate	0.6895	0.1177	12.1407	-0.8026
Std Error	0.0816	0.0461	3.0887	0.0777
T-Ratio	8.45	2.55	3.93	-10.33
$\mathrm{Pr}>[\mathrm{t}]$	<. 0001	0.0125	0.0002	<. 0001

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	70628.92	72753.82	74878.73
2006Q2	72108.3	73013.35	73918.4
2006Q3	73714.91	74625.68	75536.45
2006Q4	70802.07	71721.12	72640.18
2007Q1	73554.86	74475.82	75396.77
2007Q2	73830.34	74757.74	75685.15
2007Q3	75205.13	76138.77	77072.42
2007Q4	72969.1	73910.91	74852.73
2008Q1	75294.73	76239.81	77184.9
2008Q2	75646.61	76598.55	77550.48
2008Q3	76870.36	77829.05	78787.75
2008Q4	75197.56	76164.55	77131.53
2009Q1	77176.53	78148.05	79119.57
2009Q2	77550.86	78529.74	79508.61
2009Q3	78625.54	79611.69	80597.83
2009Q4	77361.67	78356.25	79350.82
2010Q1	79025.01	80025.08	81025.15
2010Q2	79409.37	80417.08	81424.8
2010Q3	80343.45	81358.71	82373.97
2010Q4	79413.4	80437.05	81460.71
2011Q1	80837.06	81866.84	82896.62
2011Q2	81225.95	82263.49	83301.03
2011Q3	82058.05	83103.26	84148.46
2011Q4	81395.93	82449.41	83502.9

## APPENDIX A

KeySpan Energy Delivery New England EnergyNorth Natural Gas Inc.
Residential Customers Forecasting
ARIMA Model (3,2,2)
Time Series:
CUSR

Size		Parameters	6			
Mean	57113.3722	Std Dev	8831.98			
R-Square	0.99216725		2.133572			
SSE	38863779.4		504724.4	RMSE	710.4396	
Estimation						
Parameter	MU	MA1 1	MA1 2	AR1 1	AR1 2	AR1 3
Estimate	-15.9515596	0.203073	0.110084	-0.445459	-0.411138	-0.491715
Standard Error	21.0663524	0.121847	0.126043	0.119616	0.120134	0.155974
t Value	-0.75720558	1.666621	0.87338	-3.724076	-3.422331	-3.152546
FACTOR	0	1	1	1	1	1
Lag	0	1	4	3	6	9

Forecasts (from Base Period 2005-Q4)

Date	L95		Forecast
2006Q1	72494.1669	73886.6	75279.04
2006Q2	70927.2022	72707.72	74488.24
2006Q3	72893.3057	74991.31	77089.31
2006Q4	69125.0871	71279.41	73433.74
2007Q1	73106.2917	75948.88	78791.47
2007Q2	72278.8665	75527.05	78775.23
2007Q3	72950.4635	76440.13	79929.79
2007Q4	69893.7461	73470.33	77046.92
2008Q1	73393.9933	77566.46	81738.92
2008Q2	72362.6781	76820.16	81277.64
2008Q3	73277.3314	77939.19	82601.05
2008Q4	69782.7095	74525.68	79268.64
2009Q1	73701.3257	78989.53	84277.73
2009Q2	72472.6391	78049.39	83626.14
2009Q3	73220.03	79012.89	84805.74
2009Q4	70171.5307	76156.35	82141.17
2010Q1	73487.5314	80125.34	86763.16
2010Q2	72400.5039	79426.45	86452.4
2010Q3	73222.9286	80559.46	87895.99
2010Q4	70010.4474	77614.33	85218.21
2011Q1	73588.799	81904.35	90219.91
2011Q2	72052.1459	80784.43	89516.7
2011Q3	73061.9064	82145.02	91228.14
2011Q4	69746.3698	79137.8	88529.22

## APPENDIX A

KeySpan Energy Delivery New England						
EnergyNorth Natural Gas Inc.						
Residential Customers Forecasting						
Model:	Winters Exponential Smoothing Model					
Var:	CUSR					
Method	Add Winters					
Size		Parameter:	6			
Mean	57113.37	Std Dev	8831.98			
R-Square	0.977041	DW	1.622063			
SSE	$1.58 \mathrm{E}+08$	MSE	1898747	RMSE	1377.95	
	Constant	Linear	Quarter1	Quarter2	Quarter3	Quarter4
Estimate	71937.27	374.1495	685.325	235.1703	587.381	-1507.876
Weight	0.105573	-0.105573	0.25	0.25	0.25	0.25

Forecasts (from Base Period 2005-Q4)
Date L95 Forecast U95
$\begin{array}{llll}\text { 2006Q1 } 70296.01 & 72996.74 & 75697.48\end{array}$
2006Q2 $70201.67 \quad 72920.74 \quad 75639.81$
2006Q3 $\quad 70906.19 \quad 73647.1 \quad 76388.01$
$\begin{array}{llll}\text { 2006Q4 } & 69159.49 & 71925.99 & 74692.49\end{array}$
$\begin{array}{llll}2007 Q 1 & 71696.18 & 74493.34 & 77290.51\end{array}$
$\begin{array}{lllll}\text { 2007Q2 } & 71585.28 & 74417.34 & 77249.39\end{array}$
$\begin{array}{llll}2007 Q 3 & 72272.37 & 75143.7 & 78015.02\end{array}$
$\begin{array}{llll}2007 Q 4 & 70507.48 & 73422.59 & 76337.7\end{array}$
$\begin{array}{lllll}2008 Q 1 & 73025.4 & 75989.94 & 78954.48\end{array}$
$\begin{array}{lllll}2008 Q 2 & 72895.24 & 75913.94 & 78932.63\end{array}$
$\begin{array}{llll}\text { 2008Q3 } & 73562.69 & 76640.3 & 79717.9\end{array}$
2008Q4 $\quad 71777.88 \quad 74919.19 \quad 78060.5$
2009Q1 $74275.87 \quad 77486.54 \quad 80697.2$
2009Q2 $\quad 74125.75 \quad 77410.53 \quad 80695.32$
$\begin{array}{llll}\text { 2009Q3 } & 74773.28 & 78136.89 & 81500.51\end{array}$
2009Q4 $72968.69 \quad 76415.79 \quad 79862.88$
2010Q1 $\quad 75447.27 \quad 78983.14 \quad 82519$
$\begin{array}{lllll}\text { 2010Q2 } & 75278.01 & 78907.13 & 82536.25\end{array}$
$\begin{array}{lllll}2010 Q 3 & 75906.72 & 79633.49 & 83360.26\end{array}$
2010Q4 $\quad 74083.67 \quad 77912.38 \quad 81741.1$
$\begin{array}{lllll}\text { 2011Q1 } & 76544.34 & 80479.73 & 84415.13\end{array}$
2011Q2 $76357.58 \quad 80403.73 \quad 84449.88$
2011Q3 $76969.22 \quad 81130.09 \quad 85290.96$
$\begin{array}{lllll}2011 Q 4 & 75129.53 & 79408.98 & 83688.43\end{array}$

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Gas Use Per Customer Forecasting (Dth/Customer)(2006-2010)

Model		B1	B2	ARIMA	Winter's	Weighted Residential Use Per
Var	Dependent	USNR	USNR	USNR	USNR	


Residential Use Per Customer Forecast -- Percent Growth from Base Year (2005)					
2006Q4-2007Q3	1.21\%	0.97\%	-2.13\%	2.81\%	0.77\%
2007Q4-2008Q3	1.24\%	1.00\%	3.34\%	-0.84\%	1.17\%
2008Q4-2009Q3	1.34\%	1.03\%	-0.76\%	-0.84\%	0.39\%
2009Q4-2010Q3	1.22\%	0.94\%	-1.09\%	-0.85\%	0.26\%
2010Q4-2011Q3	1.14\%	0.81\%	-0.59\%	-0.86\%	0.31\%
ve	1.23	0.95\%	-0.24\%	-0.11\%	0.58\%


Residential Use Per Customer					
Forecast (Annual)					
2005Q4-2006Q3	85	85	88	85	86
2006Q4-2007Q3	86	86	86	88	86
2007Q4-2008Q3	87	86	89	87	87
2008Q4-2009Q3	88	87	88	86	88
2009Q4-2010Q3	90	88	87	86	88
2010Q4-2011Q3	91	89	86	85	88
Average	88	87	87	86	87


Residential Use Per Customer Forecast (Quarterly)					
2005Q1	51	51	51	51	51
2005Q2	16	16	16	16	16
2005Q3	5	5	5	5	5
2005Q4	16	16	16	16	16
2006 Q1	49	49	52	48	49
2006Q2	15	15	14	16	15
2006Q3	5	5	5	5	5
2006Q4	19	19	15	19	18
2007Q1	48	47	52	48	49
2007Q2	15	15	13	16	15
2007Q3	5	5	5	5	5
2007Q4	21	21	15	19	19
2008Q1	47	46	53	48	48
2008Q2	15	14	14	15	15
2008Q3	5	5	6	5	5
2008Q4	23	23	14	19	20
2009Q1	46	45	53	48	48
2009Q2	15	14	14	15	14
2009Q3	5	5	6	5	5
2009Q4	24	24	14	18	21
201001	45	45	53	48	47
201002	15	14	13	15	14
2010Q3	5	5	6	4	5
2010Q4	26	25	14	18	22
2011Q1	45	44	53	47	47
2011Q2	15	14	13	15	14
2011 Q3	6	5	6	4	5
2011 Q4.	27	26	14	18	22

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Gas Use Per Customer Forecasting

Regression	Model:	B1			
Dependent	ariable:	USNR			
Independen	Variable:	PRCG_1	GSP	CDDN	Auto (-4)
Size	84	Parameters	4		
Mean	23.3816	Std Dev	14.09718		
R-Square	0.9944	DW	1.9741		
SSE	36230.36	MSE	431.3138		
Term	PRCG 1	GSP	CDDN	Auto (-4)	
Estimate	-19.9013	7.73E-04	0.1125	-0.824984	
Std Error	17.731	4.74E-04	0.006663	0.061664	
T-Ratio	-1.12	1.63	16.88	-13.38	
$\mathrm{Pr}>[4]$	0.2649	0.1065	<. 0001		

Forecasts (from Base Period 2005-Q4)

	Date		
LCL	Forecast		UCL
2006Q1	47.5282	49.035953	50.5437
2006Q2	13.62485	15.143039	16.66123
2006Q3	3.448361	4.9521578	6.455954
2006Q4	17.24014	18.74014	20.24015
2007Q1	46.21848	47.702759	49.18704
2007Q2	13.29935	14.790702	16.28205
2007Q3	3.534074	5.0120428	6.490012
2007Q4	19.38771	20.861844	22.33598
2008Q1	45.2174	46.676239	48.13508
2008Q2	13.18606	14.649715	16.11337
2008Q3	3.679912	5.1310135	6.582115
2008Q4	21.25179	22.699019	24.14625
2009Q1	44.48372	45.916401	47.34909
2009Q2	13.15536	14.591371	16.02738
2009Q3	3.854232	5.2784208	6.70261
2009Q4	22.83283	24.253132	25.67344
2010Q1	43.90934	45.35992	46.72264
2010Q2	13.15861	14.567544	15.97647
2010Q3	4.026361	5.4241265	6.828992
2010Q4	24.1694	25.563314	26.95723
2011Q1	43.47512	44.856299	46.23747
2011Q2	13.19831	14.581037	15.96376
2011Q3	4.207047	5.5792023	6.951358
2011Q4	25.31114	26.679484	28.04783

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas inc.
Residential Gas Use Per Customer Forecasting
Regression Model: B2
Dependent Variable: USNR
independent Variable: PRCG_1 PCI CDDN Auto(-4)

Size	84 Parameter:	4
Mean	23.3816 Std Dev	14.09718
R-Square	0.9944 DW	1.9878
SSE	36421.39 MSE	433.588


Term	PRCG_1 PCl	CDDN	Auto(-4)	
Estimate	-20.0477	1.1484	0.1111	-0.819139
Std Error	17.5442	0.6569	0.006892	0.062584
T-Ratio	-1.14	1.75	16.12	-13.09
Pr>[t]	0.2564	$0.0841<.0001$		

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	47.31945	48.8231	50.32675
2006Q2	13.50867	15.02239	16.53612
2006Q3	3.390562	4.890042	6.389522
2006Q4	17.20183	18.69771	20.19359
2007Q1	45.88745	47.36767	48.8479
2007Q2	13.15564	14.6424	16.12915
2007Q3	3.460455	4.933986	6.407517
2007Q4	19.33426	20.80415	22.27404
2008Q1	44.78536	46.24001	47.69466
2008Q2	12.98877	14.4476	15.90644
2008Q3	3.559831	5.006291	6.452751
2008Q4	21.14133	22.58415	24.02697
2009Q1	43.94622	45.37455	46.80287
2009Q2	12.89488	14.32582	15.75675
2009Q3	3.686523	5.105838	6.525154
2009Q4	22.66413	24.07982	25.49552
2010Q1	43.2903	44.69238	46.09445
2010Q2	12.84212	14.24572	15.64933
2010Q3	3.804666	5.197328	6.589989
2010Q4	23.92057	25.30968	26.69879
2011Q1	42.76655	44.14293	45.51931
2011Q2	12.81371	14.19086	15.56801
2011Q3	3.920657	5.287473	6.654289
2011Q4	24.97329	26.33664	27.69998

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Gas Use Per Customer Forecasting
ARIMA Model $(0,1,2)$
Time Series: USNR

Size	85 Parameter:		3	
Mean	23.07367 Std Dev	14.56763		
R-Square	0.985375 DW	1.922783		
SSE	25081.69 MSE	305.8743 RMSE	17.48926	
Estimation				
Parameter	MU	MA1_1	MA1_2	
Estimate	-0.795273	0.365959	-0.303824	
Standard Error	1.7307	0.13731	0.136645	
t Value	-0.459509	2.665207	-2.22346	
FACTOR	0	1	1	
Lag	0	17	20	

Forecasts (from Base Period 2005-Q4)

Date	L95				Forecast	U95
2006Q1	50.13358	51.68735	53.24111			
2006Q2	12.83089	14.40092	15.97095			
2006Q3	3.834074	5.389117	6.94416			
2006Q4	13.6781	15.22694	16.77579			
2007Q1	50.44688	51.98066	53.51443			
2007Q2	11.71038	13.25963	14.80888			
2007Q3	3.694458	5.230195	6.765931			
2007Q4	13.91787	15.4477	16.97753			
2008Q1	51.91284	53.42824	54.94365			
2008Q2	12.23814	13.77068	15.30322			
2008Q3	4.395847	5.915191	7.434534			
2008Q4	12.91721	14.42999	15.94276			
2009Q1	51.77492	53.27445	54.77399			
2009Q2	12.24712	13.76207	15.27703			
2009Q3	4.9235	6.425874	7.928247			
2009Q4	12.71309	14.20856	15.70402			
2010Q1	51.65238	53.13533	54.61828			
2010Q2	11.90242	13.39934	14.89626			
2010Q3	4.704538	6.189638	7.674737			
2010Q4	12.45531	13.93392	15.41253			
2011Q1	51.58902	53.05581	54.52259			
2011Q2	11.84022	13.31981	14.7994			
2011Q3	4.641785	6.11011	7.578436			
2011Q4	12.39231	13.85439	15.31648			

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas inc.
Residential Gas Use Per Customer Forecasting
Winters Exponential Smoothing Model
Var: USNR

Size		Parameter:	5			
Mean	23.07367	Std Dev	14.56763			
R-Square	0.967208		2.31736			
SSE	695.9008	MSE	26.37993	RMSE	5.13614	
	Constant	Linear	Quarter1	Quarter2	Quarter3	Quarter4
Estimate	26.37993	215.4984	260.0458	-64.49231	-169.9895	-25.564
Weight	0.2	0.2	0.25	0.25	0.25	0.25

Forecasts (from Base Period 2005-Q4)

Date	L95	Forecast	U95
2006Q1	46.81059	48.27548	49.74037
2006Q2	14.34829	15.82562	17.30295
2006Q3	3.693185	5.155618	6.618051
2006Q4	17.57704	19.03472	20.49239
2007Q1	46.65012	48.09218	49.53425
2007Q2	14.18927	15.64233	17.09538
2007Q3	3.533227	4.972324	6.411421
2007Q4	17.4167	18.85142	20.28615
2008Q1	46.48885	47.90889	49.32893
2008Q2	14.02924	15.45903	16.88882
2008Q3	3.372344	4.78903	6.205715
2008Q4	17.25547	18.66813	20.08079
2009Q1	46.32678	47.7256	49.12441
2009Q2	13.86824	15.27574	16.68324
2009Q3	3.210566	4.605735	6.000904
2009Q4	17.09337	18.48483	19.8763
2010Q1	46.16392	47.5423	48.92068
2010Q2	13.70631	15.09244	16.47858
2010Q3	3.04793	4.422441	5.796952
2010Q4	16.93045	18.30154	19.67263
2011Q1	46.00029	47.35901	48.71772
2011Q2	13.54349	14.90915	16.27481
2011Q3	2.884471	4.239146	5.593822
2011Q4	16.76673	18.11825	19.46976

## APPENDIX A

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Gas Consumption Forecasting (Dth) (2006-- 2010)

Model		C1	C2	ARIMA	Weighted Res Sales	Calculated Sales	Combined (50/50)
Var	Dependent	GSNR	GSNR	GSNR			
	independent	GSP	PRCG				
		Auto(-4)	GSP				
			Auto(-4)				


Weight	30.00\%	30.00\%	40.00\%	100.00\%		
Residential Gas Sales Forecast - Percent Growth from Base Year (2005)						
2006Q4-2007Q3	2.57\%	2.86\%	0.80\%	1.96\%	2.80\%	
2007Q4-2008Q3	2.65\%	2.91\%	3.65\%	3.12\%	3.08\%	2.37\%
2008Q4-2009Q3	3.02\%	3.23\%	3.07\%	3.10\%	3.08\%	3.10\%
2009Q4-2010Q3	2.86\%	3.00\%	0.69\%	2.05\%	2.21\%	2.66\%
2010Q4-2011Q3	2.79\%	2.88\%	1.56\%	2.34\%	2.04\%	2.05\%
Average	2.78\%	2.98\%	1.95\%	2.34\%	2.14\%	2.24\%
Residential Gas Sales Forecast (Dth) (Annual)						
2005Q4-2006Q3	6,440,173	6,373,218	6,267,804	6,351,139	6,190,483	
2006Q4-2007Q3	6,605,996	6,555,369	6,318,014	6,475,615	$6,190,483$ $6,363,654$	$6,270,811$ $6,419,635$
2007Q4-2008Q3	6,780,906	6,745,872	6,548,691	6,677,510	$6,363,654$ $6,559,457$	$\begin{aligned} & 6,419,635 \\ & 6,618,483 \end{aligned}$
2008Q4-2009Q3	6,985,470	6,963,457	6,749,937	6,884,653	$6,559,457$ $6,704,409$	$6,618,483$ $6,794,531$
2009Q4-2010Q3	7,185,317	7,172,667	6,796,495	7,025,993	6,841,297	$6,794,531$ $6,933,645$
2010Q4-2011Q3	7,385,507	7,379,427	6,902,273	7,190,389	6,987,414	$7,088,902$
Average	6,897,228	6,865,002	6,597,202	6,767,550	6,607,786	$6,687,668$
Residential Gas Sales Forecast (Dth) (Quarterly)						
2005Q1	3,528,270	3,528,270	3,528,270	3,528,270		
2005Q2	1,160,112	1,160,112	1,160,112	1,160,112	$3,656,773$ $1,152,706$	3,592,521
2005Q3	408,202	408,202	408,202	4,408,202	1,152,706	1,156,409
2005Q4	1,166,664	1,166,664	1,166,664	1,166,664	1,117,630	402,537
2006Q9	3,559,793	3,558,606	3,590,859	3,571,863	$1,117,630$ $3,599,159$	$1,142,147$ $3,585,511$
2006Q2	1,258,946	1,214,090	1,076,523	1,172,520	1,097,882	$3,585,511$ $1,135,201$
2006Q3	454,771	433,858	433,758	440,092	1,097,812	$1,135,201$ 407,952
2006Q4	1,196,674	1,194,043	1,163,577	1,182,646	1,289,845	1,236,246
2007Q1	3,579,722 $1,340,108$	3,600,875	3,652,102	3,615,020	3,608,859	$1,236,246$ $3,611,939$
2007Q2	$1,340,108$ 489,491	1,283,348	1,058,275	1,210,347	1,085,920	1,148,134
2007Q4	489,491 $4,214,658$	477,104 $1,204,545$	444,060 $1,206,344$	467,602	379,030	423,316
2008Q1	1,214,658	$1,204,545$ $3,645,295$	$1,206,344$ $3,774,692$	1,208,299	1,414,044	1,311,171
2008Q2	1,429,259	1,365,667	1,74,692 1,054,872	3,683,704	3,645,106	3,664,405
2008Q3	536,193	530,364	$1,054,072$ 512,783	$1,260,427$ 525,080	1,102,754	1,181,590
2008Q4	1,243,818	1,225,694	1,178,654	1,212,315	397,553	461,317
2009Q1	3,630,725	3,698,181	3,865,989	1,212,315	$1,506,041$ $3,668,355$	1,359,178
2009Q2	1,523,717	1,452,855	1,131,908	1,345,735	$3,668,355$ $1,115,229$	3,706,711
2009Q3	587,211	586,727	573,386	581,536	1,115,229	1,230,482
2009Q4	1,273,658	1,246,673	1,197,762	1,235,204	414,784 1,601358	498,160
2010Q1	3,659,009	3,748,018	3,863,514	3,767,514	1,601,358	1,418,281
2010Q2	1,615,496	1,537,093	1,142,776	1,402,887	$1,695,129$ $1,124,005$	3,731,321
$2010 \mathrm{Q3}$	637,154	640,884	592,443	$1,402,087$ 620,389	$1,124,005$ 420,805	1,263,446
2010Q4	1,302,582	1,265,905	1,215,450	1,256,726	420,805 $1,685,064$	520,597
2011Q1	3,687,643	3,797,116	3,892,877	3,802,579	1,685,064	1,470,895
2011Q2	1,706,712	1,620,754	1,172,139	1,467,095	$3,734,352$ $1,138,337$	3,768,466
2011Q3	688,571	695,652	621,807	$1,467,095$ 663,989	$\begin{array}{r} 1,138,337 \\ 429,660 \end{array}$	1,302,716
2011Q4	1,332,195	1,285,233	1,244,813	1,283,154	1,764,365	$\begin{array}{r} 546,825 \\ 1,523,759 \end{array}$

## APPENDIXA

KeySpan Energy Delivery New England
EnergyNorth Natural Gas Inc.
Residential Gas Consumption (Dth) Forecasting
Regression Model: C1b Dependent Variable: GSNR
Independent Variable: GSP Auot(-1) Auot(-2) Auot(-3) Auot(-4)

Size	84 Parameter:	5
Mean	1317481 Std Dev	872900
R-Square	0.9939 DW	0.935
SSE	$1.35 E+14 \mathrm{MSE}$	$1.61 E+12$

Term GSP Auot(-1) Auot(-2) Auot(-3) Auot(-4)

Estimate	152.1634	-0.0171	$5.96 \mathrm{E}-03$	0.003858	$-9.89 \mathrm{E}-01$
Std Error	$6.71 \mathrm{E}+01$	$1.95 \mathrm{E}-02$	$1.79 \mathrm{E}-02$	$1.97 \mathrm{E}-02$	$1.90 \mathrm{E}-02$
T-Ratio	2.27	-0.88	0.33	0.2	-51.97
Pr $>[t]$	0.0259	0.3828	0.7403	$0.8454<.0001$	

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	2750675	3559793	4368910
2006Q2	1167627	1258946	1350264
2006Q3	364470	454771.1	545072.1
2006Q4	1106879	1196674	1286470
2007Q1	3490899	3579722	3668546
2007Q2	1249064	1340108	1431153
2007Q3	399420.4	489490.8	579561.2
2007Q4	1125110	1214658	1304206
2008Q1	3512177	3600796	3689415
2008Q2	1338608	1429259	1519910
2008Q3	446467.9	536192.6	625917.3
2008Q4	1154636	1243818	1333000
2009Q1	3542433	3630725	3719016
2009Q2	1433534	1523717	1613899
2009Q3	497903.7	587210.6	676517.4
2009Q4	1184911	1273658	1362406
2010Q1	3571115	3659009	3746904
2010Q2	1525839	1615496	1705153
2010Q3	548320.1	637153.6	725987.1
2010Q4	1214316	1302582	1390847
2011Q1	3600196	3687643	3775090
2011Q2	1617615	1706712	1795809
2011Q3	600244.9	688570.6	776896.3
2011Q4	1244443	1332195	1419947

## APPENDIXA

KeySpan Energy Delivery New England							
EnergyNorth Natural Gas Inc.							
Residential Gas Consumption (Dth) Forecasting							
Regression Model:   Dependent Variable: Independent Variable:		C 2 c					
		GSNR					
		PRCG_1	GSP	Auot(-1)	Auot(-2)	Auvot(-3)	Auot(-4)
Size 81		Parameters	7				
Mean	1317481.5	Std Dev	872900.04				
R-Square	0.9813		1.7866				
SSE	1.25E+14		$1.54 \mathrm{E}+12$				
Term	Intercept	PRCG_1	GSP	Auot(-1)	Auot(-2)	Auot(-3)	Auot(-4)
Estimate	8469003	-1117401	156.4301	0.0596	0.0692	0.0795	-0.9301
Std Error	$1.60 E+06$	$1.03 \mathrm{E}+06$	4.33E+01	5.61E-03	2.11E-03	1.04E-02	2.71E-03
T-Ratio	5.31	-1.09	3.61	10.63	32.76	7.67	-343.06
$\operatorname{Pr}>[t]$	$<.0001$	0.2796	0.0005	<. 0001	<. 0001	<. 0001	<. 0001

Forecasts (from Base Period 2005-Q4)

Date	LCL	Forecast	UCL
2006Q1	3251848.49	3558605.89	3865363.3
2006Q2	1123306.22	1214089.95	1304873.7
2006Q3	344076.987	433857.635	523638.28
2006Q4	1104715.49	1194042.71	1283369.9
2007Q1	3512511.48	3600874.89	3689238.3
2007Q2	1192728.67	1283347.93	1373967.2
2007Q3	387450.464	477103.741	566757.02
2007Q4	1115378.72	1204544.89	1293711.1
2008Q1	3557050.86	3645295.19	3733539.5
2008Q2	1275297.49	1365667.31	1456037.1
2008Q3	440921.216	530364.144	619807.07
2008Q4	1136771.27	1225694	1314616.7
2009Q1	3610141.7	3698180.55	3786219.4
2009Q2	1362785.01	1452855.31	1542925.6
2009Q3	497541.284	586726.773	675912.26
2009Q4	1158033.33	1246672.69	1335312
2010Q1	3660226.42	3748017.64	3835808.9
2010Q2	1447361.88	1537092.73	1626823.6
2010Q3	551994.157	640884.001	729773.85
2010Q4	1177577.42	1265904.86	1354232.3
2011Q1	3709603	3797116.08	3884629.1
2011Q2	1531386.05	1620754.2	1710122.3
2011Q3	607080.588	695652.217	784223.85
2011Q4	1197234.78	1285233.23	1373231.7

## APPENDIX A

KeySpan Energy Delivery New England EnergyNorth Natural Gas Inc.
Residential Gas Consumption (Dth) Forecasting
ARIMA Model (0,1,2)
Time Series:
GSNR

Size	85 Parameters			3		
Mean	1317481.496 Std Dev	$872900: 0386$				
R-Square	0.987879378	DW	1.320508125			
SSE	$1.10962 E+14 ~ M S E$	$1.3532 E+12$	RMSE	1163271.1		
Estimation						
Parameter	MU	MA1_1	MA1_2			
Estimate	293631.8719	0.3441897	-0.259873623			
Standard Error	113903.1465	0.1386313	0.137639482			
t Value	2.577908345	2.4827701	-1.888074693			
FACTOR	0	1	1			
Lag	0	17	20			

Forecasts (from Base Period 2005-Q4)

2006Q1
2006Q2
2006Q3
2006Q4
2007Q1
2007Q2
2007Q3
2007Q4
2008Q1
2008Q2
2008Q3
2008Q4
2009Q1
2009Q2
2009Q3
2009Q4
2010Q1
2010Q2
2010Q3
2010Q4
2011Q1
2011Q2
2011Q3
2011Q4
Date L95 Forecast U95

L95 Forecast U95
$3362861.849 \quad 3590858.8 \quad 3818855.738$ $\begin{array}{llll}981826.8792 & 1076523.1 & 1171219.257\end{array}$
$340083.9819 \quad 433758.08 \quad 527432.1735$
$\begin{array}{llll}1070456.503 & 1163577.4 & 1256698.356\end{array}$
$3559987.139 \quad 3652102.2 \quad 3744217.342$
$963848.06161058274 .9 \quad 1152701.698$
$350600.9659444059 .67 \quad 537518.3833$
$1113430.661 \quad 1206344.4 \quad 1299258.2$
$3682744.882 \quad 3774692.3 \quad 3866639.75$
$960540.0247 \quad 1054871.6 \quad 1149203.267$
$419375.7474 \quad 512782.94 \quad 606190.1337$
$1085837.462 \quad 1178654.5 \quad 1271471.529$
$3774092.862 \quad 3865988.6 \quad 3957884.334$
$1037647.178 \quad 1131907.7 \quad 1226168.216$
$480030.2256 \quad 573385.79 \quad 666741.362$
$1105023.618 \quad 1197762.4 \quad 1290501.156$
$3771661.224 \quad 3863513.9 \quad 3955366.605$
$\begin{array}{llll}1048802.51 & 1142775.6 & 1236748.782\end{array}$
$499338.5152 \quad 592443.36 \quad 685548.2126$
$1122950.685 \quad 1215450.2 \quad 1307949.659$
$3801229.377 \quad 3892877.1 \quad 3984524.826$
$1078509.428 \quad 1172138.8 \quad 1265768.239$
529014.3185 $\quad 621806.55 \quad 714598.7837$
$1152620.821 \quad 1244813.41337005 .897$

Index Variable Name	Unit	Description
Dependent Varlables		
1 CUSN		Number of Non-Heating Residential Customers
2 CUSH		Number of Heating Residential Customers
3 CUSR		Number of Residential Customers
4 CUSI		Number of Industiral Customers
5 Cusc		Number of Commercial Customers
6 CuSCl		Number of Commercial and Industrial Cust.
7 USEN	MMBTU/Customer	Gas Consumption per Non-Heating Res. Cust.
8 USEH	MMBTU/Customer	Gas Consumption per Heating Res. Cust.
9 USER	MMBTU/Customer	Gas Consumption per Residential Cust.
10 USEC	MMBTU/Customer	Gas Consumption per Commercial Cust.
11 USEI	MMBTU/Custorner	Gas Consumption per industrial Cust.
12 USECI	MMBTU/Customer	Gas Consumption per C \& 1 Cust.
13 USNN	MMBTU/Cuslorner	Gas Consumption per Non-Heating Res. Cust.
14 USNH	MMBTU/Customer	Gas Consumption per Heating Res. Cust.
15 USNR	MMBTU/Customer	Gas Consumption per Residenital Cust.
16 USNC	MMBTU/Customer	Gas Consumption per Commercial Cust.
17 USNI	MMBTU/Customer	Gas Consumption per industial Cust.
18 USNCI	MMBTU/Customer	Gas Consumption per C \& ICust.
19 GASN	MMBTU	Gas Consumption of Residental Cust.
20 GASH	mmetu	Gas Consumption of Heating Res. Cust.
21 GASR	MMBTU	Gas Consumption of Non-Heating Res. Cust.
22 GASC	mм9tu	Gas Consumption of C \& I Cust.
23 GASI	MMBTU	Gas Consumption of Commercial Cust.
24 GASCI	MMBTU	Gas Consumpton of Industrial Cust.
25 GSNN	MMBTU	Normal Gas Consumption of Residential Cust.
26 GSNH	MmBTU	Normal Gas Consumption of Heating Res. Cust.
27 GSNR	MmBTU	Normal Gas Cons. of Non-Heating Res.Cust.
28 GSNC	MMBTU	Normal Gas Consumption of C\&ICust.
29 GSNI	MMBTU	Normal Gas Consumption of Commerclal Cust.
30 GSNCl	MmbTU	Normal Gas Consumption of Industrial Cust.
Indopendent Variables		
31 CPI	1982-84 $=100$	Consumer Price Index
32 GSP	Mallions of \$	Gross State Product-Aggregate
33 RGSP	Millions of 2000 \$	Real Gross State Product-Aggregate
34 POP	Thousands	Total Population
35 NMIG	Thousands	Net Migration
36 EMP	Thousands	Employment, Total Non-Agriculture
37 RUEM	Percent	Unemployment Rate
38 UEMP	Thousands	Number Unemployed
39 REMP	Thousands	Resident Employment
40 LBFC	Thousands	Total Labor Force
41 HH	Thousands	Households, Family and Non-Family
42 HSTM	Thousands	Housing Starts, Private Multi-Family
43 HSTS	Thousands	Housing Starts, Private Single Family
44 HSTT	Thousands	Housing Stants, Total Private
45 HSOLD	Thousands	Home Sales, Existing Single-family units
46 HINC	Thousands of \$	Average Household income
47 PCl	Thousands of \$	Per Capita Personal Income
48 RPCl	Thousands 2000 \$	Real Per Capita Personal Income
49 PINC	millions of \$	Personal income. Total, By Place of Residence
50 RPINC	Millions of 2000 \$	Real Personal Income, Total
51 RPIR	Millions of 2000 \$	Real Income, Residence Adjustment
52 RPTR	Millions of 2000 \$	Real Nonfarm Proprietors income
53 PTP	Millions of \$	Personal Income, Total Proprietors income,
54 TPTR	Millions of 2000 \$	Real Total Proprietors income
55 PINF	Millions of \$	Personal income, Nontarm Proprietors Income
56 INDX	(2002=100)	Industrial Production Index, Total
57 PRCO	(\$/MCF)	New Hampshire \#2 Heating Oil Production Price
58 PRCG	(\$/MCF)	New Hampshire Nalual Gas City Gate Price
59 PRCR	(\$/MCF)	New Hampshire Residential Natural Gas Price
60 PRCC	(\$/MCF)	New Hampshire Commercial Nalural Gas Price
61 PRCI	(S/MCF)	New Hampshire Industria! Natural Gas Price
62 PRCCI	(\$/MCF)	New Hampshire C \& I Natural Gas Prics
63 EGYO	(MMCF)	New Hampshire \#2 Heating Oil cnsmp
64 EGYG	(MMCF)	New Hampshire Natural Gas cnsmp by Als
65 EGYR	(MMCF)	New Hampshire Residential Natural Gas cnsmp
66 EGYC	(MMCF)	Now Hampshire Commercial Natural Gas cnsmp
67 EGYI	(MMCF)	New Hampshire industrial Natural Gas cnsmo
68 RPRR	PRCR/PRCO	Price Ratio: Ress. Natural Gas Price: \#2 Oil Price
69 RPRC	PRCC/PRCO	Price Ratio: Commercial Gas Price: \#2 Oll Price
70 RPRI	PRCI/PRCO	Price Ratio: Industrial Gas Price : \#2 Oll Price
71 REGR	EGYRJEGYO	Energy Use Ratio: Res. Natural Gas : \#2 Oill
72 REGC	EGYCIEGYO	Energy Use Ratio: Commercial Gas : \#2 Oll
73 REGI	EgYilegro	Energy Use Ratio: Industrial Gas : \#2 Oil
74 REVN	(\$)	Revenue to Residential Non-Heating Customers
75 REVH	(\$)	Revenue to Residential Heating Customers
76 REVR	(\$)	Revenue to Residential Customers
77 REVC	(\$)	Revenue to Commercial Customers
78 REVI	(\$)	Revenue to Industrial Customers
79 REVCl	(\$)	Revenue to Commercial and Industrial Cust.
80 RVNN	(\$)	Revenue (Normal)to Residential Non-Heating Cust.
81 RVNH	(\$)	Revenue (Normal)to Residential Heating Cust.
82 RVNR	(\$)	Revenue (Normal)to Residential Cust.
83 RVNC	(\$)	Revenue (Normal)to Commercial Cust.
84 RVNI	(\$)	Revenue (Normal)to indusirial Cust.
85 RVNCl	(\$)	Revenue (Normal)to C \& I Cust.

