

128 Lakeside Avenue, Burlington, VT 05401-4717 (888) 921-5990 (toll-free) (802) 658-1643 (fax)

Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions

Please send questions and comments to: Nikola Janjić Efficiency Vermont 128 Lakeside Avenue Burlington, VT 05401 (802) 540-7828 njanjic@veic.org

(This page is formatted so a reader can click on the page number and link to the associated page	ge)
TABLE OF CONTENTS	2
INTRODUCTION	6
GROSS-TO-NET SAVINGS CALCULATION	6
INTERACTIVE EFFECTS	7
PERSISTENCE	7
GLOSSARY	9
LOADSHAPES	10
BUSINESS ENERGY SERVICES	17
Motors Eve Lige	17
MOTORS END USE	1/ 17
Efficient Milk Pumping Systems for Dairy Farms	17 21
Efficient Milk Fumping Systems for Dairy Furnis Commercial Brushless Permanent Magnet (BIPM) Fan Motor	,21 24
Rrushless Permanent Magnet (BI PM) Circulator Pump	27
Engine Block Timer for Agricultural Fauinment	30
Manle San Vacuum Pump VFD	33
HVAC END USE	
Electric HVAC	
Dual Enthalpy Economizer	
Commercial Room Air Conditioner. Early Replacement	48
Commercial Ventilation Fan	52
Package Terminal Heat Pump (Hotel Room)	54
LIGHTING END USE	56
CFL Fixture	56
Lighting Controls	62
CFL Screw-in	67
Dairy Farm Hard-Wired Vapor-Proof CFL Fixture with Electronic Ballast	72
Agricultural Vapor Proof HPT8/T5HO Fixtures	75
High Performance T8 or "HPT8" Fixtures and Lamp/Ballast Systems	79
Lighting Power Density	86
T5 Fixtures and Lamp/Ballast Systems	97
SMARTLIGHT Lighting Distributor Incentives	102
LED Lighting Systems	111
Commercial Direct Install CFL	118
Agriculture Program: Lighting Products Initiative	122
REFRIGERATION END USE	126
Refrigerated Case Covers	126
Refrigeration Economizer	129
Commercial Solid Door Reach-In Refrigerators	133
Commercial Glass Door Reach-in Regrigerators	130
Commercial Solia Door Reach-In Freezer	139
ENERGY STAP Commercial Los makers	142
ENERGY STAR Commercial ICe-makers	145
Brushless DC Motors (also known as FCM) for Walk-In Coolers Freezers and Refrigerated	140
Ruildinos	151
Zero-Energy Doors and Frames	154
Door Heater Controls	156

Table of Contents

Efficient Refrigeration Compressors	159
Brushless DC Motors (also known as ECM) for Merchandising Case Coolers and Freezers	
Evaporator Coil Defrost Control	
Plate Coolers for Dairy Farms	
Compressed Air End Use	
Efficient Compressors 40 hn and Below	175
Cycling Dryers	178
Air-Entraining Air Nozzlas	181
No Loss Condensate Drains	184
Air Paggivars for Load/No Load Compressors	188
All receivers for Loud/100 Loud Compressors	101
Nov Construction Core Porformance Package	101
New Construction Core Lerjormance Lackage	105
HOI WAIEK END USE	193
Heat Recovery Units for Dairy Farms	193
SPACE HEATING END USE	199
Envelope	
MULTIFAMILY PROGRAM	208
	200
LIGHTING END USE	
Lighting Fixtures	
Standard CFL Direct Install	215
CFL Installed by Owner	
Specialty CFL Direct Install	221
CLOTHES WASHING END USE	224
Common Area Commercial Clothes Dryer Fuel Switch	224
Common Area Commercial Clothes Washer	227
In-unit Energy Efficient Clothes Washer	232
In-Unit Clothes Washer Retrofit	237
Common Area Clothes Washer Retrofit	244
REFRIGERATION END USE	252
Energy Efficient Refrigerators	252
Refrigerator Early Replacement	255
Freezer Early Replacement	258
Refrigerator Early Removal	
Freezer Early Removal	
HOT WATER END USE	
Low Flow Showerhead	
Low Flow Faucet Aerator	272
Domestic Hot Water Recirculation Pine Insulation	276
Boiler Hot Water Distribution Pipe Insulation	
Drain Water Heat Recovery Device	282
VENTILATION END USE	285
Residential Fan—Quiet Exhaust-Only Continuous Ventilation	285
SPACE HEATING END USE	288
Comprehensive Thermal Measure	288
Outdoor Reset Control	202
EFFICIENT PRODUCTS PROGRAM	294
CLOTHES WASHING END USE	294
FNFRGY STAR Clothes Washer	2)+ 201
ENERGY STAR Clothes Dryer	2 <i>94</i> 200
REEDICED ATION FRID USE	205
ENERGY STAR Defricerator	205
ENERGY STAR REJUGETUUT	200
LIVERUI SIAK FIECLEI	
Kejrigeraior Early Kemoval	
r reezer Early Kemoval	

Energy Star Dehumidifiers	
LIGHTING END USE	
Commercial CFL	
Torchiere	
Dedicated CF Table Lamps	
Dedicated CF Floor Lamp	
Interior Fluorescent Fixture	
Exterior Fluorescent Fixture	
Solid State (LED) Recessed Downlight	
Free CFL	
Specialty CFL	
Hard to Reach Standard CFL	
Residential Standard CFL	
ENERGY STAR Integrated Screw Based SSL (LED) Lamps	
Hard to Reach Specialty CFL	
Solid State (LED) Fixtures	
Ceiling Fan End Use	
Ceiling Fan with ENERGY STAR Light Fixture	
Electronic Technology End Use	
Internal Power Supplies	
Ultra Efficient LCD Monitors	
Efficient Televisions	
Controlled Power Strip	
MOTORS END USE	
Efficient Pool Pumps	
DHW End-Use	
ENERGY STAR Heat Pump Water Heater OW INCOME SINGLE-FAMILY PROGRAM	
ENERGY STAR Heat Pump Water Heater OW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE	
ENERGY STAR Heat Pump Water Heater DW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE Tank Wrap	
ENERGY STAR Heat Pump Water Heater DW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE Tank Wrap Pipe Wrap	
ENERGY STAR Heat Pump Water Heater DW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE <i>Tank Wrap</i> <i>Pipe Wrap</i> <i>Tank Temperature Turn-down</i>	
ENERGY STAR Heat Pump Water Heater DW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE Tank Wrap Pipe Wrap Tank Temperature Turn-down Low Flow Shower Head	
ENERGY STAR Heat Pump Water Heater OW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE Tank Wrap Pipe Wrap Tank Temperature Turn-down Low Flow Shower Head Low Flow Faucet Aerator	
ENERGY STAR Heat Pump Water Heater DW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE Tank Wrap Pipe Wrap Tank Temperature Turn-down Low Flow Shower Head Low Flow Faucet Aerator LIGHTING END USE	
ENERGY STAR Heat Pump Water Heater DW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE Tank Wrap Pipe Wrap Tank Temperature Turn-down Low Flow Shower Head Low Flow Shower Head Low Flow Faucet Aerator LIGHTING END USE Standard CFL Direct Install	
ENERGY STAR Heat Pump Water Heater DW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE Tank Wrap Pipe Wrap Tank Temperature Turn-down Low Flow Shower Head Low Flow Shower Head Low Flow Faucet Aerator LIGHTING END USE Standard CFL Direct Install Specialty CFL Direct Install	
ENERGY STAR Heat Pump Water Heater	
ENERGY STAR Heat Pump Water Heater	
ENERGY STAR Heat Pump Water Heater	
ENERGY STAR Heat Pump Water Heater DW INCOME SINGLE-FAMILY PROGRAM HOT WATER END USE Tank Wrap Pipe Wrap Tank Temperature Turn-down	
ENERGY STAR Heat Pump Water Heater	
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$
ENERGY STAR Heat Pump Water Heater	
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$
ENERGY STAR Heat Pump Water Heater	$\begin{array}{c}$

Interior Recessed Fluorescent Fixture	
Interior Surface Fluorescent Fixture	
Exterior Fluorescent Fixture	
Generic Linear Fluorescent Tube Fixture	
VENTILATION END USE	470
Residential Fan—Quiet, Exhaust-Only Continuous Ventilation	
DISHWASHING END USE	
ENERGY STAR Dishwasher	
CLOTHES DRYER END USE	476
Electric Clothes Dryer Fuel Switch	
Clothes Washer	
MULTIPLE END USES	
Comprehensive Shell Measure Savings	
RESIDENTIAL EMERGING MARKETS PROGRAM	
HOT WATER END USE	
Tank Wrap	
Pipe Wrap	
Tank Temperature Turn-down	
Low Flow Shower Head	
Low Flow Faucet Aerator	
HOT WATER END USE (WITH ELECTRIC HOT WATER FUEL SWITCH)	
Electric Domestic Hot Water System Fuel Switch	
CLOTHES DRYER END USE	
Electric Clothes Dryer Fuel Switch	
LIGHTING END USE	
Standard CFL Direct Install	
Solid State (LED) Recessed Downlight	515
Free CFL	519
Specialty CFL Direct Install	
HVAC END USE	
Efficient Furnace Fan Motor	
Residential Efficient Space Heating System	
Brushless Permanent Magnet (BLPM) Circulator Pump	
ENERGY STAR Central Air Conditioner	
Residential Fan—Quiet, Exhaust-Only Continuous Ventilation	
Variable Speed Mini-Split Heat Pumps	
Refrigeration End Use	
Refrigerator Early Replacement	546
Freezer Early Replacement	
Refrigerator Early Removal	
Freezer Early Removal	555
CLOTHES WASHING END USE	558
Clothes Washer Retrofit	
Multiple End Use	
Mail Order Efficiency Kit	
COMMERCIAL HEAT AND PROCESS FUELS	
SPACE HEATING END USE	
Efficient Space Heating System	

Introduction

This reference manual provides methods, formulas and default assumptions for estimating energy and peak impacts from measures and projects promoted by Efficiency Vermont's energy efficiency programs.

The reference manual is organized by program (or program component), end use and measure. Each section provides mathematical equations for determining savings (algorithms), as well as default assumptions for all equation parameters that are not based on site-specific information. In addition, any descriptions of calculation methods or baselines are provided, as appropriate. The parameters for calculating savings are listed in the same order for each measure. In order to maintain a similar appearance for all of the measure assumption pages, large tables are located at the end of the measure assumptions under the Reference Tables category. Algorithms are provided for estimating annual energy and demand impacts. Data assumptions are based on Vermont data, where available. Where Vermont data was not available, data from neighboring regions is used, including New York, New Jersey and New England, where available. In some cases, engineering judgment is used.

Gross-to-Net Savings Calculation

The algorithms shown with each measure calculate gross customer electric savings without counting the effects of line losses from the generator to the customer, freeridership, or spillover. The algorithms also do not distribute the savings among the different costing periods. The formulae for converting gross customer-level savings to net generation-level savings (counting freeridership and spillover) for the different costing periods is as follows:

netkWh_i = $\Delta kWh \times (1+LLF_i) \times (FR + SPL - 1) \times RPF_i$

$$netkW_j = \Delta kW \times (1 + LLF_j) \times (FR + SPL - 1) \times CF_j$$

Where:

netkWh_{*i*} = kWh energy savings at generation-level, net of free riders and persistence, and including spillover, for period i

i = subscript used to denote variable energy rating periods (Winter Peak, Winter Off-Peak, Summer Peak, Summer Off-Peak).

- $\Delta kWh = gross customer annual kWh savings for the measure$
- LLF_i = line loss factor for period *i*
- FR = Freeridership factor, as presented in the measure characterizations. The Freeridership factor is equal to 1 minus the percent freeridership. For example, if it is assumed that 10% of measure installations are freeriders, FR will be equal to 0.9.
- SPL =Spillover factor, as presented in the measure characterizations. The Spillover factor is equal to 1 plus the percent spillover. For example, if it is assumed that a measure has 5% spillover, SPL will be equal to 1.05.
- RPF_i = rating period factor for period *i*
- netk $W_j = kW$ demand savings, net of free riders and persistence, and including spillover, for season *j*
- *j* = subscript used to denote variable seasonal peaks (Summer, Winter and Spring/Fall).
- ΔkW = gross customer connected load kW savings for the measure
- LLF_i = line loss factor for seasonal peak *j*
- CF_i = the percent of kW savings that is concurrent with Vermont's seasonal peak, for season j

All of the parameters except line loss factors (LLF) for the above equations may be found in the specific section for the measure. The line loss factors do not vary by measure, but by costing period, and are in the following table:

Line Loss Factors

	Energy	$V(LLF_i)$		Peak (LLF _j)	
Winter Peak Period	Winter Off- Peak Period	Summer Peak Period	Summer Off-Peak Period	Winter Peak	Summer Peak	Spring/Fall Peak
13.466%	12.151%	13.697%	10.682%	9.97%	10.51%	

The free ridership and spillover factors are related to but slightly different from the freeridership and spillover rates used in the gross-to-net equation. Free ridership and spillover factors are defined as follows:

Free ridership factor = 1 - FR

Spillover factor = 1 + SPL

Interactive Effects

The TRM provides specific savings algorithms for many prescriptive measures. When a customer installs a prescriptive measure, the savings are determined according to these algorithms. In some cases these algorithms include the effects of interactions with other measures or end uses (e.g., cooling and heating effects from interior lighting waste heat). For "custom" measures, EVT performs site-specific customized calculations. In this case, EVT takes into account interactions between measures (e.g., individual savings from installation of window film and replacement of a chiller are not additive because the first measure reduces the cooling load met by the second measure). EVT will calculate total savings for the package of custom measures being installed, considering interactive effects, either as a single package or in rank order of measures as described below. If a "custom" project includes both prescriptive and custom measures, the prescriptive measures will be calculated in the normal manner. However, the prescriptive measures will be assumed to be installed prior to determining the impacts for the custom measures. Custom interior lighting measures will use the standard prescriptive algorithm to estimating waste heat impacts.

In most cases of multiple custom measures EVT models a single custom package including all measures the customer will install. This modeling effectively accounts for all interactions between measures, and the "package" is tracked in FastTrack as a single "measure." In instances where modeling is not completed on a package of measures, and where individual measures are separately listed in FastTrack with measure-specific savings EVT will use the following protocol (typically lighting only projects). To determine custom measure savings EVT will calculate measure impacts in descending order of measure life (i.e., starting with the longest lived measure). The procedure is to calculate savings for the longest lived measure first, then consider that measure's impact on the next longest lived measure, and so on. This is because a short-lived measure can reduce savings from a long-lived measure, but only for part of its life. Since tracking system limitations require that annual measure savings remain constant for all years, this is the only way to ensure proper lifetime savings and total resource benefits are captured. For example, fixing compressed air leaks can reduce savings from installing a new compressor. However, leak repair only lasts 1 year. If the leak repair savings were calculated first the calculated lifetime savings and benefits from the compressor would be unreasonably low because compressor savings would go back up starting in year 2.

Persistence

Persistence factors may be used to reduce lifetime measure savings in recognition that initial engineering estimates of annual savings may not persist long term. This might be because a measure is removed or breaks prior to the end of its normal engineering lifetime, because it is not properly maintained over its lifetime, because it is overridden or goes out of calibration (controls only), or some other reason. Each measure algorithm contains an entry for persistence factor. The default value if none is indicated is 1.00 (100%). A value lower than 1.00 will result in a downward adjustment of lifetime savings and total resource benefits. For any measure with a persistence value less than 1.00, the normal measure life

("Engineering Measure Life") will be reduced to arrive at an "Adjusted Measure Life" for purposes of measure screening, savings and TRB claims, and tracking. The "Adjusted Measure Life" used will be equal to the product of the Engineering Measure Life and the persistence factor. Both the Engineering Measure Life will be shown in each measure algorithm. All data in FastTrack and CAT indicating "measure life" shall be equal to "Adjusted Measure Life."

Glossary

The following glossary provides definitions for necessary assumptions needed to calculate measure savings.

Baseline Efficiency (η_{base}): The assumed standard efficiency of equipment, absent an Efficiency Vermont program.

Coincidence Factor (CF): Coincidence factors represent the fraction of connected load expected to be coincident with a particular system peak period, on a diversified basis. Coincidence factors are provided for summer, winter and spring/fall peak periods.

Connected Load: The maximum wattage of the equipment, under normal operating conditions.

Freeridership (FR): The fraction of gross program savings that would have occurred despite the program.

Full Load Hours (FLH): The equivalent hours that equipment would need to operate at its peak capacity in order to consume its estimated annual kWh consumption (annual kWh/connected kW).

High Efficiency (η_{effic}): The efficiency of the energy-saving equipment installed as a result of an efficiency program.

Lifetimes: The number of years (or hours) that the new high efficiency equipment is expected to function. These are generally based on engineering lives, but sometimes adjusted based on expectations about frequency of remodeling or demolition.

Line Loss Factor (LLF): The marginal electricity losses from the generator to the customer – expressed as a percent of meter-level savings. The Energy Line Loss Factors vary by period. The Peak Line Loss Factors reflect losses at the time of system peak, and are shown for three seasons of the year. Line loss factors are the same for all measures. See the Gross-to-Net Calculation section for specific values.

Load Factor (LF): The fraction of full load (wattage) for which the equipment is typically run.

Operating Hours (HOURS): The annual hours that equipment is expected to operate.

Persistence (PF): The fraction of gross measure savings obtained over the measure life.

Rating Period Factor (RPF): Percentages for defined times of the year that describe when energy savings will be realized for a specific measure.

Spillover (SPL): Savings attributable to the program, but generated by customers not directly participating in the program. Expressed as a fraction of gross savings. All values can be changed as new information becomes available.

Loadshapes

The following table includes a listing of measure end-uses and associated loadshapes. In some cases, the loadshapes have been developed through negotiations between Efficiency Vermont and the Vermont Department of Public Service. In other cases, these loadshapes are based on engineering judgment.