Enemgyorth Historical Record EnergyNorth Historical Records nergyNorth Historical Records EnergyNorth Hlatorical Records EnergyNorth Historical Records EnergyNorth Histortcal Records EnergyNorth Historical Records EnergyNorth Historkal Records EnergyNorth Historical Records EnergyNorth Historical Records EnergyNorth Historical Records EnergyNorth Historical Racords EnergyNorth Historical Records EnergyNorth Historical Reconds EnergyNorth Historical Records EnergyNoth Historlcal Records Energ North Historical Records EnergyNorth Historical Records EnergyNorth Historical Records

Global Inskght
Bureau of Economic Analysis, Global Insight Bureau of Economic Analysis, Global Insight Bureau of Census, Current Population Reports Bureau of Census, Current Population Reports Bureau of Labor Statistics
Bureau of Labor Statistics
Buraau of Labor Statistics
Bureau of Labor Statistics
Buraau of Labor Statistics
Global inslght
Global Insight
Global insight
Global Ineight
Global theight
Globsil Insight
Buraau of Economic Analysis, Global inaight
Bureau of Economic Analysis
Buraau of Economic Analysis, Global Insight
Bureau of Economic Analysis, Global Insight
Bureau of Economic Analyses, Gobal insight
Bureau of Economic Analysis
ureau of Economic Analysis, Gobal Insigh Bureau of Economic Aralysis, Global Insight
Burgau of Economic Analysis
Global Insigh
U.S. Energy Information Administration U.S. Energy information Administration U.S. Energy Information Administration U.S. Energy information Administration U.S. Energy Information Admintistration U.S. Energy Information Administration U.S. Energy Information Administration U.S. Energy Information Administration U.S. Energy Information Adminigtration .S. Engy information Adminiation U.S. Energy Information Administration U.S. Energy Informaicon Adminisuration U.S. Energy Information Administration EnergyNorth Blling Frequncy Recond EnergyNorth Billing Frequncy Recond EnergyNorth Billing Frequncy Record EnergyNorth Bllling Frequncy Record EnergyNorth Bllling Frequncy Record EnergyNorth Billing Frequncy Record EnergyNorth Buling Frequncy Record EnergyNorth Bliting Frequncy Record EnergyNorth Billing Frequncy Record EnergyNorth Bulling Frequncy Record EnergyNorth Billing Frequncy Record EnergyNorth Billing Frequncy Record

1984Q1-2005Q4 2005 Q4 1884Q1-2005Q4 2005 Q 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q 198401-200504 2005 198401-200504 2005 98401-2005Q4 2005 Q 1984Q1-2005Q4 2005 Q 1984Q1-2005Q4 2005 Q 1984Q1-2005Q4 2005 Q 1884Q1-2005Q4 2005 Q 1984Q1-2005Q4 200504 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q 1984Q1-2005Q4 2005 Q4 1984Q1-200504 2005 Q 1984Q1-2005Q4 2005 Q4 1884Q1-2005Q4 2005 Q 198401-2005Q4 20050 19041-2005Q4 $2005 \mathrm{Q4}$ -8101-2005 984Q1-2005Q4 2005 Q 1984Q1-2005Q4 2005 Q4

1984Q1-2020Q4 2005 Q4 198401-2020Q4 2004 Q4 1984Q1-2020Q4 2004 Q4 198401-2020@4 200502 198401-202004 2005 Q2 88401-2020 2005 Q2 88401-202004 2005 Q4 1984Q1-2020Q4 $2005 \mathrm{Q4}$
1984Q1-2020Q4 $2005 \mathrm{Q4}$ 1984Q1-2020Q4 2005 Q4
1884Q1-2020Q4 2005 Q4 $1884 \mathrm{Q1}-2020 \mathrm{Q4} 2005 \mathrm{Q4}$
1984Q1-2020Q4 2005 Q4 984Q1-2020Q4 2000 Q1 1984Q1-2020Q4 2005 Q4 1984Q1-2020Q4 2005 Q4 198401-2020Q4 2005Q4 1984Q1-2020Q4 2005 Q4 1884Q1-2020Q4 2000 Q1 1884Q1-2020Q4 2005 Q4 1984Q9-2020@4 2005 Q4 1984Q1-2020Q4 2005 Q4 1884Q1-2020Q4 2005 Q4 1984Q1-2020Q4 2005 Q4 1984Q1-202004 2005 Q4 198401-202004 2005 198401-2020Q4 2005 Q4 188401-2020Q4 2005 Q 4 1984Q1-2020Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1084Q1-2005Q4 2005Q4 1984Q1-2005Q4 2005 Q4 1884Q1-2005Q4 2005 Q4 1884Q1-200504 2005 Q4 1984Q1-2005Q4 2005 Q4 1884Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1884Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1884Q1-2005Q4 2005 Q4 1984Q1-200504 2005 Q4 1984Q1-200504 2005 Q 1984Q1-200504 2005 Q4 1904Q1-200504 2005 Q4 1884Q1-2005Q4 2005 Q4 19B4Q1-2005Q4 2005 Q4 1984Q1-200504 2005 Q4 1984Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1884Q1-2005Q4 2005 Q4 1984Q1-2005Q4 2005 Q4 1884Q1-2005Q4 2005 Q 1984Q1-200504 2005 Q

KeySpan Energy Delivery New England - EnergyNorth Gas Inc.
Demand Forecast Econometric Model
Variable Lisi
(2005)


Period Covered End of History Date 198401-2005Q4 2005 Q4 984Q1-200504 2005 1984Q1-2005Q4 200504 1984Qt-2005Q4 2005 Q4 $1984 Q 1-2005 Q 42005 Q 4$
$1984 Q 1-2005 Q 42005 Q 4$ 1984Q1-2005Q4 2005 Q4 984Q1-2005Q4 2005 Q4 1984Q1-2005@4 2005 Q4 1884Q1-2005Q4 2005 Q4 98401-2005Q4 2005 1984Q1-2005Q4 200504 198401-200504 2005 $\mathrm{Q4}$ $198401-2005 Q 42005$ Q4
198401-2005Q4 2005 Q4 $188401-2005 \mathrm{Q} 42005 \mathrm{Q4}$
$1984 \mathrm{Q} 1-2005 \mathrm{Q} 42005 \mathrm{O4}$ 1984Q1-2005Q4 200504
1984Qi-2005Q4 200504 1984Q1-2005O4 $2005 \mathrm{Q4} 4$
$198401-2005 \mathrm{Q} 42005 \mathrm{Q4}$ 1984Q1-2005Q4 2005 Q4
1984Qi-2005Q4 2005 Q4

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Res Var index Res Var Name \& \[
\stackrel{1}{\text { CUSN }}
\] \& \[
\stackrel{2}{\mathrm{CUSH}}
\] \& \[
\stackrel{3}{\text { CUSR }}
\] \& \[
\begin{gathered}
4 \\
\text { USEN }
\end{gathered}
\] \& \[
\begin{gathered}
5 \\
\text { USEH }
\end{gathered}
\] \& \[
\begin{gathered}
6 \\
\text { USER }
\end{gathered}
\] \& \[
\begin{gathered}
7 \\
\text { USNN }
\end{gathered}
\] \& \[
\begin{gathered}
8 \\
\text { USNH }
\end{gathered}
\] \& \[
\begin{gathered}
9 \\
\text { USNR }
\end{gathered}
\] \\
\hline Description \& ENGI: Number of Non-Heating Residential Customers \& \begin{tabular}{l}
ENGI: Number of \\
Heating \\
Residential \\
Customers
\end{tabular} \& ENGI: Number of Residential Customers \& ENGI: Natural Gas Consumption per Non-Heating Residential Customers \& ENGI: Natural Gas Consumption per Heating Residential Customers \& ENG:; Natural Gas Consumption per Residential Customers \& ENGI: Natural Gas Consumption per Non-Heating Residential Customers \& \begin{tabular}{l}
ENGI: Natural \\
Gas Consumption \\
per Heating \\
Residential \\
Customers
\end{tabular} \& ENGI: Natural Gas Consumption per Residential \\
\hline Star Year \& 1984 \& 1984 \& 1984 \& 1984 \& 1984 \& 1984 \& Customers 1984 \& Customers 1984 \& Customers 1984 \\
\hline Period/Year \& 4 \& 4 \& 4 \& 4 \& 4 \& , \& 188 \& 1884
4 \& 884 \\
\hline Period/ Cycle \& 4 \& 4 \& 4 \& 4
4 \& 4 \& 4 \& 4 \& 4 \& 4 \\
\hline \& \& \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \\
\hline 1984Q1 \& 5875 \& 33173 \& 39048 \& 8.37 \& 45.14 \& 39.61 \& . 50 \& \& \\
\hline 1984Q3 \& 5830 \& 33183 \& 39013 \& 5.96 \& 20.46 \& 18.29 \& 5.82 \& 19.59 \& 40.56 \\
\hline 198404 \& 5866 \& 33085 \& 38766 \& 3.62 \& 6.81 \& 6.35 \& 3.59 \& 6.74 \& 17.53
6.28 \\
\hline 198501 \& 5995 \& 339915 \& 39885 \& 5.12 \& 22.77 \& 20.13 \& 5.29 \& 24.63 \& 6.23
21.74 \\
\hline 198502 \& 5949 \& 349129 \& 40910
41078 \& 8.28 \& 44.03 \& 38.79 \& 8.55 \& 46.28 \& 21.74
40.75 \\
\hline 198503 \& 5797 \& 35129 \& 41078
40960 \& 6.03 \& 17.70 \& 16.01 \& 6.20 \& 18.64 \& 40.75
16.84 \\
\hline 198504 \& 6088 \& 36270 \& 40960
42358 \& 3.69
5.02 \& 6.83 \& 6.38 \& 3.62 \& 6.87 \& 16.84
6.41 \\
\hline 198601 \& 6117 \& 38608 \& 42358 \& 5.02 \& 22.94 \& 20.36 \& 5.06 \& 23.38 \& 6.45
20.75 \\
\hline 198602 \& 6070 \& 39015 \& 44725 \& 8.73
6.52 \& 44.19 \& 39.34 \& 9.00 \& 46.03 \& 40.97 \\
\hline 198603 \& 5915 \& 39453 \& 45085 \& 6.52 \& 17.86 \& 16.33 \& 6.98 \& 19.67 \& 17.96 \\
\hline 198604 \& 6212 \& 40791 \& 47003 \& 3.14
4.81 \& 6.12 \& 5.73 \& 3.13 \& 6.05 \& 5.67 \\
\hline 198704 \& 6242 \& 42210 \& 48452 \& 4.81
8.72 \& 24.90 \& 22.24 \& 4.79 \& 24.74 \& 22.08 \\
\hline 1987 Q2 \& 6194 \& 42852 \& 489046 \& 8.72
6.43 \& 49.92 \& 44.61 \& 8.87 \& 52.01 \& 46.47 \\
\hline 188703 \& 6036 \& 42639 \& 48675 \& 6.43
4.12 \& 22.21 \& 20.22 \& 6.66 \& 23.53 \& 21.40 \\
\hline -1987Q4 \& 6339 \& 43756 \& 48675
50095 \& 4.12
5.48 \& 8.13 \& 7.64 \& 4.18 \& 8.24 \& 7.74 \\
\hline 198801 \& 6370 \& 45173 \& 51543 \& 5.48
7.83 \& 25.26 \& 22.76 \& 5.50 \& 25.48 \& 22.95 \\
\hline 198802 \& 6320 \& 45218 \& 51538 \& 7.83
6.74 \& 49.66 \& 44.49 \& 7.94 \& 50.82 \& 45.52 \\
\hline 1988Q3 \& 6159 \& 44672 \& 50831 \& 6.14
3.60 \& 22.51
7.40 \& 20.57 \& 6.81 \& 22.85 \& 20.88 \\
\hline 1988Q4 \& 6468 \& 45376 \& 51844 \& 3.60
5.08 \& 7.40
27.39 \& 6.94 \& 3.58 \& 7.32 \& 6.87 \\
\hline 198901 \& 6500 \& 46909 \& 53409 \& 5.08
8.60 \& 27.39 \& 24.60 \& 5.07 \& 27.17 \& 24.42 \\
\hline 198902 \& 6449 \& 47004 \& 53453 \& 8.60
6.88 \& 49.62 \& 44.63 \& 8.89 \& 52.27 \& 46.99 \\
\hline 1989Q3 \& 6285 \& 45897 \& 52182 \& 6.88
3.66 \& 22.28
7.53 \& 20.42
7.07 \& 6.83 \& 21.97 \& 20.15 \\
\hline 198804 \& 6600 \& 46503 \& 53103 \& 3.66
6.39 \& 7.53
27.46 \& 7.07 \& 3.69 \& 7.67 \& 7.19 \\
\hline 199001 \& 6632 \& 47867 \& 54499 \& 6.39
8.00 \& 27.46
47.37 \& 24.84 \& 6.22 \& 25.77 \& 23.34 \\
\hline 198002 \& 6581 \& 47476 \& 54057 \& 8.00
5.93 \& 47.37
22.00 \& 42.58 \& 8.24 \& 49.85 \& 44.79 \\
\hline 199003 \& 6413 \& 46199 \& 52612 \& 5.93
4.10 \& 22.00
7.08 \& 20.04
6.72 \& 5.82 \& 22.16 \& 20.18 \\
\hline 199004 \& 6387 \& 47332 \& 53719 \& 4.10
5.91 \& 7.08
22.15 \& 6.72 \& 4.06 \& 7.09 \& 6.72 \\
\hline 199101 \& 6304 \& 48797 \& 55101 \& 8.91
8.35 \& 22.15
43.74 \& 20.22
39.69 \& 6.26 \& 25.06 \& 22.82 \\
\hline 189102 \& 6196 \& 48319 \& 54507 \& 8.35
5.82 \& 43.74
18.82 \& \begin{tabular}{l}
39.69 \\
\\
\hline 1735
\end{tabular} \& 8.82 \& 47.55 \& 43.12 \\
\hline 199103 \& 6049 \& 47103 \& 53152 \& 5.82
3.99 \& 18.82
6.72 \& 17.35
6.41 \& 6.32 \& 21.44 \& 19.72 \\
\hline 199104 \& 6017 \& 48172 \& 54190 \& 3.98
5.80 \& 6.72
22.53 \& 6.41
20.67 \& 3.92 \& 6.64 \& 6.33 \\
\hline \(1992 \mathrm{Q1}\) \& 6025 \& 49426 \& 55451 \& 8.85
8.51 \& 22.53
47.94 \& 20.67
43.66 \& 5.98 \& 24.04 \& 22.03 \\
\hline 199202 \& 6035 \& 49138 \& 55173 \& 8.51
6.23 \& 47.94
23.17 \& 43.66 \& 8.73 \& 48.85 \& 45.38 \\
\hline 1992Q3 \& 5975 \& 47926 \& 53901 \& 6.23
4.21 \& 23.17 \& 21.32 \& 6.06 \& 21.78 \& 20.06 \\
\hline 1992 Ca \& 6027 \& 49069 \& 55096 \& 4.21
6.13 \& 7.02
24.59 \& 6.71 \& 4.21 \& 7.02 \& 6.71 \\
\hline 199301 \& 5998 \& 49743 \& 55741 \& 6.13
8.06 \& 24.59
48.90 \& 22.57
45.40 \& 6.04 \& 23.85 \& 21.90 \\
\hline 1993Q2 \& 6006 \& 49717 \& 55723 \& 8.06
6.05 \& 49.90
21.31 \& 45.40 \& 8.03 \& 49.15 \& 44.73 \\
\hline 1993Q3 \& 6006 \& 48841 \& 54847 \& 6.05
4.01 \& 21.31
6.44 \& 19.67 \& 6.09 \& 21.54 \& 19.88 \\
\hline 199304 \& 6041 \& 50009 \& 56050 \& 4.01
5.70 \& 6.44
23.80 \& 6.18 \& 3.79 \& 6.00 \& 5.76 \\
\hline 199401 \& 6070 \& 50949 \& 57019 \& 5.70
8.27 \& 23.90
52.7 \& 21.94 \& 5.67 \& 23.50 \& 21.58 \\
\hline 199402 \& 6065 \& 50957 \& 57022 \& 8.27
5.85 \& 52.77
20.81 \& 48.03 \& 7.88 \& 48.55 \& 44.22 \\
\hline 198403 \& 6035 \& 50125 \& 56160 \& 5.85
3.96 \& 20.81
6.23 \& 19.31 \& 5.83 \& 20.79 \& 19.20 \\
\hline \(1994 \mathrm{Q4}\) \& 6071 \& 51184 \& 57256 \& 3.96
5.20 \& 6.23
27.67 \& \(\begin{array}{r}5.89 \\ \hline 2599\end{array}\) \& 4.12 \& 6.36 \& 6.12 \\
\hline 199501 \& 5933 \& 52218 \& 58151 \& 5.20
6.60 \& 27.67
44.63 \& 25.29
40.75 \& 5.40 \& 30.90 \& 28.19 \\
\hline 1895 L 2 \& 5852 \& 52220 \& 58072 \& 6.60
5.39 \& 44.63
20.03 \& 40.75 \& 6.94 \& 48.94 \& 44.65 \\
\hline 199503 \& 5794 \& 51357 \& 57151 \& 5.39
4.07 \& 20.03
6.68 \& 18.55 \& 5.38 \& 19.67 \& 18.23 \\
\hline 199504 \& 5817 \& 52277 \& 58094 \& 4.07 \& 6.68
25.18 \& 6.42 \& 3.94 \& 8.47 \& 6.21 \\
\hline 199601 \& 5870 \& 53009 \& 58879 \& 4.86
6.32 \& 25.18
49.61 \& 23.15 \& 4.84 \& 24.60 \& 22.62 \\
\hline 199602 \& 5872 \& 53113 \& 58985 \& 6.32
5.42 \& 49.61
20.77 \& 45.29 \& 6.31 \& 48.36 \& 45.07 \\
\hline 199603 \& 5854 \& 52552 \& 58406 \& 5.42
4.14 \& 20.77
6.87 \& 18.24
6.60 \& 5.32 \& 19.65 \& 18.22 \\
\hline 199604 \& 5820 \& 53417 \& 59237 \& 4.14 \& 6.87
25.40 \& 6.60

23.39 \& 4.10 \& 6.85 \& 6.57 <br>
\hline 1997Q1 \& 5864 \& 54151 \& 60016 \& 4.92
6.08 \& 25.40
44.52 \& 23.39
40.76 \& 4.89
6.23 \& 24.88
47.75 \& 23.01 <br>
\hline 1997Q2 \& 5895 \& 54260 \& 60155 \& 6.08
5.33 \& 44.52
22.06 \& 40.76
20.42 \& 6.23
5.17 \& 47.75
20.00 \& 43.69 <br>
\hline 199703
189704 \& 5886 \& 54050 \& 59935 \& 4.19 \& 22.06
6.55 \& 20.42
6.32 \& 5.17
4.14 \& 20.00
6.46 \& 18.54 <br>
\hline 1997Q4 \& 5908
5927 \& 54775 \& 60683 \& 5.00 \& 24.85 \& 2.32 \& 4.14
4.89 \& 6.46
24.70 \& 6.23 <br>
\hline 199802 \& 5927 \& 55334 \& 61261 \& 6.20 \& 42.07 \& 38.60 \& 4.8.58 \& 24.70
48.29 \& 22.78 <br>
\hline 199803 \& 5964
5947 \& 55610 \& 61574 \& 5.23 \& 17.66 \& 16.46 \& 5.48 \& 19.58 \& 44.26 <br>
\hline 199824 \& 5959 \& 55349 \& 61296 \& 3.86 \& 6.50 \& 6.25 \& 3.55 \& 6.15 \& 18.29
5.90 <br>
\hline 199901 \& 5903 \& 56095 \& 62050 \& 4.80 \& 20.30 \& 18.81 \& 4.89 \& 21.77 \& 5.90
20.15 <br>
\hline 199902 \& 5864 \& 57002 \& 62865 \& 6.07
5.02 \& 45.10 \& 41.43 \& 6.25 \& 47.72 \& 20.15
43.81 <br>
\hline 199903 \& 5870 \& 57025 \& ${ }_{62895}$ \& 5.02
3.48 \& 17.57
5.87 \& 16.40
565 \& 5.14 \& 18.18 \& 43.81
16.96 <br>
\hline 199904 \& 5885 \& 57932 \& 63797 \& 3.48
4.75 \& 5.87
20.43 \& $\begin{array}{r}5.65 \\ \hline 18.98\end{array}$ \& 3.55 \& 6.04 \& 16.96
5.81 <br>
\hline 200001 \& 5782 \& 58480 \& 64262 \& 6.41 \& 20.43
47.38 \& 18.98
43.69 \& 4.88 \& 21.85 \& 20.29 <br>
\hline 200002 \& 5781 \& 58784 \& 64566 \& 6.4
5.09 \& 47.38
18.28 \& 43.69
17.10 \& 6.51 \& 48.71 \& 44.82 <br>
\hline 200003 \& 5663 \& 57686 \& 63349 \& 5.9
3.91 \& 18.28
6.57 \& 17.10
6.33 \& 5.12
3 \& 18.94 \& 17.70 <br>
\hline 200004 \& 5836 \& 58047 \& 63883 \& 5.54 \& 6.57
24.31 \& 6.33
22.60 \& 3.87 \& 6.47 \& 6.24 <br>
\hline 200101 \& 5716 \& 58722 \& 64437 \& 7.18 \& 24.31
48.21 \& 22.60
44.57 \& 5.59
709 \& 24.02 \& 22.33 <br>
\hline 200102 \& 5772 \& 58585 \& 64356 \& 5.54 \& 48.21
19.42 \& 44.57
+8.17 \& 7.09 \& 47.16 \& 43.60 <br>
\hline 200103 \& 5741 \& 59179 \& 64920 \& 5.54
3.59 \& 19.42
5.95 \& 18.17
5.74 \& 5.62 \& 19.48 \& 18.24 <br>
\hline 200104 \& 6027 \& 59330 \& 65357 \& 5.67 \& $\begin{array}{r}5.95 \\ 18.52 \\ \hline\end{array}$ \& 5.74
17.33 \& 3.48 \& 5.90 \& 5.69 <br>
\hline $2002 \mathrm{Q1}$ \& 5987 \& 59932 \& 65919 \& 5.67
8.15 \& 18.52
41.05 \& 17.33
38.06 \& 6.13 \& 21.22 \& 19.82 <br>
\hline 2002 Q 2 \& 5963 \& 59858 \& 65821 \& 8.75
5.71 \& 41.05
19.69 \& 38.06
18.42 \& ${ }^{8.88}$ \& 47.16 \& 43.68 <br>
\hline 200203 \& 5852 \& 58878 \& 64730 \& 3.95 \& 19.69
6.85 \& 18.42
6.59 \& 5.72 \& 19.94 \& 18.66 <br>
\hline 200204 \& 5804 \& 60189 \& 65993 \& 6.28 \& 6.85
24.85 \& 6.59
23.22 \& 3.32 \& 6.11 \& 5.86 <br>
\hline $2003 \mathrm{Q1}$ \& 5787 \& 62172 \& 67959 \& 6.28 \& 24.85
51.84 \& 23.22
48.24 \& 6.18 \& 24.30 \& 22.70 <br>
\hline 200302 \& 5947 \& 63268 \& 69215 \& 6.20 \& 59.84
20.75 \& 48.24
19.50 \& 10.00
5 \& 55.09 \& 51.25 <br>
\hline 2003 a 3 \& 6016 \& 64590 \& 70606 \& 3.48 \& 20.75
5.89 \& 19.50
5.69 \& 5.80 \& 18.04 \& 16.99 <br>
\hline 2003Q4 \& 5548 \& 61697 \& 67245 \& 3.48
6.04 \& 5.89
23.12 \& 5.68 \& 3.48 \& 5.88 \& 5.68 <br>
\hline 200401 \& 5771 \& 65629 \& 71400 \& 6.04
9.18 \& 23.12
48.82 \& 21.71 \& 5.51 \& 19.43 \& 18.00 <br>
\hline \& \& \& \& \& 48.82 \& 45.61 \& 9.97 \& 54.98 \& 51.34 <br>
\hline
\end{tabular}

Res Var Index	1	2	3	4	5	6	7	8	9
Res Var Name	CUSN	CUSH	CUSR	USEN	USEH	USER	USNN	USNH	USNR
Description	ENGI: Number of Non-Heating Residential Customers	ENG: Number of Heating Residential Customers	ENGI: Number of Residential Customers	ENGI: Natural Gas Consumption per Non-Heating Residential Customers	ENGI: Natural Gas Consumption per Heating Residential Customers	ENGI: Natural Gas Consumption per Residential Customers	ENGI: Natural Gas Consumption per Non-Heating Rosidential Customers	ENGI: Natural Gas Consumption per Heating Residential Customers	ENGI: Natural Gas Consumption per Residential Customers
Start Year	1984	1984	1984	1984	1984	1984	1984	1984	1984
Start Period	4	4	4	4	4	4	4	4	4
Period / Year	4	4	4	4	4	4	4	4	4
Perrod/Cycle	4	4	4	4	4	4	4	4	4
2004Q2	5585	64293	69878	5.84	18.38	17.37	5.70	17.33	16.40
2004Q3	5675	66341	72016	3.68	5.92	5.74	3.67	5.90	5.73
2004Q4	5275	62637	67911	5.71	20.94	18.75	5.27	17.78	16.81
2005Q1	5403	66205	71607	9.02	46.66	43.82	8.78	52.50	49.27
2005 Q2	5384	65191	71575	5.79	18.88	17.90	5.50	17.08	16.21
2005Q3	5423	67908	73331	3.54	5.72	5.56	3.54	5.73	5.57
2005Q4	5076	64411	69487	5.78	20.84	19.74	5.36	17.69	16.79
2006Q1									
200602									
2006Q3									
200604									
2007Q1									
2007Q2									
2007Q3									
2007Q4									
2008Q1									
2008Q2									
2008Q3									
2008Q4									
200901									
2009Q2									
2009Q3									
$2009 \mathrm{Q4}$									
201001									
201002									
2010Q3									
201004									
201101									
201102									
2011Q3									
201104									
2012Q1									
2012Q2									
2012Q3									
$2012 \mathrm{Q4}$									
2013Q1									
201302									
2013Q3									
2013Q4									
2014 Q1								.	
2014Q2									
2014Q3									
$2014 \mathrm{Q4}$									
2015Q1									
201502									
201503									
2015Q4									
201601									
201602									
2016Q3									
2016Q4									
201701									
2017Q2									
2017Q3									
209784									
201801									
201802									
2018Q3									
2018Q4									
2019Q1									
201902									
2019Q3									
201904									
202001									
202002									
2020Q3									
202004									





Res Var index Res Var Name	$\begin{gathered} 19 \\ \text { POP } \end{gathered}$	$\begin{gathered} 20 \\ \text { NMIG } \end{gathered}$	$\begin{gathered} 21 \\ \text { EMP } \end{gathered}$	$\begin{gathered} 22 \\ \text { RUEM } \end{gathered}$	$\begin{gathered} 23 \\ \text { UEMP } \end{gathered}$	$\begin{gathered} 24 \\ \text { REMP } \end{gathered}$	$\stackrel{25}{\text { LBFC }}$	$\begin{aligned} & 26 \\ & \mathrm{HH} \end{aligned}$	$\begin{gathered} 27 \\ \text { HSTM } \end{gathered}$
Description	Tolal Population	Net Migration	Employment.   Total Non-   Agriculture. By Place of Work NAICS	Unamployment Rate	Number Unemployed	Resident Employment		Households, Family and Non-	Housing Starts, Private Multi-
Stan Year	1984	1984	1984	1984	1984	Employment 1984	Total Labor Force	Family	Family
Period / Year	4	4	4	4	4	4	4	4	1984
Period/ Cycie	4	4	4	4	4	4	4	4	4
2004Q2				4	${ }^{4}$	4	4	4	4
2004Q3	1301.8534	1.7255 1.4414	626.667	3.9631	28.665	694.632	723.297	499.832	
2004Q4	1304.5434	1.4.422	629.300 630.767	3.7472	27.152	697.450	724.603	501.221	1.2098 1.3036
2005Q1	1307.2389	1.4.914	630.767 633.100	3.5868 3.6959	26.046	700.105	726.151	502.678	1.2428
200502	1309.9400	1.5165	633.100 635.000	3.6959 3.5100	26.964	702.581	729.544	504.199	1.2428 0.9884
200503	1312.7878	1.60\%?	635.000 636.500	3.5100 3.6243	26.398 26.576	704.848	731.246	609.654	1.3884
2005Q4	1315.7833	1.8215	636.133	3.6243 3.5361	26.576 25.958	706.709 708.112	733.285	510.868	0.6629
200601	1318.9273	1.9812	640.501	3.3943	24.958	708.112 711.032	734.068 736.015	512.470 514.140	1.0173
200662	1322.2208	2.1418	643.181	3.4014	25.105	711.032	736.015 738.082	514.140	1.0361
2006034	1325.6648 1329.1158	2.3037	645.799	3.4034	25.180	714.950	738.082 740.140	516.071	0.8549
200701	1329.1158 1332.5735	2.3218	647.468	3.4031	25.257	716.815	742.172	518.038 519.807	0.8342
200702	1332.5735 1336.0384	2.398	649.597	3.4016	25.313	718.847	744.160	521.751	0.8996
200703	1339.5648	2.34131	651.647	3.4012	25.380	720.814	746.194	523.633	0.9016
2007Q4	1343.0988	2.48 .107	653.560	3.4009	25.447	722.809	748.256	525.532	0.9269
2008Q1	1346.6398	2.4684	655.744 658.166	3.4006	25.516	724.814	750.330	527.483	0.9523 0.9696
2008Q2	1350.1886	2.48174	658.166 660.449	3.3999 3.3986	25.581	726.834	752.415	529.462	0.9775
2008Q3	1353.7831	2.5.46	66.449 682.605	3.3986 3.3968	25.644	728.911	754.555	531.399	0.9600
2008 Q4	1357.3854	2.5139	664.959	3.3968 3.3952	25.703	730.991	756.694	533.349	0.9675
2000Q1	1360.9951	2.5\%.2	666.664	3.3933	25.763	733.058	758.821	535.312	0.9712
2009 Q 2	1364.6129	2.6027	668.462	3.3933 3.3914	25.821 25.881	735.136 737245	760.957	537.306	0.9668
200903	1368.2252	2.6088	669.960	3.3893	25.881 25.938	737.245 738.335	763.126	539.283	0.9554
200904	1371.8453	2.62 .94	671.480	3.3893 3.3873	25.938 25.995	738.335 741.419	765.273	541.239	0.9518
201001	1375.4734	2.6480	672.510	3.3859 3.	25.995 26.050	741.419 743.492	767.414	543.206	0.9459
201002	1379.1090	$2.66 / 8$	673.594	3.3859 3.3830	26.050	743.492 745.573	769.542	545.176	0.9249
201003	1382.5753	2.51:2	674.170	3.3806	26.106 26.156	745.573	771.678	547.096	0.9114
2010Q4	1386.0482	2.52113	674.935	3.3784	26.156 26.208	747.554 749.532	773.710	548.924	0.9199
201101	1389.5285	2.54 .14	675.765	3.3784 3.3764	26.208 26.260	749.532 751.510	775.740	550.778	0.9091
201192	1393.0150	2.5017	676.557	3.3764 3.374	26.280 26.314	751.510 753.510	777.770	552.655	0.9083
201103	1396.3656	2.4446	676.999	3.3744 3.3715	26.314 26.358	753.510 755.431	779.824	554.458	0.9138
201104	1399.7216	2.4634	677.645	3.3682	26.358 26.388	755.431 757.352	781.789	556.168	0.9184
2012Q1	1403.0838	2.4822	678.126	3.3682 3.3643	26.388 26.434	757.352 759.285	783.750	557.894	0.9023
2012 C 2	1406.4543	2.5146	678.759	3.3643 3.3597	26.434 26.454	759.285	785.719	559.622	0.8977
2012 Q3	1409.8062	2.5091	679.132	3.3542	26.464 26.486	761.227	787.691	561.331	0.8939
201204	1413.1664	$2.5 \times 26$	679.753	3.3542 3.3485	26.486 26.507	763.165	789.652	562.999	0.8905
$2013 Q 1$	1416.5355	$2.54{ }^{\text {c }}$ 2	680.174	3.3485 3.346	26.507	765.087	791.604	564.681	0.8837
2013 Q2	1419.9125	2.56 \%91	680.703	3.3426 3.3363	26.526 26.542	767.046 769.015	783.571	566.358	0.8830
2013Q3	1423.1885	2.4816	681.280	3.3363 3.3299	26.542 26.555	768.015	795.557	588.038	0.8728
2013Q4	1426.4717	2.5141	681.874	3.3299 3.3235	26.555 26.567	770.816	797.471	569.658	0.8735
$2014 \mathrm{Q1}$	1429.7629	$2.5 \div 56$	682.344	3.3235 3.3170	26.567 26.580	772.815	789.382	571.279	0.8739
201402	1433.0612	2.54 .44	682.989	3.3105	26.580 26.582	774.730 76.668	801.309	572.888	0.8732
201403	1436.1951	2.4019	683.530	3.3105 3.3039	26.582 26.600	776.668 778.506	803.260	574.548	0.8583
$2014 \mathrm{Q4}$	1439.3351	2.424	684.185	3.2974	26.600	778.506 780.335	805.107	578.123	0.8628
201501	1442.4819	$2.46 \cdot 16$	684.684	3.2974 3.2909	26.608 26.616	780.335 782.478	806.943	577.724	0.8634
2015Q2	1445.6344	2.46869	685.462	3.2989 3.2843	26.616 26.625	782.178 794.048	808.794	579.359	0.8659
2015Q3	1448.7855	2.4891	686.226	3.2778 3.278	26.625 26.633	784.048 785.806	810.674	581.015	0.8797
201504	1451.9425	2.50 .47	687.141	3.2715	26.633 26.643	785.806 787.770	812.540	582.647	0.8852
201601	1455.1059	2.5714	688.063	3.2715 3.2653	26.643 26.654	787.770 789.631	814.413	584.280	0.8882
201602	1458.2748	2.55002	688.957	3.2653 3.2592	26.654 26.667	789.631 791.522	816.285	585.968	0.8980
2016Q3	1461.4132 1464.5570	2.5: 10	689.624	3.2532	26.667 26.678	791.522 783,381	818.189 820.059	587.675 588.384	0.8076
201701	1464.5570 1467.7070	2.55999	690.625	3.2474	26.692	785.239	821.930	588.384 581.072	0.9143
201702	1470.8620	2.50,10	681.877	3.2419	26.708	797.114	823.822	582.745	0.9128
201703	1474.0546	2.66..0	693.270 694.759	3.2369	26.729	799.031	825.764	594.420	0.9200 0.9329
2017Q4	1477.2527	$2.6 \times 1.56$	694.759	3.2323 3.2281	26.754 26.781	800.852	827.707	596.115	0.9329 0.9470
201801	1480.4568	2.7035	697.965	3.2281 3.2242	26.781 26.812	802.857	829.639	597.812	0.9470 0.8562
201802	1483.6662	2.7235	699.599	3.2242 3.2204	26.812 26.844	804.778 806.745	831.590	599.482	0.9688
201803	1486.8267	2.71:31	700.944	3.2165	26.844 26.875	806.715 808.629	833.558 835.504	601.178	0.9821
201804	1489.9923	2.7:70	702.704	3.2130	26.875	808.629 810.519	835.504 837.425	602.847	0.9884
201901	1493.1636	2.7!.12	704.377	3.2095	26.907 26.940	810.519 812.435	837.425 839.375	604.516 606.184	0.9763
201903	1486.3399 1499.3467	2.7754 $2.6 \% 47$	706.062	3.2051	26.974	814.359	839.375 84.333	606.184 607.814	0.9868
2019Q4	1502.3577	2.6.1:3	707.713	3.2027	27.004	816.179	843.184	609,401	0.9913 $1: 0026$
202001	1505.3735	2.6\% 21	709.431 711.050	3.1992 3.1957	27.035	818.015	845.051	610.988	1.0026 1.0099
2020Q2	1508.3934	2.65.49	712.551	3.1957 3.1918	27.065	819.850	846.914	612.588	1.0091 1.0088
2020Q3	1511.1360	2,4:14	713.934	3.1918 3.1882	27.082	821.709	848.801	614.182	1.0088 1.0138
2020Q4	1513.8815	2.4609	713.934 715.347	3.1882 3.1848	27.116	823.392	850.508	615.654	1.0138 1.0073
			715.347	3.1848	27.141	825.056	852.187	617.127	0.9950


Res Var Index	28	29	30	31	32	33	34	35	36
Res Var Name	HSTS	HSTT	HSOLD	HINC	PCl	RPCI	PINC	RPINC	RPIR


Description	Housing Starts,   Private Single Family	Housing Starts Total Private	Home Sales. Existing Singleamlly units	Per Capita Personal income By Place of Residence		Real Per Capita Pergonal Income	Personal Income, Total, By Place of R Residence	Real Personal Income, Total	Real income, Residence Adjustment
Start Year	1984	1:54	1984	1984	1984	1984	1984	1984	1984
Start Pariod	,		4	4	4	4	4	4	4
Periad / Year	4	4	4	4	4	4	4	4	4
Period / Cycle	4	4	4	4	4	4	4	4	4
1884Q1	8.8378	10.9\% 0	15.200	39.2809	14.1131	22.0593	13720.00	21444.87	2067.90
198402	7.9622	10.41:38	16.300	39.6849	14.3070	22.1474	13876.00	21635.09	2136.26
198403	7.6684	10.5:11	12.600	40.4733	14.6293	22.4727	14363.00	22063.66	2175.18
1884Q4	9.4995	12.6) U	11.700	41.3541	14.9824	22.8718	14784.00	22568.92	2202.85
198501	9.7410	14.2: $: 1$	13.200	42.4888	15.4244	23.2954	15297.00	23103.06	2245.82
198502	10.5343	17.5:12	14.700	42.9866	15.6468	23.4536	15596.00	23377.40	2264.89
198503	9.0169	14.21, 18	16.300	43.3079	15.7798	23.5014	15838.00	23589.60	2257.83
198504	11.1747	16.4. 3	13.900	44.2612	16.1475	23.8615	16322.00	24119.28	2277.16
198601	15.5154	21.17\%9	14.600	45.5292	16.6106	24.3704	16808.00	24806.70	2285.83
198602	13.7531	98.51.12	14.300	46.1399	16.8606	24.7223	17283.00	25341.64	2302.05
1986Q3	13.5674	18.2931	14.600	46.3599	16.9682	24.6843	17516.00	25481.54	2344.53
1986Q4	13.0298	17.81,36	17.500	47.0289	17.2389	24.9106	17821.00	25896.28	2385.73
198701	11.8098	14.9:18	16.800	47.7503	17.5394	25.0619	18362.00	26237.43	2389.12
198702	12.3730	15.3:410	15.400	48.6371	17.8822	25.3339	18853.00	26709.26	2404.16
198703	11.6998	14.4790	15.100	49.9537	18.3861	25.7848	18513.00	27365.16	2441.59
198704	11.1964	13.8979	14.400	51.5364	18.9846	26.4002	20282.00	28204.31	2476.67
198801	12.5773	18.3:78	14.100	51.7878	19.1207	26.3610	20563.00	28349.46	2502.27
198802	8.2599	11.8505	14.000	52.3635	19.3326	26.3613	20929.00	28538.12	2541.69
1988Q3	7.7653	11.32,26	14.600	53.0392	19.5814	26.3854	21305.00	28707.91	2548.07
1988Q4	7.0208	9.56:36	12.700	54.2866	20.0413	26.7438	21915.00	29244.18	2580.80
198981	6.4051	8.7817	10.000	55.2885	20.4105	26.9172	22431.00	29581.81	2570.32
198902	6.0648	7.25.18	9.600	55.3741	20.4414	26.6112	22578.00	29392.70	2550.28
188803	5.5336	7.1.)5	9.700	55.4738	20.4775	26.4896	22858.00	29310.26	2549.67
198904	4.9087	6.15\%7	10.000	55.7097	20.5639	26.3833	22794.00	29244.45	2557.00
1990Q1	5.1058	$5.6 \% 9$	9.400	55.2127	20.3798	25.7659	22830.00	28610.80	2510.87
1980Q2	3.7655	4.4:19	8.400	55.9547	20.5809	25.7557	22905.00	28650.23	2514.17
198003	3.3691	3.8i/9	8.300	56.0827	20.6778	25.5440	22989.00	28389.01	2489.19
189004	3.6860	4.71.:19	7.700	55.3353	20.4688	24.9625	22744.00	27737.26	2446.40
1991Q1	2.9906	3.24:6	8.000	56.3812	20.9564	25.3867	23273.00	28170.71	2643.62
189102	3.9135	4.03/18	10.100	56.6156	21.1122	25.4143	23433.00	28208.06	2630.25
199103	3.5952	3.7131	9.900	56.6062	21.1379	25.2665	23503.00	28093.47	2620.13
199104	3.9180	4.0:11	10.600	57.3074	21.4239	25.4054	23863.00	28297.84	2608.86
$1982 \mathrm{Q1}$	3.6335	$53.8 \leqslant 5$	12.300	57.3842	21.4801	25.2878	23979.00	28216.56	2600.55
1892 Q 2	3.9003	3 4.0i\%8	13.000	58.1336	21.7948	25.4834	24362.00	28484.91	2610.90
199203	3.7764	4.1139	12.000	58.5777	21.9722	25.5125	24624.00	28591.67	2595.13
199204	4.4427	7 4.6!33	13.000	- 60.3169	22.6156	26.0948	25411.00	28320.27	2664.22
1993 Q1	3.9187	4.0.11	13.300	- 58.4031	21.8654	25.0992	24632.00	28274.94	2616.05
199302	3.8781	$4.4 .71: 3$	13.200	59.5197	22.2744	25.4048	25158.00	28683.63	2691.67
199303	4.0073	3 4.31	14.300	60.2819	22.5581	25.6403	25552.00	29043.29	2723.38
199304	4.0997	4.3:39	16.500	60.5679	22.6683	25.6304	25751.00	29115.93	2763.36
1994Q1	3.6871	13.9 (1)	16.000	61.3351	22.9480	25.8441	26144.00	29443.43	2691.62
199402	4.4166	6 4.7133	- 16.800	62.8374	23.5130	26.3368	28865.00	30091.40	2785.68
199403	4.2278	8 4.51, i3	- 16.100	-63.2155	23.6842	26.2953	27149.00	30142.19	2755.63
199404	4.3981	1 4.8iii0	- 16.000	-64.2376	24.1132	26.6526	27731.00	30651.47	2778.76
189501	4.4029	9 4.8:311	16.500	-64.5073	24.2789	26.7080	28014.00	30815.43	2665.30
1995Q2	4.0999	$94.4: 3$	. 16.300	-65.7585	24.7970	27,1266	28704.00	31400.69	2636.42
1995 Q3	4.0936	$6 \quad 4.3126$	- 17.100	065.4600	24.7317	26.9406	28734.00	31300.31	2709.12
199504	3.6331	13.70 .99	- 17.300	066.0210	24.9874	- 27.1057	29138.00	31608.18	2717.36
1996, 1	4.1762	2 4.5:4	$4 \quad 17.900$	068.2732	25.8773	- 27.8977	30287.00	32651.63	2746.93
199602	4.4237	7 4.6\%16	- 19.400	- 69.1562	26.2565	- 28.1263	30844.00	33040.53	2792.66
199603	4.5250	0 4.9737	- 20.900	- 69.9106	26.5713	-28.3502	31311.00	33407.31	2819.95
199604	4.3943	3 5.1rio	20.000	70.5557	26.8483	28.4655	31736.00	33835.75	2860.56
1997Q1	4.6566	65.2 :17	21.000	69.7642	26.5752	28.0385	31511.00	33246.11	2964.73
199702	4.3494	45.0115	$5 \quad 22.800$	70.7528	26.9828	- 28.4146	32094.00	33797.03	2947.53
199703	4.9123	3 5.4 $1 / 2$	$2 \quad 24.400$	71.8129	27.4027	$7 \quad 28.7789$	32706.00	34348.55	2965.83
1997Q4	4.8184	4 5.6:6	- 25.300	- 72.9582	27.8620	- 29.1638	33369.00	34828.19	3018.76
1998Q9	5.5377	7 - 5.8ツ!2	24.800	- 73.8231	28.2196	- 29.5153	33914.00	35471.18	2982.95
199802	5.1800	05.5068	$8 \quad 29.900$	$0 \quad 75.2926$	28.8033	30.0751	34735.00	36268.81	3085.49
199803	5.2661	15.46 .11	125.900	$0 \quad 76.9528$	29.4627	730.6622	35648.00	37099.33	3100.28
199884	5.3408	$85.6: 0$	$0 \quad 25.600$	$0 \quad 78.0362$	29.9032	231.0061	36301.00	37639.85	3107.54
199901	5.8090	0 6.2.1	123.500	-77.1690	29.6032	230.6176	36056.00	37291.47	3389.29
199902	5.8087	$7 \quad 6.01 .5$	$5 \quad 28.100$	- 78.1377	29.9897	$7 \quad 30.6261$	36660.00	37869.93	3427.90
199903	5.9380	0 6.4.s, 7	$7 \quad 28.700$	- 79.4435	30.5037	$7 \quad 31.1724$	37416.00	38236.17	3537.89
199904	5.5910	0 5.8!: 0	$5 \quad 26.200$	-81.1508	31.1616	6 31.6561	38366.00	38974.79	3620.55
200001	5.9264	4 6.3:38	$8 \quad 23.000$	-86.3042	33.1425	$5 \quad 33.3774$	40957.00	41247.38	3981.03
200002	5.3120	- 5.7 :16	$6 \quad 28.500$	-85.9178	32.9917	$7 \quad 33.0654$	40928.00	41019.47	3959.83
200003	5.6236	6 6.0․14	$4 \quad 31.200$	87.1124	33.4442	$2 \quad 33.3645$	41639.00	41539.72	4128.13
200004	6.8586	6 7.2\%	$8 \quad 26.000$	87.9798	33.7658	833.5354	42191.00	41903.13	4101.82
200109	5.8335	35 6.2: 8	$8 \quad 20,900$	-88.5736	33.9770	033.4742	42608.00	41977.50	4022.58
200102	5.2956	565	$1 \quad 27.400$	-88.3226	33.8589	3933.1476	42613.00	41717.74	3953.17
200103	6.6405	5 6.8in	$1 \begin{aligned} & 30.400\end{aligned}$	-87.8854	33.6809	9 32.9265	42524.00	41571.59	3895.75
2001 Q 4	5.1642	26.10 .5	$5 \quad 24.900$	-88.1147	33.7531	$31 \quad 32.9501$	42751.00	41733.94	3858.96
2002 Q 1	7.1926	26 8.4i:6	$6 \quad 12.000$	-88.4908	33.8741	$41 \quad 32.9822$	43041.00	41920.47	3762.43
2002Q2	4.1520	20.1:13	$3 \quad 25.300$	- 89.2232	34.2035	35 33.0836	43598.00	42170.53	3759.73
200203	6.5708	$888.7: 0$	$0 \quad 29.600$	- 88.4786	33.9780	$30 \quad 32.7212$	43420.00	41813.93	3709.52
200204	5.8408	-7.11.3	$3 \quad 27.800$	-88.3086	33.9658	$58 \quad 32.5754$	43514.00	41732.84	3699.12
2003Q1	5.8813	33 7.1:1	$: 10.900$	-88.4494	34.0530	$30 \quad 32.4157$	43736.00	41833.11	3558.27
$2003 \mathrm{Q2}$	6.3898	8 -7.6\%9	$9 \quad 26.500$	-89.0008	34.2460	$60 \quad 32.5471$	44095.00	41907.43	3571.56
200303	6.5460	80 8.5:9	939.600	00 89.8855	34.5756	$56 \quad 32.7005$	44619.00	42199.29	3631.76
200304	6.1316	16 7.8:3	\% 30.400	. $00 \quad 90.9448$	34.9761	61 32.9727	45237.00	42645.84	3655.87
$2004 \mathrm{Q1}$	6.2436	  6.1	1511.500	O0 92.8140	35.6894	$94 \quad 33.3285$	46263.00	43202.53	3619.59


Res Var Index Res Var Name	$\begin{gathered} 28 \\ \text { HSTS } \end{gathered}$	$\begin{gathered} 29 \\ \text { HSTT } \end{gathered}$	$\begin{gathered} 30 \\ \text { HSOLE } \end{gathered}$	$\begin{gathered} 31 \\ \text { HINC } \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{PCl} \end{gathered}$	$\begin{gathered} 33 \\ \mathrm{RPCl} \end{gathered}$	$\begin{gathered} 34 \\ \text { PINC } \end{gathered}$	$\begin{gathered} 35 \\ \text { RPINC } \end{gathered}$	$\begin{gathered} 36 \\ \text { RPIR } \end{gathered}$
Description Start Year	Housing Starts.   Private Single   Family	Housing Slants Total Private	Home Sales.   Existing Single-   family units	Average   Housahold Income	Per Capita   Personal Income -   By Place of   Residence	Real Per Capita Personal Income	Personal lincome, Total, By Place of Residence	Reai Personal Income. Total	Real Income, Residence
Start Period	1984	1: 14	1984	1984	1984	1984	Residence 1984	come, Total 1984	Adjustment
Period / Year	4	4	4	4	4	18	1984 4	1984	1984
Period/Cycle	4	4	4	4	4	- 4	4	4	4
200402		8.0.13	4 4	4	4	4	4	4	4
2004 Q 3	6.8606 6.5131	$8.0 \div 13$	27.600	94.0436	36.4816	33.4739	47006.00	43488.24	
2004Q4	6.5131 7.5724	7.8 8.8	35.200 3.100	95.5607	36.7914	33.9141	47897.00	44151.21	3669.20
200501	6.7195	7.71	31.100 27.478	97.7027 97.9138	37.6477	34.4361	49113.00	44823.44	$3663.36$
2005Q2	6.3177	7.6	24.478 24.277	97.9138 98.1333	37.7651 38.1804	34.3519 34.4489	49368.00	44906.13	3692.15
2005Q3	7.3404	$8.01 \cdot 14$	21.449	98.9810	38.1804 38.5325	34.4489 34.4514	50014.00	45125.96 45227.37	3634.33
2006Q1	5.8483	$6.8 \cdot 6$	18.951	99.9991	38.9722	34.5998	1279.00	45227.37	3667.54
2006Q2	5.6963	6.7	21.592	100.9841	39.3961	34.8162	51960.65	45920.05	3689.73
2006Q3	5.2100	$6.01 \cdot 18$	19.875	101.9243	39.8146	35.0348	52643.75	45920.05 46323.71	3686.36
2006Q4	4.9675	$5.8!\cdot 0$ 5.8	18.720	102.9689	40.2719	35.3306	53385.99	46333.71 4683.47	3709.15 3744.97
2007Q1	4.9417	5.8	18.280 18089	103.8530	40.6575	35.5268	54038.56	47219.21	3744.97 3770.02
200702	4.9139	5.88	18.089 13.281	104.6593	41.0119	35.6855	54651.31	47553.56	3770.02 3783.91
200703	4.9027	5.8: 8	17.465	105.5991	41.4217	35.8850	55340.93	47957.07	3806.35
200704	4.9097	$5.8 \cdot 13$	17.601	106.5054 107.4416	41.8183 42.2311	36.0824	56018.30	48334.68	3829.24
200804	4.8897	$5.81,2$	17.314	107.4416 108.4192	42.2311 42.6628	36.2674 36.4573	56720.53	48710.65	3849.47
200802	4.8799	5.8\%\%9	17.468	109.5337	42.6628 43.1453	36.4573 36.7091	57451.40	49094.87	3869.43
200803	4.8711	5.8:136	16.733	110.5659	43.1453	36.7091 38.9278	58254.23	48564.14	3893.40
2008Q4	4.8671	$5.8 \div 3$	17.057	110.5659 111.6275	43.5956 44.0590	36.9278 37.1641	59019.00	49992.21	3916.70
200901	4.8189	5.7: $\% 7$	16.848	\$12.6757	44.0590 44.5199	37.1641 37.3872	59805.02	50446.07	3939.45
$2009 \mathrm{Q2}$	4.8081	5.71,35	17.233	113.8423	44.5199 45.0267	37.3872 37.6601	60591.38	50883.82	3961.10
2009 Q 3	4.8185	5.712	17.059	114.9772	45.5200	37.6601 37.8197	61444.03	51391.41	3984.24
2009Q4	4.8554	5.8i:14	17.307	116.0481	45.9893	37.8197 38.1593	62281.66	51882.71	4007.44
2010Q2	4.8329	$5.7: 8$	1\%.634	116.9834	46.98053	38.1593 38.3328	63090.19 63829.30	52348.66 52725.78	4031.01
201003	4.8663	5.7 \% 6	17.910	118.0415	46.8661	38.6501	64823.30	52725.78 53164.85	4052.19
201004	4.8990 4.9244	5.8:19	18.174	119.0558	47.3079	38.7452	65406.72	53568. 20	4073.97
201101	4.9410	5.8:35	12.391	120.0418	47.7408	38.9219	66171.02	53947.58	4085.94
201102	4.9450	5.8:12 $5.8 \% 8$	18.554	120.9872	48.1598	39.0804	66819.45	54303.37	4117.84
2011Q3	4.9376	$5.8 \% \% 8$ $5.8!\cdot 1$	18.637	121.9882	48.5948	38.2524	67683.30	54679.21	4140.30
201104	4.9283		18.647	123.0072	49.0338	39.4186	68469.27	55042.75	4163.99
2012Q1	4.9116	5.8 .816	18.647	124.0262	49.4746	39.5836	69250.67	55405.89	4187.01
2012Q2	4.8937	$5.80 \% 3$	18.607	124.9539	49.8783	38.7188	69984.78	55728.78	4210.73
2012 Q 3	4.8797	5.71:12 $5.7 / 12$	18.567   18.550	126.0127	50.3347	39.8864	70783.39	56098.41	4234.99
2012Q4	4.8779	5.7.12 5.71:5	18.550 18.555	127.0194	50.7665	40.0324	71570.99	56437.98	4258.85
2013 Q 1	4.8814	5.71 .5 5.7744	18.555 18.594	128.0604	54.2143	40.1866	72374.36	56790.38	4283.25 4307.40
201302	4.8803	$5.77 \cdot 3$ 5.7:31	18.594 18.606	129.0894 130.2126	51.6551	40.3320	73171.32	57131.75	4337.40 4332.02
2013Q3	4.8854	5.7! 11	18.653	130.2126 131.3412	52.1348	40.5080	74026.86	57517.81	4357.30
201304	4.9000	$5.7: 39$	18.754	131.3412 132.4675	52.6153 53.0950	40.6869	74881.53	57805.09	4383.15
2014Q1	4.9187	5.7919	19.881	132.4675 133.5805	53.0950	40.8653	75738.48	58293.20	4409.43
$2014 \mathrm{Q2}$	4.9302	5.7305	18.962	133.5805 134.7604	53.5683 54.0734	41.0320	76580.01	51666.06	4434.95
201403	4.9386	5.8:15	19.023	134.7604 135.9379	54.0734 54.5760	41.2202	77480.44	59074.07	4460.81
201404	4.9618	5.8:52	19.170	135.9379 137.1329	54.5760	41.4084	78381.85	58471.92	4486.74
201501	4.9911	5.8: 10	19.349	137.1329 138.3356	55.0883	41.6060	79290.47	58884.88	4513.36
2015 Q2	5.0203	$5.8!19$	19.527	138.3356 139.5998	55.6071	41.8033	80212.28	60300.56	4540.03
201503	5.0512	5.9:\% 4	19.715	140.9048	56.1530 56.7135	42.0159	81176.67	60738.61	4566.74
2015Q4	5.0748	5.91130	+9.861	142.1994	56.7135 57.2712	42.2379	82165.65	61183.62	4593.52
201601	5.0844	$5.9<23$	10.925	142.1994 143.4817	57.2712 57.8276	42.4619 42.6778	83154.42	61652.17	4621.28
2016Q2	5.0827	5.91174	19.926	144.7927	57.8276 58.3988	42.6778	84145.34	62100.84	4648.30
2016Q3	5.0786	5.9!:.8	10.919	146.1126	68.3988 58.9756	42.8982	85161.52	62558.83	4674.94
2017Q1	5.0814	5.90:12	15.937	147.4974	59.5768	43.1218 43.3584	88187.70 87253.68	63018.51	4701.37
2017Q2	5.0818 5.0756	6.00:8	0.000	148.8861	60.9785	43.5679	87253.68 88324.48	63500.81	4727.90
2017Q3	5.0701	$6.01 \% 5$	0.000	150.3179	60.7983	43.7821	89425.87	64397.46	4752.14
2017 Q4	5.0726	$6.0 \cdot 1$ 6.0 .17	0.000	151.7008	61.3993	43.9791	90505.91	64827.58	4776.07
2018Q1	5.0738	6.0 .37 $6.0 .2 \cdot 5$	0.000	153.2085	62.0514	44.2088	91665.63	64827.58 65307.63	4799.81
2018Q2	5.0697	6.0 .18 6.0 .8	0.000 0.000	154.6120	62.6599	44.4054	92765.33	65740.26	4823.11
2018Q3	5.0666	6.0 .8 6.0 :. 0	0.000 0.000	156.1472	63.3229	44.6366	93950.03	65720.26   68.83	4847.02 4870.37
201804	5.0682	6.0 .15	0.000	157.5787 159.1478	63.9446	44.8325	95074.52	68658.19	4870.37 4894.05
201901	5.0671	6.0.:0	0.000 9.000	159.1478 160.6584	64.6275	45.0612	96287.00	67140.84	4894.05
201902	5.0625	6.6: 8	0.000	160.6584 162.1815	65.2748 65.9327	45.2676	97465.82	67591.87	4817.01 4840.32
201903	5.0605	6.6	4.000	182.1815 163.7419	65.9327 66.6071	45.4740	98657.71	68044.53	489.32 4963.66
201904	5.0601	$6.0 \cdot 12$	0.000	163.7419 165.4136	66.6071 67.3270	45.6893	99867.14	68504.14	4963.66 4986.87
202001	5.0533	$6.05 \% 1$	- .0 .000	165.4136 167.0245	67.3270 68.0242	45.9323	101148.31	69006.75	5010.83
2020Q2	5.0485	6.0633	0.000	167.0245 168.5589	68.0242 68.6900	46.1600	102401.85	69488.12	5035.18
202003	5.0475	6.0518	0.000	- $\begin{array}{r}168.5089 \\ \hline\end{array}$	68.6900 69.3457	46.3608	103611.49	69930.28	5059.53
2020Q4	5.0421	6.0\%/1	0.000	- 171.6797	79.3457	46.5479	104790.83	70340.16	5082.89
			0.000		70.0424	46.7541	106035.97	70780.23	5105.92