EndUse	#	Winter- on kWh	Winter- off kWh	Summer -on kWh	Summer -off kWh	Winter kW	Summer kW
Residential Indoor Lighting	1	36.9%	35.0%	13.0%	15.1%	29.8%	8.2%
Residential Outdoor Lighting	2	20.5%	50.6%	6.1%	22.8%	34.6%	1.8%
Residential Outdoor HID	3	20.5%	50.6%	6.1%	22.8%	61.4%	3.2%
Residential Refrigerator	4	30.8%	33.0%	17.1%	19.1%	79.6%	100%
Residential Space heat	5	45.5%	53.0%	0.6%	0.9%	45.4%	0.0%
Residential DHW fuel switch	6	40.2%	32.0%	15.1%	12.7%	40.1%	20.3%
Residential DHW insulation	7	31.7%	34.9%	15.9%	17.5%	100.0%	100.0%
Residential DHW conserve	8	48.7%	29.1%	14.3%	7.9%	40.1%	20.3%
Residential Clothes Washer	9	42.0%	28.8%	16.9%	12.3%	4.4%	3.3%
Residential Ventilation	10	31.7%	34.9%	15.9%	17.5%	32.2%	32.2%
Residential A/C	11	0.7%	2.8%	53.3%	43.2%	0.0%	82.9%
Commercial Indoor Lighting	12	48.8%	19.5%	22.2%	9.5%	46.9%	67.9%
Commercial Outdoor Lighting	13	20.5%	50.6%	6.1%	22.8%	70.2%	3.7%
Commercial Refrigeration	14	33.0%	32.6%	17.0%	17.4%	69.0%	77.2%
Commercial A/C	15	18.0%	10.0%	46.0%	26.0%	0.0%	34.20%
Commercial Ventilation motor	16	34.4%	36.6%	14.9%	14.1%	59.9%	55.5%

Loadshape Table of Contents

Commercial Space heat	17	38.7%	61.2%	0.0%	0.1%	57.0%	0.3%
Industrial Indoor Lighting	18	57.8%	8.8%	29.0%	4.4%	49.7%	75.9%
Industrial Outdoor Lighting	19	20.5%	50.6%	6.1%	22.8%	70.2%	3.7%
Industrial A/C	20	18.0%	10.0%	46.0%	26.0%	0.0%	34.20%
Industrial Motor	21	62.4%	4.2%	31.3%	2.1%	95.0%	95.0%
Industrial Space heat	22	38.7%	61.2%	0.0%	0.1%	57.0%	0.3%
Industrial Process	23	62.4%	4.2%	31.3%	2.1%	95.0%	95.0%
Dairy Farm Combined End Uses	24	43.6%	23.2%	21.7%	11.5%	91.5%	34.1%
Flat (8760 hours)	25	31.7%	34.9%	15.9%	17.5%	100.0%	100.0%
HVAC Pump (heating)	26	47.6%	52.4%	0.0%	0.0%	100.0%	0.0%
HVAC Pump (cooling)	27	9.6%	10.6%	38.0%	41.8%	0.0%	100.0%
HVAC Pump (unknown use)	28	28.6%	31.5%	19.0%	20.9%	50.0%	50.0%
Traffic Signal - Red Balls, always changing or flashing	29	31.7%	34.9%	15.9%	17.5%	55.0%	55.0%
Traffic Signal - Red Balls, changing day, off night	30	47.6%	19.0%	23.9%	9.5%	55.0%	55.0%
Traffic Signal - Green Balls, always changing	31	31.7%	34.9%	15.9%	17.5%	42.0%	42.0%
Traffic Signal - Green Balls, changing day, off night	32	47.6%	19.0%	23.9%	9.5%	42.0%	42.0%
Traffic Signal - Red Arrows	33	31.7%	34.9%	15.9%	17.5%	90.0%	90.0%
Traffic Signal - Green Arrows	34	31.7%	34.9%	15.9%	17.5%	10.0%	10.0%
Traffic Signal - Flashing Yellows	35	31.7%	34.9%	15.9%	17.5%	50.0%	50.0%

Traffic Signal - "Hand" Don't Walk Signal	36	31.7%	34.9%	15.9%	17.5%	75.0%	75.0%
Traffic Signal - "Man" Walk Signal	37	31.7%	34.9%	15.9%	17.5%	21.0%	21.0%
Commercial HP 0- 65 kBTUh	38	32.2%	43.8%	18.5%	5.5%	58.6%	75.4%
Commercial HP 65- 375 kBTUh	39	31.4%	41.6%	20.8%	6.2%	58.7%	81.1%
Commercial PTHP	40	31.3%	41.5%	21.0%	6.2%	58.7%	81.1%
Commercial Water- Source Heat Pump	41	28.1%	33.0%	30.0%	8.9%	58.7%	81.1%
Transformer	42	56.2%	9.5%	29.2%	5.1%	100.0%	100.0%
Vending Miser	43	9.5%	57.1%	4.8%	28.6%	0.0%	0.0%
Compressed Air - 1- shift (8/5)	44	66.6%	0.0%	33.4%	0.0%	0.0%	59.4%
Compressed Air - 2- shift (16/5)	45	62.4%	4.2%	31.3%	2.1%	95.0%	95.0%
Compressed Air - 3- shift (24/5)	46	44.4%	22.2%	22.3%	11.1%	95.0%	95.0%
Compressed Air - 4- shift (24/7)	47	31.7%	34.9%	15.9%	17.5%	95.0%	95.0%
Storage ESH (Statewide)	48	29.6%	68.7%	0.5%	1.2%	0.0%	0.0%
Controlled ESH (Statewide)	49	29.6%	68.7%	0.5%	1.2%	0.0%	0.0%
Storage ESH (GMP)	50	58.0%	40.3%	1.0%	0.7%	3.7%	0.3%
Controlled ESH (GMP)	51	76.7%	21.5%	1.4%	0.4%	2.8%	0.2%
Controlled DHW Fuel Switch	52	40.2%	32.0%	15.1%	12.7%	20.5%	12.1%
Controlled DHW Insulation	53	31.7%	34.9%	15.9%	17.5%	51.0%	59.4%
Controlled DHW Conservation	54	48.7%	29.1%	14.3%	7.9%	20.5%	12.1%

VFD Supply fans <10 HP	55	39.0%	30.5%	21.6%	8.9%	19.8%	50.8%
VFD Return fans <10 HP	56	39.0%	30.8%	21.4%	8.8%	28.5%	71.2%
VFD Exhaust fans <10 HP	57	44.4%	22.2%	16.0%	17.4%	100.0%	37.0%
VFD Boiler feedwater pumps <10 HP	58	53.6%	46.3%	0.0%	0.1%	100.0%	67.0%
VFD Chilled water pumps <10 HP	59	30.9%	18.1%	35.9%	15.1%	0.0%	90.2%
Economizer	60	24.5%	23.7%	22.6%	29.2%	0.0%	0.0%
VFD Milk Vacuum Pump	61	36.9%	30.1%	18.2%	14.8%	63.4%	28.7%
Computer Office	62	28.9%	37.7%	14.5%	18.9%	57.9%	30.3%
Commercial Indoor Lighting with cooling bonus	63	46.5%	16.8%	26.8%	9.9%	35.8%	69.4%
Industrial Indoor Lighting with cooling bonus	64	53.6%	8.2%	32.5%	5.8%	47.3%	93.3%
Continuous C&I Indoor Lighting with cooling bonus	65	30.1%	31.6%	20.7%	17.6%	74.6%	100.0%
Refrigeration Economizer	66	44.3%	55.5%	0.0%	0.2%	100.0%	0.0%
Strip Curtain	67	33.0%	32.6%	17.0%	17.4%	100.0%	100.0%
Evaporator Fan Control	68	29.1%	39.5%	13.7%	17.7%	45.9%	43.0%
Door Heater Control	69	47.6%	52.4%	0.0%	0.0%	100.0%	0.0%
Floating Head Pressure Control	70	33.3%	37.1%	12.8%	16.8%	100.0%	0.0%
Furnace Fan Heating and Cooling	71	31.7%	37.5%	16.9%	13.9%	45.4%	82.9%
Traffic Signal - Bi- Modal Walk/Don't Walk	72	31.7%	34.9%	15.9%	17.5%	100%	100%
Residential - Dehumidifier	73	15.9%	17.5%	31.7%	34.9%	0%	35.3%

Internal Power Supply, Commercial Desktop	74	39.2%	27.5%	19.6%	13.7%	50.0%	80.0%
Internal Power Supply, Residential Desktop	75	33.8%	32.9%	16.9%	16.4%	52.2%	40.5%
VFD Boiler circulation pumps <10 HP	76	45.9%	47.1%	4.6%	2.4%	49.5%	2.1%
Refrigeration Night Covers	77	5.9%	60.6%	3.0%	30.4%	0.0%	0.0%
ECM Fan Motor Commercial Heating	78	34.4%	56.1%	4.5%	5.0%	50.2%	19.0%
ECM Fan Motor Commercial Cooling	79	18.3%	0.4%	67.4%	13.9%	0.0%	80.1%
ECM Fan Motor Commercial Heating & Cooling	80	30.9%	42.2%	19.1%	7.8%	50.2%	52.4%
Core Performance – Office w/ Pkg VAV and Chiller	81	32.2%	21.3%	30.7%	15.8%	13.2%	56.1%
Core Performance – Office w/ Pkg RTU and HW baseboard	82	41.8%	14.6%	31.0%	12.7%	18.7%	63.5%
Core Performance – Office w/ Pkg RTU and Furnace	83	38.0%	15.2%	32.4%	14.4%	14.6%	57.5%
Core Performance – Office w/ Water Source HP	84	34.5%	21.7%	27.9%	15.9%	22.3%	74.0%
Core Performance – School w/ Unit Vent. and Pkg units	85	73.9%	8.2%	14.7%	3.2%	27.7%	8.8%
Core Performance – Retail w/ Pkg RTU and Furnace	86	35.7%	17.7%	31.1%	15.5%	16.0%	39.5%
Grocery/Conv. Store Indoor Lighting	87	39.7%	26.7%	19.7%	13.9%	84.7%	90.8%
Hospital Indoor Lighting	88	36.4%	30.2%	17.9%	15.5%	50.5%	70.1%
Office Indoor Lighting	89	54.7%	12.1%	27.0%	6.2%	42.7%	71.2%
Restaurant Indoor Lighting	90	40.7%	25.7%	20.2%	13.4%	63.0%	77.0%
Retail Indoor Lighting	91	45.5%	21.0%	22.6%	10.9%	51.7%	79.9%

Warehouse Indoor Lighting	92	50.9%	15.7%	25.3%	8.1%	44.9%	70.1%
K-12 School Indoor Lighting	93	59.1%	19.6%	14.6%	6.7%	28.7%	50.9%
Efficient Television	94	48.0%	19.0%	24.0%	9.0%	22.0%	17.0%
Standby Losses - Entertainment Center	96	32.0%	35.0%	16.0%	17.0%	72.5%	90.0%
Standby Losses - Home Office	97	28.0%	38.0%	14.0%	19.0%	25.0%	76.3%
Standby Losses - Commercial Office	98	7.0%	60.0%	3.0%	30.0%	8.0%	1.0%
Room Air Conditioning	99	0.7%	2.8%	53.3%	43.2%	0.0%	27.6%
Pool Pump	100	0.0%	0.0%	65.0%	35.0%	0.0%	83.1%
Commercial EP Lighting	101	48.8%	19.5%	22.2%	9.5%	37.2%	68.1%
VFD Boiler draft fans <10 HP	102	45.8%	53.1%	0.7%	0.4%	40.0%	0.0%
VFD Cooling Tower Fans <10 HP	103	10.1%	5.0%	58.6%	26.3%	0.0%	61.6%
Engine Block Heater Timer	104	30.39%	69.61%	0.00%	0.00%	37.50%	0.00%
Lodging Indoor Lighting	105	36.1%	30.5%	17.7%	15.7%	54.6%	56.0%
Public Assembly Indoor Lighting	106	40.7%	25.8%	20.1%	13.4%	46.0%	60.3%
Public Safety Indoor Lighting	107	40.7%	25.8%	20.1%	13.4%	35.5%	50.4%
Religious Indoor Lighting	108	33.2%	33.6%	15.8%	17.4%	51.4%	34.6%
Service Indoor Lighting	109	47.9%	18.7%	23.7%	9.7%	32.1%	79.2%
C&I Unitary AC	110	18.0%	10.0%	46.0%	26.0%	0.0%	34.2%
Farm Plate Cooler / Heat Recovery Unit	111	28.97%	16.38%	31.60%	23.05%	26.97%	16.08%

Maple Sap VFD	112	51.2%	48.8%	0.00%	0.00%	0.00%	0.00%
Commercial Small Exhaust-only Vent Fan	113	48.80%	19.50%	22.20%	9.50%	50.80%	72.40%
PTHP, Hotel	114	39.97%	48.93%	5.36%	5.74%	34.15%	41.61%
Streetlighting	115	20.5%	50.6%	6.1%	22.8%	98.0%	0%
Prescriptive cold climate variable speed heat pump, heat pump baseline	116	41.8%	48.8%	5.0%	4.4%	100%	4.9%

Notes: See Excel spreadsheet <Lighting loadshape with cooling bonus-102103.xls> for derivation of loadshapes 63, 64, and 65. Heavier weighting is given to the summer periods and less to the other periods to account for the cooling bonus that is included in the kWh and kW savings.

All loadshape numbers referenced in the measure characterizations correspond to the most recent generation of the loadshape as detailed in the loadshape table of contents. The coincident peak factors in the standard load profiles above are based on the listed assumptions for full load hours. To account for the effect on peak savings from a change in full load hours, use of full load hours different than the standard will result in an automatic adjustment of the coincident peak factors (% of connected load kW) used in screening and reported in the database, unless custom coincident peak factors are also entered. The coincidence factors are multiplied by the ratio of [custom full load hours]/[standard full load hours], with a maximum value of 100% for each factor. As a result, coincidence factors for particular measures may be higher or lower than the standard factors listed above even when a standard load profile is used.

As of January 1, 2012 Efficiency Vermont is using new avoided costs with different costing period definitions. The new energy periods are based on the 2011 Avoided Energy Supply Costs in New England report prepared for the Avoided-Energy-Supply-Component (AESC) Study Group by Synapse Energy Economics, Inc. The new coincident peak periods are based on ISO New England performance hours for the forward capacity market. The new costing period definitions required new loadshapes consistent with the new period definitions. The loadshapes in this TRM reflect the change in costing period definitions.

EVT Current Avoided Cost Definitions:

Winter Peak Energy:	7AM - 11PM, weekdays, October to May;
Winter Off-Peak Energy:	11PM - 7AM, weekdays, all weekend hours, October to May;
Summer Peak Energy:	7AM - 11PM, weekdays, June to September;
Summer Off-Peak Energy	:11PM - 7AM weekdays, all weekend hours, June to September.

Summer Gen. Capacity:	1PM-5PM, weekday, non-holiday, June-August
Winter Gen. Capacity:	5PM-7PM, weekday, non-holiday, December-January

Business Energy Services

Motors End Use Variable Frequency Drives (VFD)

Measure Number: I-A-2-c (Business Energy Services, Motors End Use)

Version Date & Revision History

Draft date: Portfolio No. 72 Effective date: 1/1/2012 End Date: TBD

Referenced Documents:

VFD Incremental Cost Analysis.xls
 VFD EQuest Analysis.xlsx

Description

Below are two sets of equations. The first are standardized savings algorithms and assumptions for all VFDs applied to motors of 10 HP or less for the following HVAC applications: supply fans, return fans, boiler draft fans, cooling tower fans, chilled water pumps, and hot water pumps ("Standardized Approach"). All other VFDs are treated as custom measures.

Algorithms

For VFDs <= 10 HP on HVAC supply fans, return fans, boiler draft fans, cooling tower fans, chilled water pumps and hot water pumps.

Energy Savings $\Delta kWh = ESVG \times HP \times OTF$

Demand Savings

 $\Delta kW = DSVG \times HP \times OTF$

Where:

ΔkWh	= gross customer annual kWh savings for the measure
ΔkW	= gross customer kW savings for the measure at either the summer or winter peak
	(whichever is greater)
HP	= horsepower of motor VFD is applied to (site specific, from customer application)
ESVG	= energy savings factor, see Table below (kWh/HP)
DSVG	= demand savings factor, see Table below (kW/HP)
OTF	= operational testing factor for standard approach applications. $OTF = 1.00$ when the
	project undergoes operational testing or commissioning services, $OTF = 0.9$ otherwise.

Energy Savings

 $\Delta kWh = kWh$ savings calculated on a site-specific basis \times OTF

Demand Savings

 $\Delta kW = kW$ reduction calculated on a site-specific basis \times OTF

Where:

 $\Delta kWh =$ gross customer annual kWh savings for the measure $\Delta kW =$ gross customer kW savings claimed for the measure

OTF = Operational Testing Factor. OTF = 1.0 when the project undergoes operational testing or commissioning services, 0.90 otherwise.

Baseline Efficiencies – New or Replacement

For hot water and chilled water pumps, the baseline reflects variable flow water loops with pumps without a VFD. For boiler draft fans, the baseline is a draft fan with no VFD. For cooling towers, the baseline reflects a tower fan with damper controls, and for supply and return fans, the baseline is a mixture of discharge damper controls (75%), and inlet guide vanes (25%).¹

High Efficiency

The high efficiency case is installation and use of a VFD.

Operating Hours

N/A for VFDs < 10 HP on HVAC supply, and return fans, cooling tower fans, boiler draft fans, chilled water pumps and hot water pumps. Site-specific otherwise.

Loadshapes

Loadshape #55 VFD Supply Fans < 10 HP Loadshape #56 VFD Return Fans < 10 HP Loadshape #59 VFD Chilled Water Pumps < 10 HP Loadshape #76 VFD Boiler Distribution Pumps < 10 HP Loadshape #102 VFD Boiler Draft Fans < 10 HP Loadshape #103 VFD Cooling Tower Fans < 10 HP

Freeridership/Spillover Factors

Measure Category		Motor Controls	
Measure Code		MTCSTVFD	
Product Description		Variable freq standardize	uency drive, ed HVAC
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	0.89	1.00
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	0.94	1.00
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	0.95	1.00
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	1.00	1.00
LIMF Retrofit	6017RETR	1.00	1.00
LIMF NC	6018LINC	1.00	1.00
LIMF Rehab	6018LIRH	1.00	1.00
MF Mkt NC	6019MFNC	1.00	1.00
MF Mkt Retro	6020MFMR	0.90	1.00
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a

¹ Based on EVT project experience

RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.²

Lifetimes

15 years for non-process VFDs. 10 years for process. Analysis period is the same as the lifetime.

Measure Cost

See the table named "VFD Cost Estimates" in the reference tables section. Incremental costs for other VFDs are determined on a site-specific custom basis and screened based on actual costs.

O&M Cost Adjustments

There are no standard operation and maintenance cost adjustments used for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

VFD Energy and Demand Savings Factors (ESVG and DSVG)

Application	ESVG (kWh/HP)	DSVG (kW/HP) ¹
Supply Fans	871	0.34
Return Fans	869	0.24
Chilled Water Pumps	635	0.25
Boiler Distribution Pumps	830	0.27
Boiler Draft Fans	500	0.27
Cooling Tower Fans	239	0.28

Source: EQuest analysis based on models developed for Efficiency Vermont's Core Performance (cf TRM entry I-N-1 "New Construction Core Performance Package"). See 'VFD EQuest Analysis.xlsx' for details.

1. The DSVG factors represent *the maximum* kW reduction throughout the year. Must be multiplied by the coincidence factors above to find the coincident savings.

VFD Cost Estimates³

² National Grid evaluated persistence in 1999 of VFDs installed in 1995 and estimated a factor of 97%. Given that the discounted value of a 3% degradation in 5 years is minimal, no persistence reduction has been applied.

³ Based on a review of VFD pricing from Grainger Catalogue No. 401 and RSMeans Mechanical Cost Data 2010. Average of 220V and 480V. See referenced document "VFD Incremental Cost Analysis.xls".

Horse Power	Installation cost estimate
3	\$1,512
5	\$1,668
7.5	\$2,000
10	\$2,293

Efficient Milk Pumping Systems for Dairy Farms

Measure Number: I-A-5-c (Business Energy Services, Motors End Use)

Version Date & Revision History

Draft date:	Portfolio No. 7
Effective date:	1/1/2012
End date:	TBD

Referenced Documents: Dairy_VFD_Analysis.xls

Description

A variable speed milk transfer (VSMT) pump is a VFD regulated pump that allows operators to to increase the efficiency of a plate heat exchanger by making the flow of milk slower and more consistent to maximize heat transfer within the heat exchanger. Electrical savings occurs "downstream" by reducing the load on the chiller in the milk storage tank and is adjusted for the increased load due to adding the pump itself to the system. A VSMT is typically an add-on to an existing system or replaces old equipment when it reaches the end of its useful life.

A milk vacuum pump is used to move milk between the milking area and bulk storage. A VFD equipped milk vacuum pump is used to reduce pump speed, and energy consumption, when pumping needs fall below peak levels. Electricity is saved relative to a system that pumps at a constant rate. A VFD milk vacuum pump typically replaces old equipment when it reaches the end of its useful life.

Algorithms

Variable Speed Milk Transfer Pump⁴

Demand Savings $\Delta kW = 2.73 kW$

Energy Savings $\Delta kWh = 7,687 kWh$

Milk Vacuum Pump VFD⁵

Demand Savings $\Delta kW = 3.01 kW$

Energy Savings $\Delta kWh = 7,769 kWh$

Where:

ΔkW	= gross customer connected load kW savings for the measure
∆kWh	= gross customer average annual kWh savings for the measure

Baseline Efficiencies – Retrofit or Replacement⁶

⁴ Savings estimates are the average savings claimed for EVT custom projects from 2003 through 2011, see Dairy_VFD_Analysis.xls

⁵ Savings estimates are the average savings claimed for EVT custom projects from 2003 through 2011, see Dairy_VFD_Analysis.xls

⁶ While these technologies would be baseline for new construction, farmers typically re-use old equipment when extensively renovating old facilities. New construction due to construction of new facilities is rare and EVT staff has only heard of one case (between 2006 and 2012) where a new construction project resulted in purchase of new equipment.

VSMT: the baseline state is no regulation of milk flow rate to the plate cooler.

Milk vacuum pump VFD: the baseline state is a non-VFD equipped pump.