Res Var Index Res Var Name	$\begin{gathered} 37 \\ \text { RPTR } \end{gathered}$	$\begin{gathered} 38 \\ \text { PITP } \end{gathered}$	$\begin{gathered} 39 \\ \text { TPTR } \end{gathered}$	$\begin{gathered} 40 \\ \text { PiNF } \end{gathered}$	$\begin{gathered} 41 \\ \text { INDX } \end{gathered}$	$\begin{gathered} 42 \\ \text { PRCG } \end{gathered}$	$\begin{gathered} 43 \\ \text { PRCR } \end{gathered}$	$\stackrel{44}{\text { EGYG }}$	$\begin{gathered} 45 \\ \text { EGYR } \end{gathered}$
Description Slart Year	Real Nonfarm Propriators Income	Personal Incon: Total Proprietor Income,	Real Total Proprietors Income	Personal income.   Nonfam   Proprietors   Income	industrial   Production Index. Total	New Hampshire Natual Gas City Gate Price	New Hampshire Residential Natural Gas Price	New Hampshire Natural Gas Consumption by All	Now Hampshire Resididential Natural Gas
Start Period	1984	1934	1984	1984	1984	1984	1984	1984	Consumption
Period/Year	4	4	4	4	4	4	4	4	5984
Period / Cycle	4	4	4	4	4	4	4	4	4
$1984 \mathrm{Q1}$	1569.29	1009:10	1577.10						
196402	1574.33			1004.00 101700		3.68	6.5255	4197.21	484.44
1984Q3	1569.94	$102 \%$ \%0	15877.52	1017.00 1022.00		4.03	7.9521	519.21	110.31
188404	1589.17	1046.10	157962 15960	1022.00 1041.00		4.26	7.0481	643.30	204.73
1985Q1	1748.93	$1166 \% 0$	15961.01	1041.00 1158.00		4.39	6.9658	2146.38	805.14
198502	1788.23	1206. 30	1798.72	1158.00 1193.00		4.43	6.5717	1351.51	489.84
1985Q3	1828.91	1235:10	1839.33	1193.00 1228.00		4.40	8.1352	623.48	114.10
198504	1866.36	1270.10	1876.70	1228.00 1263.00		4.30	7.1575	726.49	204,31
1986Q1	1888.23	1294.00	1898.50	1263.00 1287.00		4.15	6.9209	2110.15	873.81
198602	1953.08	1339.00	1898.50      1834	1287.00 1332.00		3.97 3	6.4082	1298.05	531.94
198603	1990.89	1377.00	2003.99	1332.00 1368.00		3.78	8.0455	570.83	123.16
1986Q4	2027.37	141\% 60	2040.37	1403.00		3.57	7.0846	684.44	220.88
1987Q1	2170.50	154's:0	2204.79	1519.00		3.37	6.3498	2235.85	963.84
1987 Q2	2290.82	1644:40	2324.82	1617.00		3.20	5.8229	1376.75	582.92
1987Q3	2379.88	1724.00	2417.75	1697.00		3.06	7.3999	587.69	134,91
1987 Q4	2440.52	1784.10	2480.84	1755.00		. 98	6.4818	724.42	240.56
198841	2494.00	1832.100	2525.71	1809.00		6	6.1953	2398.33	1019.61
188802	2496.69	1854.100	2528.06	1831.00		2.97	535	1474.62	613.78
198803	2499.56	1886.\%0	2541.33	1855.00		3.01	1018	641.68	142.46
1988G4	2522.08	1919.40	2559.45	1890.00		3.06 3.14	894	777.82	250.68
198901	2537.35	1940.60	2558.46	1924.00		3.14 3.45	600	2454.40	1044.00
198902	2473.48	1914.00	2491.70	1900.00		3.45	100	1670.19	686.00
188903	2444.89	1904.10	2463.00	1890.00		2.98	5000	683.90	155.00
188904	2406.89	1891.10	2426.13	18975.00		3.17 3.29	6.8600	80	274.00
189001	2233.99	1790.00	2263.07	1876.00 1767.00		3.29 $\mathbf{3 . 8 6}$	6.7800	2614.37	1118.00
199002	2180.19	176:10	2205.21		65.76 66.01	3.86   3.03	7.7700	1578.08	655.00
199003	2149.47	175410	2172.95	1740.00	66.01 65.79	$\begin{array}{r}3.03 \\ 3.06 \\ \hline\end{array}$	8.3200	670.47	145.00
1990 Q4	2089.08	173 \%.60	2111.03	1713.00	65.79 63.64	3.06   3.50	7.7700	789.90	203.00
199101	2028.71	1697. 10	2054.13	17376.00	63.64 81.26	3.50 3.72	8.8700	2239.51	905.40
199102	2037.99	1716.00	2065.68	16763.00	81.26 81.45	3.72   2.87	7.2200	1472.14	598.73
189103	2067.89	1747.00	2088.21	1693.00 173000	61.45 62.53	2.87   282	7.8800	870.34	141.29
199104	2072.86	1770. 10	2098.95	1748.00	61.53 63.34	2.82 3.40	7.1500	780.03	248.54
199201	2140.45	184\%.10	2173.40	1789.00	63.34 62.36	3.40 3.60	6.9000	2563.68	1032.21
189202	2187.64	190\%.100	2225.05	1819.00 1871.00	62.36 63.57	3.60 3.28	6.8400	1886.90	785.87
1992 Q 3	2231.69	195\% 0	2256.53	1922.00	63.57 64.74	3.28 3.42	9.0900	771.86	159.16
198204	2314.61	203: 10	2343.45	1922.00 2006.00	64.74 64.92	3.42 3.89	8.0900	916.66	287.60
199301	2338.26	2050110	2353.18	2006.00 2037.00	64.92 66.10	3.89 3.59	7.8600	2710.54	1048.26
199392	2367.75	2091.110	2384.86	2037.00 2076.00	66.10 67.06	3.59	5.9100	1844.28	721.41
1993 Q3	2414.21	2139.10	24:11.26	2076.00	67.06 67.85	3.91 4.44	8.6000	820.59	148.69
199304	2395.89	2141 ;0	24:0.77	2124.00 2119.00	67.85 69.27	4.44 3	7.0900	1097.95	327.66
199401	2316.60	2071.10	2332.36	2119.00 2057.00	69.27 70.80	3.72 3.94	8.1500	3459.99	1293.93
1394 Q2	2408.21	2164.10	2423.89	2057.00	70.80 72.37	3.94 3.38	6.5700	1799.34	-664.72
199403	2395.91	2170,10	2409.24	2150.00 2158.00	72.37 73.56	3.38 2.94	9.4200	785.81	136.47
$1994 \mathrm{Q4}$	2420.64	2202.00	2433.90	2158.00 2190.00	73.56 75.83	2.84 3.09	7.7800 73100	957.73	275.28
199501	2333.10	2124.10	2336.40	2190.00 2121.00	75.83 77.34	3.09 3.37	7.3100 5.6500	2671.03	1012.54
198502	2310.42	2194.00	2312.61	2121.00 2112.00	77.34 77.89	3.37 3.38	5.6500	1833.73	-688.29
198503	2287.56	210300	2200.82	2120.00	77.89 78.69	3.38 3.86	8.1600	829.71	1 159.54
199504	2311.66	2135.00	2316.00	2100.00 2131.00	78.69 80.22	3.86 3.31	7.2400	880.60	253.66
199601	2362.06	2196.100	2369.61	2131.00 2191.00	80.22 80.77	3.31	7.0900	3136.33	1192.56
199602	2440.23	$228 \pm .10$	24¢7.72	2191.00 2278.00	80.77 83.09	4.06	5.9400	1881.34	697.68
198603	2518.00	2365	25\%3.34	2278.00 236000	83.09 85.04	4.30	8.4500	786.42	- 159.34
199604	2526.71	2396.10	2533.07	2384.00	85.04 86.24	4.45	7.0500	1112.44	311.86
199701	2575.41	2442.10	2576.47	2384.00 244.00	86.24 88.29	4.12	9.1000	- 2918.69	- 1060.97
199702	2606.33	2476.60	26.17 .39	2475.00	88.28 90.66	4.45 3.72	6.6200 9.0100	- 1966.48	744.23
199703	2629.75	2505.00	26.30 .81	2504.00	90.66 93.83	3.72 4.25	9.0100 7.4700	821.65 1103.25	160,23
1987 C4	2670.20	255200	2671.24	2551.00	96.88	4.25 3.80	7.4700 8.1900	1103.25 3049.76	6 $\quad 326.82$
1998Q1	2811.42	2690.10	2813.51	2688.00	99.01	3.80 3.83	8.1900 6.3800	1103.2   1753.76	- 1140.13
1998Q2	2896.49	2776.10	2898.58	2774.00	99.29	3.93 3.63	6.3800 9.0300	1753.26 846.24	$4 \quad 642.78$
1988Q3	3024.31	2909 90	30.7 .43	2906.00	100.06	3.82	9.0300 7.2900	$\begin{array}{r}846.24 \\ \hline 1033.17\end{array}$	- 169.30
99909	3137.60 3092.45	3029.\%0	3140.72	3026.00	101.13	3.54	7.4400	- 3303.81	293.51 1245.59
1999Q2	3142.24	3067.00	3101.76 3151.49	$\begin{array}{r}2990.00 \\ 3058 \\ \hline\end{array}$	102.18	- 3.52	- 5.6700	- 1820.87	71245.59   72.39
199903	3177.15	3118.00	3186.35	3058.00	103.52 104.21	- 3.81	8.8000 73800	- 799.17	151.81
199904	3257.89	3215.0	3266.02	3207.00	104.21 106.74	5.84 4.64	+ $\quad 7.3800$	- 1099.70	- 325.47
200091	3441.23	3418 no	3442.23	3417.00	108.74	4.64 4.29	$\begin{array}{r}7.0600 \\ \hline 7.8400\end{array}$	- $\quad 3728.70$	- 1315.88
2000Q2	3497.80	3491.10	3409.80	3490.00	108.7 110.81	4.19 4.54	$\begin{array}{r}7.8400 \\ \hline 12.4900\end{array}$	- 2046.72	2631.76
2000Q3	3508.61	3517.00	3509.61	3517.00	110.81 111.60	4.59   6.67	12.4900   10.9900	- $\begin{aligned} & 1083.48 \\ & 1254.81\end{aligned}$	$8 \quad 178.26$
2000 Q 4	3515.85	3540.110	3515.85	3540.00	111.60	6.67 6.94	- 10.9900	- $\begin{aligned} & 1254.81 \\ & 3171.00\end{aligned}$	1302.05
$2001 \mathrm{Q1}$	3483.68	353.91:0	3481.70	3536.00	110.80	6.97	$\begin{array}{r}11.9400 \\ \hline 11.9800\end{array}$	- 3171.00	- 1254.71
2001Q2	3508.70	358:00	3505.77	3584.00	110.80	5.38	11.88800   16.6700	2280.00 1003.00	- 734.17
2001Q3	3545.77	3624.100	35.12.83	3627.00	108.35 104.37	4.37 3.22	16.6700   13.0000	1003.00 1589.00	( 152.85
2001 Q 4	3548.52	3633 . 0	3546.57	3635.00	100.55	-3.22   2.83	- $\begin{array}{r}13.0000 \\ 9.4600\end{array}$	- 1588.00	O 300.26
2002Q1	3651.40	373:..10	36:14.84	3749.00	100.55 99.43	2.83 3.90	9.4600 10.0500	- 2917.00	1031.54
002 O 2	3643.66	3745:10	3620.45	3767.00	99,43 $100: 24$	3.90 4.29	10.0500 12300	- 2178.00	-633.5i
2002Q3	3592.99	3725.00	3587.22	3731.00	$100: 24$ 100.88	$\begin{array}{ll}4.29 \\ 4 & 4.51\end{array}$	12.2300 11.4100	- 1657.00	O 212.02
2002Q4	3611.85	3771.00	3616.64	3766.00	$\begin{array}{r}100.88 \\ \hline 9.41\end{array}$	$\begin{array}{ll}4.51 \\ 4 & 4.84\end{array}$	- $\begin{array}{r}11.4100 \\ 9.8900\end{array}$	- 1038.00	O 272.71
00301	3560.18	373810	355.6 .27	3740.00	99.41 98.19	4.94   9.20	- 9.8900	- 5812.00	$0 \quad 1344.75$
003Q2	3634.29	3823.10	3633.34	3824.00	98.192	9.20 4.63	10.6700 16.9500	- 3959.00	0827.12
003Q3	3719.71	3932.:0	3719.71	3934.00 393.00	98.82 100.50	4.63   7.76	- 16.9500	- 4097.00	- 171.71
003Q4	3760.51	3990.10	376145	3938.00	100.50	7.76   8.56	13.4700   13.6700	- 4882.00	$0 \quad 317.17$
2004Q1	3813.83	4080: 0	38:5.70	4084.00	102.49	7.56   6.02	- 13.6700	- $\quad 5504.00$	$0 \quad 1305.83$
						-6.02	- 43.6200	6282.00	0 707.83


Res Var Index Res Var Name	$\begin{gathered} 37 \\ \text { RPTR } \end{gathered}$	$\begin{gathered} 38 \\ \text { PITP } \end{gathered}$	$\begin{gathered} 39 \\ \text { TPTR } \end{gathered}$	$\begin{gathered} 40 \\ \text { PINF } \end{gathered}$	$\begin{gathered} 41 \\ \text { INDX } \end{gathered}$	$\begin{gathered} 42 \\ \text { PRCG } \end{gathered}$	$\begin{gathered} 43 \\ \text { PRCR } \end{gathered}$	$\begin{gathered} 44 \\ \text { EGYG } \end{gathered}$	$\begin{gathered} 45 \\ E G Y R \end{gathered}$
Description	Reat Nonfarm Proprietors Income	Personai incom. Total Proprietor: income.	Real Total Proprietors income	Personal income.   Nonfarm   Proprielors   Income	Industrial   Production index. Total	New Hampshire Natual Gas Clity Gate Price	New Hampshire   Residential   Natural Gas Prica	New Hampshire Natural Gas Consumption by All	New Hampshire Residential Natural Gas
Start Period	1984	19.4	1984	1984	1984	1984	Natural Gas Prica		Consumption
Period / Year	4	4	- 4	4	4	4	- 4	1884 4	1984
Period/ Cycha	4	4	4	4	4	4	4	4	- 4
	4	4	4	4	4	4	4	4	- 4
200402	3936.57	$4258{ }^{\circ} \mathrm{O}$							
2004Q3	3993.22	4333: 0	39.3 .35 39.9 .14	4255.00 4332.00	105.50	5.99	18.3500	4222.00	162.72
200404	3991.73	4364 ,	3841.73	4332.00 4364.00	107.73 108.05	7.63 9.07	$16.3800$	3269.00	260.08
$2005 \mathrm{Q1}$	4053.27	4455.0	$40 \div 2.36$	4364.00 4456.00	108.05 109.52	9.07 8.21	13.2700 14.6500	6934.00	1345.51
2005Q2	4123.36	$4566 . i 0$	4119.75	4570.00	109.52 110.23	8.21 9.65	14.6600 17.3000	$5693.00$ $6050.00$	746.12
2005Q3	4159.29 4178.91	4647., 9	415.4 .82	4652.00	109.68	9.65 12.75	17.3000 18.5300	$\begin{aligned} & 6050.00 \\ & 6050.00 \end{aligned}$	182.29
2006Q1	4178.91 4122.75	4703.0	41/5.36	4707.00	111.33	12.29	17.0100	$6050.00$	245.80 1183.13
200602	4122.75 4139.63	4663.2	4121.45	4665.08	111.77	12.35			1183.13
2006Q3	4182.86	4702.11	4138.13	4704.40	112.82	12.99			
2006Q4	4209.51	4765.0.5	4180.99	4767.78	113.39	12.99			
2007Q1	4233.43	4863.3	4207.65	4817.44	112.98	13.09			
2007Q2	4262.85	4917.16	4231.71 4261.43	4865.30 4919.19	143.27	13.29			
2007Q3	4294.27	$4975 . \leftarrow 5$	4261.43 4293.18	4919.19 4976.92	113.64	13.37			
2007Q4	4331.61	5042.i:8	$42 ¢ 3.38$ 43.2057	4976.92 5043.89	114.11	13.48			
2008Q1	4374.07	5117	43.0 .57 4373.14	5043.89	114.74	13.60			
2008 Q 2	4423.71	$5198 \cdots$	4373.14 4422.85	5118.59 5199.32	415.37	13.70			
200803	4467.48	5273.\%2	4422.85 44659	5199.32	115.93	13.81			
2008Q4	4515.12	5351.4	4460.69 4514.42	5274.14	116.57	13.81			
2009Q1	4568.64	5439.3	4514.42	5352.78	117.32	14.02			
2009Q2	4625.99	$5530 \% 1$	4625.43	5440.24	118.22	14.12			
2009Q3	4672.41	$5608 .: 7$	$46: 5.43$ $46 ; 1.88$	5530.88	119.11	14.23			
2009Q4	4799.52	5687.14	4711. 03	5608.91 5687.93	119.99	14.33			
2010Q1	4765.16	5768. i 4	471 ¢\%. 74	5687.93 5768.66	120.99	14.44			
201002	4818.34	5857.: $\boldsymbol{r}$	48:/.95	5768.66 5857.74	121.97	14.54			
201003	4862.76	5937.u0	$48: 7.95$ 4862.41	5857.74 5937.43	122.89	14.65			
2010Q4	4907.73	6019.73	489.2 .41	5937.43 6019	123.80	14.75			
2014Q1	4955.73	6106.12	4907.41 4955.44	6019.73 6107.07	124.84	14.86			
201102	5002.42	6192. ${ }^{\text {a }} 1$	595.44	6107.07 6193.03	125.89	14.96			
2011Q3	5042.95	6272.:8	5002.16 5042.72	6193.03	126.96	15.07			
2011Q4	5086.14	6356.19	5042.72	6273.07	128.06	15.17			
2012Q1	5131.01	$6443 . \because 2$	5085.93 51.30 .81	6357.05	129.14	15.27			
2012Q2	5176.27	6531.: 7	51:6.09	6443.57 6532.20	130.27	15.38			
2012Q3	5216.80	6615.10	516.09 $52 \mathrm{if.64}$	6532.20	131.45	15.48			
201204	5259.15	6702.3	5215.64 521.1 .00	6615.61 6702.32	132.64	15.58			
2013 ar	5303.14	$6791: 1$	53.1 .00 5000	6702.32 6791.98	133.84	15.69			
$2013 \mathrm{Q2}$	5347.81	6882: 1	5367.69	6791.98 6882.76	135.04	15.80			
2013Q3	5389.32	6969..	5367.09 5261.21	6882.76 6969.34	136.25	15.90			
201304	5430.65	7055.4	54,\%, 51	6969.34 7055.87	137.47	16.01			
201401	5477.32	7150.17	54.7. 54.24	7055.87	138.82	16.11			
$2014 \mathrm{Q2}$	5525.82	7248.:3	55\% 5.74	7150.78 724886	140.39	16.22			
$2014{ }^{\text {Q3 }}$	5568.55	7339.5	55ers 48	7246.86 7339.14	141.82	16.32			
201404	5613.22	7432. ${ }^{\text {? }}$	561 ¢. 15	7339.14 7432.16	143.36	16.43			
201501	5663.94	7534.:4	5613.15 568.88	7432.16 7534.22	144.94	16.53			
2015Q2	5714.26	7636: 7	571.1.21	7534.22 7636.94	146.46	16.64			
201503	5760.95	7735.: 6	571. 21 57 ì. 91	7636.94 7735.32	148.08	16.74			
2015Q4	5810.50	7836: ${ }^{\text {/ }}$	58:0.46	7735.32	149.72	16.85			
2016Q1	5865.79	7947.:9	5805.76	7837.02	151.42	16.85			
201602	5920.40	8059 : 1	5920.37	8059.46	153.21	17.06			
201603	5970.00	8164.68	5959.97	8059.46 8154.91	155.03	17.16			
2016Q4	6022.99	8275.98	$602 \% 97$	88275.91	156.90	17.27			
2017Q1	5082.50	8401.14	602.97 $60: 32.48$	8275.92 8401.67	158.78	17.37			
2017 Q 2	6142.63	8529	61-2. 61	8401.67 8529.99	160.34	17.47			
2017Q3	6204.05	$8661 .: 6$	$61 \cdots 2.61$ 620.1	8529.99	161.65	17.58			
2017Q4	6267.69	8797	6267.67	8661.49	163.39	17.68			
$2018 \mathrm{Q1}$	6332.56	8935.8	6207.67	8797.31 8935.81	164.98	17.78			
2018Q2	6394.44	9071. 4	63.4 .43	8935.81	166.77	17.89			
201803	6454.16	9205:.5	63:14.14	9071.36	168.58	18.00			
2018Q4	6518.44	9348.1	65:8.43	9205.57	170.31	18.10			
2019Q1	6583.23	$9492 \cdot \mathrm{~m}$	$65: 8.43$ $65: 3.22$	9348.12 9492.87	172.06	18.21			
201902	6644.54	9633. $\cdot$	66.1 .53	9492.87	173.85	18.31			
201903	6705.98	9776.4	670.153	9833.92	175.67	18.42			
201904	6769.54	9922. 1	$67: 9.94$	9776.16	177.44	18.52			
202001	6837.05	10075.:8	$68 \cdots .54$	9922.72 1007549	179.23	18.63			
202002	6901.27	10225 !9	68.1.05	10075.49	181.10	18.73			
2020Q3	6963.09	10373.1	6901.27 693308	10225.20	482.99	18.84			
2020Q4	7025.69	10525 3	70.568	10373.42 10525.19	184.96	18.94			
		10525	70.5 .68	10525.19	186.91	18.05			



Res Var index Res Var Name	$\begin{gathered} 46 \\ \text { RPRR } \end{gathered}$	$\begin{gathered} 47 \\ \text { REGR } \end{gathered}$	$\begin{gathered} 48 \\ \text { REVN } \end{gathered}$	$\begin{gathered} 49 \\ \text { REVH } \end{gathered}$	$\begin{gathered} 50 \\ \text { REVR } \end{gathered}$	51   RVNN	52   RVNH	$\begin{gathered} 53 \\ \text { RVNR } \end{gathered}$	54 HGN
Description	Price Ratio:   Residential   Natural Gas Price : \#2 Heating Oia Price	Energy   Consumption   Ratio: Residential   Natural Gas: \#2   Heating Oil	Revenue to Residenual NonHeating Cuslomers	Revenue to Residential Heating Customers	Revenue to Residential Customers	Revenue   (Nomal)to   Rasidential Non-   Meating   Customers	Revenue   (Normal)lo   Residential   Heating   Customers	Revenue (Nomal)to Residentsal Customers	Cormpany Charge to Fresidential Non Heating Customers
Start Year	1984	1984	1984	1984	1984	1984	1984	1984	1984
Start Period	4	4	4	4	4	4	4	4	4
Period / Year	4	4	4	4	4	4	4	4	4
Period / Cycle	4	4	4	4	4	4	4	4	4
2004Q2	1.77	5.66	197145.00	5000511.00	5197656.00	195325.00	4842926.00	5038251.00	6.05
2004Q3	1.27	3.43	171016.00	3006773.00	3177789.00	152322.00	2643372.00	2795694.00	8.20
2004Q4	1.03	7.21	184569.00	5149930.00	5334499.00	179679.00	4746818.00	4826598.00	6.13
2005Q1	1.06	11.17	231489.00	9423834.00	9655323.00	241242.00	10116906.00	10358148.00	4.75
2005Q2	1.17	5.91	189409.00	5169881.00	5359290.00	185749.00	4950953.00	5136702.00	6.08
200503	1.08	4.32	1616.34 .00	3047763.00	3209397.00	161625.00	3048184.00	3210819.00	8.42
2005Q4	1.04	9.30	178456.00	\$218159.00	5396615.00	173453.00	4822475.00	4895928.00	6.08
2006 Q 2									
2006Q3									
2006Q4									
2007Q1									
2007Q2									
2007Q3									
200704									
2008Q1									
2008Q2									
2008Q3									
2008Q4									
2009Q1									
200902									
2009Q3									
200904									
2010Q1									
201002									
2010Q3									
201004									
2011Q1									
201102									
2011Q3									
201104									
2012Q1									
2012Q2									
2012 Q 3									
2012Q4									
2013Q1									
2013 Q 2									
201303									
201304									
201401									
2014Q2									
2014 Q 3									
201404									
2015 Q 1									
2015Q2									
2015Q3									
2015Q4									
201601									
2016Q2									
2016Q3									
2016Q4									
2017 Q1									
2017Q2									
201703									
2017Q4									
2018Q1									
201802									
2018Q3									
2018Q4									
201901									
2019 C 2									
201903									
2019Q4									
202001									
2020Q2									
202003									
2020 Q 4									


Res Var index Res Var Name	$\begin{gathered} 55 \\ \text { CHGH } \end{gathered}$	$\begin{gathered} 56 \\ \text { CHGR } \end{gathered}$	$\begin{gathered} 57 \\ \text { CHNN } \end{gathered}$	$\begin{gathered} 58 \\ \text { CHNH } \end{gathered}$	$\begin{gathered} 59 \\ \text { CHNR } \end{gathered}$	$\begin{gathered} 60 \\ \operatorname{CDDN} \end{gathered}$	$\begin{aligned} & 61 \\ & \operatorname{CDDA} \end{aligned}$	$\begin{gathered} 62 \\ \mathrm{BDON} \end{gathered}$	$\begin{gathered} 63 \\ \text { BDDA } \end{gathered}$
Description	Company Charge to Residential Heating Customers	Company Charge to Residential	Company charge (Nomal)to Residential Non. Heating	Company charge   (Normali)to   Residential Heating	Company charge (Normal)to   Residential	Normal Caliendar	tuai Callendar	Normal Billing	
Starl Year	Customers 1984	Customers 1984	Customers	Customers	Customers	Degreo Days	Degree Days	Degree Days	Actual Billing Degree Days
Start Period	4	1984 4	984	1984	1984	1984	1984	1984	${ }^{1984}$
Period / Year	4	4	${ }_{4}^{4}$	4	4	4	4	4	1984
Period / Cycie	4	4	4	4	${ }^{4}$	${ }_{4}^{4}$	4	4	4
1984Q1				- 7	4	4	4	4	4
1984 Q 2	7.54	7.79	16.19	7.90	8.16	3652	3644	3826	
198403	8.12 8.84	8.54	4.85	7.25	7.63	1032	1074	1494	3718
1984Q4	8.02	8.65	19.92 23.07	9.73	10.58	286	284	227	1599
198501	7.84	8.34 8.09	23.07 1674	10.62	11.07	2611	2310	2106	1893
1985 Q 2	8.48	8.98	16.74 14.73	8.13	8.38	3652	3507	3813	3593
198503	8.52	9.89	14.73	7.08	7.49	1032	980	1488	1378
198504	7.89	9.29 8.19	19.47	9.25	10.07	286	213	225	183
198601	7.53	7.77	23.03	10.74	11.17	2611	2596	2101	2016
198602	8.23	7.7	15.51	7.58	7.82	3652	3418	3803	3628
198603	9.34	10.06	23.94	6.17	6.52 1250	1032	906	1477	1290
198684	7.01	7.22	20.74	11.61	12	286	359	229	304
198701	6.50	6.67	12.66	10.20 6.17	10.51	2611	2566	2103	2137
198702	6.58	6.86	10.53	6.17 5.06	6.33	3652	3528	3793	3613
198703	6.64	7.12	12.73	5.06 6.16	5.28 6.60	1032	915	1471	1346
198704	5.89	6.07	15.96	7.91	6.60 8.16	286 2611	308	230	246
198801	5.86	5.99	11.96	5.88	8.16 8.01	2611	2564	2103	2096
1988Q2	5.83	6.07	1.96 8.87	5.38 4.33	8.01 4.51	3652	3601	3781	3685
198803	6.49	3	14.10	6.93	4.51 7.38	1032	1017	1465	1434
198804	6.76	6.93	17.90	6.92 8.93	7.38	286	298	231	257
198901	6.70	6.86	13.43	8.93 6.55	9.16	2611	2680	2108	2145
198902	6.49	6.8	13.43 9.72	6.55 4.77	6.71	3652	3415	3773	3549
198903	7.06	7.53	15.39	4.77 7.41	4.98	1032	1002	1458	1473
198904	6.80	7.02	17.06	7.41 9.15	7.91	286	228	227	184
199001	7.14	7.31	14.49	9.15 6.74	9.41	2614	2988	2118	2253
199002	7.34	7.61	11.64	6.74 5.22	6.81 5.45	3642	3175	3748	3528
199003	7.7	8.41	16.27	5.22	5.45	1032	1021	1460	1454
199004	7.2	7.46	19.25	8.29 8.38	8.87	285	220	226	162
1991 Q1	6.	7.13	14.15	9.38 6.80	9.70	2629	2195	2108	1762
1901 Q 2	6.90	7.17	11.17	6.80 4.85	6.97	3620	3298	3717	3376
199103	7.39	7.96	16.20	4.85 8.12	5.08	1030	761	1440	1179
199104	7.09	7.32	18.54	8.12 9.45	8.69	282	264	225	174
199201	6.8	7.03	18.54 13.87	9.45 6.74	9.72	2845	2408	2102	1919
199202	7.	7.61	11.79	6.74 5.11	6.89	3651	3479	3706	3552
199203	8.6	9.33	19.19	5.11 9.67	5.33 10.33	1028	1078	1437	1568
199204	9.35	9.39	11.71	9.67 9.95	10.33 10.01	280	288	223	232
199301	6.86	6.86	6.65	9.95 8.89	10.01 6.89	2805	2882	2088	2189
199302	3.74	3.76	4.36	8.88 3.74	6.89 3.76	3606	3711	3710	3775
199303	6.23	6.15	4.311	3.74 6.06	3.76 5	$\begin{array}{r}1025 \\ \hline 275\end{array}$	907	1434	1386
199304	8.58	8.55	7.43	6.06 8.60	5.99 8.57	275	250	223	178
199401	6.94	6.95	7.25	8.60 6.94	8.57	2605	2628	2093	2154
199402	3.83	3.86	4.74	6.94 3.83	6.95	3606	4027	3734	4105
199403	5.78	5.73	4. 5	3.83 5.74	3.86 5 5	1025	956	1428	1442
198404	6.74	6.76	7.91	5.74 6.75	5.70	275	265	221	185
199501	6.57	6.57	6.64	6.75 6.59	6.77	2605	2237	2071	1813
189502	3.87	3.90	4.81	6.59 3.87	6.58 3.89	3606	3265	3717	3348
198503	5.51	5.49	4.95	3.87 5.32	3.89 5.30	1025 275	1052 280	1428	1476
198504	8.73	8.71	7.39	5.32 8.76	5.30 8.73	275 2599	280	217	175
199601	6.74	6.75	7.17	8.76 6.74	8.73 6.75	2599 3651	2613	2072	2093
199602	3.93	3.96	4.80	6.74 3.93	6.75 3.96	3651 1019	3634	3717	3741
199603	5.02	5.02	4.96	3.93 5.02	3.96 5.01	1019 282	1037	1428	1552
199604	8.90	8.87	7.57	5.02 8.88	5.01 8.86	282 2594	$\begin{array}{r}198 \\ \hline 2553\end{array}$	217	140
199701	7.05	7.05	7.32	8.88 7.05	8.86 7.06	2594	2553   3440	2072	2120
1997Q2	4.10	4.13	5.00	4.11	7.06 4.13	3617 1023	3440 1166	3703	3418
199703	5.79	5.78	5.62	4.78	4.13 5.77	1023 275	1166 214	1432	1667
199704	8.57	8.61	10.73	5.78 8.55	5.76 8.60	275 2603	214 2556	210 2054	165
199801	7.36	7.40	10.12	7.36	8.60 7.40	2603 3602	2556	2054	2077
199802	5.95	6.02	8.19	5.95	7.40 6.02	3602 1020	2881 831	3669	3115
199803 199804	9.73	9.80	10.76	9.66	6.72 9.72	1020 274	831 164	1448	1221
199804 199901	7.48 703	7.54	9.94	7.48	7.54	274 2603	$\begin{array}{r}164 \\ 2292 \\ \hline\end{array}$	205	138
199901 199902	7.03 5.67	7.07	9.56	7.03	7.07	3504	2292 3342	2053	1842
1999Q2	5.67 8.52	5.73	7.76	5.68	5.74	9884	3342 896	3647	3394
199903 199904	8.52 8.04	8.57	9.45	8.50	8.55	884 257	896 168	1429 198	1341
199904 200001	8.04 8.18	8.10	10.43	8.04	8.10	2528	2345	199 2033	133
200002	6.94	8.21 7.00	30.52	8.17	8.20	3495	3344	3599	1862 3480
200003	9.87	9.93	9.19 10.88	6.88	6.94	979	997	1428	3480 1356
200004	10.62	10.60	12.45	9.88 10.60	9.93	251	241	194	193
200101	3.77	3.80	5.61	10.60 3.49	10.64 352	2529	2614	2033	2044
200102	3.31	3.37	5.56	3.48 3.16	3.52	3480	3551	3588	3679
200163	7.71	7.75	${ }^{3.67}$	3.16 7.77	3.23 7.82	977	880	1422	1401
200104	4.19	4.25	5.69	7.77 3.63	7.82 3.69	${ }_{2}^{248}$	158	182	113
200201	3.24	3.27	4.83	3.6 3.14	3.69 3.17	2513 3481	2082	2018	1653
2002 Q 2	4.12	4.17	6.20	3.61 3.61	3.17 3.68	3481 979	3013 992	3584 1428	3045
200293	7.07	7.11	9.32	3.61 7.92	3.68 7.99	979 244	992	1428 189	1399
200204	3.91	3.95	5.88	3.94	7.99 3.98	244 2485	111 2578	189 1894	130
2003Q1	2.93	2.96	4.52	2.86	2.89	3432	3815	1894 3533	2016
200302	4.00	4.05	${ }_{6} 9.07$	4.27	4.32	975	1072	3533	3313
2003Q3	7.69	7.73	13.53	7.70	7.74	236	111	1420	1540
200304	3.75	3.80	6.26	4.12	4.17		2371	183 2004	102
200461	3.00	3.02	4.52	2.86	2.88	2503 3459	2371 3718	2004 3563	1852 3809


Res Var index Res Var Name	CHGH	$\begin{gathered} 56 \\ \text { CHGR } \end{gathered}$	$\begin{gathered} 57 \\ \text { CHNN } \end{gathered}$	$\begin{gathered} 58 \\ \text { CHNH } \end{gathered}$	$\begin{gathered} 59 \\ \text { CHNR } \end{gathered}$	$\begin{gathered} 60 \\ \text { CDDN } \end{gathered}$	$\begin{gathered} 61 \\ C D O A \end{gathered}$	$\begin{gathered} 62 \\ \text { BDDN } \end{gathered}$	$\begin{gathered} \text { S3 } \\ \text { BDDA } \end{gathered}$
Description	Company Charge   to Residential   Heating   Customers	Company Charge to Restidential Customers	Company charge (Normai)io Residential NonHeating Customers	Company charge (Normal)to Residential Heating Customers	Company charge   (Normai)to   Residential   Customers	Normal Caliendar Degree Days	Actual Callendar Degree Days	Normal Billing Degree Days	Actual Billing Degree Days
Start Year	1984	1984	1984	1984	1984	1984	1984	1984	1984
Start Period	4	4	4	4	4	4		,	4
Period / Year	4	4	4	4	4	4	4	4	4
Period / Cycle	4	4	4	4	4	4	4	,	4
2004Q2	4.23	4.28	6.13	4.35	4.40	977	897	1425	1331
2004 Q 3	7.66	7.69	1.30	6.75	6.78	231	133	180	119
2004Q4	3.93	3.98	6.46	4.26	4.32	2493	2394	1997	1868
2005Q1	3.05	3.08	1.56	2.91	2.94	3463	3581	3567	3636
200502	4.14	4.18	6.27	4.38	4.43	968	977	1412	1466
200503	7.85	7.87	8.42	7.84	7.87	226	75	175	80
200504	3.89	3.93	6.37	4.23	4.28	2487	2362	1995	1792
200601						3464			
200602						969			
200603						22			
2006Q4						2497			
200701						346			
2007Q2						96			
2007 Q 3						22			
2007Q4						249			
2008Q						346			
2008Q2						96			
2008Q3						22			
2008Q4						249			
2009Q1		.				346			
200902						96			
200903						22			
$2009 \mathrm{Q4}$						249			
201001						346			
201002						06			
201003						22			
201004						248			
2011Q1						346			
201102						96			
201103						22			
201104						248			
2012Q1						346			
2012Q2						96			
2012 Q 3						22	4		
2012Q4						24			
2013Q1						346			
201302							68		
2013Q3							24		
201304						24			
2014Q1						34			
2014Q2							69		
2014Q3							24		
2014Q4						24			
201501						34			
2015Q2							69		
2015Q3							24		
201504							97		
201601							64		
201602							69		
2016Q3							24		
2016Q4							97		
2017 Q1							64		
2017C2							69		
2017 Q 3							224		
2017Q4							97		
2018Q1							484		
201802							69		
2018Q3							224		
201804							497		
201901							464		
2019Q2							969		
2019Q3							224		
201904							497		
2020Q1							464		
2020Q2							969		
202003							224		
202004							497		


C\&I Var indax C\&i Var Name	$\stackrel{1}{\text { CUSI }}$	$\stackrel{2}{\text { cusc }}$	$\stackrel{3}{\text { cuscl }}$	$\stackrel{4}{\text { USEC }}$	$\begin{gathered} 5 \\ \text { USEI } \end{gathered}$	$\begin{gathered} 6 \\ \text { USECI } \end{gathered}$	$\stackrel{7}{\text { USNC }}$	$\begin{gathered} 8 \\ \text { USNi } \end{gathered}$	$\begin{gathered} 9 \\ \text { USNCI } \end{gathered}$
Description	ENGI: Number of industiral Customers	ENGI: Number of Commercial Customers	ENGI: Number of C \& I Customers	ENGI: Natural Gas Consumption per Commercial Customers	ENGI: Natural Gas Consumption per Industrial Customers	ENGI: Naturat Gas Consumption perc \& 1   Customers	ENG: Natural Gas Consumption per Commercial Customers	ENGI: Natural Gas Consumption per Industrial	ENGI: Naturai Gas Consumption perc\&l
Star Year   Stan Period	1984	1984	1984	1984	1984	Customers 1984	Customers 1984	Customers 1984	Cus stomers
Period / Year	4	- ${ }_{4}^{4}$	4	4	,	4	1964	1884	1984
Period / Cycle	4	4	4	4	4	4	4	4	4 4
	4	- ${ }^{4}$	4	4	4	4	4	4	4
1984 Q 1 198402	4332	78	4410	275.10	341.38				
1988402	4332	109	4441	126.10	140.52	276.28 +126.45	280.93 121.66	341.38 140.52	282.01
198404	4251	105	4356	58.31	120.65	59.81	121.66 58.35	140.52 120.65	122.13
198501	4689	71	4503	141.16	311.06	143.85	151.18	311.06	59.85 153.71
1985Q2	4683	66	47450	259.11	338.32	259.36	270.57	338.32	153.71 271.63
198503	4609	63	4750	108.80	228.13	110.46	113.92	228.13	271.63 115.51
198504	4745	66	4672	51.54	168.06	53.11	51.99	168.06	115.51 53.55
19860. 1	4834	70	4841	133.56	244.91	135.08	136.18	244.91	53.55 137.67
198602	4858	72	4904 4929	260.10	428.39	262.50	270.44	428.38	137.67 272.70
198603	4853	70	4924	106.09 49.71	231.86	107.92	114.98	231.86	272.70 116.69
198604	4969	71	5040	49.71 158.95	189.00 58213	51.70	48.95	189.00	176.69 50.95
198701	5160	71	5232	158.95 281.58	582.13	164.81	157.57	582.13	163.55
198702	5211	70	5232	281.58 115.96	957.67 410.30	290.80	292.95	957.67	302.02
198703	5093	55	-5148	115.76 56.35	410.30	119.09	120.83	410.30	124.69
198704	5247	99	5.346	156.35 152.99	208.99 1046.02	57.99	56.93	208.99	58.55
198801	5437	113	5550	286.72	1046.02 1155.49	169.58	154.05	1046.02	170.62
198802	5430	92	! 522	286.72 130.27	1155.49	304.36	293.19	1155.49	310.70
198803	5382	88	6470	130.27 52.42	771.44	140.96	131.85	771.41	142.61
198804	5766	102	$\stackrel{668}{ }$	52.42 159.76	501.64 949.10	59.64 17353	52.05	501.64	59.28
188901	5971	103	6074	159.76 274.70	949.10 1380.53	173.53	158.63	949.10	172.41
198902	6011	93	6704	274.70 122.37	1380.53	293.51	289.09	1380.53	307.58
198903	5895	291	6194 6186	122.37 46.89	861.09	133.63	120.85	861.09	132.13
188904	615	342	6501 608	46.89 148.34	263.99 5988	57.10	47.69	263.99	57.87
198001	6412	356	6768	148.34 215.50	598.78	172.01	139.25	598.78	163.40
198002	6366	325	6692	$\underline{ } 95.14$	961.85	254.76	226.31	1016.09	267.85
199003	6197	314	6519	95.14 41.27	473.32	113.53	96.00	477.46	114.55
199004	6379	339	6718	41.27 107.84	240.89 530.18	50.89	41.50	240.18	174.08 51.08
199101	6610	350	6960	107.84 202.64	530.18	129.13	120.75	590.22	144.42
199102	6538	316	6854	202.64 83.93	947.25	240.12	219.36	1019.62	259.64
199103	6407	299	6706	83.93 39.62	470.18	101.72	93.53	511.62	112.78
199104	6610	319	6929	39.62 110.94	286.29 61760	50.60	39.82	288.17	112.78 51.37
199201	6817	328	7145	110.94 218.22	$\begin{array}{r}617.60 \\ \hline 1155.68\end{array}$	134.25	117.73	650.54	14.23
199202	6782	316	7098	218.22 101.36	1155.66 651.85	261.25	226.48	1195.89	270.98
199203	6623	307	9930	101.36 42.48	651.85 334.74	125.87	96.22	622.37	119.64
199204	6813	313	3125	42.48 121.56	334.74 759.26	55.42	42.45	336.41	119.64 55.48
199301	6999	314	1313	123.56 231.74	$\begin{array}{r}759.26 \\ \\ \hline 130.34\end{array}$	148.54	118.21	739.86	55.48 145.49
199302	6953	311	7264	231.74 97.24	1360.34 67776	280.20	228.86	1342.10	145.49 276.66
199303	6758	299	7058	97.24 43.51	677.76 399.99	122.10	97.61	681.44	122.61
199304	7020	300	7320	43.51 118.49	399.98 909.93	58.63 150.96	42.46	407.70	57.85
1994Q1	7278	308	7588	119.49 $\mathbf{2 5 5 . 5 3}$	909.93 1628.76	150.96 31129	116.89	896.17	148.79
$1994 \mathrm{C}_{2}$	7230	309	7539	255.53 99.80	1628.76 757.87	311.29 126.77	236.31	1522.10	288.52
189403	7051	302	7353	99.80 42.23	757.87 457.65	126.77 59.27	99.33	755.39	126.22
$1994 \mathrm{Q4}$	7316	300	7628	104.06	457.65 718.66	59.27	42.85	463.05	60.09
199501	7570	304	7891	104.06 211.20	718.86 1166.14	136.82	113.84	759.85	149.15
199542	7469	296	7784	211.20 95.31	1166.14 527.62	263.09	231.16	1270.18	287.06
199503	7186	283	7489	40.07	527.62 287.57	122.42 57.83	93.67	520.89	120.48
199504	7439	294	7751	124.62	287.57	57.83 162.07	38.01	284.63	56.83
199601	7687	300	8007	$\begin{array}{r}1243.62 \\ \hline 23.66\end{array}$	700.26 1331.09	162.07 294.18	121.93	686.62	158.91
199662	7616	300	7940	233.66 98.37	1331.09 657.62	294.18 133.67	232.60	1325.88	292.90
199603	7362	292	7680	39.35	657.62 433.42	133.67 66.22	93.49	637.46	127.98
199604	7633	302	7964	141.18	433.42 853.00	66.22 186.14	39.95 13917	440.08	67.23
199701	7857	311	8201	141.18 243.89	853.00 1261.88	186.14	139.17	844.55	183.75
199702	7819	308	8163	243.89 118.86	1261.88 727.75	305.51 160.77	261.12	1338.91	325.27
199703	7578	302	7921	18.86 44.23	727.75 342.24	160.77 76.88	108.63	678.25	149.25
199704	7910	300	8258	142.51	342.24 72.77	76.88 200.69	44.38 14171	332.54	77.46
199801	8170	312	8540	1227.96	726.77 959.98	200.69 300.37	141.71	723.06	199.62
199802	8077	314	8451	27.46	959.88 413.30	300.37 147.10	260.64	1080.88	337.90
199803	7837	296	8195	43.40	413.30 294.19	147.10 90.22	106.98 4.47	432.39	157.30
189804 t99901	8145	306	8518	116.30	294.19 519.60	90.22 179.30	41.47	300.05	89.20
199901 199902	8438	316	8835	245.47	932.61	179.30 328.86	124.47	546.04	189.62
199892 198903	8359	313	8758	94.22	-332.91	328.86 148.04	259.37	985.29	346.66
199993 199904	8095	303	8485	38.49	3140,67	148.04 83.36	97.14	343.05	151.72
199904 200001	8384	315	8792	114.00	421.69	83.38 182.86	39.17	142.00	84.07
200001	8624	319	9036	257.79	1015.78	182.86   348.57	121.47	450.39	192.78
2000022	8561	313	E968	98.95	374.81	348.57 152.06	264.85	1042.30	357.25
200004	8318	304	\$7715	41.42	183.58	152.06 87.73	102.59	387.69	156.41
2000104	8433	311	8835	125.98	559.03	200.29	+41.36	181.09	88.02
200104	8760	318	9078	262.26	1057.22	200.29 359.31	124.38	551.82	198.39
200102	8171	1151	9270	94.85	1057.22 596.28	359.31 178.02	257.34	1070.68	353.31
200103 200104	7381	1469	8861	16.46	596.28 345.70	178.02 77.83	92.58	625.94	178.76
200201	7615	1538	9162	47.10	688.38	77.83 174.19	16.18	349.77	78.76
2002 Q 2	7851	1562	9424	115.71	1143.54	171.19	53.73	766.81	192.26
2002Q3	7823	1405	9240	50.71	782.84	303.29	133.32	1313.36	347.27
200204	7336 7648	873	8213	18.82	443.92	195.64 90.97	51.54	782.07	194.35
200301	7648	1890	0543	66.30	594.88	90.97	18.21	519.11	113.89
200302	8079 8077	1627	[1719	158.10	${ }_{1447.72}$	189.21 389	64.76	586.04	196.37
20303	8172	1674	$!1860$	17.74	281.72	18.52	50.84	634.01	168.10
200304	7820	1605	(\%439	59.96	688.27	86.69	17.77	281.47	86.67
200409	9488	1606	10:08	151.39	:358.45	192.76 370.32	50.72 $\mathbf{4 7 0 . 3 4}$	599.68 \$493.92	169.81 406.35


Csilvar index	1	2	3	4	5	6	7	8	9
C\& Var Name	cusi	cusc	CUSCl	USEC	USEI	USECI	USNC	USN!	USNCI
Description	ENGI: Number of Industral   Customers	ENGI: Number of Commercial Customers	ENGI: Numbe of C\&ICustomers	ENGI: Naturai Gas Consumption per Commercial Customers	ENG: Natural Gas Consumption per Industrial Customers	ENG1: Natural   Gas Consumption per C\&1   Customers	ENGI: Natural Gas Consumption per Commercial Customers	ENGI: Natural Gas Consumption per industrial Customers	ENGI: Natural   Gas Consumption per C\&I   Customers
Start Year	1984	1984	$\cdots 84$	1984	1984	1984	1984	1984	1984
Start Period	4	4	4	4	4	4	4	4	4
Period / Year	4	4	4	4	4	4	4	4	4
Perioos/Cycle	4	4	4	4	4	4	4	4	4
2004 Q 2	8231	1675	9922	51.45	593.24	164.43	48.57	572.60	158.55
2004Q3	8296	1722	10031	17.94	287.83	88.84	17.92	286.97	88.67
2004Q4	7880	1638	0530	57.32	630.03	178.58	49.44	556.39	159.21
2005Q1	8611	1736	10361	142.86	1260.74	347.40	159.10	1394.69	383.16
2005Q2	8466	1744	10220	53.67	626.24	171.87	49.27	584.41	161.01
2005 Q 3	8602	1803	10418	16.95	276.12	68.38	16.96	273.68	67.97
2005Q4	8190	1738	! 439	58.42	640.60	160.16	50.23	574.98	147.94
2006Q1									
2006Q2			,						
2006Q4									
2007Q1									
2007Q2									
2007Q3									
2007Q4									
2008Q1									
2008Q2									
2008Q3									
2008Q4									
200901									
200902									
2009Q3									
2009 Q									
201001									
2010 Q 2									
201003									
201004									
201104									
201902									
2011Q3									
201104									
201201									
201202									
2012 Q 3									
2012Q4									
201301									
2013Q2									
201303									
2013 Q4									
2014 Q 1									
2014 Q 2									
2014Q3									
2014Q4									
201501									
2015Q2									
2015Q3									
2015Q4									
201601									
201602									
2016 Q 3									
201604									
201701									
201702									
201703									
2017 Q4									
$2018 Q 1$									
2018Q2									
2018Q3									
2018Q4									
201801									
2019 Q 2									
2019 Q 3									
201904				-					
202001									
202002									
2020Q3									
2020Q4									

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline C\&I Var index C\&I Var Name \& \[
\begin{gathered}
10 \\
\text { GASC }
\end{gathered}
\] \& \[
\begin{gathered}
11 \\
\text { GAS }
\end{gathered}
\] \& \[
\begin{gathered}
12 \\
\text { GASCI }
\end{gathered}
\] \& \[
\begin{gathered}
13 \\
\text { GSNC }
\end{gathered}
\] \& \[
\begin{gathered}
14 \\
\text { GSN }
\end{gathered}
\] \& \[
\begin{gathered}
15 \\
\text { GSNCI }
\end{gathered}
\] \& \[
\begin{gathered}
16 \\
C P
\end{gathered}
\] \& \[
\begin{gathered}
17 \\
\text { GSP }
\end{gathered}
\] \& \[
\begin{gathered}
18 \\
R G S p
\end{gathered}
\] \& \[
\begin{gathered}
19 \\
\text { POP }
\end{gathered}
\] \\
\hline Description
Start Year \& \begin{tabular}{l}
ENGI: Natural \\
Gas Consumption of C \& 1 \\
Customars
\end{tabular} \& ENGI: Natural Gas Consumption of Commercial Customers \& ENG!: Natural Gas Consurnesion of Industrial Customers \& \begin{tabular}{l}
ENGI: Normal \\
Natural Gas \\
Consumption of C \\
\& I Customers
\end{tabular} \& ENGI: Nemnal Natural Gas Consumption of Commercial Customers \& \begin{tabular}{l}
ENGI: Nomal \\
Natural Gas Consumption of industral Customers
\end{tabular} \& Consumer Price Index \& Gross State ProductAggregate \& \begin{tabular}{l}
Real Groses State Product- \\
Aggregate
\end{tabular} \& \\
\hline Start Period \& 1984 \& 1984 \& 1984 \& 1984 \& 1984 \& 1984 \& Price index 1984 \& \({ }_{1989}\) \& Aggregate 1984 \& Total Population \\
\hline Period / Year \& 4 \& 4 \& \({ }_{4}^{4}\) \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 1984
4 \\
\hline Period / Cyclo \& 4 \& - \(4_{4}^{4}\) \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \& 4 \\
\hline 1984Q1 \& 1191738 \& \& \& \& \& \& \& \& \& 4 \\
\hline 1984Q2 \& 546257 \& 15316 \& 1211,479
\(56: 574\) \& 1217009 \& 26741 \& 1243750 \& 102.4745 \& 13921.42 \& 0.00 \& \\
\hline 198403 \& 247883 \& 12668 \& 260552 \& 527048
248044 \& 15316 \& 542364 \& 102.8074 \& 14488.95 \& 0.00 \& 976.8630 \\
\hline 198404 \& 625813 \& 22189 \& 647801 \& 248044
670031 \& 12668
22189 \& 260713
692220 \& 103.8268
104.6483 \& 14845.54 \& 0.00 \& 981.7980 \\
\hline 188501 \& 1205009 \& 25148 \& 1230157 \& 1263182 \& 22189
25148 \& 692220
128831 \& 104.6483
106.6530 \& 15355.14 \& 0.00 \& 986.7579 \\
\hline 198502 \& 509528 \& 15133 \& 524661 \& 533513 \& 15133 \& 1288331
548646 \& 106.6530
108.1881 \& 15862.32 \& 0.00 \& 991.7429 \\
\hline 198503 \& 237564 \& 10588 \& 248152 \& 239603 \& 10588 \& 548646
250191 \& 108.1881 \& 16297.67 \& 0.00 \& 996.7530 \\
\hline 198504 \& 633791 \& 16082 \& 640873 \& 646237 \& 16082 \& 250191 \& 108.6814 \& 16826.34 \& 0.00 \& 1003.7541 \\
\hline 198601 \& 1257217 \& 29987 \& 1287204 \& 1307228 \& 29987 \& 662320
1337216 \& 111.5703 \& 17268.39 \& 0.00 \& 1010.8045 \\
\hline 188602 \& 515339 \& 16617 \& 531956 \& 558572 \& 16617 \& 1337216
575189 \& 110.2958 \& 17768.96 \& 0.00 \& 1017.9043 \\
\hline 198603 \& 241240 \& 13293 \& 254533 \& 237567 \& 13293 \& 575189
250880 \& 110.3331 \& 18166.74 \& 0.00 \& 1025.0540 \\
\hline 198604 \& 789816 \& 41331 \& 831147 \& 782957 \& 13293
41331 \& 250880 \& 110.1529 \& 18679.03 \& 0.00 \& 1032.2859 \\
\hline 188701 \& 1453030 \& 68314 \& 1521344 \& 1511736 \& 41331
68314 \& 824288
1580050 \& 112.1824 \& 19124.66 \& 0.00 \& 1039.5687 \\
\hline 198702 \& 600112 \& 28858 \& 628970 \& 629702 \& 28858 \& 1580050
658560 \& 113.3266 \& 19950,39 \& 0.00 \& 1046.9030 \\
\hline 198703 \& 287015 \& 11495 \& 298510 \& 289941 \& 11495 \& 658560 \& 114.8597 \& 20665.86 \& 0.00 \& 1054.2890 \\
\hline 198704 \& 802693 \& 103904 \& 906597 \& 808251 \& 103904 \& 301436 \& 115.8120 \& 21389.43 \& 0.00 \& 1081.2907 \\
\hline 158801 \& 1559007 \& 130185 \& \(168!192\) \& 1594184 \& 103904
1305 \& 912155
1724368 \& 119.0104
120.4813 \& 22299.88 \& 0.00 \& 1068.3389 \\
\hline 1988 Q2 \& 707388 \& 70970 \& 778358 \& 716495 \& 70970 \& 1724368
787485 \& 120.4813 \& 21829.23 \& 0.00 \& 1075.4339 \\
\hline 198803 \& 282133 \& 44145 \& 326278 \& 280135 \& 44145 \& 787485
324279 \& 123.1453 \& 22364.90 \& 0.00 \& 1082.5780 \\
\hline 198804 \& 921124 \& 97124 \& 1018249 \& 914606 \& 497124 \& 324279

1011730 \& 128.0685
127.4170 \& 22720.70 \& 0.00 \& 1088.0215 <br>
\hline 198901 \& 1640218 \& 142654 \& 1782872 \& 1725703 \& 142654 \& 18188358 \& 127.4170
1302364 \& 23159.34 \& 0.00 \& 1093.4944 <br>
\hline 198902 \& 735553 \& 80081 \& 815634 \& 726367 \& 142654
80081 \& 1888358
806449 \& 130.2364 \& 23269.59 \& 0.00 \& 1098.9949 <br>
\hline 198903 \& 276422 \& 76820 \& 353242 \& 281144 \& 76820 \& 806449
357964 \& 132.7346 \& 23470.38 \& 0.00 \& 1104.5230 <br>
\hline 198804 \& 913605 \& 20458 \& 1118188 \& 857648 \& 204583 \& 357964
106231 \& 133.8616 \& 23632.57 \& 0.00 \& 1106.4830 <br>
\hline 199001 \& 1381852 \& 34241 \& 1724270 \& 1451195 \& 204583 \& 1062231 \& 137.8583 \& 23688.24 \& 0.00 \& 1108.4465 <br>
\hline 199022 \& 605700 \& 15398 \& 759687 \& 161191 \& 361727
155333 \& 1812822
786524 \& 140.0840 \& 23855.06 \& 26630.39 \& 1110.4135 <br>
\hline 189003 \& 255770 \& 75613 \& 331383 \& 257210 \& 155333
75418 \& 786524
332828 \& 139.7830 \& 23658.55 \& 26368.37 \& 1112.3840 <br>
\hline 199024 \& 6879 \& 179549 \& 867485 \& 770294 \& $\begin{array}{r}75418 \\ \hline 199887\end{array}$ \& 332828 \& 144.3361 \& 23543.96 \& 26043.09 \& 1111.7697 <br>
\hline 199101 \& 1339478 \& 331855 \& 9671333 \& 1449951 \& 199887
357208 \& 970181
1807459 \& 148.0301 \& 23223.97 \& 25524.58 \& 1111.1558 <br>
\hline 199102 \& 5487 \& 148420 \& 697187 \& 1449951
611474 \& 357208
161501 \& 1807959
.72974 \& 150.5876 \& 23965.03 \& 26038.07 \& 1110.5422 <br>
\hline 199103 \& 253816 \& 85505 \& 339321 \& 255110 \& 161501
89353 \& 772874 \& 150.4335 \& 24344.52 \& 26272.06 \& 1109.9290 <br>
\hline 199104 \& 73333 \& 196808 \& 930142 \& 778185 \& 889353 \& ${ }^{344463}$ \& 151.6294 \& 24704.17 \& 26464.20 \& 1111.8876 <br>
\hline $1992 \mathrm{C1}$ \& 1487608 \& 379058 \& 1866766 \& 1543829 \& 207306 \& 985491 \& 153.2984 \& 25018.77 \& 26654.04 \& 1113.8496 <br>
\hline 199202 \& 687457 \& 205984 \& 893441 \& 643829
652603 \& 392263
196689 \& 1838182 \& 154.3808 \& 25603.19 \& 27160.75 \& 1115.8151 <br>
\hline 198203 \& 281343 \& 102766 \& 389109 \& 281184 \& 196669 \& 848272
38463 \& 155.4624 \& 26111.44 \& 27558.88 \& 1117.7840 <br>
\hline 199204 \& 828131 \& 237395 \& 1065526 \& 281884
805308 \& 103279 \& $\begin{array}{r}384463 \\ \hline 103659\end{array}$ \& 157.8577 \& 28604.95 \& 27864.59 \& 1120.6919 <br>
\hline 199301 \& 1621860 \& 427148 \& 204!1008 \& 805308
1601719 \& 231331 \& 1036639 \& 158.2196 \& 27154.68 \& 28407.33 \& 1123.6058 <br>
\hline 199302 \& 676104 \& 210784 \& 88¢5888 \& 1601719
678665 \& 421420
211928 \& 2023138 \& 160.6911 \& 27139.14 \& 28208.94 \& 1126.5281 <br>
\hline 199303 \& 294038 \& 119732 \& 413770 \& 2866943 \& 211828
122038 \& 800594 \& 160.1714 \& 27398.98 \& 28339.71 \& 1129.4580 <br>
\hline 1993Q4 \& 831773 \& 273284 \& 1105057 \& 286943
819958 \& 122038 \& 408961
1089107 \& 160.6923 \& 27630.37 \& 28473.16 \& 1132.7193 <br>
\hline 199401 \& 1859588 \& 501659 \& 2361347 \& 819958
1719776 \& 269149
468806 \& 1088107 \& 162.9581 \& 28122.86 \& 28844.20 \& 1135.9901 <br>
\hline 1894Q2 \& 721573 \& 234189 \& 95,5753 \& 719190 \& 468806
233414 \& 2188582 \& 163.4125 \& 28674.11 \& 29317.26 \& 1139.2703 <br>
\hline 199403 \& 297768 \& 138057 \& 435325 \& 78190
302151 \& 233414
139687 \& 851604
441837 \& 163.9126 \& 29194.20 \& 29766.03 \& 1142.5600 <br>
\hline 1994Q4 \& 761272 \& 215420 \& 1043344 \& 833299 \& 139687
227703 \& 441837 \& 186.0462 \& 29568.52 \& 29998.40 \& 1146.2819 <br>
\hline 1995Q1 \& 1598838 \& 354897 \& 2076039 \& 833299
1749939 \& 227703 \& 1137371 \& 168.1298 \& 30078.28 \& 30414.97 \& 1150.0360 <br>
\hline 1995Q2 \& 711852 \& 156176 \& 95:341 \& 699603 \& 386557 \& 2265184 \& 187.8976 \& 30983.61 \& 31293.57 \& 1153.7924 <br>
\hline 1995Q3 \& 287931 \& 81384 \& 43.119 \& 699603 \& 154185
80551 \& 937901 \& 188.3523 \& 31447.27 \& 31720.02 \& 1157.5610 <br>
\hline 199504 \& 926984 \& 205875 \& 1256186 \& 280326
906982 \& 80551
201867 \& 425815 \& 169.4686 \& 32135.41 \& 32347.28 \& 1161.8269 <br>
\hline 1996Q1 \& 1796226 \& 399770 \& 235 5436 \& 906982
1788084 \& 201867
398205 \& 1231694 \& 171.4813 \& 32807.00 \& 32950.78 \& 1166.1084 <br>
\hline 1996Q2 \& 749128 \& 197068 \& 106:389 \& 1788084
711952 \& 398205
191027 \& 2345126 \& 173.4123 \& 33280.26 \& 33477.73 \& 1170.4058 <br>
\hline 199603 \& 289711 \& 126704 \& 50:592 \& 711952
294095 \& 191027 \& 1016222 \& 174.7597 \& 34157.21 \& 34385.26 \& 1974.7190 <br>
\hline 199604 \& 1077657 \& 257890 \& 148:393 \& 2962287 \& 128649
255336 \& 516341 \& 175.1585 \& 34749.62 \& 35028.78 \& 1178.3784 <br>
\hline 199701 \& 1916186 \& 392439 \& 250:506 \& 2051539 \& 255336
416402 \& 1463374 \& 178.6147 \& 35538.30 \& 35791.40 \& 1182.0491 <br>
\hline 1997 Q2 \& 929400 \& 223903 \& 1312369 \& 20549414 \& 416402 \& 2667570 \& 179.6608 \& 35727.37 \& 35762.99 \& 1185.7313 <br>
\hline 199703 \& 335123 \& 103356 \& 60\%985 \& 83944
33614 \& 208675 \& 1218346
813572 \& 179.9009 \& 36330.66 \& 36401.55 \& 1189.4250 <br>
\hline 199704 \& 1127190 \& 217788 \& 165\%.342 \& 336261
1120879 \& 100427
216678 \& 613572
1648536 \& 180.6567 \& 36711.49 \& 36949.04 \& 1193.5324 <br>
\hline 199801 \& 1862497 \& 293834 \& 256:,236 \& 1120879
2129478 \& 216678
337595 \& 1648536
2885792 \& 181.4077 \& 37306.48 \& 37314.42 \& 1197.6540 <br>
\hline 199862 \& 787188 \& 129639 \& 124:146 \& 129478
864127 \& 337585
135627 \& ${ }^{2885792}$ \& 183.5020 \& 38110.50 \& 38412.85 \& 1201.7899 <br>
\hline 199803 \& 340074 \& 87079 \& 739:407 \& 324981 \& 135627
88816 \& 1329343 \& 184.4057 \& 38569.93 \& 39011.29 \& 1205.9400 <br>
\hline 199864 \& 947205 \& 159172 \& 152\%304 \& 324881
1013731 \& 88816
167270 \& 730865
1615225 \& 183.5080 \& 38288.06 \& 39801.89 \& 1209.9386 <br>
\hline 199901 \& 2071379 \& 294488 \& 291:237 \& 2188687 \& 167270
311022 \& 1615225
3062754 \& 185.8773 \& 40173.52 \& 40745.87 \& 1213.9504 <br>
\hline 199962 \& 787572 \& 104547 \& 1296568 \& 811953 \& 311022
107480 \& 3062754
1328782 \& 186.5375 \& 39887.58 \& 40198.40 \& 1217.9755 <br>
\hline 199903 \& 311611 \& 42623 \& 707286 \& 317095 \& 107480
43025 \& 1328782
713371 \& 188.2712 \& 39929.80
40311.35 \& 40377.99 \& 1222.0140 <br>
\hline 199904 \& 955724 \& 132974 \& 1607715 \& 1018365 \& 142022 \& 713371 \& 188.3838 \& 40311.35 \& 40697.59 \& 1228.6047 <br>
\hline 200001 \& 2223101 \& 323356 \& 314!:562 \& 2284015 \& 142022
3399 \& 1694881
3228110 \& 192.1140 \& 40979.27 \& 41270.02 \& 1231.1953 <br>
\hline 200002 \& 847122 \& 117190 \& 1363/63 \& 878348 \& 121216 \& 3288110
1402712 \& 185.0051
196.2250 \& 42370.03 \& 42496.59 \& 1235.7860 <br>
\hline 200003 \& 344554 \& 55808 \& 76.456 \& 344011 \& + 55052 \& 1402712
767041 \& 196.2250 \& 43480.92 \& 43538.29 \& 1240.5540 <br>
\hline 200004 \& 1062358 \& 173857 \& 176!586 \& 1048874 \& 55052
171616 \& 767041
1752792 \& 198.9644 \& 43908.45 \& 43855.41 \& 1245.0277 <br>
\hline 200101 \& 2297297 \& 336549 \& 3261793 \& 2254173 \& 171616
340838 \& 1752792
3207369 \& 201.2379
204.1178 \& 44564.59 \& 44445.70 \& 1249.5176 <br>
\hline 200102 \& 769362 \& 686511 \& 165 P 177 \& 750964 \& 340838
720668 \& 3207369 \& 204.1178
206.0262 \& 44057.51
44439.53 \& 43706.81 \& 1254.0237 <br>
\hline 200103 \& 121522 \& 507712 \& 689692 \& 119467 \& 513688 \& 1657025
697853 \& 206.0262 \& 44439.53 \& 43785.77 \& 1258.5460 <br>
\hline 200104 \& 358651 \& 4058958 \& 156\%i401 \& 409164 \& 513688
1179613 \& 697953
1761386 \& 206.1879 \& 44377.93 \& 43577.22 \& 1262.5568 <br>
\hline 200201 \& 908433 \& 1786590 \& 2858.238 \& 1046733 \& 2051909 \& 1761386
327263 \& 206.7880 \& 44689.03 \& - 43694.20 \& 1266.5804 <br>
\hline 200202 \& 396685 \& 1099808 \& 180\%68! \& 403191 \& 1098811 \& 3272633
1795819 \& 207.7972 \& 45409.13
45867 \& - 44126.53 \& 1270.6167 <br>
\hline 2002 Q \& 138077 \& 387687 \& 74.105 \& 133585 \& 1098811
45353 \& $\begin{array}{r}1795819 \\ \hline 936134\end{array}$ \& 208.9896 \& 45887.07 \& 44388.04 \& 1274.6660 <br>
\hline 200204 \& 507081 \& 1124517 \& 190:100 \& 495274 \& +1107812 \& 1936134
1874000 \& 210.0053 \& 46398.15 \& 44670.85 \& 1277.8858 <br>
\hline $2003 \mathrm{Q1}$ \& 1277318 \& 2354793 \& 3781479 \& 1345115 \& 17078194 \& 1874000
3965185 \& 213.5279 \& 46745.66 \& 44714.58 \& 1281.1137 <br>
\hline 2003Q2 \& 464408 \& 1138198 \& 179\%405 \& 410592 \& 2466194
1027287 \& ${ }_{1635185}$ \& 215.4818 \& 47123.45 \& 44991.97 \& 1284,3498 <br>
\hline 2003 Q 3 \& 144987 \& 471592 \& 854594 \& 145260 \& 1027287
471171 \& 1632221 \& 218.6297 \& 47656.52 \& 45448.36 \& 1287.5940 <br>
\hline 200304 \& 468892 \& 1104725 \& 181:399 \& ${ }_{396636}$ \& 471171 \& 854547 \& 218.0900 \& 48695.54 \& 46299.44 \& 1290.4780 <br>
\hline 200401 \& 1309709 \& 23038.53 \& 37? $\%$ ? 2 \& 396636
1445930 \& 962525
253581 \& ${ }^{1602778}$ \& 221.2831 \& 49320.49 \& - 46756.23 \& 1293.3686 <br>
\hline \& \& \& \& \& 253351 \& 4443848 \& 222.3654 \& 50514.78 \& - 47506.08 \& 1296.2655 <br>
\hline
\end{tabular}