High Efficiency

A variable speed milk transfer pump regulates flow to optimize the performance of a plate cooler A VFD equipped milk vacuum pump reduces pump speed when pumping needs fall below peak levels

Operating Hours

N/A

Loadshapes⁷

VSMT = Loadshape #122, Farm Plate Cooler / Heat Recovery Unit Milk Vacuum Pump = Loadshape #61, VFD Milk Vacuum Pump

Freeridership/Spillover Factors

Measure Category		Motor Controls			
Measure Code		MTCMTVFD		MTCDFVFD	
Product Description		Variable Speed Milk Transfer Pump		Milk Vacuum Pump VFD	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a	n/a	n/a
Farm Equip Rpl	6013FARM	1.00	1.00	1.00	1.00
Farm Rx	6013FRMP	1.00	1.00	1.00	1.00
Pres Equip Rpl	6013PRES	n/a	n/a	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a	n/a	n/a
Act250 NC	6014A250	n/a	n/a	n/a	n/a
Farm NC	6014FARM	n/a	n/a	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a	n/a	n/a

Persistence

The persistence factor is assumed to be one.⁸

Lifetimes

10 years.

Measure Cost⁹

Variable speed milk transfer pump: \$3,004 Milk vacuum pump VFD: \$4,014

O&M Cost Adjustments

There are no standard operation and maintenance cost adjustments used for this measure.

⁸ National Grid evaluated persistence in 1999 of VFDs installed in 1995 and estimated a factor of 97%. Given that the discounted value of a 3% degradation in 5 years is minimal, no persistence reduction has been applied.

⁷ Load shapes were developed based on actual data for EVT custom projects installed through the EVT dairy farm program from 2008 through 2011, see Dairy_VFD_Analysis.xls The variable speed milk transfer pump load profile is the same as the "Dairy Plate Cooler / Heat Recovery Unit," which is based on 112 plate cooler and heat recovery unit projects. The milk vacuum pump load profile is based on 94 projects.

⁹ Values derived from Efficiency Vermont custom data 2003-2012, see Dairy_VFD_Analysis.xls

Fossil Fuel Descriptions There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None

Commercial Brushless Permanent Magnet (BLPM) Fan Motor

Measure Number: I-A-6-b (Business Energy Services, Motors End Use)

Version Date & Revision History

Draft date: Portfolio 66 Effective date: 1/1/2011 End date: TBD

Referenced Documents: 1) WisconsinFieldStudy2003.pdf; 2) SachsSmithEfficientFurnaceFans.pdf; 3) Canadian Gas Increase Study.pdf; 4) Commercial Furnace Fan Motor Savings.xls; 5) Wisconsin ECM Impact Evaluation (emcfurnaceimpactassessment_evaluationreport.pdf).

Description

This measure will provide incentives for installing an ultra high efficiency programmable brushless permanent magnet fan motor called Brushless Permanent Magnet Motor (BLPM, sometimes referred to as ECM, ICM, or brushless DC motor), hereafter referred to as "BLPM fan motor." The incentive offer and savings estimation relate only to the efficiency gains associated with an upgrade to a BLPM fan motor, rather than for improvements in the efficiency of the heating and cooling equipment. That is, increases in AFUE or EER/SEER are NOT covered by this measure. The installation of a BLPM fan motor for businesses can apply to: just the heating system (heating only), just the central A/C system (cooling only), or for an air handler servings both heating and cooling systems (heating and cooling).

Algorithms

Energy Savings¹⁰

∆kWh	= 783	for BLPM Fan Motor Commercial Heating Only
∆kWh	= 179	for BLPM Fan Motor Commercial Cooling Only ¹¹
∆kWh	= 947	for BLPM Fan Motor Commercial Heating and Cooling

Where:

Wh	= gross customer annual kWh savings for the measure. See reference tables for
	explanation

Demand Savings¹²

Δk

∆kW	= 0.39	for BLPM Fan Motor Commercial Heating Only
∆kW	= 0.22	for BLPM Fan Motor Commercial Cooling Only
∆kW	= 0.39	for BLPM Fan Motor Commercial Heating and Cooling
Where:		

 ΔkW = maximum kW savings for the measure for either the winter or summer period, whichever is higher.

See reference tables.

¹¹ Cooling savings based on auto-mode only

¹⁰ Calculated in "Commercial Furnace Fan Motor Savings.xls" based on data from: Pigg, S. Electricity Use by New Furnaces: A Wisconsin Field Study, October 2003 (Focus On Energy Technical Report 230-1), and State of Wisoconsin ECM Furnace Impact Assessment Report, January, 2009. Adapted for Vermont climate. Commercial savings calculated by adjusting residential savings upward to reflect greater hours of operation in small commercial buildings based on the ratio of commercial and residential equivalent full load hours. Assumes a weighted average of continuous and non-continuous usage, based on Wisconsin Impact Evaluation. For commercial cooling 800 FLH are assumed, consistent with TRM for high efficiency AC.

¹² Demand savings (kW) are based on a weighted average of continuous mode and auto-mode use. Heating Only applications are still assumed to have some summer demand reduction, due to the percentage of applications that use the fan year round for ventilation.

Baseline Efficiencies – New or Replacement

A low-efficiency permanent split capacitor (PSC) fan motor on a hot air furnace, split system air conditioner, or a combined air handling system serving both heating and cooling.

High Efficiency

A brushless permanent magnet motor (BLPM, also called ECM, ICM, and other terms) on a hot air furnace, split system air conditioner, or a combined air handling system serving both heating and cooling.

Operating Hours

Cooling: 800 equivalent full load hours/year.¹³

Loadshape¹⁴

Loadshape #78, BLPM Fan Motor Commercial Heating Loadshape #79, BLPM Fan Motor Commercial Cooling Loadshape #80, BLPM Fan Motor Commercial Heating and Cooling

Freeridership/Spillover Factors

Measure Category		Space Heat Efficiency	
Measure Code		SHEFNMTR	
Product Description		Efficient Furna	ce Fan Motor
Track Name	Track No.	Freerider	Spillover
		1 × 0.95 =	
Act250 NC	6014A250	0.95 *	1.0
Cust Equip Rpl	6013CUST	1.0	1.0
Farm Retro	6012FARM	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	1.0	1.0
Pres Equip Rpl	6013PRES	1.0	1.0
C&I Upstream	6013UPST	n/a	n/a
C&I Retro	6012CNIR	1.0	1.0
MF Mkt Retro	6012MFMR	0.9	1.0
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	1.0	1.0
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	1.0	1.0

* Freeridership of 0% per agreement between DPS and EVT. All Act 250 measures will also have a 5% Adjustment Factor applied, which will be implemented through the Freeridership factor

Persistence

The persistence factor is assumed to be one.

¹³ Based on TRM characterization for Commercial Electric HVAC.

¹⁴ See derivation of the savings profiles in "Commercial Furnace Fan Motor Savings.xls".

Lifetimes

18 years.¹⁵ Analysis period is the same as the lifetime.

Measure Cost

\$200¹⁶ for Market Opportunity

Incentive Level

\$150 Total (\$100 to customer, \$50 to contractor)

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There is an increase in fossil fuel use associated with this measure, due the decrease in waste heat produced by the BLPM motor during the heating season.

∆MMBtu	$= 2.5^{17}$ For Heating Only and Heating and Cooling
∆MMBtu	= 0.0 For Cooling Only

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Table 1. Average Savings for BLPM Commercial HVAC Fan Motors

Application	kWh savings	kW reduction
Heating Only	783	.39
Cooling Only	179	.22
Heating and Cooling	947	.39

Handlers: A Status Report and Program Recommendations," 2003 (ACEEE report A033).

¹⁵ Sachs and Smith, "Saving Energy with Efficient Residential Furnace Air

¹⁶ Estimated incremental cost for efficient motor only. Sachs and Smith, 2003, Page 12.

¹⁷ See calculation in "Commercial Furnace Fan Motor Savings.xls," based on Gusdorf, J. et al. "The Impact of ECM furnace motors on natural gas use and overall energy use during the heating season of CCHT research facility."

Canadian Centre for Housing Technology. 2002 (Canadian Gas Increase Study.pdf).

Brushless Permanent Magnet (BLPM) Circulator Pump

Measure Number: I-A-7-a (Business Energy Services, Motors End Use)

Version Date & Revision History

Draft:Portfolio 68Effective date:1/1/2011End date:TBD

Referenced Documents: BLPM Pump Motor Analysis.xls, BLPM Pump Operating Hours Analysis.xlsx,

Description

This measure is for installing fractional horsepower circulator pumps with brushless permanent magnet pump (BLPM) motors. Typical applications include baseboard and radiant floor heating systems that utilize a primary/secondary loop system in multifamily residences and small commercial buildings. This measure is restricted to systems that use high mass boilers (>300,000 Btu/h) where the primary loop circulator runs constantly during the heating season. Circulator pumps that use BLPMs are more efficient because they lack brushes that add friction to the motor, as well as the ability to modulate their speed to match the load. This is possible because the drive senses the difference between the magnetic field of the rotating magnetic field of the windings in the motor stator. As the system flow demand changes (zones open or close), the drive senses the torque difference at the impeller via the change in the magnetic field difference and adjusts its speed by altering the frequency to the motor. BLPMs are especially efficient in no-load/low-load applications.

Demand Savings ∆kW	$= \Delta kWh/HOURS$
Energy Savings ∆kWh	= value from a savings table in the Reference Tables section
Where:	
ΔkW	= gross customer connected load kW savings for the measure (kW)
ΔkWh	= gross customer annual kWh savings for the measure (kWh)
HOURS	= 4684

Baseline Efficiencies – New or Replacement

The baseline equipment is a circulator pump using a low-efficiency shaded pole motor. It is assumed that this pump is installed on the primary loop of a multi-loop system, and is running constantly when outside temperatures are 55° F or lower during the winter heating season (October – April).

High Efficiency

The efficient equipment is a circulator pump with brushless permanent magnet motor.

Operating Hours

The annual operating hours are assumed to be 4684¹⁸

Loadshape

Loadshape #17: Commercial Space Heat

Freeridership/Spillover Factors

Measure Category	Space Heat Efficiency
Measure Code	SHECPMTR

¹⁸ This value is calculated as the total hours between the months of October 1st and April 30th where the outside air drybulb temperature is below 55°. See "BLPM pump operating hours analysis.xlsx" for further detail.

		Efficient Circ	culator Pump
Product Description		Mo	tor
Track Name	Track No.	Freerider	Spillover
		1 × 0.95 =	-
Act250 NC	6014A250	0.95 *	1.0
Cust Equip Rpl	6013CUST	0.95	1.0
Farm Retro	6012FARM	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	1.0	1.0
Pres Equip Rpl	6013PRES	0.95	1.0
C&I Upstream	6013UPST	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	1.0	1.0
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	1.0	1.0
CC	6015 CC	n/a	n/a
C&I Lplus	6021 LPLU	n/a	n/a
LIMF Lplus	6052 LPLU	n/a	n/a
MFMR Lplus	6053 LPLU	n/a	n/a
EP GMP Blueline	6042 EPEP	n/a	n/a
GMP Furnace	6044 RETR	n/a	n/a
GMP HP	6046 RETR	n/a	n/a
VEEP GMP	6048 VEEP	n/a	n/a

Persistence

The persistence factor is assumed to be 1.

Lifetimes

20 years – typical circulator pumps using shaded pole motors are expected to last around 15 years; circulator pump motors with ECMs typically operate at lower RPMs, thus producing less heat and extending the life of the motor.

Measure Cost

The estimated incremental cost for this measure varies based on the size of the motor. See the savings table in the reference section for the appropriate value.

Incentive Level

The recommended incentive level is \$125 for circulator pumps ≤ 1.25 max rated amps, \$375 for circulator pumps with max rated amps between 1.25 and 5, and \$500 for circulator pumps with max rated amps greater than 5. This is equivalent to roughly 50% of the estimated incremental cost.

O&M Cost Adjustments

None.

Fossil Fuel Descriptions None.

Water Descriptions

None.

Reference Tablessss

Savings and Incremental Cost for BLPM circulator pumps

Where A_{MAX} = Maximum rated amperage of circulator pump (nameplate information)

Maximum Rated Amps	Annual ΔkWh ¹⁹	Incremental Cost
$A_{MAX} \leq 1.25$	411	\$368
$1.25 {<} A_{MAX} {\leq} 5$	775	\$758
$A_{MAX} > 5$	2494	\$1,018

¹⁹ Average kWh savings calculated from a survey of available BLPM and their equivalent shaded pole circulator pumps. See "BLPM Pump Motor Analysis.xslx" for further detail.

Engine Block Timer for Agricultural Equipment

Measure Number: I-A-8-a (Business Energy Services, Motors End Use)

Version Date & Revision History

Draft date: Portfolio 73 Effective date: 1/1/2011 End date: TBD

Referenced documents

1)AgTimer Calculations.xlsx

Description

The measure is a plug-in timer to control an engine block heater in agricultural equipment. Engine block heaters are typically used during cold weather to pre-warm an engine prior to start, for convenience heaters are typically plugged in considerably longer than necessary to improve startup performance. A timer allows a user to preset the heater to come on for only the amount of time necessary to pre-warm the engine block, reducing unnecessary run time.

Algorithms

Energy Savings

 $\Delta kWh =$

ISR * Use Season * %Days * HrSave/Day * kW_{heater} - ParaLd 78.39% * 87 days * 84.23% * 7.765 Hr/Day * 1.5 kW - 5.46 kWh 664 kWh

Demand Savings

=

=

 $\begin{array}{c} p_{(Dec/Jan)} * ISR * (kW_{heater} - Parasitic \ Load) \\ 0.90 & * 78.39\% * 1.5 \ kW \end{array}$ ΔkW ==

Where:

ΔkW	= connected load kW savings per plugin timer
ISR	= "In Service Rate" = $78.39\%^{20}$
Use Season	$= 87 \text{ days}^{21}$
%Days	= proportion of days timer is used within Use Season= $84.23\%^{22}$
HrSave/Day	= hours of savings per day when timer is used= $7.765 \text{ Hr/day}^{23}$
Parasitic Load	= parasitic load = 5.46 kWh^{24}
kW(heater)	$= 1.5 \text{ kW}^{25}$
AnnHr	= annual hours $=$ Use Season $*$ 24 $=$ 1,759 hr
p(Dec/Jan)	= proportion of Jan/Dec temperature $<25 \text{ deg F} = 56/62 = 0.90^{26}$

Baseline Efficiencies – New or Replacement

The baseline scenario is an engine block heater that is manually plugged in by the farmer to facilitate equipment startup at a later time.

²⁰ Based on a combination of survey data from Vermont and Minnesota, see AgTimer_Calculations.xlsx.

²¹ Estimate is based on period between the first and last days of winter season with average temperature below 25 deg F. The 25 deg F threshold was derived through examination of Minnesota temperature data in view of the 90 use season reported by Minnesota farmers, see AgTimer_Calculations.xlsx.

²² Estimate is derived from reported use of 5.90 days per week in VT farmer survey, see AgTimer_Calculations.xlsx.

²³ Estimate is derived from use patterns reported by VT farmer survey: baseline = 10.66 h/day, with timer = 2.90 h/day, see AgTimer Calculations.xlsx.

²⁴ Estimate is based on data collected from 15 Amp Internatic pool/spa timer, see AgTimer_Calculations.xlsx.

²⁵ Standard size reported by EnSave as well as EVT staff, see AgTimer_Calculations.xlsx.

²⁶ Based on December 7th through January 31st, see AgTimer_Calculations.xlsx.

High Efficiency

The efficient measure is an engine block heater operated by an outdoor plug-in timer (15 amp or greater) that turns on the heater only when it is required.

Operating Hours 927²⁷

Loadshape

Engine Block Heater Timer, #104

Freeridership/Spillover Factors

Measure Category	Agricultural		
Measure Code	ZZZBHTIM		
		Engine Block Timer	
		for Agricultural	
Product Description		Equip	oment
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	0.95	1.1
Farm Rx	6013FRMP	0.95	1.1
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	0.95	1.1
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetime 3 years²⁸

²⁷ Baseline Use * Use Season = 10.66 h/day * 87 days/yr

(Analysis period is the same as the lifetime.)

Incremental Cost per Unit Incremental cost per installed plug-in timer is \$10.19²⁹.

Reference Tables None

 ²⁸ Equipment life is expected to be longer, but measure life is more conservative to account for possible attrition in use over time.
 ²⁹ Based on bulk pricing reported by EnSave, which administers the program

Maple Sap Vacuum Pump VFD

Measure Number: I-A-10-a (Business Energy Services, Motors End Use)

Version Date & Revision History

Draft date:	Portfolio 77
Effective date:	1/1/2012
End date:	TBD

Referenced Documents: Maple Sap VFD_Analysis.xls

Description

The measure is a VFD attached to the vacuum pump in a maple sap extraction system that allows operators to manage system pressure by reducing pump speed rather than by using an inefficient method such as a differential pressure relief valve.

Algorithms

VFD Savings³⁰

Demand Savings $\Delta kW = 1.38 kW$

Energy Savings $\Delta kWh = 1,807 kWh$

Where:

ΔkW	= gross customer connected load kW savings for the measure
∆kWh	= gross customer average annual kWh savings for the measure

Baseline Efficiencies – Retrofit or Replacement

The baseline reflects a maple sap extraction system without a VFD equipped vacuum pump.

High Efficiency

The high efficiency case is installation and use of a VFD equipped vacuum pump.

Operating Hours

N/A.

Loadshapes

Loadshape #113: Maple Sap VFD

³⁰ Savings estimates are the average savings claimed for EVT custom projects in 2010 and 2011, see Maple Sap VFD_Analysis.xls

Freeridershi	p/Spillover	Factors
--------------	-------------	---------

Measure Category		Motor Controls	
Measure Code		MTCSAPVP	
Product Description		Maple Sap Vacum Pump	
_		VFD	
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	1.00	1.00
Farm Rx	6013FRMP	1.00	1.00
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetime

15 years.

Measure Cost³¹

\$1,692

O&M Cost Adjustments

There are no standard operation and maintenance cost adjustments used for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default savings for this measure.

Water Descriptions

³¹ Values derived from Efficiency Vermont custom data 2010-2011, see Maple Sap VFD_Analysis.xls

There are no water algorithms or default values for this measure.

Reference Tables None

HVAC End Use

Electric HVAC

Measure Number: I-B-1-l (Business Energy Services, HVAC End Use)

Version Date & Revision History

Draft date: Portfolio 79 Effective date: 1/1/2012 End date: TBD

Referenced Documents:

 Minisplits_Pricing.xls;
 NEEP_HVAC_Load_Shape_Report_Final_August2.pdf
 Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.
 2005 Vermont Guidelines for Energy Efficient Commercial Construction
 2011 Vermont Commercial Building Energy Standards

Description

For existing buildings and New Construction, electric HVAC equipment exceeding baseline efficiencies as defined in the reference tables below.

Algorithms

The savings calculation equations vary by HVAC equipment type and are grouped below accordingly: Efficiency for the majority of HVAC equipment is described according to efficiency factors of the BTU/W form. Savings calculations for this equipment follows this general format:

Energy Savings

$$\begin{split} \Delta k W h_{ccol} &= k B T U / h r_{cool} \times (1 / E F_{base} \text{ - } 1 / E F_{ee}) \times F L H_{cool} \\ \Delta k W h_{heat} &= k B T U / h r_{heat} \times (1 / E F_{base} \text{ - } 1 / E F_{ee}) \times F L H_{heat} \end{split}$$

Demand Savings

$$\begin{split} \Delta k W_{cool} &= kBTU/hr_{cool} \times (1/EF_{base} - 1/EF_{ee}) \\ \Delta k W_{heat} &= kBTU/hr_{heat} \times (1/EF_{base} - 1/EF_{ee}) \end{split}$$

Where:

ΔkWh_{cool}	= gross customer annual kWh cooling energy savings for the measure
ΔkWh_{heat}	= gross customer annual kWh heating energy savings for the measure
ΔkW_{cool}	= gross customer connected load kW cooling demand savings for the measure
$\Delta k W_{heat}$	= gross customer connected load kW heating demand savings for the measure
$kBTU/hr_{cool}$	 the nominal cooling capacity of equipment in thousands of BTU per hour (1 Ton = 12 kBTU/hr)
kBTU/hr _{heat}	 the nominal heating capacity of equipment in thousands of BTU per hour (1 Ton = 12 kBTU/hr)
$\mathrm{EF}_{\mathrm{base}}$ or $\mathrm{EF}_{\mathrm{ee}}$	= "efficiency factor" (for baseline or efficient equipment) with units BTU/W, specific calculation method varies depending on the type of equipment and heating vs. cooling mode, see table below for detail
FLH_{cool} or FLH_{heat}	= "full load hours" per year (cooling or heating)
Table of efficiency factors, by technology

	Efficiency Factor (EF)				
Tachnologies	Coo	oling	Heating		
rechnologies	Energy	Demand	Energy	Demand	
	Savings	Savings	Savings	Savings	
 Split and single package A/Cs (< 65K BTUh) Heat pumps Ductless mini-splits 	SEER	EER	HSPF	HSPF	
• Split and single package A/Cs (>65K BTUh)	IEER ³²	EER	IEER	EER	
 PTACs PTHPs Room A/Cs Water source heat pumps Ground source heat pumps 	EER	EER	EER	EER	

Where:

SEER = "seasonal energy efficiency ratio" of cooling equipment (BTU/W)

HSPF = "heating seasonal performance factor" of heat pump equipment (BTU/W)

EER = "energy efficiency ratio" of heating or cooling equipment (BTU/W)

IEER = "integrated energy efficiency ratio" of heating or cooling equipment (BTU/W)

Where the desired baseline efficiency factors are unavailable, EER, SEER, KW/ton, HSPF or COP can be converted according to the following relationships:

- EER = SEER /1.1.
- EER or IEER = 12 / (kW/ton)
- EER or IEER = $3.413 \times COP$
- HSPF = $0.65 \times SEER$

The savings for chillers should be calculated using cooling kW/ton efficiencies and the following algorithms:

Energy Savings

 $\Delta kWh_{cool} = tons \times [(IPLV_{base} - IPLV_{ee})] \times FLH_s$

Demand Savings

 $\Delta kW_{cool} = tons \times [(PE_{base} - PE_{ee})]$

Where:

$$\begin{split} IPLV_{base} &= Integrated part load value efficiency of the baseline chiller (kW/ton) \\ IPLV_{ee} &= Integrated part load value efficiency of the energy efficient chiller (kW/ton) \\ PE_{base} &= Peak efficiency of the baseline chiller (kW/ton) \\ PE_{ee} &= Peak efficiency of the energy efficient chiller (kW/ton) \\ tons &= the nominal cooling capacity of equipment in tons (1 Ton = 12 kBTU/hr) \end{split}$$

³² Older units may use either EER or IPLV, "integrated part load value" (KW/ton).

Savings for HVAC controls and distribution systems are calculated on a custom basis with baseline technologies established in the Electric HVAC Baseline table. If EVT convinces a customer to switch technologies, savings would be calculated using the technology the customer was planning to use as the baseline. For example, if a customer was intending to install an air-cooled heat pump and EVT convinced them to install a water source heat pump instead, savings would be based on going from a baseline air cooled heat pump to the actual water source unit installed.

Baseline Efficiencies – New or Replacement

For all business new construction projects commencing construction prior to January 3rd, 2012 OR initiated with Efficiency Vermont prior to January 3rd, 2012, but completed on or after January 3rd, 2012, savings shall be calculated using "2005 Vermont Guidelines for Energy Efficient Commercial Construction" as baseline. Refer to that document for tables of appropriate baseline efficiency values.

For all business new construction projects commencing construction after January 3rd, 2012 and iniated with Efficiency Vermont on or after January 3rd, 2012, regardless of when they are completed, savings shall be calculated using "2011 Vermont Commercial Building Energy Standards" as baseline. Refer to Reference Tables section for appropriate baseline efficiency values for most common technologies. Refer to 2011 Vermont Commercial Building Energy Standards for baseline efficiencies for other technologies.

High Efficiency

Measure efficiencies should be obtained from customer data. If the efficiencies are missing, but the manufacturer and model # are available, then refer to the ARI directories. The minimum qualifying efficiencies for unitary equipment are shown in Table 1 "High-Efficiency Unitary AC and Heat Pumps" in the reference tables section.

Operating Hours

<u>Split system and Single Package (rooftop units)</u>: 755 cooling full load hours³³, 2200 heating full load hours for heat pumps less than 65,000 BTUh and using HSPF, 1600 heating full load hours for heat pumps greater than or equal to 65,000 BTUh and using EER (electric resistance heating may be on for an additional 600 hours, but those hours should not be included in the algorithms when calculated savings are based on EER).

Ductless mini-splits: 829 cooling full load hours³⁴

<u>PTAC:</u> 830 cooling full load hours, 1640 heat pump heating full load hours (electric resistance heating would be on for an additional 600 hours, but those hours should not be included in the algorithms when based on EER)

Water Source Heat Pumps: 2088 cooling full load hours, 2248 heat pump heating full load hours

Room AC: 800 cooling full load hours, 1600 heat pump heating full load hours

Chillers: Site-specific based on engineering estimates.

Loadshapes

Loadshape #15, Commercial A/C Loadshape #20, Industrial A/C Loadshape #17, Commercial Space heat Loadshape #22, Industrial Space heat

³³ Average EFLH for large and small rooftop units from NEEP_HVAC_Load_Shape_Report_Final_August2.pdf

³⁴ EFLH small (<11.25 tons) rooftop units from NEEP_HVAC_Load_Shape_Report_Final_August2.pdf

Freeridership/Spillover Factors

Measure Category			Н	IVAC	
		ACEACUN	II, ACEHPAIR,		
		ACE	HPWAT,		
		ACECHILI	L, ACEACPTL,		
		ACE	EHPPTL,	ACECA2	06, ACECA213,
		ACE	HPUMP	ACECA2	37, ACECP206,
Measure Codes		ACE	ACDMS	ACECP2	37, ACECW237
Product Description	1	Efficient HVAC		CEE Tier 2 Air Conditioning	
		equ	ipment	and Heat l	Pump equipment
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover
Cust Equip Rpl	6013CUST	0.94	1.0	0.94	1.05
Pres Equip Rpl	6013PRES	1.0	1.0	0.95 1.05	
C&I Upstream	6013UPST	0.95	1.05	0.95	1.05
Act250 NC	6014A250	0.95	1.05	0.95	1.05
Non Act 250 NC	6014NANC	0.95	1.05	0.95	1.05

* Freeridership of 0% per agreement between DPS and EVT. All Act 250 measures will also have a 5% Adjustment Factor applied, which will be implemented through the Freeridership factor.

Persistence

The persistence factor is assumed to be one.

Lifetimes

Unitary and ductless mini-splits – 15 years.³⁵ Chillers – 25 years Room Air Conditioner – 10 years Analysis period is the same as the lifetime.

Measure Cost

See Table 1 "High-Efficiency Unitary AC and Heat Pumps" in the reference tables section. Incremental costs for other HVAC equipment are determined on a site-specific basis.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Reference Tables located on following pages

³⁵ Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.

Equip-ment Type	Size Category	Sub- Category	CEE Tier I Minimum Efficiency ¹	Incremental Cost Baseline ² to Tier I	CEE Tier II Minimum Efficiency ¹	Incremental Cost Baseline to Tier II
	<65 kBtu/h	Split System	n/a	n/a	15.0 SEER 12.5 EER	\$150 per ton
	(<5.42 tons)	Single Package	n/a	n/a	15.0 SEER 12.0 EER	\$150 per ton
Air Cooled	≥65 kBtu/h and<135 kBtu/h (5.42 to 11.25 tons)	Split System and Single Package	11.5 EER 12.8 IEER	\$100 per ton	12.0 EER 13.8 IEER	\$130 per ton
UnitaryAC	≥135 kBtu/h to <240 kBtu/h (11.25 to 20 tons)	Split System and Single Package	11.5 EER 12.3 IEER	\$100 per ton	12.0 EER 13.2 IEER	\$130 per ton
	≥240 kBtu/h to ≤760 kBtu/h (20 to 63.33 tons)	Split System and Single Package	10.3 EER 11.1 IEER	\$100 per ton	10.6 EER 12.1 IEER	\$140 per ton
	≥760 kBtu/h (63.33 tons)	Split System and Single Package	9.7 EER 10.9 IEER	\$100 per ton	10.2 EER 11.4 IEER	\$140 per ton
Water Source Heat Pumps	<135 kBTU/h (<11.25 tons)		14 EER 4.6 COP	\$100 per ton	n/a	n/a

Table 1: High-Efficiency Unitary AC and Heat Pumps

Baseline Table A: Package Terminal Air Conditioners and Heat Pumps ^a						
	Purchase Type	Baseline ^b EER / C.O.P. (New Unit)				
Equipment Type		Before 10/08/2012	After 10/08/2012			
PTAC (Cooling Mode)	New Const.	12.5 - (0.213 x Cap / 1,000) EER	13.8 – (0.300 x Cap/1,000) EER			
PTHP (Cooling Mode)	New Const.	12.3 - (0.213 x Cap / 1,000) EER	14.0 – (0.300 x Cap/1,000) EER1,2,3			
PTHP (Heating Mode)	New Const.	3.2 - (0.026 x Cap / 1,000) COP	No Change 1,2,3			

- <u>a.</u> Applies to projects initiated with EVT on or after 1/3/2013. See 2011 CBES code for complete details on referenced standards. See table 803.2.2(3) in 2005 Vermont Guidelines for Energy Efficient Commercial Construction for baseline efficiencies for projects initiated prior to 1/3/2012.
- b. "Cap" means the rated cooling capacity of the producted BTU/h. If the unit's capacity is less than 7,000 BTU/h, use 7,000 BTU/h in the calculation. If the unit's capacity is greater than 15,000 BTU/h, use 15,000 BTU/h in the calculation.
- <u>c.</u> Replacement units must be labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS." Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) high and less than 42 inches (1067 mm) wide.

Baseline Table B: Unitary Air Conditioners and Condensing Units ^a						
Туре	Size		Baseline Efficien	ncy		
		EER	SEER / IEER	C.O.P./ HSPF		
Through-the-wall (air cooled)	<30 kBTU/h	10.9	12.00 SEER			
Small-duct high-velocity (air cooled)	<65 kBTU/h	9.1	10.0 SEER			
Air Cooled - Split System and Single						
Package	< 65 kBTU/h (5.42 tons)	11.8	13.0 SEER	-		
Air Cooled	\geq 65 and < 135 kBTU/h (5.42 to 11.25 tons)	11.0	11.2 IEER	-		
Air Cooled	\geq 135 and < 240 kBTU/h (11.25 to 20 tons)	10.8	11.0 IEER	-		
Air Cooled	\geq 240 and < 760 kBTU/h (20 to 63.33 tons)	9.8	9.9 IEER	-		
Air Cooled	\geq 760 kBTU/h (63.33 tons)	9.5	9.6 IEER	-		
Ductless Mini Splits ^b	< 65 kBTU/h (5.42 tons)	12.0	14.0 SEER	-		
Evaporatively Cooled	< 65 kBTU/h (5.42 tons)	12.1	12.3 IEER	-		
Evaporatively Cooled	\geq 65 and < 135 kBTU/h (5.42 to 11.25 tons)	11.9	12.1 IEER	-		
Evaporatively Cooled	\geq 135 and < 240 kBTU/h (11.25 to 20 tons)	11.8	12.0 IEER	-		
	\geq 240 kBTU/h and <760 kBTU/h (20 to 63.33					
Evaporatively Cooled	tons)	11.7	11.9 IEER	-		
Evaporatively Cooled	\geq 760 kBTU/h (63.33 tons)	11.5	11.7 IEER	-		
Water Cooled	< 65 kBTU/h (5.42 tons)	12.1	12.3IEER	-		
Water Cooled	\geq 65 and < 135 kBTU/h (5.42 to 11.25 tons)	11.9	12.1 IEER	-		
Water Cooled	\geq 135 and < 240 kBTU/h (11.25 to 20 tons)	12.3	12.5 IEER	-		
	\geq 240 kBTU/h (20 tons) and <760 kBTU/h (20 to					
Water Cooled	63.33 tons)	12.2	12.4 IEER	-		
Water Cooled	\geq 760 kBTU/h (63.33 tons)	12.0	12.2 IEER	-		
Cond. Units - Air Cooled	\geq 135 kBTU/h (11.25 tons)	10.5	11.8 IEER	-		
Cond. Units - Water or Evap. Cooled	\geq 135 kBTU/h (11.25 tons)	13.5	14.0 IEER	-		

a. Applies to projects initiated with EVT on or after 1/3/2013. See 2011 CBES code for complete details on referenced standards. See table 803.2.2(3) in 2005 Vermont Guidelines for Energy Efficient Commercial Construction for baseline efficiencies for projects initiated prior to 1/3/2012.

b. The baseline for Mini Splits is set at the Unitary qualifying level (14 SEER 12 EER) due to information provided by distributors indicating that most mini split units being sold are in excess of the federal minimum. In the absence of any evaluation, this higher baseline efficiency level is chosen to account for this.

Baseline Table C: Unitary and Applied Heat Pumps (Heating and Cooling) ^a						
			Baseline Efficie	ency		
Туре	Size					
		Cooling	Cooling	Heating		
		EER	SEER / IEER	C.O.P./ HSPF		
Through-the-wall, air cooled (cooling						
mode)	< 30 kBTU/h (2.5 tons)	10.9	12.0 SEER	7.7 HSPF		
Small-duct high-velocity air cooled						
(cooling mode)	< 65 kBTU/h (5.42 tons)	9.1	10.0 SEER	6.8 HSPF		
Air Cooled - Split system and single						
package	< 65 kBTU/h (5.42 tons)	11.8	13.0 SEER	7.7 HSPF		
Water Source	< 17 kBTU/h (1.42 tons)	11.2 ^b	-	4.2 COP ^c		
Water Source ^b	\geq 17 and < 135 kBTU/h (1.42 to 5.42 tons)	12.0 ^b	-	4.2 COP ^c		

Applies to projects initiated with EVT on or after 1/3/2013. See 2011 CBES code for complete details on referenced standards. See table 803.2.2(3) in 2005 Vermont Guidelines for Energy Efficient Commercial Construction for baseline efficiencies for projects initiated prior to 1/3/2012.

b. Water source heat pump EER based on 86 degree F entering water temperature in cooling mode

c. Water source heat pump COP based on 68 degree F entering water temperature in heating mode.

Baseline Table E: Room AC ^a					
Туре	Size	Baseline Efficiency			
		SEER / EER	IPLV	C.O.P. / HSPF	
Room Air Conditioners, with louvered sides	< 6,000 Btu/hr	9.7	-	-	
Room Air Conditioners, with louvered sides	≥ 6,000 Btu/hr and < 8,000 Btu/hr	9.7	-	-	
Room Air Conditioners, with louvered sides	≥ 8,000 Btu/hr and < 14,000 Btu/hr	9.8	-	-	
Room Air Conditioners, with louvered sides	≥ 14,000 Btu/hr and < 20,000 Btu/hr	9.7	-	-	
Room Air Conditioners, with louvered sides	≥ 20,000 Btu/hr	8.5	-	-	
Room Air Conditioners, without louvered sides	< 8,000 Btu/hr	9.0	-	-	
Room Air Conditioners, without louvered sides	≥ 6,000 Btu/hr and < 20,000 Btu/hr	8.5	-	-	
Room Air Conditioners, without louvered sides	≥ 20,000 Btu/hr	8.5	-	-	
Room Air Conditioner Heat Pumps, with louvered sides	< 20,000 Btu/hr	9.0	-	-	
Room Air Conditioner Heat Pumps, with louvered sides	\geq 20,000 Btu/hr	8.5			
Room Air Conditioner Heat Pumps, without louvered sides.	< 14,000 Btu/hr	8.5	-	-	
Room Air Conditioner Heat Pumps, without louvered sides.	≥ 14,000 Btu/hr	8.0			
Room air conditioner casement only	All capacities	8.7			
Room air conditioner casement- slider	All capacities	9.5			

a. Applies to projects initiated with EVT on or after 1/3/2013. See 2011 CBES code for complete details on referenced standards. See table 803.2.2(3) in 2005 Vermont Guidelines for Energy Efficient Commercial Construction for baseline efficiencies for projects initiated prior to 1/3/2012.

Dual Enthalpy Economizer

Measure Number: I-B-2-d (Business Energy Services, HVAC End Use)

Version Date & Revision History

Draft date: Portfolio 79 Effective date: 1/1/2012 End date: TBD

Referenced Documents: Economizer_013002.xls

Description

Dual enthalpy economizers regulate the amount of outside air introduced into the ventilation system based on the relative temperature and humidity of the outside and return air. If the enthalpy (latent and sensible heat) of the outside air is less than that of the return air when space cooling is required, then outside air is allowed in to reduce or eliminate the cooling requirement of the air conditioning equipment.

This is a prescriptive measure included on the regional Cool Choice application form. Customers are eligible for a Cool Choice incentive only with the purchase of an efficient HVAC unit that also qualifies for an incentive. Custom incentives are available for other cost-effective dual enthalpy economizers for both retrofit and replacement/new construction units.

Algorithms

Energy Savings $\Delta kWh = SF \times Tons \times OTF / EER$

Demand Savings

 $\Delta kW = \Delta kWh / 4,438$

Where:

∆kWh	= gross customer annual kWh savings for the measure
SF	= Savings Factor: annual kWh savings per ton of cooling equipment at an EER of 1.0.
	Based on simulation modeling for Burlington, VT. For units less than 4.5 tons: SF =
	4,576 (assumes fixed damper baseline). For units 4.5 tons or more: $SF = 3,318$
	(assumes dry bulb economizer baseline).
Tons	= tonnage of cooling equipment from application form or customer information.
OTF	= Operational Testing Factor. $OTF = 1.0$ when the project undergoes Operational
	Testing or commissioning services, 0.80 otherwise.
EER	= cooling energy efficiency ratio of the equipment (BTUh/W), from application form or
	customer information. (EER may be estimated as SEER/1.1).
ΔkW	= gross customer diversified connected load kW savings for the measure
4,438	= typical annual hours of economizer operation (Based on appropriate temperature range
	bin hours at Burlington, VT)

Baseline Efficiencies - New or Replacement

For units less than 4.5 tons: fixed damper (no economizer). For units 4.5 tons or more: dry bulb economizer.

High Efficiency

Dual enthalpy economizer.

Operating Hours

4,438 typical annual hours of savings from dual enthalpy economizer (Based on appropriate temperature range bin hours at Burlington, VT)

Loadshape

Loadshape #60, Economizer

Freeridership/Spillover Factors

Measure Category		Air Conditioning		
		Eff	ïciency	
Measure Codes		ACI	EMIZER	
Product Description	1	HVAC	Economizer	
Track Name	Track No.	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	
Cust Equip Rpl	6013CUST	0.94	1.0	
Farm Equip Rpl	6013FARM	n/a	n/a	
Farm Rx	6013FRMP	n/a	n/a	
Pres Equip Rpl	6013PRES	0.95	1.0	
C&I Upstream	6013UPST	n/a	n/a	
Act250 NC	6014A250	0.95	1.05	
Farm NC	6014FARM	n/a	n/a	
Non Act 250 NC	6014NANC	0.95	1.05	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	
MF Mkt Retro	6020MFMR	n/a	n/a	
C&I Lplus	6021LPLU	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
EP GMP Blueline	6042EPEP	n/a	n/a	
GMP Furnace	6042EPEP	n/a	n/a	
GMP HP	6046RETR	n/a	n/a	
VEEP GMP	6048VEEP	n/a	n/a	
LIMF Lplus	6052LPLU	n/a	n/a	
MFMR Lplus	6053LPLU	n/a	n/a	

Persistence

The persistence factor is assumed to be 70% as agreed to between DPS and EVT.

Lifetime

Engineering Measure Life is 14 years.

Adjusted Measure Life used for savings and screening will be 0.7 * 14 years = 9.8 years, to adjust for persistence.

Analysis period is the same as the Adjusted Measure Life..

Measure Cost

The incremental cost for this measure is: \$400 from dry bulb economizer baseline (units 4.5 tons or more), \$800 from fixed damper baseline (units less than 4.5 tons)³⁶

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None

³⁶ \$800 measure cost based on EVT project experience and conversations with suppliers.