C\&I Var Index C\&IVar Name	$\begin{gathered} 10 \\ \text { GASC } \end{gathered}$	GAS!	12 GASCI	$\begin{gathered} 13 \\ \text { GSNC } \end{gathered}$	$\begin{gathered} 14 \\ \text { GSNI } \end{gathered}$	$\begin{gathered} 15 \\ \text { GSNCI } \end{gathered}$	$\begin{aligned} & 16 \\ & \text { CPI } \end{aligned}$	$\begin{gathered} 17 \\ \text { GSP } \end{gathered}$	$\begin{gathered} 18 \\ \text { RGSP } \end{gathered}$	$\begin{gathered} 19 \\ \mathrm{POP} \end{gathered}$
Description	ENGI: Natural   Gas Consumption of $\mathrm{C} \mathrm{Bl}_{1}$   Customers	ENGI: Natural Gas Consumption of Commercial Customers	ENGI: Natural   Gas Consumpilion of industrial   Customers	ENGI: Normal   Natural Gas   Consumption of C   \& 1 Customers	ENGI: Normal   Natural Gas   Consumplion of Commercial Customers	ENGI: Normal   Natural Gas   Consumption of Industrial   Customers			Roal Gross State Product-   Aggregate	
Start Year	1984	1984	$\because 984$	1984	1984	1984	1984	1984	1984	1984
Start Period	4	-		4	4	4	4	4	- 4	
Period / Year	4	4	4	4	4	4	4	4	4	4
Period / Cycte	4	4	4	4	4	4	4	4	4	4
200402	423536	993500	163:400	399819	958929	1573135	225.8373	51525.29	48053.73	1299.1690
2004 Q3	148840	495655	89:172	148664	494174	889515	225.0902	52286.95	48660.33	1301.8534
200404	451682	1031963	170:329	389334	911340	1517194	227.8726	53153.00	49190.69	1304.5434
2005Q1	1230242	2188883	3590249	1370077	2421452	3969780	229.1702	54039.51	49651.03	1307.2389
200502	454405	1092152	$175 \mathrm{mitc5}$	417098	1019495	1645482	233.4505	54774.72	50023.85	1309.9400
200503	145812	497814	712383	145910	483423	708090	236.8629	55720.46	50.494 .77	1312.7878
2005Q4	478401	1113493	1591894	411375	999434	1410809	237.9245	56310.66	50616.27	1315.7833
2006Q1							239.3080	57628.09	51387.60	1318.9273
200602							240.4924	58496.71	51893.18	1322.2208
200603							240.9598	59177.66	52269.32	1325.6648
2006Q4							241.9080	58832.92	52592.77	1329.1158
2007Q1							242.9320	60473.02	52888.57	1332.5735
2007 Q2							243.8489	61103.39	53245.86	1336.0384
2007 Q3							244.9061	61789.96	53646.33	1339.5648
2007Q4							246.1188	62563.78	54094.72	1343.0988
2008Q1							247,4104	63411.33	54540.22	1346.6398
200802							248.4899	64281.08	55051.28	1350.1886
2008Q3							249.6398	85124.93	55534.69	1353.7831
2008Q4							250.7177	66026.64	56073.11	1357.3854
2009Q1							251.8801	66949.77	56560.55	1360.9951
2009Q2							252.9048	67853.68	57068.00	1364.6129
2009 Q 3							253.9322	68680.18	57524.68	1368.2252
2009Q4							254.9778	68530.31	58005.98	1371.8453
201004							256.2329	70398.21	58441.16	1375.4734
2010Q2							257.3748	71296.48	58935.54	1379.1090
201003							258.5414	72102.80	59351.66	1382.5753
2010Q4							259.7872	72988.46	59805.39	1386.0482
201101							261.0562	73887.63	60260.22	1389.5285
2011Q2							262.3007	74748.54	60700.16	1383.0150
201103							283.8250	75561.69	61093.31	1396.3656
2011Q4							264.9472	76445.39	61538.10	1399.7216
201201							286.2575	77349.46	61965.71	1403.0838
2012Q2							267.6442	78238.77	-62402.78	1406.4543
2012Q3							268.0481	79067.33	62794.61	1409.8062
201204							270.4765	-79978.00	63246.70	1413.1664
2013Q1							274.9462	-80937.50	63697.04	1496.5355
201302							273.3823	81870.22	64156.56	1419.9125
2013Q3							274.8083	82777.18	64605.26	1423.1885
201304							278.2041	63719.07	7 65082.96	1426,4717
$2014 \mathrm{Q}_{1}$							277.6452	- 84748.46	6 65583.05	1429,7629
201402							279.1088	855740.10	66077.86	9433.0612
201403							280.5180	-86678.81	166537.63	1436.1951
2014Q4							281.8092	287677.07	$7 \quad 67045.74$	1439.3351
201501							283.3054	$4 \quad 88750.57$	$7 \quad 67573.20$	- 1442.4819
2015Q2							284.7407	$7 \quad 89820.44$	4 68109.96	1445.6344
2015Q3							288.1709	980840.91	1 68813.88	1448.7855
2015Q4							287.5183	$3 \quad 91925.26$	$6 \quad 69167.66$	-1451.9425
2016Q1							288.9131	1 93094.04	$4 \quad 69741.90$	1455.1059
201602							290.3538	$8 \quad 94183.98$	970279.08	-1458.2748
2016Q3							291.7824	$4 \quad 95209.67$	$7 \quad 70765.67$	71461.4132
2016Q4							283.2204	$4 \quad 96347.15$	$5 \quad 71328.18$	1464.5570
2017Q1							294.7927	$7 \quad 97577.23$	371883.85	-1467.7070
2017Q2							296.3936	888771.34	3472431.16	1470.8620
2017Q3							298.0099	9 99952.90	- 72962.00	1474.0546
201704							299.6334	101228.97	$7 \quad 73553.67$	1477.2527
201801							301.2300	102544.75	754137.85	1480.4568
2018Q2							302.8437	103812.71	7174710.82	1483.6662
2018Q3							304.5028	88105011.95	575226.78	- 1486.8267
201804							306.1980	106337.05	75899.98	81489.9923
201901							307.9166	$66 \quad 107701.61$	76401.10	1493.1636
201902							309.6486	$36 \quad 109026.16$	$16 \quad 76979.91$	11496.3399
2019 Q 3							311.3747	47110320.35	$35 \quad 77535.48$	$8 \quad 1499.3467$
201904							313.1019	19 111705.45	$45 \quad 78148.19$	91502.3577
202001							314.7843	43 113128.86	$86 \quad 78751.32$	21505.3735
202002							316.4897	114484.48	$48 \quad 79332.55$	$5 \quad 1508.3934$
2020Q3							318.2606	1966 19598.04	04 79877.87	$7 \quad 1511.1360$
202004							320.0713	$13 \quad 177225.16$	$16 \quad 80484.06$	6 1513.8815




CdI Var Index C\&I Var Name	$\begin{gathered} 29 \\ \text { HSTT } \end{gathered}$	$\begin{gathered} 30 \\ \text { HSOLD } \end{gathered}$	$\begin{gathered} 31 \\ \text { HiNC } \end{gathered}$	$\begin{aligned} & 32 \\ & \mathrm{PCl} \end{aligned}$	$\begin{gathered} 33 \\ \mathrm{RPCl} \end{gathered}$	$\begin{gathered} 34 \\ \text { PINC } \end{gathered}$	35 RPINC	$\begin{gathered} 36 \\ \text { RPIR } \end{gathered}$	$\begin{gathered} 37 \\ \text { RPTR } \end{gathered}$
Description	Housing Starts, Total Private	Home Sales, Existing Singlefamily units	Per Capita   Personal income -   By Place of   Residence		Raal Per Capita Personal income	Personal Income, Total, By Place of Re Residence	Real Personal income. Total	Real income, Rosidence Adjustment	Real Noniarm Proprietors in come
Start Year	1984	1984	1 1384	1984	1984	1984	1984	1984	1984
Start Period	4	4	4	4	4	4	4	4	4
Period / Year	4	4	4	4	4	4	4	4	4
Period / Cyole	4	4	4	4	4	4	4	4	4
1984Q1	10.9670	15.200	39.2\%09	14.1131	22.0593	13720.00	21444.87	2067.90	1569.29
1984Q2	10.4638	16.300	39.68849	14.3070	22.1474	13976.00	21635.01	2136.26	1574.33
198403	10.5741	12.600	40.4733	14.6293	22.4727	14363.00	22063.66	2975.18	1569.94
1984Q4	12.5708	11.700	41.3541	14.9824	22.8718	14784.00	22568.92	2202.85	1589.17
198501	14.2171	13.200	42.1468	15.4244	23.2954	15297.00	23103.06	2245.82	1748.93
198502	17.5902	14,700	42.9:66	15.6468	23.4536	15596.00	23377.40	2264.89	1789.23
198503	14.2518	16.300	43.3019	15.7798	23.5014	15839.00	23589.60	2257.83	1828.91
198504	16.4333	13.900	44.26, 12	16.1475	23.8615	16322.00	24119.28	2277.16	1866.36
198601	21.1709	14.600	45,\%92	16.6106	24.3704	16908.00	24806.70	2285.83	1888.23
1986Q2	18.5142	14.300	46.1:99	16.8606	24.7223	17283.00	25341.64	2302.05	1953.08
198603	18.2991	14.600	46.3199	16.9682	24.6943	17516.00	25491.54	2344.53	1990.89
198604	17.8086	17.500	47.0:49	17.2389	24.9106	17921.00	25896.28	2385.73	2027.37
198701	14.9018	15.800	47.71.03	17.5394	25.0619	18362.00	26237.43	2389.12	2170.50
198702	15.3460	15.400	48.6. 71	17.8822	25.3339	18853.00	26709.26	2404.16	2290.82
198703	14.4790	15.100	49.95:37	18.3861	25.7848	19513.00	27385.16	2441.59	2379.88
198704	13.8979	14.400	51.5:\% 4	18.9846	26.4002	20282.00	28204.31	2476.67	2440.52
198881	18.3978	14.100	51.71778	19.1207	26.3610	20563.00	28349.46	2502.27	2494.00
198862	11.8505	14.000	52.36,35	19.3326	26.3613	20929.00	28538.12	2541.69	2496.69
198803	11.3556	14.600	53.0:002	19.5814	26.3854	21305.00	28707.91	2548.07	2499.56
198804	9.5636	12.700	54.266	20.0413	26.7438	21915.00	29244.18	2580.80	2522.08
198901	8.7877	10.000	55.2785	20.4105	26.9172	22431.00	29581.81	2570.32	2537.35
198902	7.2648	9.600	55.?/43	20.4414	26.6112	22578.00	29392.70	2550.28	2473.48
198903	7.1295	9.700	55.4738	20.4775	26.4896	22658.00	28310.26	2549.67	2444.89
188904	6.1527	10.000	55.7097	20.5639	26.3833	22794.00	29244.45	2557.00	2406.89
199001	5.6999	9.400	55.: 127	20.3798	25.7659	22630.00	28610.80	2510.87	2233.99
189002	4.4519	8.400	55,55:47	20.5909	25.7557	22905.00	28650.23	2514.17	2180.19
199003	3.8479	8.300	56.1827	20.6778	25.5440	22989.00	28399.01	2489.19	2149.47
199004	4.7041	7.700	$55 . \% 353$	20.4688	24.9625	22744.00	27737.26	2446.40	2089.08
198104	3.2458	8.000	56.3812	20.9564	25.3667	23273.00	28170.77	2843.62	2028.71
199102	4.0878	10.100	56.6156	21.1122	25.4143	23433.00	28208.06	2830.25	2037.99
199103	3.7131	9.900	56.6062	21.1379	25.2665	23503.00	28093.47	2620.13	2067.89
199104	4.0311	10.600	57.3071	21.4239	25.4054	23863.00	28297.84	2608.86	2072.85
198201	3.8825	12.300	57:3842	21.4901	25.2878	23979.00	28216.56	2800.55	2140.45
199202	4.0178	13.000	58.: $: 36$	21.7949	25.4834	24362.00	28484.81	2610.90	2187.64
199203	4.1189	12.000	58.5/77	21.9722	25.5125	24624.00	28591.67	2585.13	2231.69
199204	4.6983	13.000	60.3 ; 69	22.6156	26.0948	25419.00	28320.27	2664.22	2314.61
199301	4.0611	13.300	58.1931	21.8654	25.0992	24632.00	28274.94	2616.05	2338.26
199302	4.7013	13.200	59.5:97	22.2744	25.4048	25158.00	28683.63	2691.67	2367.75
1993 Q3	4.3221	14.300	60.6319	22.5581	25.6403	25552.00	29043.29	2723.38	2414.21
199304	4.3589	16.500	60.1479	22.6683	25.6304	25751.00	29115.93	2763.36	2385.89
1994Q1	3.9091	16.000	61.035	22.9480	25.8441	26144.00	29443.43	2691.62	2316.60
199402	4.7133	316.800	62.8:74	23.5130	26.3368	26865.00	30091.40	2785.68	2408.21
199403	4.5663	- 16.100	-63.2:55	23.6842	26.2953	27148.00	30142.11	2755.63	2395.91
$1994 \mathrm{Q4}$	4.8760	- 16.000	64.2:76	24.1132	- 26.6526	27731.00	30651.47	2778.76	2420.64
189501	4.8801	- 16.500	64.5373	24.2799	26.7080	- 28014.00	- 30815.43	2685.30	2333.10
199502	4.4123	316.300	65.7\%85	24.7970	27.1266	28704.00	- 31400.69	2636.42	2310.42
199503	4.3126	- 17.100	-65.4.50	24.7317	26.9406	- 28734.00	- 31300.31	2709.12	2287.56
199504	3.7099	- 17.300	-66.u:10	24.9874	- 27.1057	- 29138.00	- 31608.18	- 2717.36	2314.66
199601	4.5324	$4 \quad 17.900$	068.2732	25.8773	- 27.8977	- 30287.00	- 32651.63	- 2746.93	2362.06
199602	4.6256	- 19.400	69.1:62	26.2565	- 28.1263	330844.00   319190	- 33040.53	- 2792.86	2440.23
199603	4.9797	720.900	- 69.9106	26.5713	- 28.3502	- 31311.00	- 33407.31	2819.95	2518.00
199604	5.1810	20.000	-70.s5:57	26.8483	$3 \quad 28.4555$	$5 \quad 31736.00$	- 33635.75	-2860.56	2526.71
199701	5.2107	- 21.000	69.7742	26.5752	28.0385	$5 \quad 31511.00$	- 33246.11	2964.73	2575.41
198702	5.0475	522.800	- 70.7\%28	26.9828	- 28.4146	- 32094.00	33787.03	2947.53	2606.33
199703	5.4972	224.400	$0 \quad 71.8129$	27.4027	- 28.7789	- 32706.00	- 34348.55	- 2965.83	2629.75
198704	5.6876	- 25.300	0 72.9:82	27.8620	29.1638	$8 \quad 33369.00$	- 34928.19	3018.76	2670.20
189801	5.8882	224.800	$0 \quad 73.8 \times 31$	28.2196	629.5153	$3 \quad 33914.00$	O 35471.19	2982.95	2819.42
199802	5.6268	B 29.900	$0 \quad 75.2026$	28.8033	30.0751	$1 \quad 34735.00$	036268.81	3085.49	2896.49
199863	5.4691	1 25.900	0 76.9:28	29.4627	$7 \quad 30.6622$	235648.00	- 37099.33	3100.28	3024.31
199804	5.6110	- 25.600	$0 \quad 78.11362$	29.9032	231.0061	136301.00	O 37639.85	$5 \quad 3107.54$	3137.60
199901	6.2491	123.500	( 77.1690	29.6032	230.6176	6 36056.00	- 37281.47	$7 \quad 3389.28$	3092.45
198902	6.0655	$5 \quad 28.100$	$0 \quad 78.1377$	29.9997	$7 \quad 30.8261$	136660.00	$0 \quad 37669.93$	$3 \begin{aligned} & 3427.90\end{aligned}$	3142.24
199903	6.4957	$7 \quad 28.700$	$0 \quad 79.4135$	30.5037	$7 \quad 31.9724$	$4 \quad 37416.00$	O 38236.17	$7 \quad 3537.89$	3177.15
199904	5.8055	$5 \quad 26.200$	-81.1508	31.1616	$6 \quad 31.6561$	1 38366.00	- 38974.79	3620.55	3257.89
200001	6.3488	$8 \quad 23.000$	-86.3042	33.1425	$5 \quad 33.3774$	$4 \quad 40957.00$	$0 \quad 41247.38$	8 3881.03	3441.23
200002	5.7116	$6 \quad 28.500$	85.! ${ }^{178}$	32.9917	$7 \quad 33.0654$	40928.00	$0 \quad 41019.47$	$7 \quad 3959.83$	3497.80
200003	6.0894	$4 \quad 31.200$	87.1:24	33.4442	$2 \quad 33.3645$	4 41638.00	$0 \quad 41539.72$	24128.13	3508.61
200004	7.2828	$8 \quad 26.000$	87.9:98	33.7658	833.5354	42191.00	O 41903.13	$3 \quad 4101.82$	3515.85
200101	6.2338	$8 \quad 20.900$	88.5.36	33.9770	O 33.4742	$42 \quad 42608.00$	- 41877.50	- 4022.58	3483.68
200102	5.9381	$1 \quad 27.400$	803:26	33.8589	93.1476	42613.00	41797.74	$4 \quad 3953.17$	3508.70
2001 Q 3	6.8401	130.400	800 87.3:54	33.6809	9 32.9265	542524.00	- 41571.59	$9 \quad 3895.75$	3545.77
200104	6.1115	$5 \quad 24.900$	88.1197	33.7531	32.9501	42751.00	- 41733.94	4 3858.96	3548.52
200201	8.4866	$6 \quad 12.000$	-88.1508	33.8741	132.9922	2243041.00	- 41920.47	$7 \quad 3762.43$	3651.40
200202	5.1103	$3 \quad 25.300$	8900 2032	34.2035	3533.0836	43598.00	0042170.53	33759.73	3643.66
2002Q3	8.7210	$0 \quad 29.600$	88.1186	33.9780	- 32.7212	$12 \quad 43420.00$	0041813.93	3709.52	3592.99
200204	7.1653	327.300	88.:066	33.9658	858.5754	43514.00	00 $\quad 41732.84$	$4 \quad 3698.12$	3611.85
2003Q1	7.1381	$1 \quad 10.900$	88.4 194	34.0530	$30 \quad 32.4157$	43736.00	- 41633.11	$11 \quad 3558.27$	3560.18
200302	7.6789	9 26.500	89.4;08	34.2460	60 32.5471	$71 \quad 44095.00$	( 41907.43	3571.56	3634.29
200303	8.5369	39.600	600 89.b.565	34.5756	5632.7005	44619.00	- 42199.29	$29 \quad 3631.76$	3719.71
2003Q4	7.8913	$3 \quad 30.400$	- 90 ¢5149	34.9761	-32.9727	$27 \quad 45237.00$	42645.84	343655.87	3760.51
200401	8.1195	11.500	0002.9140	35.6894	4 33.3295	$95 \quad 46263.00$	$00 \quad 43202.53$	53 3518.58	3813.83


C\&IVar indax C\&IVar Name	$\begin{gathered} 29 \\ H S \Pi \end{gathered}$	$\begin{gathered} 30 \\ \text { HSOLO } \end{gathered}$	$\begin{gathered} 31 \\ \text { HiNC } \end{gathered}$	$\begin{aligned} & 32 \\ & \mathrm{PCl} \end{aligned}$	$\begin{gathered} 33 \\ \mathrm{RPCl} \end{gathered}$	$\begin{gathered} 34 \\ \text { PINC } \end{gathered}$	$\begin{gathered} 35 \\ \text { RPINC } \end{gathered}$	$\begin{gathered} 36 \\ R P I R \end{gathered}$	$\begin{gathered} 37 \\ \text { RPTR } \end{gathered}$
Description	Housing Starts, Total Private	Home Sales. Existing Singlefamily units	Average   Household Income	Por Capita   Personal income -   By Place of   Residence	Real Per Capita Personal income	Personal income, Total, By Place of Residence	Real Personal income, Total	Real Income, Residence Adiustment	Real Nonfam Proprietors
Start Year   Start Period	1984	1984	1984	1984	1984	1984	Income, Tolal 1984	Adjustment 198	Income
Period / Year	4	- 4	4	4	4	1984 4	1984 4	984 4	1984
Period; Cycle	4	4 4	4	- 4	4	4	4	4	4
	. 4	- 4	4	4	4	4	4	4	4
2004Q2	8.0703	27.600	94.0-136	36.1816	33.4739				
2004Q3	7.8167	35.200	95.5407	36.7914	33.47391	47006.00 47897.00	43488.24	3669.20	3936.57
2005Q4	8.8152 77079	31.100	97.7927	37.6477	34.4361	47897.00 49113.00	441523,44	3643.86 3663.36	3993.22
200502	7.7079 7.6460	27.478	97.9138	37.7651	34.3519	49368.00	44906.13	3682.15	3991.73
200503	8.0034	24.277 21.449	98.1333	38.1804	34.4489	50014.00	45125.96	3634.33	4053.27
200504	6.8656	21.449 18.951	$98.99 \% 10$	38.5325	34.4514	50585.00	45227.37	3867.54	4123.36 4159.29
2006Q1	8.7324	18.351 21.592	9899991 1009491	38.9722	34.5898	51279.00	45525.89	3689.73	4159.29 4178.91
200602	6.0648	19.975	100.9891 107.9243	39.3961 39.8146	34.8162	51960.85	45920.05	3686.36	4178.91 4122.75
2006 Q3	5.8650	19.720	107.9243 102.9589	39.8146 40.2711	35.0348	52643.75	46323.71	3709.15	4139.63
200604	5.8671	18.280	102.9589 103530	40.2711 40.6575	35.3306	53385.99	46836,47	3744.97	4182.86
2007Q1	5.8433	18.089	104.6593	40.6575 41.0119	35.5268 35.6855	54038.56 54651.31	47219,21	3770.02	4209.51
2007Q2	5.8408	18.281	105.5991	41.4217	35.6855 35.8950	54651.31 55340.83	47553.56	3783.91	4233.43
2007Q3	5.8550	17.465	106.5054	41.8183	35.0950 36.0824	55340.03 56018.30	47957.07 48334.68	3806.35	4262.85
$2007 \mathrm{Q4}$	5.8793	17.601	107.4416	42.2311	36.0824 36.2674	56018.30 56720.53	48334.68 48710.65	3829.24	4294.27
200801	5.8672	17.314	108.4192	42.6628	36.2674 36.4573	56720.53 57451.40	48710.65	3849.47	4331.61
2008Q2	5.8399	17.468	109.5337	42.6828 43.1453	36.4573	57451.40 58254.23	48094.87 48564.14	3869.43	4374.07
2008Q3	5.8386	16.733	110.5:599	43.5956	36.9278	58254.23 59018.00	48564.14	3893.40	4423.71
2008Q4	5.8383	17.057	111.6275	43.5956 44.0590	36.9278 37.1641	59019.00 58805.02	48992.21	3916.70	4467.48
2009Q1	5.7857	16.848	$112.6 / 57$	44.5199	37.1644 37.3872	58805.02 60591.38	50446.07	3939.45	4515.12
2009Q2	5.7635	17.233	113.8 .123	44.51927	37.3872 37.6601	60591.38	50883.82	3961.10	4568.64
200903	5.7702	17.059	114.9772	45.0267 45.5200	37.6601 37.9197	81444.03 6228166	51391.41	3984.24	4625.99
200904	5.8014	17.307	116.0481	45.58893	37.9197 38.1593	62281.66	51682.71	4007.44	4672.41
201001	5.7578	17.634	116.9834	45.9893 46.4053	38.1593 38.3328	63090.49	52348.86	4031.01	4719.52
201002	5.7776	17.910	118.0115	46.4053 46.8661	38.3328 38.5504	63829.30	52725.78	4052.19	4765.16
201003	5.8189	18.474	119.0358	46.8661 47.3078	38.5501 38.7452	64633.52	53184.85	4073.97	4818.34
201004	5.8335	18.391	120.0419	47.3078 47.7408	38.7452 38.9219	65406.72	53568.20	4095.94	4862.76
201101	5.8492	18.554	120.9972	48.1598	33.08219	68971.02 68919.45	53947.58 54303.37	4117.84	4807.73
201102	5.8588	18.637	121.9882	48.5948	39.0804	66919.45 67693.30	54303.37 5467921	4140.30	4955.73
201403	5.8564	18.647	$123.0 \div 72$	49.0339	39.2524 39.4186	67693.30 68469.27	54679.21	4163.90	5002.42
201104	5.8306	18.647	$124.0<62$	49.0339 49.4746	39.4186 39.5836	68468.27 69250.67	55042.75	4187.01	5042.95
201201	5.8093	18.607	124.9539	49.4746 49.8793	39.5836 39.7188	69250.67 69984	55405.99	4210.73	5086.14
2012 Q 2	5.7876	18.567	124.9539 126.0127	49.8793 50.3347	39.7188 39.8864	69984.78 70793.38	55728.79	4234.99	5131.09
2012 Q 3	5.7702	18.550	127.0194	50.3367 50.7665	39.8864 40.0324	70793.38 71570.99	56088.41	4258.85	5176.27
201204	5.7615	18.555	128.06604	50.7665 51.2143	40.0324 40.1866	71570.99 72374.36	56437.99	4283.25	5216.80
2013Q1	5.7644	18.594	129.0:194	51.2143 51.6551	40.1866 40.3320	72374.36	56780.38	4307.40	5259.15
201302	5.7531	18.606	$130 .: 2: 26$	51.6551 52.1348	40.3320 40.5080	73171.32 74026.86	57131.75	4332.02	5303.14
$2013 \mathrm{Q3}$	5.7591	18.653	131.3412	52.1348 52.6153	40.5080 40.6869	74026.86 74881.53	57517.81	4357.30	5347.81
2013Q4	5.7739	18.754	132.4675	52.6153 53.0950	40.6869 40.8653	74881.53 75738.49	57805.09	4383.15	5389.32
2014Q1	5.7919	18.881	133.5805	53.0950 53.5683	40.8653	75738.49	58293.20	4408.43	5430.65
2014 Q 2	5.7895	18.962	134.7604	53.5683 54.0734	41.0320 41.2202	76590.01	58668.06	4434.85	5477.32
2014Q3	5.8015	19.023	135.9379	54.0734 54.5760	41.2202 41.4094	77490.44	59071.07	4460.61	5525.82
2014Q4	5.8252	19.170	135.9379 137.1329	54.5760 55.0883	41.4094	78381.85	50471.82	4486.74	5568.55
2015Q1	5.8570	19.349	138.3356	55.0883 55.6071	41.6060	78290.47 80212.28	59884.88	4513.38	5613.22
201502	5.8989	19.527	139.5008	56.1530	41.8033	80212.28	60300.56	4540.03	5663.94
2015Q3	5.9364	19.795	140.9048	56.1530 56.7135	42.0158 42.2379	81176.67 82165.65	60739.61	4566.74	5714.26
2015Q4	5.9630	19.861	142.1994	57.2712	42.2379 42.4619	82165.65 83154.42	61193.62 61652.17	4593.52	5760.95
201601	5.9823	19.926	143.4317	57.8276	42.4619 42.6779	83154.42 84145.34	61652.17 62100.84	4621.28	5810.50
2016Q2	5.9904	19.926	144.7927	58.3988	42.6779 42.8992	84145.34 85161.52	62100.84 62558.83	4648.30	5865.79
2016Q3	5.9928	19.911	146.1126	58.9756	42.8992 43.1216	85161.52	62558.83	4674.94 470137	5920.40
2016Q4	5.9942	19.937	147.4974	59.5768	43.1216 43.3584	86187,70 87253,68	63018.51 63500.84	4701.37 4727.90	5970.00
2017Q1	6.0018	0.000	148.8861	60.1785	43.3584 43.5671	87253,68 88324.48	63500.84 63943.67	4727.90 4752.14	6022.99
2017Q2	6.0085	0.000	150.3179	60.7983	43.5671 43.7821	88324.48 89425.87	63943.67 64397.46	4752.14	6082.50
2017Q3	6.0171	0.000	151.7008	61.3993	43.7821 43.9791	89425.87 80505.91	64397.46 64827.58	4776.07 4799.81	6142.63
2018 C 1	6.0287 6.0435	0.000	153.2085	62.0514	44.2088	81685.63	65307.63	4823.14	5204.05
201802	6.0435 6.0518	0.000	154.6120	62.6599	44.4054	92765.33	65740.26	4847.02	6267.69
2018Q3	6.0550	0.000 0.000	156.1472	63.3229	44.6366	93950.03	66226.83	4870.37	6332.56
2018Q4	6.0445	0.000	$157.5 / 87$ 159.1478	63.9446	44.8325	95074.52	66658.11	4894.05	6394.44 6454.16
2019Q1	6.0540	0.000	159.1778 160.6584	64.6225	45.0612	96287.00	67140.84	4817.01	6454.16 6518.44
201902	6.0538	0.000	160.6384 162.1915	65.2748 85.9327	45.2676 45.4740	97465.82	67581.87	4940.32	6518.44 6583.23
201903	6.0830	0.000	163.7:19	65.9327 66.6071	45.4740 45.6893	98657.71 99867.14	68044.53	4963.66	6583.23 6644.54
201904	6.0692	0.000	165.4:36	67.3270	45.6893 45.9323	99867.14 101149.31	68504.14	4986.87	6705.98
202001	6.0621	0.000	167,0:45	67.3270 68.0242	45.9323 46.1600	101149.31 902401.85	68006.75	5010,83	6769.54
202002	6.0623	0.000	168.5:89	68.6900	46.1600 46.3608	102401.85 103611.49	69488.12	5035.18	6837.05
2020Q3	6.0548	0.000	170.0:97	68.6900 69.3457	46.3608 46.5479	103611.48 104790.83	69930.28 70340.16	5059.53	6801.27
2020Q4	6.0371	0.000	$171.6: 97$	70.0424	46.5479 46.7541	104790.83 106035.97	70340.16	5082.89	6963.09
			17.6.97	70.0424	46.7541	106035.97	70780.23	5105.92	7025.69