Commercial Room Air Conditioner, Early Replacement

Measure Number: I-B-4-a (GT Peak Reduction Program, Room Air Conditioner Early Replacement)

Version Date & Revision History

Draft date:	Portfolio No. 5
Effective date:	10/1/2009
End date:	TBD

Referenced Documents:

NYSERDA Keep Cool 2000-2003 Report; Rosenquist et al (2004) Life-cycle Cost and Payback Period Analysis for Commercial Unitary Air Conditioners, Lawrence Berkeley Laboratories; AHAM Market Survey Data; <u>www.energystar.gov; www.ari.org</u>

Calculation worksheets: RAC_Screening_Summary.xls; EnergyStar_RAC_Stats.xls; LBL document

Description

This is an early retrofit measure to remove inefficient air conditioners from service in commercial settings, ensure proper disposal, and replace them with new units that meet or exceed current minimum ENERGY STAR efficiency standards. There will be four separate measures corresponding with typical size classes of equipment.

Algorithms

Annual Energy Savings (per unit)

Product Class (BTU/h)	Representative capacity (BTU/h)	kWh Savings, years 1-4	kWh Savings, years 5-14
<8,000	6,000	207	28
8,000-13,999	12,000	413	56
14,000-20,000	18,000	625	85
>20,000	24,000	940	128

Example calculations:

Annual Energy Savings for remaining life of existing 12,000 BTU unit (initial 4 years):

 $\Delta kWh_{1-4} = kBTU/hr \times [1/EER_{exist} * 1/Degrade_{(14 \text{ years})} - 1/EER_{eff} * 1/Degrade_{(2 \text{ years})}] \times FLH$ = 12 × [(1/9.05* 1/0.86 - 1/10.85 * 1/0.98)] × 1,000 = 413

Annual Energy Savings for remaining life of measure (10 years):

 $\Delta kWh_{1-4} = kBTU/hr \times [1/EER_{base} * 1/Degrade_{(5 years)} - 1/EER_{eff} * Degrade_{(9 years)}] \times FLH$ = 12 × [1/9.93 * 1/0.95 - 1/10.85 * 1/0.91] × 1,000 = 56

Demand Savings (per unit)

Product Class (BTU/h)	Representative size (Btu/h)	kW Reduction, years 1-4	kW Reduction, years 5-14
<8,000	6,000	0.207	0.028
8,000-13,999	12,000	0.413	0.056
14,000-20,000	18,000	0.625	0.085
>20,000	24,000	0.940	0.128

Example calculations:

Annual demand savings for remaining life of existing 8,000-13,999 BTU unit (years 1-4):

 $\Delta kW_{1-4} = kBTU/hr \times [(1/EER_{exist} * 1/Degrade_{(14 \text{ years})}) - (1/EER_{eff} * 1/Degrade_{(2 \text{ years})})]$ = 12 × [(1/9.05* 1/0.86) - (1/10.85*1/0.98)] = 0.413

Annual demand savings for remaining life of measure (years 5-10):

 $\Delta kW_{5-14} = kBTU/hr \times [1/EER_{new} * Degrade_{(5 years)} - 1/EER_{eef} * 1/ Degrade_{(9 years)}]$ = 12 × [((1/9.93-1/10.85)] = 0.056

Where:

*k*BTU = 6, 12, 18, or 24, corresponding to <8,000; 8,000-13,999; 14,000-20,000; or >20,000 product classes, respectively

$$\begin{split} & \text{EER}_{\text{exist}} = \text{Energy Efficiency Ratio of existing unit (see Efficiency Ratings table, below)} \\ & \text{EER}_{\text{new}} = \text{Energy Efficiency Ratio of new baseline unit (see Efficiency Ratings table, below)} \\ & \text{EER}_{\text{eff}} = \text{Energy Efficiency Ratio of efficient unit (see Efficiency Ratings table, below)} \\ & \text{Degrade} = [1 - (0.01 * \text{unit's median age})], \text{ for a given period of years} \\ & \text{FLH} = 1,000^{37} \text{ (annual full load hours)} \\ & \Delta kW_{1-4} = \text{gross customer connected load kW savings for remaining four (4) years of life of existing unit} \\ & \Delta kW_{0-4} = \text{gross customer connected load kW savings for remaining ten (10) years the measurements and the savings for remaining ten (10) years the measurements and the savings for remaining ten (10) years the measurements are saven by the savings for remaining ten (10) years the measurements are saven by the savings for remaining ten (10) years the measurements are saven by the savings for remaining ten (10) years the measurements are saven by the savings for remaining ten (10) years the measurements are saven by the savings for remaining ten (10) years the measurements are saven by the savings for remaining ten (10) years the measurements are saven by the savings for remaining ten (10) years the measurements are saven by the saving saven by the saving saven by the saving saven by the save$$

 ΔkW_{5-14} = gross customer connected load kW savings for remaining ten (10) years the measure life

 ΔkWh_{1-4} = gross customer kWh savings for remaining four (4) years of life of existing unit ΔkWh_{5-14} = gross customer kWh savings for remaining ten (10) years the measure life

Baseline Efficiencies – New or Replacement

Baseline efficiency for existing units is based on the market average efficiencies of air conditioners sold from 1994 to 1999 (i.e. 10-15 years before present) adjusted by a degradation factor (see efficiency ratings section, below for details). Baseline efficiency for replacement units is based on the market average efficiency for air conditioners sold in 2008.³⁸ see Reference Table for specifications.

High Efficiency

The high efficiency level is room AC meeting or exceeding ENERGY STAR specifications for efficiency established January 1st, 2003, see Reference Table.

Loadshape

Loadshape #15 (Commercial A/C)

Operating Hours

1000 full load hours yearly for commercial customers.

Freerider / Spillover Table

		Air Con	ditioning
Measure Category		Effic	iency
Measure Code		ACEESAER	
		Energy Star room	
		AC, early	
Product Description		replac	ement
Track Name	Track No.	Freerider	Spillover

³⁷ FLH for commercial room air conditioner applications, consistent with Loadshape #15 from the Vermont Screening Tool

³⁸ "Room Air Conditioners: Energy Efficiency and Consumption Trends", provided electronically by Association of Home Appliance Manufacturers, sent 06/30/09

Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	0.89	1.0
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes and remaining life calculations

This program will actively target units over 10 years old for replacement. We assume that the average unit replaced will be 12 years old and would have remained in service for an additional 4 years if not replaced by this program.³⁹ The lifespan of the new unit is 14 years.

Equipment Costs⁴⁰

Product Class (Btu/h)	Efficient	New Baseline
<8,000	\$256	\$212
8,000-13,999	\$337	\$293
14,000-20,000	\$491	\$447
>20,000	\$611	\$567

Incentive Level

Product Class (Btu/h)	Incentive
<8,000	\$150
8,000-13,999	\$250
14,000-20,000	\$400
>20,000	\$400

³⁹ Based on Lawerence Berkeley Laboratories study on air conditioner survival rates. (See

http://www.osti.gov/bridge/servlets/purl/829989-IK2zOw/native/829989.pdf page 26, as well as spreadsheet for detailed calculations)

⁴⁰ Costs were surveyed on the Lowes, Home Depot and Sears websites, cost for each product size class is based on the average cost per BTU of units of similar sizes and weighted average calculated assuming 10% of units will be more expensive CEE Tier 1 compliant.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions

There are no fossil fuel algorithm or default values for this measure

Water Descriptions

There are no water algorithms or default values for this measure

Reference Information

Efficiency Ratings

Product Class (Btu/h)	Existing unit Baseline ⁴¹ (1994-99 average)	New Base (2008) ⁴²	Efficient Std ⁴³
<8,000	7.57	9.89	10.80
8,000-13,999	7.60	9.93	10.85
14,000-20,000	7.53	9.84	10.74
>20,000	6.68	8.72	9.52

Degradation factors were applied to all EER's assuming a linear degradation rate of 1% per year⁴⁴. E.g. the EER of an efficient 12,000 BTU/hr unit during years 5-14 of its lifespan = 10.85 * (1 - 0.01 * 9) = 9.87

http://www.energystar.gov/index.cfm?fuseaction=roomac.display_products_html, data downloaded 08/07/2009) ⁴⁴ Personal communications with Harvey Sachs (ACEEE) and Michael Pilat (NYSERDA/Lockheed Martin), both dated 10/09/09. Also, the "NYSERDA Keep Cool Report 2000-2003" (Aspen Systems Corporation, 2003) page A-2 describes testing of old AC units which found EER degradation of 16% in units averaging 15 years of age.

⁴¹ Association of Home Appliance Manufacturers provided information for the 8,000-13,999 size class, EER's for other size classes were calculated assuming the same ratios between size classes as for efficient equipment ⁴² See comment above

⁴³ Averages of E-Star published EER's for A/C equipment.. (See

Commercial Ventilation Fan

Measure Number: I-B-5-a

Version Date & Revision History

Draft date:	Portfolio 82
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. EVT Custom Commercial Exhaust Fan Data.xlsx
- 2. GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures"

Description

An ENERGY STAR qualified efficient fan configured to meet ASHRAE 62.1 requirements for bathroom ventilation. This market opportunity is defined by the need for continuous mechanical ventilation in bathrooms and mechanical closets of small commercial and industrial buildings during operating hours. This measure assumes an efficient fan will be run during business hours to provide 10-500 CFM under static pressure conditions ranging from 0.1 to 0.25 inches of water.

Algorithms

Annual Demand Savings

 $\Delta kW = CFM * (1/Fan_{Efficiency, Baseline} - 1/Fan_{Efficiency, Efficient}) / 1000$

Where:

CFM	= Nominal Capacity of the exhaust fan. Savings calculatation use a common rating within the range, as shown in the "Assumed CEM" column
$Fan_{Efficiency, Baseline}$	= Efficacy for baseline fan ⁴⁵ = 1.7 CFM/Watt
Fan Efficiency, Efficient	= Efficacy for efficient fan^{46} = 4.7 CFM/Watt

 $\Delta kW =$

CFM code	Nominal CFM Range	Assumed CFM	ΔkW
CFM1	10-89	70	0.027
CFM2	90-150	110	0.042
CFM3	151-250	175	0.066
CFM4	251-500	350	0.133

* Averge CFM for the capacity range

Annual Energy Savings

 $\Delta kWh = Hours * \Delta kW$

Where:

∆kW Hours = connected load kW savings per qualified ventilation fan and controls.
 = assumed annual run hours

AI 0	- ubbulli
	$=2870^{47}$

 $\Delta kWh =$

⁴⁵ Weighted average of 20 best-selling ceiling exhaust fans at Grainger on 8/8/2013 using assumed sales distribution, EVT Custom Commercial Exhaust Fan Data.xlsx

⁴⁶ Median of fans installed through EVT custom projects 2008-2011, EVT Custom Commercial Exhaust Fan Data.xlsx

⁴⁷ Median of run hours of fans installed through EVT custom projects 2008-2011, EVT Custom Commercial Exhaust Fan Data.xlsx

CFM1	10-89	70	76
CFM2	90-150	110	120
CFM3	151-250	175	190
CFM4	251-500	350	381

Baseline Efficiencies – New or Replacement

New standard efficiency (average CFM/Watt of 1) exhaust-only ventilation fan operating in accordance with recommended ventilation rate indicated by ASHRAE 62.1 for commercial bathrooms during business hours.

High Efficiency

New efficient (average CFM/watt of 5) exhaust-only ventilation fan, operating in accordance with recommended ventilation rate indicated by ASHRAE 62.1 for commercial bathrooms during business hours.

Annual Operating Hours 2870⁴⁸

Loadshape

Loadshape #113: Commercial Small Exhaust-only Vent Fan

Freeridership/Spillover Factors

Measure Category		Ventilation	
Measure Code		VNTXCEIL	
Product Description		Exhaust fan, variable speed	
Track Name	Track No.	Freerider	Spillover
C&I NC Cust	6014CUST	0.95	1.05
Cust Equip Rpl	6013CUST	0.94	1.0
C&I NC Pres	6014PRES	0.95	1.05
Pres Equip Rpl	6013PRES	1.0	1.0
C&I Retro	6012CNIR	0.89	1.0

Persistence

The persistence factor is assumed to be one.

Lifetime

15 years.⁴⁹ Analysis period is the same as the lifetime.

Incremental Cost per Unit

Incremental cost per installed fan is \$95 for quiet, efficient fans.⁵⁰

Reference Tables

None

 50 Based on February, 2013 review of generally available prices for baseline and eligible products, controls. (\$150 efficient fan + \$35 programmable controls vs. \$65 for comparable base fan + \$25 for on/off cycle controller)

⁴⁸ Ibid.

⁴⁹ Estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for residential whole-house fans, 19 for residential thermostatically-controlled attic fans, and 15 years for several commercial measures.

Package Terminal Heat Pump (Hotel Room)

Measure Number: I-B-5-a (Business Energy Services, HVAC End Use)

Version Date & Revision History

Draft date:Portfolio 83Effective date:1/1/2013End date:TBD

Referenced Documents:

- 1. <a>PTHP_Analysis.xlsx;
- 2. State Screening Tool for PTHP;
- 3. <u>Massachusetts Electric PAs Cross-Cutting C&I Free-ridership and Spillover Field Study</u> (April 18, 2011)
- 4. <u>2011 Commercial and Industrial Electric and Natural Gas Programs Free-ridership and</u> Spillover Study, Connecticut Energy Fund (September 25, 2012)

Description

A 9,000 BTU/hour package terminal heat pump (PTHP) is purchased instead of a package terminal air conditioner (PTAC) with electric resistance heat and installed in a hotel room, as an end of life replacement of an existing unit.

This program will be targeted exclusively to hotels and motels likely to have existing PTAC units with electric resistance heat. While there may be application for PTHP equipment in the context of new construction, the baseline is difficult to generalize. Therefore new construction applications will be handled through a custom process.

Algorithms

PTHP Savings⁵¹

Demand Savings $\Delta kW = 0.697 \ kW$

Energy Savings $\Delta kWh = 1,443 kWh$

Where:

ΔkW	= gross customer connected load kW savings for the measure
∆kWh	= gross customer average annual kWh savings for the measure

Baseline Efficiency – End of Life Replacement⁵²

The baseline reflects a code compliant PTAC with resistance heat.

High Efficiency

The high efficiency case matches standards specified in the 2011 Energy Star scoping report.⁵³

Equivalent Full Load Hours⁵⁴

⁵¹ Savings estimate is based on 9,000 BTU/hr unit, see calculation tool in reference documents.

⁵² 2011 Vermont Commercial Building Energy Standards, see Table 503.2.3(3)

⁵³ Energy Star Market and Industry Scoping Report, Dec 2011 (table 6,

http://www.energystar.gov/ia/products/downloads/ESTAR_PTAC_and_PTHP_Scoping_Report_Final_Dec_2011.pdf)

⁵⁴ Assumes balance point of 55 degrees and that equipment is oversized by 25% on average.

765, cooling 1,305, heating

Loadshapes

PTHP, Hotel.

Freeridership/Spillover Factors

Measure Category			ACE
Measure Code		ACEHPPTL	
Product Description	l	Package terminal heat hump	
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	0.93	1.00

Persistence

The persistence factor is assumed to be one.

Lifetime

15 years.

Measure Cost⁵⁵ \$130

O&M Cost Adjustments

There are no standard operation and maintenance cost adjustments used for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default savings for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None

⁵⁵ Values derived from review of catalogues commonly used by hotel managers.

Lighting End Use

CFL Fixture

Measure Number: I-C-2-h (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/2012
End date:	12/31/2014

Referenced Documents:

- 1) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.
- 2) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)
- 3) 2012 EISA Adjustment Calculations.xls
- 4) NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf

Description

Compact fluorescent (CFL) hardwired fixture.

Algorithms

Demand Savings

 $\Delta kW = ((Watts_{BASE} - Watts_{EE}) / 1000) \times ISR \times WHF_d$

Energy Savings

 $\Delta kWh = ((Watts_{BASE} - Watts_{EE}) / 1000) \times HOURS \times ISR \times WHF_{e}$

Where:

$\Delta kWh = gross customer annual kWh savings for the measure (includes the reduced cooling load)$
from the more efficient lighting)
kW _{save} = lighting connected load kW saved, baseline kW minus efficient kW
HOURS = annual lighting hours of use per year; collected from prescriptive application form
ISR = In service rate, or the percentage of units rebated that actually get used. For
prescriptive measures, this is assumed to be 98%. ⁵⁶
WHF_d = Waste heat factor for demand to account for cooling savings from efficient
lighting. For prescriptive lighting in existing buildings, the default value is 1.082
(calculated as $1 + (0.47*0.67*.808) / 3.1)$) ⁵⁷ . For prescriptive lighting in new
buildings, the value is 1.084 (calculated as $1 + (0.47*0.67*.808) / 3.4)$) ⁵⁸ . The cooling
savings are only added to the summer peak savings.
WHF_e = Waste heat factor for energy to account for cooling savings from efficient lighting. For
prescriptive lighting in existing buildings, the default value is 1.033 (calculated as $1 +$

⁵⁶ 2005 TAG agreement.

⁵⁷ Based on the following assumptions: 3.1 COP typical cooling system efficiency for existing buildings; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁵⁸ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.

 $((0.47*0.29*.75) / 3.1))^{59}$. For prescriptive lighting in new buildings, the value is 1.030 (calculated as $1 + ((0.47*0.29*.75) / 3.4))^{60}$.

ΔkW = gross customer connected load kW savings for the measure. This number represents the maximum summer kW savings – including the reduced cooling load from the more efficient lighting.

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

Δ MMBTU _{WH}	= $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEf$

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{61}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, $Vermont^{62}$
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
HEff	 Average heating system efficiency, For prescriptive lighting, assumed to be 79% in existing buildings and 83 % in new Construction⁶³.

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

Refer to the table titled CFL Fixture Saved Wattage for lighting baseline efficiencies and savings.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescent will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

⁵⁹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

⁶⁰ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.

⁶¹ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

⁶² From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

⁶³ See WasteHeatAdjustment.doc.

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
CFL fixture 1 lamp	2012	0.66	2
< 20 W total	2013	0.72	1
	2014	0.85	1
CFL fixture 1 lamp	2012	0.73	1
>= 20 W total	2013	0.86	1
	2014	0.91	1
CFL fixture – 2 lamp	2012	0.64	2
>= 20 W total	2013	0.71	1
	2014	0.84	1

High Efficiency

Refer to the table titled CFL Fixture Saved Wattage for efficient lighting wattage and savings.

Operating Hours

The lighting operating hours are collected from the prescriptive application form. If not available, then assume hours per year from the table titled Lighting Operating Hours by Building Type.

Loadshape

Loadshape # 12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings.

Measure Category	sure Category			ghting Hard	wired Fixtu	re	
Measure Code		LFHCNFIX					
Product Descriptio	n		Compa	ct Fluoresce	nt Interior	Fixture	
		20	12	20	13	20	14
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
C&I Retrofit	6012CNIR	0.60	1.0	0.5	1.0	0.4	1.0
Farm Retrofit	6012FARM	0.60	1.0	0.5	1.0	0.4	1.0
Cust Equip Rpl	6013CUST	0.60	1.0	0.5	1.0	0.4	1.0
Farm Equip Rpl	6013FARM	0.60	1.0	0.5	1.0	0.4	1.0
Farm Rx	6013FRMP	0.60	1.0	0.5	1.0	0.4	1.0
Pres Equip Rpl	6013PRES	0.60	1.0	0.5	1.0	0.4	1.0
C&I Upstream	6013UPST	0.60	1.0	0.5	1.0	0.4	1.0
Act250 NC	6014A250	0.95	1.05	0.95	1.05	0.95	1.05
Farm NC	6014FARM	1.00	1.05	1.00	1.05	1.00	1.05
Non Act 250 NC	6014NANC	0.95	1.05	0.95	1.05	0.95	1.05
C&I Lplus	6021LPLU	0.60	1.0	0.5	1.0	0.4	1.0
LIMF Lplus	6052LPLU	0.60	1.0	0.5	1.0	0.4	1.0
MFMR Lplus	6053LPLU	0.60	1.0	0.5	1.0	0.4	1.0

Freeridership/Spillover Factors

Note: FR/SP values for 6014 are subject to 2011 TAG CBES discussion.

Lifetime

CFL fixture lifetime is 15 years.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Incremental Cost

1-lamp CFL fixture -- \$35 2-lamp CFL fixture -- \$40 Dimming CFL fixture -- \$55

Operation and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours Labor cost to replace any kind of lamp: \$2.67 per lamp (8 minutes at \$20/hour) EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.5 per lamp Life of CFL lamp: 12,000 hours CFL ballast replacement cost: \$19 (\$14 ballast, \$5 labor) Life of CFL ballast: 40,000 hours

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see 2012 EISA Adjustment Calculations.xls for details)⁶⁴:

Measure	Year Installed	Hour assumption	Annual baseline replacement cost	Annual efficient replacement cost
		1095	\$4.69	\$0.82
	2012	3285	\$14.03	\$2.41
	2012	5475	\$23.61	\$5.93
		8760	\$37.99	\$11.21
		1095	\$4.98	\$0.92
CFL fixture	2012	3285	\$14.74	\$2.72
-1 lamp < 20 W total	2015	5475	\$24.81	\$6.68
20 11 10101		8760	\$39.93	\$12.63
	2014	1095	\$5.16	\$1.06
		3285	\$15.48	\$3.13
		5475	\$26.21	\$7.68
		8760	\$42.31	\$14.53
		1095	\$4.88	\$0.82
	2012	3285	\$14.87	\$2.41
		5475	\$25.11	\$5.93
CFL fixture		8760	\$40.47	\$11.21
$\sim 1 \text{ lamp}$		1095	\$5.00	\$0.92
$\geq 20 \text{ w}$	2012	3285	\$15.13	\$2.72
	2015	5475	\$25.58	\$6.68
		8760	\$41.26	\$12.63
	2014	1095	\$5.16	\$1.06

⁶⁴ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (15 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

		3285	\$15.48	\$3.13
		5475	\$26.21	\$7.68
		8760	\$42.31	\$14.53
		1095	\$9.38	\$0.79
	2012	3285	\$14.17	\$2.35
		5475	\$24.08	\$5.81
		8760	\$38.94	\$11.01
	2013	1095	\$9.96	\$0.89
CFL fixture		3285	\$13.35	\$2.65
$= 2 \operatorname{ramp} \ge 20 \operatorname{W}$ total		5475	\$22.76	\$6.55
20 11 1014		8760	\$36.87	\$12.41
		1095	\$10.33	\$1.03
	2014	3285	\$12.91	\$3.04
	2014	5475	\$21.65	\$7.53
		8760	\$34.76	\$14.27

This adjustment will be recalculated for subsequent years

Reference Tables

CFL Fixture Saved Wattage (kW_{saved})

Lighting Technology	Year	Efficient Wattage	Baseline Wattage	Saved Wattage kW _{save}
Compact Fluorescent Fixtures				
	2012	15	58	43
	2013	15	55	40
CFL fixture 1 lamp < 20 W total	2014	15	48	33
	2012	29	90	61
	2013	29	80	51
CFL fixture 1 lamp ≥ 20 W total	2014	29	76	47
	2012	34	116	82
	2013	34	110	76
CFL fixture 2 lamp \geq 20 W total	2014	34	96	62
Dimming CFL fixture < 20 W lamp		20	75	55
Dimming CFL fixture >= 20 W lamp		25	100	75

Typical efficient wattages for each category based on review of most common wattage fixtures rebated in Efficiency Vermont programs to date, baselines provided by NEEP RLS Study,2011 and assumptions used by NGrid for dimming CFL fixtures.

Interior	Lighting	Operating	Hours by	Building Type

Building Type	Annual Hours
Grocery/Convenience Store	6,019
Hospital	4,007
K-12 Schools	2,456
Lodging/Hospitality	4,808
Manufacturing	4,781

Office	3,642	
Public Assembly	3,035	
Public Safety	3,116	
Religious	2,648	
Restaurant	4,089	
Retail	4,103	
Service	3,521	
University/College	3,416	
Warehouse	4,009	
From <u>C&I Lighting Load Shape Project FINAL Report</u> , July 19, 2011, prepared by KEMA for NEEP. See document NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf		

Lighting Controls

Measure Number: I-C-5-k (Business Energy Services)

Version Date & Revision History

Draft date:	Portfolio 86
Effective date:	1/1/2014
End date:	TBD

Referenced Documents:

- 1) Lighting Controls TRM Reference 2014 rev2.xlsx
- 2) LBNL Lighting Controls in Commercial Buildings 2012.pdf
- 3) KEMA Lighting Controls Summary of Findings.pdf
- 4) WasteHeatAdjustment.doc
- 5) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.
- 6) NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf

Description

Controls for interior & exterior lighting, including occupancy sensors and daylight sensors.

Algorithms

Energy Savings

 $\Delta kWh = kW_{connected} \times HOURS \times SVG \times OTF \times ISR \times WHF_{\rm e}$

Demand Savings

 $\Delta kW = kW_{connected} \times SVG \times OTF \times ISR \times WHF_{d}$

Where:

ΔkWh	= gross customer annual kWh savings for the measure (includes the reduced cooling
	load from the more efficient lighting)
HOURS	= annual lighting hours of use per year; refer to table by building type
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
	lighting. For prescriptive lighting in existing buildings, the default value is 1.082
	$(\text{calculated as } 1 + (0.47*0.67*.808) / 3.1))^{65}$. For prescriptive lighting in new
	buildings, the value is 1.084 (calculated as $1 + (0.47*0.67*.808) / 3.4))^{66}$. The
	cooling savings are only added to the summer peak savings. For refrigerated case
	lighting, the value is 1.29 (calculated as $(1 + (1.0 / 3.5)))$. Based on the assumption
	that all lighting in refrigerated cases is mechanically cooled, with a typical 3.5 ⁶⁷ COP
	refrigeration system efficiency, and assuming 100% of lighting heat needs to be
	mechanically cooled at time of summer peak. For freezer case lighting, the value is
	1.50 (calculated as $(1 + (1.0 / 2.0))$). Based on the assumption that all lighting in
	freezer cases is mechanically cooled, with a typical 2.0 COP ⁶⁸ freezer system
	efficiency, and assuming 100% of lighting needs to be mechanically cooled at time
	of summer peak.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient
	lighting. For prescriptive lighting in existing buildings, the default value is 1.033

⁶⁵ Based on the following assumptions: 3.1 COP typical cooling system efficiency for existing buildings; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion. ⁶⁶ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for

new buildings. See WasteHeatAdjustment.doc for additional discussion.

⁶⁷ Assumes 3.5 COP for medium temp cases based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of 20°F and a condensing temperature of 90°F.

⁶⁸ Assumes 2.0 COP for low temp cases based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F and a condensing temperature of 90°F.

(calculated as $1 + ((0.47*0.29*.75) / 3.1))^{69}$. For prescriptive lighting in new buildings, the value is 1.030 (calculated as $1 + ((0.47*0.29*.75)/3.4))^{70}$. For refrigerated case lighting, the value is 1.29 (calculated as (1 + (1.0/3.5)))). Based on the assumption that all lighting in refrigerated cases is mechanically cooled, with a typical 3.5^{132} COP refrigeration system efficiency, and assuming 100% of lighting heat needs to be mechanically cooled at time of summer peak. For freezer case lighting, the value is 1.50 (calculated as (1 + (1.0 / 2.0)))). Based on the assumption that all lighting in freezer cases is mechanically cooled, with a typical 2.0 COP^{133} freezer system efficiency, and assuming 100% of lighting needs to be mechanically cooled at time of summer peak.

SVG	= % of annual lighting energy saved by lighting control; determined on a site-specific
	basis or refer to table by control type
OTF	= Operational Testing Factor. OTF = 1.0 for all occupancy sensors and for daylight
	dimming controls when the project undergoes Operational Testing or commissioning
	services, 0.80 for daylight dimming controls otherwise.
ISR	= In service rate, or the percentage of units rebated that actually get used. For
	prescriptive measures, this is assumed to be 98%. ⁷¹
kW _{connected}	= kW lighting load connected to control. For multi-level and perimeter switching in
	the Comprehensive Track the savings is applied to all interior lighting kW load.
ΔkW	= gross customer connected load kW savings for the measure. This number represents
	the maximum summer kW savings - including the reduced cooling load from the
	more efficient lighting.

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

$\Delta MMBTU_{WH}$	= ($\Delta kWh / WHF_e$) × 0.003413 × (1 – OA) × AR × HF × DFH / HEff
---------------------	---

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{72}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont ⁷³
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%

⁶⁹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

⁷⁰ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.

⁷¹ 2005 TAG agreement.

⁷² 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

⁷³ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

HEff = Average heating system efficiency. For prescriptive lighting assumed to be 79% in existing buildings and 83 % in new Construction⁷⁴.

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

This TRM applies only to Prescriptive Projects, or those projects less than 10,000 Square Feet and less than 250 rebate-eligible items, by agreement with DPS. Analysis of Occupancy Sensors and Daylight Dimming on custom projects will be calculated on a custom basis using the actual site conditions.

High Efficiency

Controlled lighting such as occupancy sensors and daylight dimming.

Operating Hours

The lighting operating hours are collected from the prescriptive application form. If not available, then assume hours per year from the table titled Lighting Operating Hours by Building Type.

Loadshape

Loadshape # 12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings.

Measure Category		Lighting Efficiency/Controls		Lighting Efficiency/Controls	
Measure Code		LECOCCUP		LECDAYLT	
		LECO	LECOCCEX		
		LECO	CCRE		
		LECO	CCFR		
		LECO	CCDL		
Product Description		Interior Occupancy Sensors,		Daylighting	
		Exterior Occup	Exterior Occupancy Sensors,		
		Refrigerator/Freezer Case			
		Controls, Dual	Occupancy &		
		Dayl	ight		
Track Name	Track No.	Free-rider	Spill-over	Free-rider	Spill-over
C&I Retrofit	6012CNIR	0.89	1	0.89	1
Cust Equip Rpl	6013CUST	0.97	1	0.97 1	
Pres Equip Rpl	6013PRES	0.98	1	0.98 1	
Act250 NC	6014A250	0.95	1.05	.095	1.05
Non Act 250 NC	6014NANC	0.95	1.05	1.05 0.95 1.05	

Freeridership/Spillover Factors

Incremental Cost

		Incremental
Lighting Control Type	Location	Cost
Wall Switch Occupancy Sensor	Interior	\$55
Fixture-Mounted Occupancy Sensor	Interior	\$67
Remote-Mounted Occupancy Sensor	Interior	\$125
Fixture-Mounted Daylight Sensor	Interior	\$50
Remote-Mounted Daylight Sensor	Interior	\$65
Fixture-Mounted Dual Occupancy & Daylight Sensor	Interior	\$100
Wall Switch Occupancy SensorFixture-Mounted Occupancy SensorRemote-Mounted Occupancy SensorFixture-Mounted Daylight SensorRemote-Mounted Daylight SensorFixture-Mounted Dual Occupancy & Daylight Sensor	Interior Interior Interior Interior Interior Interior	\$55 \$67 \$125 \$50 \$65 \$100

⁷⁴ See WasteHeatAdjustment.doc.

Refrigerator Case Occupancy Sensor	Interior	\$60
Freezer Case Occupancy Sensor	Interior	\$60
Exterior Occupancy Sensor	Exterior	\$82

See Lighting Controls TRM Reference 2014 rev2.xlsx for more information.

Persistence

The persistence factor is assumed to be one.

Lifetimes

Controls - 10 years. Analysis period is the same as the lifetime.

Reference Tables

Lighting Control Type	Measure Code	Location	% Savings (SVG)
Wall Switch Occupancy Sensor	LECOCCUP	Interior	24%
Fixture-Mounted Occupancy Sensor	LECOCCUP	Interior	24%
Remote-Mounted Occupancy Sensor	LECOCCUP	Interior	24%
Fixture-Mounted Daylight Sensor	LECDAYLT	Interior	28%
Remote-Mounted Daylight Sensor	LECDAYLT	Interior	28%
Fixture-Mounted Dual Occupancy & Daylight Sensor	LECOCCDL	Interior	38%
Refrigerator Case Occupancy Sensor	LECOCCRE	Interior	40%
Freezer Case Occupancy Sensor	LECOCCFR	Interior	40%
Exterior Occupancy Sensor	LECOCCEX	Exterior	41%

See Lighting Controls TRM Reference 2014 rev2.xlsx for more information.

	Default			
	Controlled			
Lighting Control Type	Wattage	Wattage Unit		
Wall Switch Occupancy Sensor	305	per control		
Fixture-Mounted Occupancy Sensor	180	per fixture		
Remote-Mounted Occupancy Sensor	517	per control		
Fixture-Mounted Daylight Sensor	94	per fixture		
Remote-Mounted Daylight Sensor	269	per control		
Fixture-Mounted Dual Occupancy &	168	ner control		
Daylight Sensor	100			
Refrigerator Case Occupancy Sensor	184	per control		
Freezer Case Occupancy Sensor	184	per control		
Exterior Occupancy Sensor	76	per fixture		

See Lighting Controls TRM Reference 2014 rev2.xlsx for more information.

Lighting Operating Hours by Building Type

Building Type	Annual Hours
Grocery/Convenience Store	6,019

Hospital	4,007		
K-12 Schools	2,456		
Lodging/Hospitality	4,808		
Manufacturing	4,781		
Office	3,642		
Public Assembly	3,035		
Public Safety	3,116		
Religious	2,648		
Restaurant	4,089		
Retail	4,103		
Service	3,521		
University/College	3,416		
Warehouse	4,009		
Exterior 3,338			
From <u>C&I Lighting Load Shape Project FINAL Report</u> , July 19, 2011, prepared by KEMA for NEEP. See document NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf. Exterior Lighting hours based on estimated mix of photocell-controlled lighting (12 hpd) and switch-controlled lighting.			

CFL Screw-in

Measure Number: I-C-8-f (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/2012
End date:	12/31/2014

Referenced Documents:

- 1) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.
- 2) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)
- 3) 2012 EISA Adjustment Calculations.xls
- 4) NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf

Description

An existing incandescent light bulb is replaced with a lower wattage compact fluorescent lamp. This is a retrofit measure.

Algorithms

Demand Savings

 ΔkW

= ((Δ Watts) /1000) × ISR × WHF_d

Year	Algorithm	ΔkW		
2012	(49.0 / 1000) * 0.9 * 1.082	0.0477		
2013	(43.6 / 1000) * 0.9 * 1.082	0.0425		
2014	(37.0 / 1000) * 0.9 * 1.082	0.0360		

Energy Savings

ΔkWh

= ((Δ Watts) /1000) × HOURS × ISR × WHF_e

Where:

ΔkWh	= gross customer annual kWh savings for the measure
ΔkW	= average kilowattage reduction
Δ Watts	= Watts _{BASE} $-$ Watts _{EE} ⁷⁵
HOURS	= average hours of use per year (see table below)
ISR	= In service rate, or the percentage of units rebated that actually get used. For prescriptive measures, this is assumed to be 90% . ⁷⁶
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For prescriptive lighting in existing buildings, the default value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1))^{77}$. For prescriptive lighting in $\frac{1}{70}$
WHF _e	new buildings, the value is 1.084 (calculated as $1 + (0.47*0.67*.808) / 3.4)$) ⁷⁸ . The cooling savings are only added to the summer peak savings. = Waste heat factor for energy to account for cooling savings from efficient lighting. For prescriptive lighting in existing buildings, the default value is 1.033 (calculated as $1 + ((0.47*0.29*.75) / 3.1))^{79}$. For prescriptive lighting in new buildings, the value is 1.030 (calculated as $1 + ((0.47*0.29*.75) / 3.4))^{80}$.
	new buildings, the value is 1.030 (calculated as $1 + ((0.47*0.29*.75)/(5.1))$). For prescriptive r

⁷⁵ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁷⁶ 2005 TAG agreement.

 ⁷⁷ Based on the following assumptions: 3.1 COP typical cooling system efficiency for existing buildings; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.
 ⁷⁸ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for

⁷⁸ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.

⁷⁹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

ΔMMBTU _{WH}	= $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$
Where:	
$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{81}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont ⁸²
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
HEff	 Average heating system efficiency, For prescriptive lighting, assumed to be 79% in existing buildings and 83 % in new Construction⁸³.

Oil heating is assumed typical for commercial buildings.

Operating Hours

Operating hours will be collected from the prescriptive application form or from the table of hours by building type located in the reference tables section of this document.

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent light bulb.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs. To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012). The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

[&]quot;Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

⁸⁰ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.

⁸¹ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

⁸² From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

⁸³ See WasteHeatAdjustment.doc.

Measure	Year Installed	Hours assumption	Savings Adjustment	Years of Full Savings Before Adjustment
		1095	\$4.01	2
	2012	3285	\$12.48	1
	2012	5475	\$19.52	1
		8760	\$45.65	1
		1095	\$4.09	1
CFL Screw In,	2012	3285	\$13.06	1
C&I	2015	5475	\$21.20	1
		8760	\$50.04	1
		1095	\$4.34	1
	2014	3285	\$13.30	1
	2014	5475	\$21.96	1
		8760	\$52.13	1

High Efficiency

High efficiency is a compact fluorescent lamp.

Loadshape

Loadshape # 12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings.

Measure Category		Light Bulbs/Lamps					
Measure Code		LBLCFBLB					
Product Descriptio	Compact Fluorescent screw-base bulbs - Commercial				ial		
		20	12	20	13	2014	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
C&I Retrofit	6012CNIR	0.60	1.0	0.5	1.0	0.4	1.0
Farm Retrofit	6012FARM	0.60	1.0	0.5	1.0	0.4	1.0
Cust Equip Rpl	6013CUST	0.60	1.0	0.5	1.0	0.4	1.0
Farm Equip Rpl	6013FARM	0.60	1.0	0.5	1.0	0.4	1.0
Farm Rx	6013FRMP	0.60	1.0	0.5	1.0	0.4	1.0
Pres Equip Rpl	6013PRES	0.60	1.0	0.5	1.0	0.4	1.0
C&I Upstream	6013UPST	0.60	1.0	0.5	1.0	0.4	1.0
Act250 NC	6014A250	0.95	1.05	0.95	1.05	0.95	1.05
Farm NC	6014FARM	0.60	1.0	0.5	1.0	0.4	1.0
Non Act 250 NC	6014NANC	0.95	1.05	0.95	1.05	0.95	1.05
C&I Lplus	6021LPLU	0.60	1.0	0.5	1.0	0.4	1.0

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.

Cost

The incremental cost for this measure is as follows

Year	Measure	
	Cost	
2012	\$1.90	
2013	\$1.80	
2014	\$1.50	

Lifetimes

Lifetime is a function of the average hours of use for the lamp. Most CFLs have a *rated* lifetime of 10,000 hours. However, units that are turned on and off more frequently have shorter lives and those that stay on for longer periods of time have longer lives. The table below lists the lifetime based on number of annual hours of operation. Also note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) for any measure that lasts beyond 2020 will be reduced to the number of years remaining to 2020. Measures lives for the 4 prescriptive groups are therefore as follows:

Hour Assumption	Rated life assumption	Savings Life for 2012 measures	Savings Life for 2013 measures	Savings Life for 2014 measures
1095	7000	6.4	6.4	6
3285	12000	3.7	3.7	3.7
5475	12000	2.2	2.2	2.2
8760	12000	1.4	1.4	1.4

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours Labor cost to replace any kind of lamp: \$2.67 per lamp (8 minutes at \$20/hour) EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.5 per lamp Life of CFL lamp: 12,000 hours

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see <u>EISA</u> <u>Adjustment Calculations.xls</u> for details):

Measure	Year Installed	Hour Assumption	Annual baseline replacement
			cost
	2012	1095	\$4.15
		3285	\$12.90
		5475	\$20.16
		8760	\$46.81
CFL Screw In, C&I	2013	1095	\$4.24
		3285	\$13.55
		5475	\$21.99
		8760	\$51.52
		1095	\$4.48
	2014	3285	\$13.82
	2014	5475	\$22.83
		8760	\$53.80

This adjustment will be recalculated for subsequent years

Low range hours/yr	High range hours/yr	Lamp Lifetime Hours
0.0	729.9	3000
730.0	912.4	5000
912.5	1,094.9	6000

1,095.0	1,277.4	7000
1,277.5	1,459.9	8000
1,460.0	1,824.9	9000
1,825.0	2,189.9	9500
2,190.0	2,919.9	10000
2,920.0	8,760.0	12000

Interior Lighting Operating Hours by Building Type

Building Type	Annual Hours	
Grocery/Convenience Store	6,019	
Hospital	4,007	
K-12 Schools	2,456	
Lodging/Hospitality	4,808	
Manufacturing	4,781	
Office	3,642	
Public Assembly	3,035	
Public Safety	3,116	
Religious	2,648	
Restaurant	4,089	
Retail	4,103	
Service	3,521	
University/College	3,416	
Warehouse	4,009	
Exterior	3,338	
From <u>C&I Lighting Load Shape Project FINAL Report</u> , July 19, 2011, prepared by KEMA for NEEP. See document NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf. Exterior Lighting hours based on estimated mix of photocell-controlled lighting (12 hpd) and switch-controlled lighting.		