C\&l Var Index C\&I Var Name	$\begin{gathered} 38 \\ \text { PTP } \end{gathered}$	$\begin{gathered} 39 \\ T P T R \end{gathered}$	$\begin{gathered} 40 \\ \text { PINF } \end{gathered}$	$\begin{gathered} 41 \\ \mathbb{N D X} \end{gathered}$	$\begin{gathered} 42 \\ \text { PRCO } \end{gathered}$	$\begin{gathered} 43 \\ \text { PRCG } \end{gathered}$	44 PRCR	$\begin{gathered} 45 \\ \text { PRCC } \end{gathered}$	$\begin{gathered} 46 \\ \text { PRCi } \end{gathered}$
Description Start Year	Personal Income, Total Proprielors Income.	Real Total   Proprietors income	Personal Inconie.   Nonfarm   Propriators   Income	Industrial   Production Index, Total	Now Hampshire \#2 Heating Oil Production Price	Now Hampshire Natual Gas City Gate Frice	Naw Hampshire   Residential   Natural Gas Price	New Hampshire Commercial Natural Gas Price	New Hampshirs Industrial Natural Gas Price
Start Period	1984	1984	11184	1984	1984	1984	1984	1984	
Period / Year	4	${ }^{4}$	4	4	4	4	,	,	1984
Period / Cycte	4	${ }_{4}^{4}$	4	4	4	4	4 4	4	4
198401	1009.00	1577.10	100400					- 0.4017	
198402	1021.00	1580.52	1017.00		7.9574 7.5289	3.68	6.5255	6.4017	5.2470
198403	1027.00	1577.62	1027.00		7.5289 7.5510	4.03 4.26	7.8521 7.0481	6.4233	4.6399
1984Q4	1046.00	1596.80	104.00		7.5510 7.4402	4.26 4.39	7.0481 6.9658	6.1289 6.3252	3.7502
198502	1166.00 1200.00	1761.01	1158.00		7.5584	4.38 4.43	6.9658 6.5717	6.3252 6.0109	4.6838
1985Q3	1235.00	1798.72 183933	119200		5.7383	4.40	8.1352	6.0583	4.9795 4.4135
198504	1270.00	1876.70	1268.00		7.5584	4.30	7.1575	5.7757	4.4135 3.5684
1986Q1	1294.00	1898.50	1263.00 128.00		7.6619	4.15	6.9209	6.6060	3.5684 4.8710
1986Q2	1339.00	1963.34	133:00		5.5561	3.97	6.4062	6.1713	4.8710 5.1879
1986Q3	1377.00	2003.99	1388.00		4.6769	3.78	8.0455	6.2724	5.1879 4.6084
198604	1412.00	2040.37	1403.00		508	3.57	7.0846	5.9708	4.6084 3.7336
198701	1543.00	2204.79	1519.00		00	3.37	6.3498	S.8647	3.7336 4.3406
1987 Q2	1641.00	2324.82	1617.00		05	3.20	5.8229	5.4408	4.3406 4.6358
1987Q3	1724.00	2417.75	1697.00		96	3.06	7.3989	5.5649	4.6358 4.1198
1987Q4	1784.00	2480.84	1755.00		5	2.88	6.4818	5.2863	4.1198 3.3569
1988Q1	1832.00	2525.71	1805.00		5	2.96	6.1953	5.7644	4.3569 4.1970
198802	1854.00	2528.06	1831.00		9	2.97	5.5535	5.2525	4.1970 4.4732
1988Q3	1886.00	2541,33	1855.00		5.6596	3.01	7.1018	5.3590	4.4732 3.9572
1988Q4	1918.00	2559.45	1990.00		2828	3.06	6.1894	5.0803	3.9572 3.2140
198901	1940.00	2558.46	1924.00		4	3.11	6.6800	6.2000	3.2140 4.5775
198962	1514.00	2491.70	1904:00		6.1472	3.45	6.9100	6.3100	
198903	1904.00	2463.00	1993\%00		5.7482	2.98	7.5000	6.1600	4.8695 4.3231
198904	1891.00	2426.13	1897\%.00		6.1472	3.17	6.8600	6.0000	
199001	1790.00	2263.07	1876.00 $176 \%$		8.7554	3.29	5.7600	6.3800	3.5080 4.9033
199002	1763.00	2205.21	1743.00	65.76 66.01	6.6570 5.9625	3.86	7.7700	7.2800	4.9033 5.2303
199003	1759.00	2172.95	1740.00	66.01 65.79	5.9625 8.8514	3.03	8.3200	6.5000	5.2303 4.6583
199004	1731.00	2119.03	1/13.00	65.79 63.64	8.8514 7.9205	3.06 3	7.7700	6.0100	3.7881
199101	1697.00	2054.13	1676.00	63.64 61.26	7.9205 6.1989	3.50	6.9700	6.4300	4.6131
199102	1716.00	2065.68	1695.00	61.26 61.45	6.1989 5.7335	3.72	72200	6.5700	4.9414
199103	1747.00	2088.21	1730.00	61.45 62.53	5.7335 6.4871	2.87 2.82	7.8800 7.1500	5.9600	4.4015
199104	1770.00	2098.95	1744.00	62.53 63.34	6.4871 6.5093	2.82 3.40	7.1500	5.9300	3.6092
199201	1847.00	2173.40	1819.00	63.34 62.36	6.5093 6.0438	3.40   3.60	6.9000	6.4600	5.0790
1992 Q 2	1903.00	2225.05	1871.00	62.36 63.57	6.0438 6.0807	3.60 3.28	6.9400	6.4800	5.3640
189203	1952.00	2266.53	1922.00	64.57	6.0807 6.4723	3.28 3.42	9.0900	7.2400	4.6979
199204	2031.00	2343.45	2006.00	64.74 64.92	6.4723 6.4354	3.42 3.89	8.0900	6.7500	3.6714
1993Q1	2050.00	2353.18	203700	64.92 66.10	6.4354 6.2433	3.89 3.59	7.8600 50100	7.0000	5.2067
199302	2091.00	2384.86	20771.00	66.10 67.06	6.2433 5.7852	3.59 3.89	5.9100	5.6200	5.5017
199303	2139.00	2431.26	2124.00	67.06 67.85	5.7852 5.6831	3.81 4.44	8.6000	6.2200	4.7645
199304	2141.00	2420.77	291900	67.85 69.27	5.6831 5.9403	4.44 3.72	7.0900	5.9700	3.8236
$1994 \mathrm{Q1}$	2071.00	2332.36	2057.00	69.27 70.80	5.9403 5.7778	3.72 3.94	8.1500	7.6800	5.4652
$1994 \mathrm{Q2}$	2164.00	2423.89	215000	70.80 72.37	5.7778 5.3049	3.94 3.38	6.5700	6.3000	5.7675
199403	2170.00	2409.24	2158.00	72.37 73.56	5.73049 5.4675	3.38	9.4200	6.6300	5.2195
1994 OL	2202.00	2433.90	2190.00	73.56 75.83	5.4675 5.7926	2.94 3.09	7.7600 73400	6.2700	4.2329
199501	2124.00	2336.40	2121.00	75.83 77.34	5.7926 5.6596	3.09 3.37	7.3100 58500	6.8600	4.8794
199502	2114.00	2312.61	2112.00	77.84	5.6596 5.3862	3.37	5.8500	5.4700	5.2841
198503	2103.00	2290.82	$2: 00.00$	78.69	5.3862 5.4601	3.38   3.86	8.1600	6.0300	4.7881
199504	2135.00	2316.00	2131.00	78.69 80.22	5.4601 6.5831	3.86	7.2400	5.6600	3.9488
199601	2198.00	2369.51	2:10.00	80.22 80.77	6.5831 7.1299	3.31	7.0900	6.6700	5.1106
199602	2285.00	2447.72	277300	83.09	7.1299 6.1768	4.06 4.30	5.9400	5.7900	5.5996
1996Q3 1996Q4	2365.00	2523.34	2360.00	83.09 85.04	6.1768 7.3220	4.30 4.45	8.4500 7.0500	6.2900	4.9968
$1996{ }^{194}$	2390.00	2533.07	2384.00	88.24	7.3220 7.5436	4.45 4.12	7.0500 8.1000	5.8600 8.3900	4.2826
199701 199702	2442.00 2476.00	2576.47	2441.00	88.28	7.5336	4.12 4.45	9.1000 6.6200	8.3900	5.3159
199702 198703	2476.00 2505.00	2607.39	247500	90.66	6.33245	4.45 3.72	6.6200 9.0100	6.5000	5.5646
199703 199704	2505.00 2552.00	2630.81	250. 000	93.83	6.5166	3.2 4.25	9.0100 7.4700	6.4700 6.1400	4.7243
19980)	2552.00 2690.00	2671.24	2551.00	96.98	6.3984	3.90	8.1800	6.1400 7.6000	3.7229
199802	2776.00	28988.58	2688.00	99.01	6.0068	3.93	6.3800	6.1800	4.8829 5.1071
198803	2909.00	2898.58 3027.43	277600 290500	$\begin{array}{r}99.29 \\ \hline 100.06\end{array}$	5.2089	3.53	9.0300	6.5900	5.1071 4.6809
189804	3029.00	3140.72	2902500 302600	100.06 101.13	5.2532 5.2311	3.82	7.2900	5.9400	3.7677
199901	2999.00	3101.76	299000	101.13 102.18	5.2311	3.54	7.4400	6.8800	4.6134
199902	3067.00	3151.49	3053.00	102.18 103.52	5.18187 5.1498	3.52 3.81	5.8700	5.4000	5.0460
199903	3118.00	3186.35	3105.00	104.21	5.1498 6.4871	3.81 5.64	8.8000	6.4100	4.6249
199904	3215.00	3266.02	$320 \% 00$	106.74	6.4871 8.9327	5.64 4.64	7.3800	6.2900	3.8324
200001	3418.00	3442.23	2:11:00	108.77	8.9327 8.6002	4.64 4.19	9.0600	7.7900	6.0304
200002	3491.00	3498.80	319100	110.81	8.6002 8.7110	4.19 4.54	7.9400	6.8400	6.7178
200003	3517.00	3508.61	351.00	111.60	8.7110 9.7159	4.54 6.67	12.4900	9.1600	5.9907
200004	3540.00	3515.85	3541500	112.27	9.7159 9.9671	6.67 6.94	10.9800	8.7500	5.2864
200101	3534.00	3981.70	3536.00	110.80	9.9671 9.3612	6.94 5.38	11.9400	11.3200	11.2000
200102	3581.00	3505.77	3584.00	108.35	9.3612 8.8548	5.38 4.37	11.8900	11.6100	10.7200
200103	3624.00	3542.83	3627.00	108.35   10.3	8.8548 8.6889	4.37 3.22	16.6700	12.8300	8.2100
200104	3633.00	3546.57	3635.00	100.55	8.6889 8.3538	3.22	13.0000	9.9000	3.7100
200205	3732.00	3634.84	3745.00	100.55 99.43	8.3639 8.1052	2.93 3	9.4600	8.8800	7.2600
2002Q2	3743.00	3620.45	3767.00	100.24	8.1052 7.4919	3.90 4.29	10.0500	9.2100	7.7100
2002Q3	3725.00	3587.22	3731.00	100.88	7.4919 8.2308	4.29	12.2300	10.1000	5.9400
200204	3771.00	3616.64	376600	100.68 99.41	8.2308 9.3982	4.51	11.4100	9.0400	6.1500
2003Q1	3738.00	3558.27	3740.00	99.41 99.19	9.3982	4.94	9.8800	8.6200	7.9100
2003Q2	3823.00	3633.34	$3 \times 24.10$	98.82	9.7971 8.7701	9.20	40.8700	10.7800	B. 2300
2003Q3	3933.00	3719.71	3103000	98.82 100.50	8.7701	4.63	16.9500	11.6600	11.0600
2003 Q 4	3990.00	3761.45	3:mer 0	100.50	8.8957	7.76	13.4700	10.1600	9.6500
20040i	4086.00	3815.70	иін.. ${ }^{\text {¢ }}$	102.49	10.0705 0.8710	8.56	13.6700	12.6100	9.2300
					0.8740	¢. 32	14.6200	13.1000	13.0700




C\&I Var index C\&I Var Name	47 PRCCI	48 EGYO	$\begin{gathered} 49 \\ \text { EGYG } \end{gathered}$	$\begin{gathered} 50 \\ \text { EGYC } \end{gathered}$	$\begin{gathered} 51 \\ \text { EGYI } \end{gathered}$	$\begin{gathered} 52 \\ \text { RPRC } \end{gathered}$	$\begin{gathered} 53 \\ \text { RPRI } \end{gathered}$	$\begin{gathered} 54 \\ \text { REGC } \end{gathered}$	$\begin{gathered} 55 \\ \text { REGI } \end{gathered}$
Description	New Hampsilire   Commercial \& Industrial Natural Gas Price	New Hampshire \#2 Heating Oii	New Hamp:hur.   Natural Gas   Consumption by   All	New Hampshire Commercial Natural Gas Consumption	New Hampshire Industrial Natural	Price Ratio: Commercial Ntural Gas Price: \#2	Price Ratio: Industrial Ntural Gas Price: \#2	Energy   Consumption   Ratio: Commercial   Natural Gas : \#2	Energy Consumption Ratio: industrial Natural Gas: \#2
Start Year	1984	1984	1984	1984	1984	1984	1984	1984	1984
Start Period	4	4	4	4	4	4	4	4	4
Period / Year	4	4	4	4	4	,	4	4	4
Period / Cycte	4	4	4	4	4	4	4	4	4
2004Q2	12.8427	891.17	4222.00	297.19	533.06	1.39	1.16	10.34	18.54
2004Q3	12.1901	2353.38	$326!00$	416.32	597.45	1.04	0.88	5.48	7.87
2004Q4	11.8037	5787.99	$69 \% 1.00$	1596.99	725.91	0.97	0.81	8.55	3.89
2005Q1	13.1597	2004.20	5653.00	910.54	542.47	0.97	0.93	13.63	8.12
2005Q2	11.1381	956.62	6050.00	319.41	456.36	0.89	0.66	10.35	14.79
2005Q3	13.3308	1754.72	6050.00	428.82	516.47	0.87	0.69	7.53	9.07
2005Q4	16.2564	3942.71	6050.00	-1393.65	553.24	1.01	0.98	10.96	4.35
2006Q1									
2006Q2									
2006Q3									
2006Q4									
200701									
200702									
2007Q3									
2007Q4									
200801									
200802									
2008Q3									
2008Q4									
200901									
2009Q2									
2009Q3									
2009 Q 4									
201001									
2010Q2									
2010Q3									
201004									
2011Q1									
2011 Q 2									
2011Q3									
2011Q4									
2012Q1									
201202									
2012 Q 3									
2012Q4									
2013Q1									
2013Q2									
2013Q3									
201304									
2014Q1									
201402									
2014Q3									
201404									
204501									
2015Q2									
2015Q3									
2015Q4									
2016Q4									
2016 Q 2									
2016Q3									
201604									
201701									
2017Q2									
2017 Q3									
2017Q4									
2018Q1									
2018Q2									
2018 C 3									
2018Q4									
2019Q1									
2019Q2									
2019Q3									
2019Q4				-					
2020Q9									
202002									
2020Q3									
2020 Q4									




C\&IVar index C\&l Var Name	$\begin{gathered} 65 \\ \text { CHNC } \end{gathered}$	$\begin{gathered} 66 \\ \text { CHNI } \end{gathered}$	$\begin{gathered} 67 \\ \mathrm{CHNCl} \end{gathered}$	$\begin{gathered} 68 \\ \mathrm{CDDN} \end{gathered}$	$\begin{gathered} 69 \\ \operatorname{CDDA} \end{gathered}$	$\begin{gathered} 70 \\ \text { BDON } \end{gathered}$	$\begin{gathered} 71 \\ \text { BDDA } \end{gathered}$
Descriplion	Company charge (Normal)to Commercial Customers	Company charge (Normal)to industrial Customers	Company charge (Nomal) 10 C \& 1 Customers	Nornal Cailenodr Degree Days	Actual Caliendar Degree Days	Normal Billing Degree Days	Actual Billing
Start Period	1984	1984	1984	1984	1984	1984	1984
Period / Year	4	4	4	4	4	4	,
Patiod / Cricda	4	4	4	4	4	- ${ }_{4}^{4}$	4
1984Q1	7.40						
198402	6.68	${ }_{14.31}$	7.66 6.89	3652	3644	3826	3718
198403	6.67	9.07	6.89 6.78	1032 286	1074	1494	1599
1984Q4	10.76	18.36	11.00	286 2611	284 2310	227 2106	208 1893
198501 498502	8.09 6.47	21.59	8.27	3652	3507	2106 3813	1893 3593
198503	8.48	9.22	6.54	1032	980	1488	1378
198504	10.67	22.28 18.08	8.99 10.85	286	213	225	183
198601	10.67	18.08	10.85 7.73	2611	2596	2104	2016
198602	6.12	14.06	7.73 6.35	3652	3418	3803	3628
198603	9.48	14.06 11.27	6.35 9.58	1032	906	1477	1290
198604	9.48	11.27 8.07	9.58 9.31	286	359	229	304
198701	6,14	8.07 5.29	9.31 6.10	2611	2566	2103	2137
198702	5.08	5.29 4.54	6.10 5.05	3652	3528	3793	3613
198703	5.24	4.54 12.09	5.05 5.50	1032	915	1471	1346
198704	7.47	12.09 6.16	5.50 7.32	286	308	230	246
198801	5.78	6.16 5.62	7.32	2611	2564	2103	2096
198802	5.78 4.17	5.62 4.11	5.76 4.17	3652	3601	3781	3685
198803	5.95	4.11 5.33	4.17 5.87	1032	1017	1465	1434
198804	5.95 8.28	5.33 7.20	5.87 8.17	286	298	231	257
198901	8.28 6.50	7.20 6.19	8.17	2611	2680	2108	214
198902	4.66	6.19 5.38	47	3652	3415	3773	3548
198903	6	5.38 5.97	4.73 6.43	032	1002	1458	1473
198904	8.8	8.23	6.43 8.74	286 2614	228	227	184
198001	7.	6.22	8.74 7.27	2614 3642	2988	2118	2253
189002	5.9	6.22 4.96	7.27 5.71	3642 1032	3175	3748	3528
199003	8.12	6.42	7.74	1032 285	1021 220	1460	1454
198004	10.26	8.42 8.07	7.74 9.80	285 2629	220 2195	226	162
199101	7.55	6.28	7.30	3620	2195 3298	2108 3717	1762 3376
198102	5.52	4.36	5.28	3620 1030	3298 761	3717 1440	3376 1179
189103	7.73	5.82	7.23	1030 282	264	1440	1179
189104	10.34	8.08	9.86	282 2645	2408	225	174
189201	7.63	6.31	9.66 7.36	2655	2408	2102	1919
199202	5.89	5.03	7.36 5.69	${ }^{3651}$	8	3708	3552
199203	9.65	7.40	5.69 9.05	1026 280	28888	1437	1568
198204	10.21	8.63	9.86	280 2605	88	223	232
$1993 \mathrm{Q1}$	6.89	6.57	9.68 6.82	2605 3606	2682	2088	2189
199302	3.93	3.92	6.82 3.93	3606	3711	3710	3775
199303	5.79	4.99	5.95	1025 275	907 250	$\begin{array}{r}1434 \\ \\ \\ \hline 23\end{array}$	1386
199304	8.87	7.43	5.55	275 2605	250 2628	223 2093	978
199401	7.00	6.75	6.82	2605	2628	2093	2154
1994 Q 2	4.08	6.90	6.95 4.08	3606 1025	4027 956	3734	4105
199403	5.86	5.08	5.61	1025 275	956	1428	1442
198404	9.32	8.16	8.46	275 2605	265	221	185
1895Q1	6.69	6.22	8.46 6.23	2605	2237	2071	1813
199502	3.94	4.70	6.23 3.81	3606	3265	3717	3348
199503	6.01	5.78	3.81	1025	1052	1428	1476
199504	8.84	5.78 8.19	5.21 8.06	275	260	217	175
199601	6.90	8.19 6.69	8.06 6.57	2599	2613	2072	2093
199602	3.90	4.13	6.57 3.62	3651	3634	3717	3741
199603	5.54	4.124	3.62 4.38	1019	1037	1428	1552
199604	8.97	7.90	4.38 8.10	282	198	217	140
199701	7.10	8.99	8.10	2594	2553	2072	2120
199702	4.26	6.99 4.18	6.72 3 3	3617	3440	3703	3418
199703	5.91	4.77	4.22	1023 275	1166 214	1432	1667
199704	8.04	7.38	6.79	2603	214 2556	210	165
199881	7.20	6.94	6.45	3602	2556	2054	2077
198802	5.51	5.55	6.3 4 4	1020	2981	3668	3115
198883	7.36	5.72	4.34	274	831	1448	1221
199864	6.86	6.38	5.45	274 2603	164 2292	205	138
199901	6.87	6.59	5.45 6.01	2603 3504	2292 3342	2053	1842
199892	5.16	4.90	3.86	3504 984	3342 896	3617	3394
198903	6.34	5.74	3.86 3.66	984 257	896 168	1429	1341
199904	7.49	7.13	3.66 5.72	257 2528	168 2345	189	133
200001	8.02	7.64	5.12 6.93	2528 3495	2345 3344	2033	1862
200002	6.34	5.94	4.93	3495 979	3344 997	3598	3480
200003	8.00	6.68	4.78	251	997	1428	1356
200004	10.09	9.51	7.10	2529	241	194	193
200101	3.33	2.88	7.21	2529 3480	2614 355	2033	2044
200102	2.65	1.64	2.22	9480	3551	3588	3679
200103	6.85	$\uparrow .93$	2.62	248	880	1422	1401
200104	3.34	1.58	1.86	248 2513	158 2082	182	113
200201	2.87	2.01	2.99	3481	2082	2018	1853
200202	3.69	1.89	2.03	3481 979	3013	3584	3045
200203	6.60	1.58	1.16	979	992	1428	1389
200204	3.58	2.19	2.9	244 2485	111	189	130
200301	2.69	1.95	2.14	2485	2578	1994	2016
200302	3.79	2.12	2.43	3432 975	3815	3533	3943
200303	6.34	2.14	2.32	275	1072	1420	1540
200304	3.79	2.07	2.22	236 2503	$\begin{array}{r}111 \\ \hline 2371\end{array}$	183	102
200409	2.68	1.96	2.22 2.15	2503 3459	2371 3718	2004 3563	1852 3803


CRIVar Index	65	66	67	68	69	70	71
C\&I Var Name	CHNC	CHNI	CHNCl	CDON	CDDA	BDDN	BDDA
Description	Company charge (Normal)to Commercial Customers	Company charge (Nornal)to industrial Customers	Company charge (Nomal)to C \& 1 Customers	Normal Callendar	Actual Callendar	Normal Billing	Actual Billing
Start Year	1984	1984	1984	1984	1984	1984	1984
Start Period	4	4	4	4	4		4
Period / Year	4	4	4	4	4	4	4
Period / Cycle	4	4	4	4	4	4	4
2004Q2	3.86	2.16	2.35	977	897	1425	1331
2004 Q 3	5.54	1.70	1.92	231	133	180	119
2004 Q4	3.82	2.13	2.30	2493	2394	1997	1868
2005Q1	2.72	1.99	2.17	3463	3581	3567	3636
$2005 \mathrm{Q2}$	3.84	2.19	2.37	968	977	1412	1466
2005Q3	6.53	2.12	$? .91$	22	75	175	80
200504	3.81	2.08	<. 62	2497	2362	1995	1792
200601				346			
200602				969			
200603				22			
2006Q4				249			
2007Q1				346			
2007Q2				96			
200703				22			
2007Q4				249			
2008Q1				346			
200802				96			
2008Q3				2			
2008Q4				249			
200901				346			
200902				96			
200903				22			
2009Q4				249			
2010Q1				346			
201002				96			
201003				22			
201004				249			
201101				346			
2011 Q 2				96			
201103				22			
201104				249			
2012Q1				346			
201202				96			
2012 Q 3				2	24		
2012 Q 4				24			
$2013 Q 1$				34			
201302					69		
201303					24		
2013Q4				24			
201401				34			
201402					69		
2014Q3					24		
2014Q4				24			
201501				34	64		
201502					69		
201503					24		
2015 Q4					97		
201601					64		
2016Q2					69		
2016Q3					24		
2016 Q4					97		
2017Q1					64		
2017 Q 2					69		
201703					24		
201704					97		
201801					64		
2018Q2					69		
2018Q3					24		
201804					97		
201901					464		
201902					69		
2019Q3					224		
201904					497		
2020Q4					464		
202002					969		
2020Q3					224		
202004					497		

# ENERGYNORTH NATURAL GAS, INC. (d/b/a KeySpan Energy Delivery New England) <br> <br> INTEGRATED <br> <br> INTEGRATED RESOURCE PLAN 

 RESOURCE PLAN}
(November 1, 2006 - October 31, 2011)

## DG 06-105

Appendix B

## Yia Hand Delivery

December 8, 2005

Debra A. Howland
Executive Director and Secretary
New Hampshire Public Utilities Commission
21 S. Fruit Street, Suite 10
Concord, NH 03301
Re: DG 04-133/DG 04-175; EnergyNorth Natural Gas, Inc. d/b/a
KeySpan Energy Delivery New England
Dear Ms. Howland:
Enclosed for filing with the Commission are an original and eight copies of KeySpan Energy Delivery New England's Portfolio Management Plan. This Plan is being filed pursuant to the settlement agreement approved by the Commission in its Order No. 24,531 in dockets DG -04-133 and DG 04-175. An electronic copy of the filing was provided by e-mail to the librarian.

Sincerely,

Thomas P. O'Neill
Enclosures
Cc: F. Anne Ross, Esq.
Steven V. Camerino, Esq.
Jennifer Feinstein
Elizabeth Arangio
Ann Leary

## TABLE OF CONTENTS

I. INTRODUCTION ..... 2
II. SUMMARY OF THE MERRILL LYNCH AGREEMENT ..... 3
III. ORGANIZATIONAL STRUCTURE ..... 4
IV. RESOURCE PROCUREMENT ..... 5
A. Determination of Gas Supply and Capacity Requirements ..... 5
B. Procurement of Short Term Supply ..... 5
C. Solicitation of Long Term Gas Supply Proposals .....  6
D. Evaluation of Supply Offers and Negotiation of Agreements ..... 6
E. Procurement of Incremental Capacity ..... 7
F. Transaction Controls ..... 8
G. Natural Gas Price Risk Management Plan ..... 9
V. OPERATIONAL PLANNING ..... 9
A. Daily Forecasting ..... 10
B. Nominations, Confirmations and Balancing ..... 11
C. Underground Storage ..... 12
D. Capacity Release and Off-System Sale Optimization Opportunities ..... 13
E. Peak Season Planning ..... 14
VI. SUPPLY VALIDATION AND INVOICE RECONCILIATION ..... 14
A. Physical Natural Gas/LNG Transaction Reporting and Invoicing ..... 15
B. Invoice Review ..... 16
C. Financial (Hedging) Transaction Settlements ..... 16

## I. INTRODUCTION

This Portfolio Management Plan (the "Plan") is filed with the New Hampshire Public Utilities Commission ("Commission") by EnergyNorth Nat ural Gas, Inc. d/b/a KeySpan Energy Delivery New England ("EnergyNorth" or the "Company") ${ }^{1}$ in compliance with the New Hampshire Public Utilities Commission's ("Commission") Order No. 24,531 dated October 21, 2005 in Dockets DG 04-133 and 04-175.

In Order No. 24,531, the Commission approved a settlement agreement between EnergyNorth, the Commission Staff and the Office of the Consumer Advocate ("OCA") with regard to the Company's Integrated Resource Plan for the period November 1, 2004 through October 31, 2009 (the "IRP"). Among other things, under the settlement agreement, EnergyNorth agreed to file with the Commission a detailed plan of how the Company will manage its gas resources effective with the April 1, 2006 expiration of its Gas Resource Portfolio Management and Gas Sales Agreement with Merrill Lynch Commodities, LLC. ("Merrill Lynch").

In accordance with the terms of the approved settlement, this Plan discusses the Company's plans with respect to, (i) daily forecasting, (ii) nominating, scheduling and confirming city gate deliveries and storage injections, (iii) reconciling supply invoices; (iv) pursuing capacity release and off-system sales opportunities, (v) supply balancing on the Tennessee Gas Pipeline system

[^16](vi) contracting for seasonal supplemental supplies and (vii) the economic operation of peaking facilities.

## II. SUMMARY OF THE MERRILL LYNCH AGREEMENT

By contract, Merrill Lynch (1) manages certain of the Company's upstream interstate gas supply, transportation and underground storage assets and (2) provides the citygate gas supply requirements of the Company's firm sales customers. The Company retains the management of its supplemental resources.

Gas supplies delivered by Merrill Lynch to meet the Company's firm sales requirements and storage refill requirements are paid for by EnergyNorth in accordance with a tiered pricing hierarchy. The pricing hierarchy is intended to mimic the dispatch order the Company would employ if it were managing the assets on its own. The Company is responsible for paying all demand costs associated with its pipeline and underground storage resources. Commodity charges for citygate sales service are tied to market indices, which correlate to receipt points in the Company's portfolio.

With the expiration of the agreement with Merrill Lynch effective April 1, 2006, the Company plans to insource the management of its resource portfolio whereby the role of Merrill Lynch, with regards to management of the Company's upstream assets and commodity purchasing, will be assumed by the Company's Regulated Gas Transactions Group located in Hicksville, NY. ${ }^{2}$ This

[^17]group is also responsible for managing the regulated gas transactions for KeySpan Corporation's two New York-based gas utilities: KeySpan Energy Delivery New York (KED-NY) and KeySpan Energy Delivery Long Island (KED-LI).

## III. ORGANIZATIONAL STRUCTURE

Implementation of the Company's Portfolio Management Plan will involve the close coordination of four groups within KeySpan's Asset Optimization Group; the Gas Supply Planning Group, currently led by Elizabeth Arangio, the Load Forecasting Group, currently led by Leo Silvestrini, the Regulated Gas Transactions Group, currently led by Mark Leippert and the Gas Contracting Group currently led by John Allocca. ${ }^{3}$ Currently, all day to day activity pertaining to the EnergyNorth portfolio is performed by the Gas Supply Planning Group in combination with Merrill Lynch. However, as noted above, effective April 1, 2006 the activities now performed by Merrill Lynch will become the responsibility of the Regulated Gas Transaction Group. In addition, the Gas Contracting Group will be responsible for the procurement and contracting of long-term (greater than one-month) commodity supplies and capacity resources. Detailed organizational charts can be found at Appendices 1 and 2.

[^18]
## IV. RESOURCE PROCUREMENT

## A. Determination of Gas Supply and Capacity Requirements

Gas supply and capacity (transportation or storage) requirements are established by the Gas Supply Planning and Load Forecasting Groups following the process specified in the IRP. A schematic listing of the upstream capacity resources currently available to meet the Company's firm sendout requirements is shown in Appendix 3. For supply and capacity requirements, the Gas Supply Planning Group will identify the desired quantity, duration, optimal receipt point(s), operational flexibility (i.e. baseload, first of the month swing, full swing, etc.) and nature of service (i.e. year round, seasonal, peaking, etc.). Once the requirements have been established, depending upon the duration of the requirement, the Gas Supply Planning Group will work with the Gas Contracting Group or the Regulated Gas Transactions Group to acquire the resource.

## B. Procurement of Short Term Supply

For requirements of one month or less (spot purchases), gas supply will be acquired by the Regulated Gas Transactions Group during bid week or in the daily market as needed. Price is determined via verbal offers and short-term gas supply will only be acquired from creditworthy counter-parties with whom the company has a pre-established base contract (i.e. an industry standard NAESB agreement, a sample copy of which is provided in Appendix 4). All gas trades will be documented either via the Intercontinental Exchange ("ICE") electronic trading system, recorded telephone lines, or written confirmations.