Dairy Farm Hard-Wired Vapor-Proof CFL Fixture with Electronic Ballast

Measure Number: I-C-9-e (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft date: Portfolio 69 Effective date: 1/1/2010 End date: TBD

Referenced Documents: DF_SavingsCalcs_4_1_02.xls

Description

Hard wired vapor-proof CFL fixtures with electronic ballasts. These are intended for existing construction only. However, it is recognized that some prescriptive measures may be installed in new buildings without EVT's knowledge.

Algorithms

Energy Savings $\Delta kWh = 169.4$

Demand Savings

 $\Delta kW = 0.0632$

Where:

ΔkWh	= gross customer average annual kWh savings for the measure
169.4 ⁸⁴	$=\Delta kWh$
ΔkW	= gross customer connected load kW savings for the measure
0.0632^{85}	$= \Delta kW$

Waste Heat Adjustment

Assumed to be 0% as most dairy farm lighting applications are in unconditioned space.

Baseline Efficiencies

Incandescent fixtures of various wattages.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings
			Before Adjustment

⁸⁴ Energy savings based on actual Efficiency Vermont Dairy Farm program data March 2000 – December 19, 2001 (see referenced document: DF_SavingsCalcs_4_1_02.xls). Program data used to determine average energy savings per measure.

 $^{85}\Delta kW$ determined by ΔkWh / Operating Hours
Dairy Farm Hard- Wired Vapor-Proof	2010	0.62	2
CFL Fixture with Electronic Ballast	2011	0.65	1

High Efficiency

Hard wired vapor-proof CFL fixtures with electronic ballasts.

Operating Hours

2679⁸⁶ hours / year

Loadshape

Loadshape #24, Dairy Farm Combined End Uses

Freeridership/Spillover Factors

		Lighting Hardwired	
Measure Category		Fix	ture
Measure Code		LFHC	CFFIX
		Com	pact
		Fluoresc	ent farm
Product Description		fixture	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.89	1.05
Farm Equip Rpl	6013FARM	1	1.00
Pres Equip Rpl	6013PRES	0.90	1.05
C&I Retro	6012CNIR	0.89	1.05

Persistence

Persistence is assumed to be 67% based on agreement between DPS and EVT.

Lifetimes

Engineering measure life: Hard wired CFL Fixtures – 15 years.

Measure life, adjusted for persistence: 10 years.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2010, the measure life is 10 years, for 2011 9 years.

Measure Cost

The incremental cost for this measure is \$70.

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours

⁸⁶ Operating hours consistent with Dairy Farm Combined End-Use loadshape from Vermont State Screening Tool (Loadshape #24).

Labor cost to replace any kind of lamp: \$2.67 per lamp (8 minutes at \$20/hour) EISA qualified bulb cost: \$2.00 per bulb Life of EISA qualified bulb: 3000 hours CFL lamp cost: \$3 per lamp Life of CFL lamp: 12,000 hours CFL ballast replacement cost: \$19 (\$14 ballast, \$5 labor) Life of CFL ballast: 40,000 hours

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see <u>EISA</u> <u>Adjustment Calculations.xls</u> for details)⁸⁷:

Measure	Year Installed	Annual baseline replacement cost	Annual efficient replacement cost
Dairy Farm Hard- Wired Vapor-Proof	2010	\$6.14	\$0.81
CFL Fixture with Electronic Ballast	2011	\$5.86	\$0.89

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁸⁷ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (10 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Agricultural Vapor Proof HPT8/T5HO Fixtures

Measure Number: I-C-10-f (Business Energy Services, Lighting End Use)

Version Date & Revision History:

Draft date:Portfolio 75Effective date:01/01/2011End Date:TBD

Referenced Documents: AgLighting_Calculations.xlsx

Description

Vapor-proof T8/T5HO fixtures meeting National Electric Code Article 547-6 rating for agricultural buildings. These fixtures are typically installed in both free-stall and tie-stall barns in place of incandescent, T8 or metal-halide fixtures.

Algorithms

Demand Savings $\Delta kW = (Watts_{BASE} - Watts_{EE}) / 1000)$

Energy Savings

 $\Delta kWh = \Delta kW x$ hours

Where:

ΔkW	= Instantaneous demand savings
ΔkWh	= Gross customer average annual kWh savings for the measure
Watts _{BASE}	= Wattage of baseline equipment
Watts _{EE}	= Wattage of efficient equipment
hours	= Annual hours of operation as reported by customer. If not reported, assumed to be 3,847 hours/year for dairy farm operations (see "Operating Hours" section, below).

Waste Heat Adjustment

Assumed to be 0% as most lighting applications are in unconditioned space

Baseline Efficiencies

Baseline represents a blend of T8, EISA qualified and EISA compliant incandescent, or pulse start metalhalide fixtures. See reference table below.

High Efficiency

Vapor-proof T8/T5 fixtures meeting National Electric Code Article 547-6 rating for agricultural buildings.

Operating Hours

3,847⁸⁸ hours / year

Rating Period & Coincidence Factors

Loadshape #24, Dairy Farm Combined End Uses

Freeridership/Spillover Factors⁸⁹

⁸⁸ Operating hours derived from daily hour reports provided on EVT prescriptive rebate forms in 2011, see AgLightingCalculations.xlsx

Measure Category		Lighting Hardwired	
		Fixture	
Measure Code	Measure Code		IST8VP
		LFF	IST5VP
Product Description	1	Vapor-pro	of Fluorescent
	·	HPT8	/T5 fixture
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	1.00	1.00
Farm Rx	6013FRMP	1.00	1.00
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	1.00	1.00
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

Persistence is assumed to be one.

Lifetimes

HPT8/T5 fixtures – 15 years. Analysis period is the same as the lifetime.

Measure Cost See reference table below.

O&M Cost Adjustments

See reference table below.

⁸⁹ Freeridership from TRM for dairy farm retrofit measures, as agreed to between the DPS and EVT.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

High Efficiency	A aricultural V	nor Proof High Parforms	nco TS and T5 Fivturo	Roforance Table
Ingli Entreney	Agricultural va	ipor ritori mgn-remonia		S REIEICICE I abie.

					Blended
				Watts	Measure
Efficient Technology	Watts	Baseline Technology ⁹⁰	Watts ⁹¹	Saved	Cost ⁹²
1 Lamp High-Performance T8		25% 73 Watt EISA Inc,			
Vapor-Proof	25	75% 1L T8	42	17	\$96.00
2 Lamp High-Performance T8		25% 146 Watt EISA Inc,			
Vapor-Proof	48	75% 2L T8	81	33	\$102.31
3 Lamp High-Performance T8		25% 217 Watt EISA Inc,			
Vapor-Proof	72	75% 3L T8	121	49	\$108.35
4 Lamp High-Performance T8		25% 292 Watt EISA Inc,			
Vapor-Proof	94	75% 4L T8	159	65	\$165.66
6-Lamp High-Performance T8					
Vapor Proof with High-BF		320 Watt Pulse-Start			
Ballast	206	Metal Halide	365	159	\$212.97
		25% 146 Watt EISA Inc,			
1 Lamp T5 HO Vapor-Proof	60	75% 2L T8	81	21	\$107.50
		25% 292 EISA Watt Inc,			
2 Lamp T5 HO Vapor-Proof	110	75% 4L T8	159	49	\$127.15
		200 Watt Pulse-Start			
3-Lamp T5 HO Vapor Proof	180	Metal Halide	232	52	\$157.00
		320 Watt Pulse-Start			
4-Lamp T5 HO Vapor Proof	240	Metal Halide	365	125	\$193.12
		In proportion to 320 Watt			
6-Lamp T5 HO Vapor Proof	360	Pulse-Start Metal Halide	548	188	\$208.98

Component Costs and Lifetimes for Computing O&M Savings

Efficient Technologies	Lamp Replacement Cost:	Life:	Ballast Replacement Cost	Life
1-Lamp High-Performance T8 Vapor-Proof	\$5.37	6.24	\$35.00	18.20

⁹⁰ The assumption for baseline technology is based on estimated distribution of retrofit vs. equipment replacement vs. new construction agricultural lighting projects. It is estimated that 50% of dairy farm lighting projects are retrofits, 40% are equipment replacement, and 10% are new construction. Retrofit projects are assumed to carry a baseline of 50% EISA incandescent and 50% T8. Equipment replacement and new construction carry a baseline of 100% T8. Blending these estimates results in a final baseline assumption of 25% EISA incandescent, 75% T8. Note that higher wattage fixtures typically used in free-stall barns with high-ceilings use a 100% metal-halide baseline as opposed to a mix of EISA incandescent/T8.

⁹¹ Baseline Watts determined assuming average of 25% EISA incandescent and 75% T8.

⁹² Measure costs assume blend of 50% retrofit and 50% market opportunity, see AgLighting_Calculations.xlsx

2-Lamp High-Performance T8 Vapor-Proof	\$10.74	6.24	\$35.00	18.20
3-Lamp High-Performance T8 Vapor-Proof	\$16.11	6.24	\$35.00	18.20
4-Lamp High-Performance T8 Vapor-Proof	\$21.48	6.24	\$35.00	18.20
6-Lamp High-Performance T8 Vapor-Proof with High-BF Ballast	\$32.22	6.24	\$70.00	18.20
1-Lamp T5HO Vapor-Proof	\$10.74	6.24	\$67.00	18.20
2-Lamp T5HO Vapor-Proof	\$21.48	6.24	\$67.00	18.20
3-Lamp T5HO Vapor-Proof	\$35.92	6.24	\$67.00	18.20
4-Lamp T5HO Vapor-Proof	\$79.92	6.24	\$67.00	18.20
6-Lamp T5HO Vapor-Proof	\$119.88	6.24	\$134.00	18.20

Baseline Technologies ⁹³	Lamp Replacement Cost ⁹⁴	Life	Ballast Replacement Cost	Life
73 W EISA Incandescent	\$4.67	0.78	N/A	N/A
146 W EISA Incandescent	\$9.34	0.78	N/A	N/A
219 W EISA Incandescent	\$14.01	0.78	N/A	N/A
292 W EISA Incandescent	\$18.68	0.78	N/A	N/A
1-Lamp T8	\$5.37	5.20	\$35.00	18.20
2-Lamp T8	\$10.74	5.20	\$35.00	18.20
3-Lamp T8	\$16.11	5.20	\$35.00	18.20
4-Lamp T8	\$21.48	5.20	\$35.00	18.20
200 Watt Pulse Start Metal-Halide	\$35.92	3.12	\$80.50	10.40
320 Watt Pulse Start Metal-Halide	\$79.92	5.20	\$134.15	10.40

 ⁹³ To account for mix of baselines, EISA Incandescent and T8 baseline replacement costs are be weighted by 25% and 75% respectively, in calculations (see AgLighting_Calculations.xlsx)
 ⁹⁴ All lamp and ballast replacement cost and life data derived from TRM. For summary see AgLighting_Calculations.xlsx

High Performance T8 or "HPT8" Fixtures and Lamp/Ballast Systems

Measure Number: I-C-12-i (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft Portfolio:Portfolio 86Effective date:1/1/2014End date:TBD

Referenced Documents

- 1. HPT8-T5 TRM Reference Tables Oct 2014.xlsx
- 2. WasteHeatAdjustment.doc
- 3. EVT 2011 TAG T12 Baseline Summary DPS 10-25.doc
- 4. NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf

Description

"High-Performance" T8 or "HPT8" lamp/ballast systems have higher lumens per watt than standard T8 systems. This results in lamp/ballast systems that produce equal or greater light than standard T8 systems, while using fewer watts. When used in a high-bay application, high-performance T8 fixtures can provide equal light to HID High-Bay fixtures, while using fewer watts. Eligible fixtures include new, replacement, or retrofit.

Algorithms

Deman ∆kW	d Savings	= ((Watts _{BASE} – Watts _{EE}) / 1000) × ISR × WHF _d × BDB
Energy ∆kWh	Savings	= ((Watts _{BASE} – Watts _{EE}) / 1000) × HOURS × ISR × WHF _e × BDB
Where:		
	ΔkW	= gross customer connected load kW savings for the measure
	Watts _{BASE}	= Baseline connected kW from table located in Reference Tables section.
	Watts _{EE}	= Energy efficient connected kW from table located in Reference Tables section.
	ISR	= In service rate, or the percentage of units rebated that actually get used. For prescriptive measures, this is assumed to be 98%. ⁹⁵
	WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For prescriptive lighting in existing buildings, the default value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1))^{96}$. For prescriptive lighting in new buildings, the value is 1.084 (calculated as $1 + (0.47*0.67*.808) / 3.4))^{97}$. The cooling savings are only added to the summer peak savings.
	WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For prescriptive lighting in existing buildings, the default value is 1.033 (calculated as $1 + ((0.47*0.29*.75)/3.1))^{98}$. For prescriptive lighting

95 2005 TAG agreement.

⁹⁶ Based on the following assumptions: 3.1 COP typical cooling system efficiency for existing buildings; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.
⁹⁷ Based on the same assumptions and for a different diffe

⁹⁷ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.

⁹⁸ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See

	in new buildings, the value is 1.030 (calculated as $1 + ((0.47*0.29*.75) / 3.4))^{99}$.
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= annual lighting hours of use per year; collected from prescriptive application
	form. If operating hours are not available, then the value will be selected from
	the table 'Operating Hours by Building Type' in the reference tables section
	of this document.
BDB	= Bonus Savings from Bi-Level or Dimming Controls. Without controls, the
	value is one. With controls, the factor is calculated as $(1 + ((percent savings)$
	* (percent of time) * (Watts _{EE}) / (Watts _{BASE} – Watts _{EE}). The values for each
	measure are in the table 'T8 New and Baseline Assumptions'.

Savings Baseline Adjustment

Due to new federal standards for linear fluorescent lamps, manufacturers of T12 lamps will not be permitted to manufacture most varieties of T12 lamps for sale in the United States after July 2012. All remaining stock and previously manufactured product may be sold after the July 2012 effective date. To account for this new standard, the savings for High-Performance T8 measures incorporating the T12 lamp baseline will be reduced to account for the higher baseline starting in 2014¹⁰⁰. For measures installed in 2012, the full savings (as calculated above in the Algorithm section) will be claimed for the first two years, and the adjusted savings will be claimed for the remainder of the measure life. The adjustment to be applied for each measure is listed in the reference table 'Savings Adjustment Factors.'

Waste Heat Adjustment

Heating Increased Usage

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF).

$\Delta MMBTU_{WH}$	= $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$
Where:	
$\Delta MMBTU_{WH}$	= gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{101}$.
AR	= Typical aspect ratio factor. ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of building within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont ¹⁰²
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
HEff	= Average heating system efficiency, For prescriptive lighting, assumed to be 79% in existing buildings and 83 % in new Construction ^{103} .

"Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

⁹⁹ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.
 ¹⁰⁰ Based on the 2011 EVT/DPS TAG Agreement. See EVT 2011 TAG T12 Baseline Summary DPS 10-25.doc for

¹⁰¹ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

¹⁰² From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

¹⁰⁰ Based on the 2011 EVT/DPS TAG Agreement. See EVT 2011 TAG T12 Baseline Summary DPS 10-25.doc for additional detail.

¹⁰³ See WasteHeatAdjustment.doc.

Baseline Efficiencies

Refer to reference table T8 New and Baseline Assumptions (also in 'Reference file: HPT8-T5 TRM Reference Tables Oct 2014.xlsx').

High Efficiency

Refer to reference table T8 New and Baseline Assumptions (also in 'Reference file: HPT8-T5 TRM Reference Tables Oct 2014.xlsx').

Operating Hours

Operating hours will be collected from the prescriptive application form or from the table of hours by building type located in the reference tables section of this document.

Loadshape

12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings

Freeridership/Spillover Factors

Measure Category		Lighting I Fix	Hardwired ture	Lighting Fix	Hardwired ture	Lighting Hardwired Fixture		
Measure Code	LFHS'	T8TW	LFHS	T8HB	LFH8T8RR			
Product Description	New HP7	8 Fixture	New HPT	3 High-Bay	Relamp/Reballast T8 to HPT8			
Track Name	Track No.	Freerider	Spillover	Freerider	Freerider Spillover		Spillover	
Cust Equip Rpl	6013CUST	0.99	1.15	0.95	1.05	0.99	1.15	
C&I NC Cust	6014CUST	0.95	0.95 1.05		1.05	0.95	1.05	
Pres Equip Rpl	6013PRES	6013PRES 1.0		0.95	1.05	1.0	1.15	
C&I NC Pres	6014PRES	0.95	1.05	0.95	1.05	0.95	1.05	
C&I Retro	6012CNIR	0.99	1.15	0.90	1.0	0.99	1.15	

Freerider rates are shown below to account for the new federal standard for linear fluorescent lamps¹⁰⁴. These rates by year apply to all measures using a T12 baseline.

	Lighting Hardwired			
Measure Category	Fixture			
Measure Code		LFHS	T8RR	
		Relamp/Re	ballast T12	
Product Description	to HPT8			
Track Name	Track No.	Freerider	Spillover	
Cust Equip Rpl	6013CUST	0.70	1.05	
C&I NC Cust	6014CUST	0.70	1.05	
Pres Equip Rpl	6013PRES	0.70	1.05	
C&I NC Pres	6014PRES	0.70	1.05	
C&I Retro	6012CNIR	0.70	1.05	

Persistence

The persistence factor is assumed to be one for all measures.

Lifetimes

15 years Analysis period is the same as lifetime.

¹⁰⁴ Based on the 2011 EVT/DPS TAG Agreement. See EVT 2011 TAG T12 Baseline Summary DPS 10-25.doc for additional detail.

Measure Cost

Refer to reference table T8 New and Baseline Assumptions (also in 'Reference file: HPT8-T5 TRM Reference Tables Oct 2014.xlsx').

Component Costs and Lifetimes Used in Computing O&M Savings

Refer to reference table T8 Component Costs and Lifetimes (also in 'Reference file: HPT8-T5 TRM Reference Tables Oct 2014.xlsx').