## C. Solicitation of Long Term Gas Supplv Proposals

Long-term gas supply requirements (greater than one month) are secured by the Company's Gas Contracting Group in consultation with the Planning Group ${ }^{4}$. The Company may prepare a request for proposal (RFP) that will include a term sheet outlining the specific supply requirements (i.e. quantity, pipeline, receipt point(s), delivery point(s) desired price structure, operational flexibility, etc.). The RFP will also include other typical and customary procedural instructions. The RFP will be sent to qualified suppliers either via e-mail or in hard-copy. The Company will maintain a list of qualified suppliers. In order to be deemed qualified; a supplier must satisfy the Company's creditworthiness criteria, as established by KeySpan's Credit group, and must have entered into an industry standard agreement with the Company. The Company will continuously assess reliability based in part upon the supplier's short-term transaction performance.

## D. Evaluation of Supply Offers and Negotiation of Agreements

Supply offers are evaluated jointly by the Company's Gas Contracting, Planning and Regulated Gas Transactions Groups to determine the best offer. The "best offer" is the offer that conforms most closely to the Company's requirements. Offers will be evaluated based upon both cost and non-cost factors including the supplier's experience, past performance, financial strength, ability to manage financial and physical risk and other factors that the Company

[^19]deems relevant to the specific supply requirement. The Company will reserve the right to reject any or all offers and to negotiate with individual suppliers. Upon selection of the best offer, the Gas Contracting Group takes the lead in negotiating a formal written agreement. The industry standard NAESB contract is preferable for standard deals; however, certain transactions may require an individually negotiated agreement. Except for industry standard agreements that were previously subject to legal review, all agreements are reviewed with the Company's Legal Department to ensure that all provisions are consistent with applicable laws, regulations, industry standards and operational requirements. Upon completion of negotiations, the agreement will be executed by an authorized individual and entered and maintained in the applicable contract tracking systems.

## E. Procurement of Incremental Capacity

When a need for incremental capacity is identified by the Gas Supply Planning Group, this Group works in concert with the Company's Gas Contracting Group to procure the incremental resource. In order to do so, the Company will evaluate all available options to determine the most economic resource with regard to meeting system operating and gas supply reliability requirements. ${ }^{5}$ The Company maintains relationships with all regional pipeline companies and is active in gathering market intelligence from proposed pipeline projects with the potential to fulfill the Company's capacity needs. If no existing

[^20]projects meet the Company's requirements, the Company may initiate a project that meets its needs. Generally, when subscribing to new capacity, the Company will participate in pipeline open seasons. In coordination with the Gas Supply Planning Group, the Gas Contracting Group will take the lead in preparing and submitting open season requests and in negotiating precedent agreements and service agreements. Contract review and negotiation is done in coordination with the Company's Legal Department to ensure that all provisions are consistent with all applicable laws, regulations, industry standards and operational requirements. Upon completion of negotiations, the agreement will be executed by an authorized individual and entered and maintained in the applicable contract tracking systems.

## F. Transaction Controls

The Gas Supply Planning Group will determine the Company's need for supply in order to meet customer requirements. The Company's Customer Choice Group will confirm the amount of gas received by EnergyNorth at the citygates on a daily basis.

Transactions executed by the Regulated Gas Transactions Group will be recorded on taped phone lines or documented electronically via the (ICE). If a transaction is executed using the ICE system, the gas trader will print out a confirmation sheet to document the transaction. Moreover, all gas supply purchase transactions will be recorded and entered into the Company's Nucleus

Transaction Management system ("Nucleus"). Nucleus will automatically assign a unique transaction number to each purchase and sale.

## G. Natural Gas Price Risk Management Plan

A substantial portion of the Company's gas supply purchased in accordance with the above stated procedures is priced based on market indices. These "index priced" supplies are subject to market volatility. In order to mitigate gas cost increases and protect customers from the sharp swings in commodity prices that have become prevalent in the natural gas industry, the Company has in place a Natural Gas Price Risk Management Plan that attempts to stabilize the cost of gas to customers through the use of financial derivatives and active management of its underground storage supplies. A copy of the most recent Natural Gas Price Risk Management Plan approved by the Commission in Docket DG 05-127 is attached as Appendix 5.

## V. OPERATIONAL PLANNING

Upon establishing a resource portfolio that is adequate to meet the projected requirements of its customers, it is the Company's responsibility to dispatch the assets based on actual weather as well as to perform portfolio management activities to further minimize the cost of maintaining the portfolio through mitigation measures.

Operational Planning encompasses the activity related to the actual dispatch of the assets in a least cost manner. These activities include daily,
intraday, monthly, and seasonal planning and the dispatch of the assets (including LNG and LPG), as well as storage inventory and imbalance management. Currently, the Gas Supply Planning Group is responsible for these activities and it will continue to be responsible for them after April 1, 2006.

## A. Daily Forecasting

The Gas Supply Planning Group, in conjunction with the Gas Control Group ("Gas Control"), utilizes a daily Game Plan, as referenced in Appendix 6, to coordinate the daily supply and demand balance. The Game Plan is an Excel spreadsheet that utilizes regression equations of base load plus heat load coefficients and forecasted degree day data for KeySpan's five New England divisions to calculate a short-term demand forecast. The forecast is verified on a regular basis and, as needed, adjusted in order to align with the most recent actual experienced data.

The demand side of the Game Plan is updated each morning by Gas Control. In addition, Gas Control populates the supply side of the Game Plan with information provided by the Gas Supply Planning and Customer Choice Groups the night before. ${ }^{6}$ Every weekday morning, the groups meet to discuss the supply needs for the current day as well as the following gas day. In addition, prior to a weekend or holiday, the meeting will also address the planning for the following several days. At this meeting, the groups discuss any issues and strategy pertinent to putting together the daily sequence of supplies to be

[^21]dispatched (the "daily setup"). This planning is done in time to execute prior to upstream pipeline nomination deadlines.

## B. Nominations, Confirmations and Balancing

Beginning April 1, 2006, the Regulated Gas Transactions Group will be responsible for short term purchases, nominations and scheduling of the Company's pipeline and underground storage supplies, duties currently performed by Merrill Lynch. The gas schedulers will enter all transactions into nomination setup sheets, schedule the transactions on the various interstate pipelines' electronic bulletin boards (EBBs) and update the daily volume sheet (as shown in Appendix 7) with all gas supplies scheduled to be delivered to EnergyNorth's citygates. In addition, the schedulers will use the same template that third party marketers use to email system supply volumes to the Customer Choice Group (Appendix 8 - BMS Nomination Template). The Customer Choice Group will upload the nominations into its Broker Management System ("BMS") along with the nominations from the marketers. The Customer Choice Group will then confirm the total amount of gas received by EnergyNorth at its citygates on Tennessee using the Daily Scheduled Deliveries Detail Report (Appendix 9 Daily Scheduled Deliveries Detail Report). The Planning Group will continue to dispatch and manage the Company's peaking contracts and peaking facilities (LNG and LPG).

At the end of each gas day, Gas Control is responsible for calculating sendout and tracking the Company's imbalances (Appendix 10 - EnergyNorth

Monthly Sendout Report). Each afternoon, Gas Control forwards the daily imbalance report to the Gas Supply Planning Group (Appendix 11 - Daily Imbalance Report). The Planning Group factors in the flexibility of its Operational Balancing Agreement ("OBA") when establishing the daily setup and manages its imbalance position. This activity will be handled by the Gas Supply Planning Group. ${ }^{7}$

The Company will maintain the information necessary to provide a monthly summary of all volumes purchased by EnergyNorth and the associated costs as shown in Appendix 12 - Monthly Merrill Lynch Report/Invoice.

## C. Underground Storage

Currently, management of the Company's underground storage contracts is handled by Merrill Lynch. The Company pays Merrill Lynch to fill its storages on a $1 / 7^{\text {th }}$ basis during the months of April through October. Effective April 1, 2006, the Company will manage these contracts through the Regulated Gas Transactions Group. As discussed in the Company's Natural Gas Price Risk Management Plan (Appendix 5), the Company will employ a similar $1 / 7^{\text {th }}$ refill strategy. However, unlike the arrangement with Merrill Lynch, operational flexibilities will need to be considered when developing its injection plan. For

[^22]example, the Company may not fill some of its larger storage fields to $100 \%$ full at the beginning of November in order to accommodate for warmer than planned weather and the need to inject gas into storage at the beginning of the month. The Company will maintain the information necessary to provide a monthly storage report similar to the one currently supplied by Merrill Lynch (Appendix 13 - Monthly Storage Report).

## D. Capacity Release and Off-System Sale Optimization Opportunities

Since the Company must maintain sufficient capacity in its resource portfolio to meet current and expected design day and design year customer requirements, at any given time, it may have resources that are temporarily under-utilized. On a daily, monthly and seasonal basis, the Planning Group will identify those resources that are not needed to meet firm sendout requirements. Any surplus resources that are identified will be made available for optimization via capacity release and/or off-system sale. It will be the responsibility of the Regulated Gas Transactions Group to market these resources in an effort to maximize their value. Revenues realized from capacity release or off-system sales transactions will be credited to EnergyNorth customers as an offset to gas costs. The Company will maintain the information necessary to provide reports detailing these types of transactions.

## E. Peak Season Planning

At the start of each winter season, the Gas Supply Planning Group hosts a Winter Operations Meeting attended by various departments throughout the Company including Gas Control, Gas Production, Engineering, Load Forecasting, Legal, Customer Choice, Transactions and Rates to review plans for the upcoming winter (Appendix 14 - Winter Operations 2005/06 Presentation). In preparation for this meeting, the Gas Supply Planning Group prepares a Gas Supply Winter Operations Manual for each participant that provides pertinent information regarding the gas supply portfolio, production statistics, etc. Lastly, the Gas Supply Planning Group holds a Weekly Winter Operations Meeting (during the entire winter period) with representatives from Gas Control, Regulated Gas Transactions, Gas Production, Engineering, Load Forecasting and Customer Choice. These meetings are held to discuss actual and forecasted weather and sendout data, storage inventories, LNG and LPG refill coordination, and any other relevant issues.

## VI. SUPPLY VALIDATION AND INVOICE RECONCILIATION

Supply validation and invoice reconciliation is and will continue to be performed by two groups, the Transaction Back office and Corporate Accounting. Both groups reside within the Company's finance organization.

## A. Physical Natural Gas/LNG Transaction Reporting and Invoicing

This process includes the preparation of monthly accrual of gas transactions made by and entered into the Company's NUCLEUS Risk Management system; this accrual is recorded by to Corporate Accounting at month end to the Company's general ledger.

As part of this accrual process, the Transaction Back Office provides a validation of data entered into NUCLEUS. Volumes are reconciled by the Transaction Back Office through SCADA system reports provided by Gas Control. Additionally, the following sources are utilized by the Transaction Back Office to validate gas costs: This process ensures that the Company's purchases align with sendout.

- The Nucleus Invoice Module is used to prepare the accrual and to validate invoices after the Mid Office, a term used to define the segregation of duties within the Regulated Gas Transactions Group, inputs daily gas purchases and prices in to the Nucleus, as well as storage injections and withdrawals.
- Customer Choice's Capacity Release Financial Summary report which documents pipeline capacity releases and Marketer managed supply, as well as transport gas from the Marketers is used during the accrual process and to support invoice review (see Appendix 15 - Capacity Release Financial Summary).
- Gas Control produces send-out reports by division, LNG trucking and vapor reports, supplemental usage reports for Boil-off and an Operational Balance Agreement (OBA) report which captures the pipeline imbalance for Tennessee (See Appendix 11).
B. Invoice Review

The Transaction Back Office is also responsible for invoice validation. This process consists of verifying invoices for volume, price and tariff information against that which is recorded in the Company's NUCLEUS Risk Management system. Actual invoice payments are verified against the initial accrual. Invoices are approved and signed and forwarded to Corporate Accounting and Treasury for payment. The Transaction Back Office is also responsible for working with Corporate Accounting to ensure that all invoices are accurately recorded.

## C. Financial (Hedging) Transaction Settlements

The Transaction Back Office is also responsible for confirming all financial settlement payment figures and preparing/submitting invoices on hedge gain settlements to counterparties, reviewing and approving of all counter-party hedge loss settlement invoices, and processing invoices related to margin activity. The Transaction Back Office Manager or Director approves all settlement invoicing. The Transaction Back Office is also responsible for working with Corporate Accounting to ensure that all invoices are accurately recorded.

## Appendix 1

## KeySpan Asset Optimization Group Organizational Chart



## Appendix 2

## KeySpan Regulated Gas Transaction Group Organizational Chart



## Appendix 3

## Schematic of KeySpan Upstream Capacity Resources

签

- HERGNORTH GAS COMPAMY




## Appendix 4

## KeySpan New England Sample NAESB Agreement

## Base Contract for Sale and Purchase of Natural Gas

This Besecontractirenteredinto as of the following date: fune 2005 , The partes trithis Base contract are the following:


$\qquad$
Pany Name: -

By $\qquad$
Niemte:
Tite:

By.
Thame:
花保

## GeneralTems and Conditions Base Contract for Sale and Purchase of Natural Gas

## SECTION 1. PURPOSEAND PROCEDURES




 Base Contract:
Oralyransaction Procedures








 lo the compromad


 Dember.

## 

(2) 3ex may
$3,2,85$






















## SECTIONZ. DEFINHIONS










[^23]2.4. Business:Day ghall mean any day exceptSAaturday Sunday or Federal Keserve Bank holidays.


 opening of the next Business Day

parly.


 bricing Mransactionceanfimation.












 Tordtutaritransaction






 Mfler the cumbodtylex













223. Paymed bate what mean adatern as hidcaten on the Ease Contract on or before which Payment is due Seller for Gas teceived by Buyerinithe pravious Aonth:
 the Transporter delugring: 6 asidtuabeiveryathe







 nexifollows he relevantPay
2.27. Transection Contimation shal mean e degument similar to the form of Exhibt A. setting tonthe terms of a ransaction







## SECTON3: PERORMANCEBEGATIGN


 transemiantit:


## Caver Standided















 whichisuch andituntwas calculatod.

## Soonerficestandard.









 amourtwatsogerulated. .
 by bath perties:


 hbiwiliquidation casts will he:chalcutated.

## SECTION 4 TRANSPORATIONMOMNATGNS ANDMBALANGES

 transportingthe Gas from ine Deliverv Puinus)











## SECTIONS GULLTY ANEMEASUREMENT





## SECTONG TAXES

 on the Base:Contract

## 



 hareunder the parges


## 







## SECTION: BHMERAMMENANDQMIT






























 Govailith
Copyrightelazooz North Amenican:Energyshandards: Boardinc Al Ripht: Reserved

## SECTIONB. THLEWARRANTY ANOINDEMMITX






 WGNESSEORAN Y PARMGULARPURPDSE AREDISCEAMED








## SECTIONG NOMCES










 aftermaility

## SECTOUEG: EHMNCHLPESPOSIBLHV





 sectuthy










 fropurdern

 Gemiakion dute fhe *






 indicatedion ho Base Contract.
Early Termination Qamagesapply:










 Terninated Transpiofionti)









 Gintrochiside







 onthegensecomitate.
Othar Agrementisolotis aply:
6넨
 Seefion tha

 Crapsupbog


## 

















 itoumal, plus twopercent per annum: or (iilithe maximumapploalsle lavilinnterestrgte.
105. The pantios aireephat the transactions hereunder consiftita a tonwate contract within the meaning of tha United States
 code



 the terms and condlions thenein shat prevall to the extentinconsistent herewith.

## SECION/1. FOREEMAUEURE

































## SECION TV TERM





## SECION 13 , MMFATRONS













TOTHE EXEN ANY AMAGES REQUREDTOBE PADHEREUNDERARELOUMATEDTHEPARTESACKNOWLEGGE THAT THE

 Loss

## SECTION14. MISCELANEOUS







 otoischarged troniany obligationk hereunder












































## Appendix 5

## KeySpan New England Natural Gas Price Risk Management Plan

# EnergyNorth Natural Gas, Inc. d/b/a KeySpan Energy Delivery New Engiand 

## Natural Gas Price Risk Management Plan

## INTRODUCTLON

In recent years prices in fhe natural gas commodity market have becone sone of the most volatile of all traded comodites. As a rosilt, EnerghNoth Natura Gas Ince do/a
 dramatially from monthtomonth and yearto-xeak substand fortion of the








## DLANTERM

This Plan will become effectux when authorized ty the Companyis Risk Manhement Committee aidapproved byethe New HampshrePabic Unifies Commission.

[^24]
## GUDDELNES

## Rusk Manayement Toolef

The Company may use derivatives (swaps, call and pat options) to hedge the prices for a porton of its gas supply portolio for the period fom Qetober through May. Theportions of the paifolio that they hedge ate the fowing gas supplies that are indexed priced. The dervatues used in the hedge may be evherptysical in financial.

The Company whl atso dise its underground storage capacityto miligate priee volatily ly purchasing gas in appoximately equal monthfy increments ainig fie Apni to Ociober



 axeragecost of gas in inventory:

## Price and yolume Guidelmes


 storagedung the period April to Octoberi.

The Company will hetge up 10675 of the Gulf Coast mad Canadian suppies tue the index priced supples) punchased for aeivery toas fimbales oustomer during the winter Pertod monthr of Noxember through April and the summer perrod monthsudgayrand
 The following cumalative targets: gredged wofuncecan be up to nowbolowitget)



- February
- Mayyl
- Angust 1

STo afurthstrateg votume
76906 tothestifug relane


Wue fo the timing of the purchases made in 2065 , for the 20052206 winter perioc only $87 \%$ of the total strategy volume will be hedged by Angust. 1.

The percentage of index-priced supphes thaywill bethedged at any fime ndif depend on the cuirent natural gas market price trends relalive to histerteal priees tor whater pextod deliveries, Joward price and volatily curves and econonic forecasts. The Company will not hedge nore han $67.5 \%$ offts forecasted indexpased supplies for fhe entire winter period, and notessitian $30 \%$ or more flan $80 \%$ for any month of the winterperod.

The Conpany wilt futher hedgeithe costorids inderyoun storagesuyphes byentering



 cumulatwe tarigets: (ffedged volume canbe upto epow targe)




The Compaty will not hedge more than $20 \%$ of fis frecasted undergroinide storage capacity injections:

## Transyction Execation Guidelimes

A specifc stutegy for hedging fhe cost of gas supplies wall be prasented and approxed by the Company's Commodifyanagement Camittee (CheV. The heieingstrategy win incomorate the types of fransuctions, timing and opitor premium expenditures.

Upon execution of a transaction, a trade ficket will be generated and entered into the Companys risk and mansaction management ssiem: A weekyy report sommarizing the transactions and the status of the hedging strategy wid be distributedto, and teviowed by the CMC members. The weelly repor will give the status or he hedgens strategy and a MarktoMarke position as weltas ofior fisk metrics as demed approprate by the Risk Contmiler and approved by the Chiel kisk Qufiear

## REGULATORTREATMENF

For the index-piced gas supples, the Companywill cedir he Cost ofacas Adistwent the




 charged to the summer petiodCOOT




 COGin he perodatung which the undereound storace gas is whidrawh itomstorderad
 the plysical purchase of natural gas will be deeded to be arceoverablecostof gas for de perioditedged.

## POLICLES, RROCEDURES ANDCONLROLS

The Company will mantain a utily Commodity Marmgement Committee andia kisk Management Commirtee. The CMC will be chaited by the Risk Contralfer and shtd include

- Risk Controllerifor Commodily Risk Managemem Aotivities
- Chief accountingafficer
- Offcer tesponsible for Energy Transaction Management Group:
- Chut Auditor
- any others appomied by fheRask Management Commitee


## The CNE shat

- Provide a farm to fiscuiss risk managenent issues relate to commadicy Mangement Actuátes:
- Recommend to the formanagenent Cummituedor appraval of brodedrategaes orinding ard hedgmandothenuse otdonwatios.


 restricted trating gactioties
 corresponding approval process lirough uinech appoval from the Eisk Management Conmittee:

The Risk Nanagement Commitcewill be chatred by the Chief miskoficer andmolide.

- Chiefoperatingonticer
- Exeautive Vice President andagereral Counsel
- Execufive Viee Presidentand Chief Financialofficer
- Execufve Vice Presidentol Strategie Services
- President of KeySpan Energy Defivery \& Customer RelationstipGroup
- Prosident ofKeySpanEnergy Assets \&Suppy Group
- Other officers as designated by the Chier ExectiveOficer.

The risk Namogenent.Committeeshall.

- Overse the ongoing developnent of this Policy to ensure that appoprato orisk mangement nethodologies are appled to the Compars busmess heluxhes; montor and enfore cmuplance wht the Roliey zpprove specifocexceptions to this Policy:
- Appove nisk managemen stategy proposals in suppor of hanemat and strategic plans holuding comsideration of nskexposure assessinent hask milgetion momtonig, reporing gand control requitementer


 procelures and detemine how ofen spectife Hef metrics are Galoulated and:

 evioute wether transacting andenisk nanagemen parommel ate appropahately sklled.
- Rovide guidance on the Einance Peparmenty Jnd Siratege Planning a Performance Departments Ehtemise Rise Noagengent pojocts and promies;
 jroeessestand procedures.




## Appendix 6

## KeySpan New England Sample "Game Plan"





## Appendix 7

KeySpan New England Sample
Daily Volume Sheet And On-Call Lists

		Wednesday 11/30/05	Thursday 12/01/05
ALGONQUIN			
BGC System Supply	Canadian	0	0
	Baseload	81,000	95,000
	Swing	0	25,000
	Hubline 10K	0	0
	Storage	0	0
	Hubline Tier V	0	0
	Providence LNG	0	0
	Spot	0	0
	IT Customers	0	0
	FT Customers	41,930	62,673
Sempra to Mystic 7 (meter 27)		0	0
Exelon © LSt (meter 52)		$\underline{0}$	$\underline{0}$
Subtotal:		122,930	182,673
Colonial System Supply (Cape Cod)	Canadian	5,641	5,611
	Baseload	15,000	20,000
	Swing/Spot	0	0
	Hubline 10K	0	0
	Storage	0	0
	Hubline Tier V	0	0
	DOMAC 15K	0	0
	Providence LNG	0	0
	Spot	0	0
	IT Customers	0	0
	FT Customers	3,190	4,021
Subtotal:		23,831	29,632
Wake-up/Payback: (BGC \& CGC)		0	0
AGT Payback (not scheduled on LiNK):		0	0
BGC System Supply Subtotal:		146,761	212,305
Less: DOMAC Backoff		0	0
Less: TYR Backoff		0	0
TOTAL AGT(NET OF BACKOFFS):		146,761	212,305
DOMAC Backdoor Supply (FCSO64)		0	0
DOMAC Backdoor to Sempra (M7):		20,000	900
DOMAC Backdoor to Excelon (L St):		0	0
Baystate Nominations:		0	0
PNGTS			
EnergyNorth System Supply			
	Baseload	90	125
	Swing	0	0
TOTAL PNGTS		90	125
NOTE: PLEASE USEA TOLERANCE OF $110 \%$ ON THE PIPELINE.			
Remaining Swing Remaining Storage		$\begin{gathered} 77,965 \\ 103,575 \end{gathered}$	$\begin{gathered} 33,965 \\ 103,575 \end{gathered}$

SCHEDULED DELIVERIES FOR BGC, CGC, EGC AND ENERGYNORTH


## ON CALLLIST



November 23,2005
 workhghours.

WorkPhome PipardCent Home Phone


Mant Leiphert Ditu:	545
	$33^{405425}$
	545-5411
Maidumith	545
Pathocies	
Matiripatio	$44^{5} 548$
	545-2430
	855.440
Micuach Scolian	544.3453
Wenturn	34545434

Cellphine Gas (xid) amonM

## Cox Sumplobianing

TexinMarino:

16458821165	
516)333548020	
	(544)
(5uchemem	(4040328488429
20\%3\% 6 chat	

a



## Appendix 8

KeySpan New England Sample BMS Nominations Template


## Appendix 9

## KeySpan New England Sample Scheduled Daily Deliveries Report

# KeySpan Energy Delivery: 

Energy North Gas Company
Daily Scheduled Defiveries Detail
Nowember 30, 2005


## Appendix 10

## KeySpan New England Sample Monthly Sendout Report


品
虽品



BOILOFF

1noanas $7 \forall 101$	$\pm \pm 07109$	yod	ヨNVdOYd	

0000000000000000000000000000000合








## Appendix 11

## KeySpan New England Sample Daily Imbalance Report

## IMBALANCE

OCTOBER 2005
ENERGY NORTH

DAY


1	14,993	15,612	619	0 619
2	15,279	15,580	301	920
3	16,851	16,878	27	947
4	12,711	16,840	4,129	5,076
5	16,023	16,502	479	5,555
6	16,463	15,176	-1,287	4,268
7	14,064	13,548	-516	3,752
8	20,278	15,625	-4,653	-901
9	19,058	18,534	-524	-1,425
10	20,435	20,889	454	-971
11	20,701	22,387	1,686	715
12	26,109	26,190	81	796
13	23,930	24,570	640	1,436
14	26,500	21,168	-5,332	-3,896
15	20,220	21,405	1,185	-2,711
16	26,072	25,803	-269	-2,980
17	27,250	26,346	-904	-3,884
18	27,177	26,887	-290	-4,174
19	24,424	26,698	2,274	-1,900
20	33,289	35,814	2,525	625
21	31,809	36,217	4,408	5,033
22	38,122	36,975	-1,147	3,886
23	43,567	37,414	-6,153	-2,267
24	40,227	39,983	-244	-2,511
25	39,522	47,836	8,314	5,803
26	45,968	47,518	1,550	7,353
27			0	7,353
28			0	7,353
29			0	7,353
30			0	7,353
31			0	7,353
	661,042	668,395	7,353	

ACTUAL DELIVERY

DAILY
IMBALANCE

ACCUML'TVE IMBALANCE

## Appendix 12

## KeySpan New England Sample Monthly Asset Manager Reports/Invoices




Keyspan Gonsolidated Demand \& Reservation Charges.


## Appendix 13

## KeySpan New England Sample Monthly Storage Report




## Appendix 14

## KeySpan New England Winter Operations 2005/2006 Presentation

















## Appendix 15

KeySpan New England Sample
Capacity Release Financial Summary Report





[^0]:    1 The Local Distribution Companies ("LDCs") that operate under the name KeySpan Energy Delivery New England are: Boston Gas Company, Colonial Gas Company, Essex Gas Company and EnergyNorth Natural Gas, Inc. Unless otherwise specifically noted, the term "KeySpan" refers to all four of the New England LDCs.

    2 The forecasting period is based on split years from November 1 through October 31.

[^1]:    ${ }^{2}$ The Company agreed as part of the Settlement to develop econometric models for this forecast to replace the enduse model used in its most recent IRP.

[^2]:    ${ }^{3}$ The Company attempted to maintain t-tests at the 2.0 significance level, but in some cases found it necessary to retain some variables that tested between 1.0 and 2.0 to maintain the theoretical form of the equations.

[^3]:    ${ }^{4}$ The NSTAR model was initially developed to analyze electric energy-efficiency programs in Massachusetts. Northeast Efficiency Energy Partnerships ("NEEP") built the first version of the model in 1997 to analyze the costs and benefits of its regional programs. In January 1998, ComElectric retained GDS Associates, Inc. ("GDS") to perform a cost/benefit analysis of its electric energy-efficiency programs. During the first quarter of 1998, GDS enhanced the NEEP model and calculated benefit/cost ratios for ComElectric's programs. In 2000, following the BECo/Commonwealth merger, NSTAR retained Optimal Energy to enhance the model to analyze natural gas energy-efficiency programs. KeySpan used the enhanced model in December 2000 and January 2001 to analyze the costs and benefits of five regional GasNetworks energy-efficiency programs. KeySpan now uses a new GDS model to calculate the benefits and costs of its energy efficiency programs. The GDS model was initially used for projects for Fitchburg Gas and Electric. Many GDS clients now use the GDS model, including KeySpan, Efficiency Maine, the Vermont Department of Public Service, the New Hampshire Electric Cooperative, Public Service of New Mexico and other GDS clients.

[^4]:    ${ }^{5}$ In accordance with the Company's Delivery Terms and Conditions, new customers (as defined by a meter location) who have not previously been served by the Company as a sales customer, may opt directly to Supplier Service, and therefore, are not eligible for mandatory capacity assignment.

[^5]:    ${ }^{6}$ Under the Northern proposal, Northern would plan for $30 \%$ of the peak day requirement of Grandfathered customers and the cost of that capacity would be borne solely by those Grandfathered customers.

[^6]:    ${ }^{7}$ Because baiancing is not done by individual customer, but rather, across the Supplier's "pool" of customers, the Company's review of deliveries made by a Supplier include deliveries made on behalf of both Grandfathered

[^7]:    ${ }^{8}$ The Company's design year springboard incorporates observations from the 2003/04 split year, the year in which EnergyNorth experienced a design day, as more reflective of what might occur during design weather.

[^8]:    - EnergyNorth determined the equivalent number of customers using the following formula: Delta Supply/[(Heating Increment/Number of Customers)*EDD].

[^9]:    ${ }^{1}$ As noted in section III B above, this obligation excludes those firm transportation customers that are exempt from the Commission's mandatory capacity assignment rule. i.e. customers who had migrated to transportation service prior to the implementation of the mandatory capacity assignment rule or new customers who go direct to delivery only service.
    ${ }^{2}$ The Company did incorporate into the 2005/06 portfolio the upcoming addition of the short-haul capacity from Dawn to Waddington and the associated supply.

[^10]:    ${ }^{3}$ Union and TransCanada have each received the necessary regulatory authorizations. Both pipeline expansions are under construction and expected to be completed on schedule.

[^11]:    ${ }^{4}$ The on-system LNG storage capacity is not sufficient to meet the full seasonal requirements without refill throughout the winter season.

[^12]:    ${ }^{5}$ This seven-day period with 447 EDD is not the coldest seven-day period in the database. The coldest seven-day period was a 450 EDD total that occurred between January 16 and January 22, 2000.

[^13]:    ${ }^{6}$ This Task Force was originally established by the New England Gas Association (now NGA) Board of Directors and chartered to coordinate the activities of New England (now Northeast) gas industry participants with regard to issues related to regional gas supply and deliverability.

[^14]:    ${ }^{1}$ During those negotiations, Tennessee agreed to contribute to a significant distribution system upgrade to serve additional load in the Tilton, NH area to the benefit of both the Company and Tennessee.

[^15]:    ${ }^{2}$ The sole criterion for reviewing the prudence of the Company's dispatch of underground storage volumes is the Company's ability to remain at or above this rule curve as of the last day of each month within the peak period.

[^16]:    1 EnergyNorth is a wholly owned subsidiary of KeySpan New England LLC., which is itself a wholly owned subsidiary of KeySpan Corporation. KeySpan Corporation is a public utility holding company headquartered in Brooklyn N.Y. Under the KeySpan holding company structure, many of the functions that are described in this document are performed by employees of KeySpan shared services organizations on behalf of EnergyNorth.

[^17]:    2 Commodity supplies will be priced based on how they are actually dispatched.

[^18]:    3 The Gas Supply Planning and Load Forecasting Groups are based out of Waltham, MA. The Regulated Gas Transactions Group is based out of Hicksville, NY. The Gas Contracting Group is based out of Brooklyn, NY.

[^19]:    4 In certain instances, seasonal supplies may be procured by the regulated gas transaction group following the process for procurement of short-term supply.

[^20]:    5 In addition to considering new capacity, the Company will also consider the acquisition of existing capacity via assignment or capacity release.

[^21]:    6 The Customer Choice group is responsible for confirming both, the supplies delivered to the Company from third party suppliers on behalf of transportation customers, as well as supplies delivered to the Company to meet customer requirements.

[^22]:    7 Currently, EnergyNorth enjoys the benefits of operating under a single OBA with Tennessee for all of the KeySpan New England citygates. This allows EnergyNorth and the KeySpan Massachusetts LDCs to balance deliveries across all of its Tennessee citygates in New England. The Company hopes to maintain a single Tennessee OBA, however it is contingent upon the Company's portfolio management plan decision for the Massachusetts LDCs effective April 1, 2006.

[^23]:    Conyognt 40 g Noth Ahiencar Ghergy Standards boaro lac All RUGitr Resmand:

[^24]:    
    