Fossil Fuel Descriptions

See algorithm in 'Heating Increased Usage'

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Building Type	Annual Hours		
Grocery/Convenience Store	6,019		
Hospital	4,007		
K-12 Schools	2,456		
Lodging/Hospitality	4,808		
Manufacturing	4,781		
Office	3,642		
Public Assembly	3,035		
Public Safety	3,116		
Religious	2,648		
Restaurant	4,089		
Retail	4,103		
Service	3,521		
University/College	3,416		
Warehouse	4,009		
From <u>C&I Lighting Load Shape Project FINAL Report</u> , July 19, 2011, prepared by KEMA for NEEP. See document NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf			

Interior Lighting Operating Hours by Building Type

Reference file: HPT8-T5 TRM Reference Tables Oct 2014.xlsx

New and Baseline Assum	ptions										
								Bi-Level /	Bi-Level / Dimming	Bi-Level /	
		System			System		Incremental	Dimming Savings	Bonus	Dimming	Measure
EE Measure Description	$Watts_{EE}$	Lumens _{EE}	Baseline Description	Watts _{BASE}	Lumens _{EE}	Watts _{SAVE}	Cost	Assumptions	Factor (BDF)	Cost	Code
4-Lamp HPT8 w/ High-BF Ballast High-Bay	147	11,600	4-Lamp T8HO High-Bay	196	11,600	49	\$75.00	50% Power 20% of Time	1.30	\$40.00	LFHST8HB
6-Lamp HPT8 w/ High-BF Ballast High-Bay	220	17,500	6-Lamp T8HO High-Bay	294	17,400	74	\$75.00	50% Power 20% of Time	1.30	\$40.00	LFHST8HB
8-Lamp HPT8 w/ High-BF Ballast High-Bay	294	23,300	8-Lamp T8HO High-Bay	392	23,300	98	\$75.00	50% Power 20% of Time	1.30	\$40.00	LFHST8HB
1-Lamp Relamp/Reballast T8 to HPT8	25		1-Lamp F32T8 w/ Elec. Ballast	32		7	\$50.00	N/A	1.00	\$40.00	LFH8T8RR
2-Lamp Relamp/Reballast T8 to HPT8	49		2-Lamp F32T8 w/ Elec. Ballast	59		10	\$55.00	50% Power 20% of Time	1.49	\$40.00	LFH8T8RR
3-Lamp Relamp/Reballast T8 to HPT8	72		3-Lamp F32T8 w/ Elec. Ballast	88		16	\$60.00	67% Power 20% of Time	1.30	\$40.00	LFH8T8RR
4-Lamp Relamp/Reballast T8 to HPT8	94		4-Lamp F32T8 w/ Elec. Ballast	114		20	\$65.00	50% Power 20% of Time	1.47	\$40.00	LFH8T8RR
1-Lamp HPT8 Fixture	25		1-Lamp F32T8 w/ Elec. Ballast	32		7	\$15.00	N/A	1.00	\$40.00	LFHST8TW
2-Lamp HPT8 Fixture	49		2-Lamp F32T8 w/ Elec. Ballast	59		10	\$17.50	50% Power 20% of Time	1.49	\$40.00	LFHST8TW
3-Lamp HPT8 Fixture	72		3-Lamp F32T8 w/ Elec. Ballast	88		16	\$20.00	67% Power 20% of Time	1.30	\$40.00	LFHST8TW
4-Lamp HPT8 Fixture	94		4-Lamp F32T8 w/ Elec. Ballast	114		20	\$22.50	50% Power 20% of Time	1.47	\$40.00	LFHST8TW
2-lamp High-Performance HPT8 Troffer	49		3-Lamp F32T8 w/ Elec. Ballast	88		39	\$100.00	67% Power 20% of Time	1.13	\$40.00	LFHST8HP

Savings Adjustment Factors

	Savings	Savings Adjustment with Bi-Level/Dimming
EE Measure Description	Adjustment	Bonus
1-Lamp Relamp/Reballast T12 to HPT8	46.7%	46.7%
2-Lamp Relamp/Reballast T12 to HPT8	52.6%	62.3%
3-Lamp Relamp/Reballast T12 to HPT8	42.1%	48.5%
4-Lamp Relamp/Reballast T12 to HPT8	44.4%	54.0%

Savings adjustment factors are applied to the full savings for savings starting in 2014 and for the remainder of the measure life. The savings adjustment is equal to the ratio between savings from T8 baseline and savings from T12 baseline from the table 'T8 New and Baseline Assumptions' within 'Commercial Lighting TRM Reference Tables - 2012.xlsx'

Component Costs and Lifetimes																	
EE Measure Description	EE Lamp Life (hrs)	Total EE Lamp Replacement Cost	EE Lamp Qty	EE Lamp Cost	EE Ballast Life (hrs)	Total EE Ballast Replacement Cost	EE Ballast Qty	EE Ballast Cost	EE Ballast Rep. Labor Cost	Baseline Description	Base Lamp Life (hrs)	Total Base Lamp Replacement Cost	Base Lamp Qty	Base Lamp Cost	Base Lamp Rep. Labor Cost	Base Ballast Life (hrs)	Total Base Ballast Replacement Cost
4-Lamp HPT8 w/ High-BF Ballast High-Bay	30,000	\$46.67	4	\$5.00	70,000	\$55.00	1	\$32.50	\$22.50	4-Lamp T8HO High-Bay	20,000	\$70.67	4	\$11.00	\$6.67	70,000	\$75.00
6-Lamp HPT8 w/ High-BF Ballast High-Bay	30,000	\$70.00	6	\$5.00	70,000	\$110.00	2	\$32.50	\$22.50	6-Lamp T8HO High-Bay	20,000	\$106.00	6	\$11.00	\$6.67	70,000	\$112.50
8-Lamp HPT8 w/ High-BF Ballast High-Bay	30,000	\$93.33	8	\$5.00	70,000	\$110.00	2	\$32.50	\$22.50	8-Lamp T8HO High-Bay	20,000	\$141.33	8	\$11.00	\$6.67	70,000	\$150.00
1-Lamp Relamp/Reballast T8 to HPT8	30,000	\$7.67	1	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	1-Lamp F32T8 w/ Elec. Ballast	20,000	\$5.17	1	\$2.50	\$2.67	70,000	\$30.00
2-Lamp Relamp/Reballast T8 to HPT8	30,000	\$15.33	2	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	2-Lamp F32T8 w/ Elec. Ballast	20,000	\$10.33	2	\$2.50	\$2.67	70,000	\$30.00
3-Lamp Relamp/Reballast T8 to HPT8	30,000	\$23.00	3	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	3-Lamp F32T8 w/ Elec. Ballast	20,000	\$15.50	3	\$2.50	\$2.67	70,000	\$30.00
4-Lamp Relamp/Reballast T8 to HPT8	30,000	\$30.67	4	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	4-Lamp F32T8 w/ Elec. Ballast	20,000	\$20.67	4	\$2.50	\$2.67	70,000	\$30.00
1-Lamp HPT8 Fixture	30,000	\$7.67	1	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	1-Lamp F32T8 w/ Elec. Ballast	20,000	\$5.17	1	\$2.50	\$2.67	70,000	\$30.00
2-Lamp HPT8 Fixture	30,000	\$15.33	2	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	2-Lamp F32T8 w/ Elec. Ballast	20,000	\$10.33	2	\$2.50	\$2.67	70,000	\$30.00
3-Lamp HPT8 Fixture	30,000	\$23.00	3	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	3-Lamp F32T8 w/ Elec. Ballast	20,000	\$15.50	3	\$2.50	\$2.67	70,000	\$30.00
4-Lamp HPT8 Fixture	30,000	\$30.67	4	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	4-Lamp F32T8 w/ Elec. Ballast	20,000	\$20.67	4	\$2.50	\$2.67	70,000	\$30.00
2-lamp High-Performance HPT8 Troffer	30,000	\$15.33	2	\$5.00	70,000	\$47.50	1	\$32.50	\$15.00	3-Lamp F32T8 w/ Elec. Ballast	20,000	\$15.50	3	\$2.50	\$2.67	70,000	\$30.00

Reference File: HPT8-T5 TRM Reference Tables Oct 2014.xlsx

Lighting Power Density

Measure Number: I-C-14-d (Business Energy Services)

Version Date & Revision History

Draft date:	Portfolio 79
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1. 2005 Vermont Guidelines for Energy Efficient Commercial Construction , Table 805.5.2 and 805.5.3.
- 2011 Vermont Commercial Building Energy Standards, Tables 505.5.2(1-2); 505.6.2(1); 505.6.2(2)

Description

Efficient lighting with a reduced wattage compared to the baseline, other than controls. Either the Building Area Method or Space-by-Space Method can be used for calculating the Interior Lighting Power Density in accordance with the applicable version of the Vermont Commercial Building Energy Standards (CBES), although the Space-by-Space Method is preferred. This methodology is generally applied to commercial new construction and remodel or renovation of existing buildings,.

Algorithms

Energy Savings $\Delta kWh = kW_{save} \times HOURS \times WHF_e$

Demand Savings

 $\Delta kW = kW_{save} \times WHF_d$

kW	$= (WSE_1 -$	WSF (c) ×	SE/1000
K vv save	$-(w ST_{base} -$	$\sim w S \Gamma_{effic} / \Lambda$	31/1000

Where:

∆kWh kW _{save} HOURS	 gross customer annual kWh savings for the measure lighting connected load kW saved, baseline kW minus efficient kW annual lighting hours of use per year; refer to table by building type if site-specific hours are not available.
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. The default value is 1.160 (calculated as $1 + (0.67*.808) / 3.4)$) ¹⁰⁵ . The cooling savings are only added to the summer peak savings.
WHFe	= Waste heat factor for energy to account for cooling savings from efficient lighting. The default value is 1.064 (calculated as $1 + ((0.29*.75)/3.4))^{106}$.
ΔkW	= gross customer connected load kW savings for the measure. This number represents the maximum summer kW savings – including the reduced cooling load from the more efficient lighting.
WSF _{base}	 = the baseline lighting watts per square foot or linear foot. Refer to the tables listed below under Baselines/Guidelines for Energy Efficient Commercial Construction – Lighting.

 ¹⁰⁵ Based on the following assumptions: 3.4 COP typical cooling system efficiency for new construction buildings;
 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See
 WasteHeatAdjustment.doc for additional discussion.

¹⁰⁶ Based on the following assumptions: 3.4 COP typical cooling system efficiency for new construction buildings; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

WSF _{effic}	= the actual installed lighting watts per square foot or linear foot.
SF	= Building or space square footage, or linear feet if usage expressed as watts per linear
	foot.

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

Δ MMBTU _{WH}	= $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$
·· · · ·	

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure
	from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{107}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont ¹⁰⁸
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
HEff	= Average heating system efficiency, For prescriptive lighting, assumed to be 79% in existing buildings and 83 % in new Construction ¹⁰⁹ .

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

Refer to the tables listed below under Baselines/Guidelines for Energy Efficient Commercial Construction – Lighting.

For all business new construction projects commencing construction prior to January 3rd, 2012 OR initiated with Efficiency Vermont prior to January 3rd, 2012, but completed on or after January 3rd, 2012, savings shall be calculated using "2005 Vermont Guidelines for Energy Efficient Commercial Construction" as baseline.

For all business new construction projects commencing construction after January 3rd, 2012 and iniated with Efficiency Vermont on or after January 3rd, 2012, regardless of when they are completed, savings shall be calculated using "2011 Vermont Commercial Building Energy Standards" as baseline.

High Efficiency

Based on actual installed watts per square foot.

Operating Hours

Lighting hours of operation determined on a site-specific basis. If site-specific data is not available then use hours of use by building type for interior lighting. See the table titled Interior Lighting Operating

¹⁰⁷ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

¹⁰⁸ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

¹⁰⁹ See WasteHeatAdjustment.doc.

Hours by Building Type. If building type is not specified then use default 3,500 hours for interior lighting. For exterior lighting use default 3,338 hours of use¹¹⁰.

Loadshapes

Indoor Lighting:

If space has cooling: Loadshape # 12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings. If space does not have cooling, or is refrigerated: Loadshape #12, Commercial Indoor Lighting-Blended

Outdoor Lighting: Loadshape #13, Commercial Outdoor Lighting.

Measure Category		Lighting		
Measure Codes		LECACINT, LECACEXT		
Product Description	1	Efficient Lighting		
Track Name	Track No.	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Farm Rx	6013FRMP	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Upstream	6013UPST	n/a	n/a	
Act250 NC	6014A250	0.95	1.05	
Farm NC	6014FARM	n/a	n/a	
Non Act 250 NC	6014NANC	0.95	1.05	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	0.90	1.0	
LIMF Rehab	6018LIRH	0.90	1.0	
MF Mkt NC	6019MFNC	1.0	1.0	
MF Mkt Retro	6020MFMR	n/a	n/a	
C&I Lplus	6021LPLU	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
EP GMP Blueline	6042EPEP	n/a	n/a	
GMP Furnace	6042EPEP	n/a	n/a	
GMP HP	6046RETR	n/a	n/a	
VEEP GMP	6048VEEP	n/a	n/a	
LIMF Lplus	6052LPLU	n/a	n/a	
MFMR Lplus	6053LPLU	n/a	n/a	

Freeridership/Spillover Factors

* Freeridership of 0% per agreement between DPS and EVT. All Act 250 measures will also have a 5% Adjustment Factor applied, which will be implemented through the Freeridership factor.

Persistence

The persistence factor is assumed to be one.

¹¹⁰ Based on 5 years of metering on 235 outdoor circuits in New Jersey.

Lifetimes

15 years. Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is: Per square foot \$1.25 per Watt/SF reduction. Per linear foot \$0.50 per Watt/lin ft reduction.

O&M Cost Adjustments

None.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Baselines/Guidelines for Energy Efficient Commercial Construction – Lighting

Baselines/Guidelines for ASHRAE 2001 Categories					
Lighting Power Density (w/ft ²)					
Building Area Method Building Area Type	Initiated w/ EVT prior to 1/3/2012 2005 CBES (w/ft ²)	Initiated w/ EVT on or after 1/3/2012 2011 CBES (w/ft ²)			
Automotive Facility	0.9	0.9			
Convention Center	1.2	1.2			
Court House	1.2	1.2			
Dining: Bar Lounge/Leisure	1.3	1.3			
Dining: Cafeteria	1.4	1.4			
Dining: Family	1.6	1.6			
Dormitory	1.0	1.0			
Exercise Center	1.0	1.0			
Fire Station		0.8			
Gymnasium	1.1	1.1			
Health Care	1.0	1.0			
Hospital	1.2	1.2			
Hotel	1.0	1.0			
Library	1.3	1.3			
Manufacturing Facility	1.3	1.3			
Motel	1.0	1.0			
Motion Picture Theater	1.2	1.2			
Multi-Family	0.7	0.7			
Museum	1.1	1.1			
Office	1.0	0.9			
Parking Garage	0.3	0.3			
Penitentiary	1.0	1.0			
Performing Arts Theater	1.6	1.6			
Police/Fire Station	1.0	0.8			
Post Office	1.1	1.1			
Religious Building	1.3	1.3			
Retail	1.5	1.4			
School/University	1.2	1.2			
Sports Arena	1.1	1.1			

Town Hall	1.1	1.1
Transportation	1.0	1.0
Warehouse	0.8	0.6
Workshop	1.4	1.4

2011 Vermont Commercial Building Energy Standards Space-by-SpaceTables for projects initiated with EVT on or after 1/3/2012

TABLE 505.5.2(2) INTERIOR LIGHTING POWER ALLOWANCES— SPACE-BY-SPACE METHOD

Table 505.5.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES—SPACE-BY-SPACE METHOD

SPACE-DT-SPACE METHOL	/	ALLOWANCES—SPACE-BY-SPACE METHOD			
COMMON SPACE-BY-SPACE TYPES	LPD (w/ft ²)	COMMON SPACE-BY-SPACE TYPES	LPD (w/ft ²)		
Atrium – First 40 feet in height	0.03 per ft. ht.	- Healthcare clinic/hospital			
Atrium – Above 40 feet in height	0.02 per ft. ht.	Corridors /transition	1.00		
Audience/seating area-permanent		Exam/treatment	1.70		
For auditorium	0.9	Emergency	2.70		
For performing arts theater	2.6	Public & staff lounge	0.80		
For motion picture theater	1.2	Medical supplies	1.40		
Classroom/Lecture/training	1.30	Nursery	0.9		
Conference/meeting/multipurpose	1.2	Nurse station	1.00		
	0.7	Physical therapy	0.90		
Dining area	1.40	Patient room	0.70		
Eamily dining area	1.40	Pharmacy Badiology/imaging	1.20		
Description for the second sector the second	1.40	Concerting room	2.20		
Dressing/itting room performing arts theater	1.1	Recovery	1.2		
Electrical/mechanical	1.10	- Lounge/recreation	0.8		
Food preparation	1.20	Laundry—washing	0.60		
Laboratory for classrooms	1.3	Hotel			
Laboratory for medical/industrial/research	1.8	Dining area	1.30		
Lobby	1.10	Guest rooms	1.10		
Lobby for performing arts theater	3.3	Hotel lobby	2.10		
Lobby for motion picture theater	1.0	Highway lodging guest rooms	1.20		
Locker room	0.80	Library			
Lounge recreation	0.8	Stacks	1.70		
Office—enclosed	1.1	Card file & cataloguing	1.10		
Office—open plan	1.0	- Reading area	1.20		
Restroom	1.0	Corridors/transition	0.40		
Sales area	1.6ª	Detailed manufacturing	1.3		
Stairway	0.70	Equipment room	1.0		
Storage	0.8	Extra high bay (> 50-foot floor-ceiling height) High bay (25-50-foot floor-ceiling height)	1.1		
Workshop	1.60	Low Bay (< 25-foot floor-ceiling height)	1.2		
Courthouse/police station/penetentiary		Museum			
Courtroom	1.90	General exhibition	1.00		
Confinement cells	1.1	Restoration	1.70		
Judge chambers	1.30	Parking garage – garage areas	0.2		
Penitentiary audience seating	0.5		0.2		
Penitentiary dining	1.5	Fire stations	0.80		
BUILDING SPECIFIC SPACE-BY-SPACE TYPES	LPD (w/ft ²)	Sleeping quarters	0.80		
Automotive – service/repair	0.70	Post office			
Bank/office – banking activity area	1.5	Sorting area	0.9		
Convention center		Religious building			
Exhibit Space	1.50	Fellowship hall	0.60		
Audience/Seating Area	0.90	Audience seating	2.40		
Dormitory living quarters	1.10	Worship pulpit/choir	2.40		
Gymnasium/fitness center		Retail			
Fitness area	0.9	Dressing/Fitting Area	0.9		
Gymnasium Audience/Seating	0.40	Mall Concourse	1.6		
Playing Area	1.40	Sales Area	1.6ª		

(continued)

(continued)

Table 505.5.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES—SPACE-BY-SPACE METHOD		
COMMON SPACE-BY-SPACE TYPES	LPD (W/ft ²)	
Sports arena		
Audience seating	0.4	
Court sports area - Class 4	0.7	
Court sports area - Class 3	1.2	
Court sports area - Class 2	1.9	
Court sports area - Class 1	3.0	
Ring sports area	2.7	
Transportation		
Air/Train/Bus Baggage Area	1.00	
Airport Concourse	0.60	
Terminal - Ticket Counter	1.50	
Warehouse		
Fine Material Storage	1.40	
Medium/Bulky Material	0.60	

Interior Lighting Operating Hours by Building Type

Building Type	Annual Hours		
Grocery/Convenience Store	6,019		
Hospital	4,007		
K-12 Schools	2,456		
Lodging/Hospitality	4,808		
Manufacturing	4,781		
Office	3,642		
Public Assembly	3,035		
Public Safety	3,116		
Religious	2,648		
Restaurant	4,089		
Retail	4,103		
Service	3,521		
University/College	3,416		
Warehouse 4,009			
From C&I Lighting Load Shape Project FINAL Report, July 19, 2011, prepared by KEMA for			
NEEP. See document NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf			

	INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS					
	· · · · · · · · · · · · · · · · · · ·	Zone 1	Zone 2	Zone 3	Zone 4	
Base Site Allowance (Base allowance may be used in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W	
	Uncovered Parking Areas					
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²	
	Building Grounds					
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot	
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft ²	0.14 W/ft ²	0.16 W/ft ²	0.2 W/ft ²	
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²	
(Lighting power		B	uilding Entrances and Exit	ts		
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width	
entrances and exits, canopies and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	
may be traded.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²	
	Sales Canopies					
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²	
	Outdoor Sales					
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²	
a in the second s	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot	
Nontradable Surfaces	Building facades	No allowance	0.1 W/ft ² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft ² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length	
calculations for the following applications can be used only for the	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	
specific application and cannot be traded between surfaces or with other exterior lighting. The	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	
following allowances are in addition to any allowance otherwise permitted in the "Tradable Surfaces" reaction of this table)	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	
section of uns table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through	
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry	

TABLE 505.6.2(2)		
LIGHTING DOWED ALLOWANCES FO	DING EV	TEDIODO

For SI: 1 foot = 304.8 mm, 1 watt per square foot = $W/0.0929 \text{ m}^2$.

Exterior Lighting Zones Lighting Zone

Description

0	1
1	Developed areas of national parks, state parks, forest land, and rural areas
2	Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited nighttime use and residential mixed use areas
3	All other areas
4	High-activity commercial districts in major metropolitan areas as designated by the local land use planning authority

Baselines/Guidelines for 2005 CBESCategories Lighting Power Densities (w/ft²) Space by Space Method - Building Specific Space Type

Building Type	Space Type	Initiated prior to 1/2/2012 ASHRAE 90.1-2004	Building Type	Space Type	Initiated prio to 1/2/2012 ASHRAE 90.1-2004
Athletic Facility			Industrial		
Gumnasium	Diaring Area	1.4	Buildings	Workshop	1.0
Gymnasium	Playing Area	1.4	Automotivo	Garaga	1.9
	Diessing/Locker	0.0	Facility	Service/Repair	0.7
	Exercise Area	0.9	Manufacturing	Gen'l Low Bay (<25')	1.2
Exercise Center	Exercise Area	0.9		Gen'l High Bay (>25')	1.7
	Dressing/Locker	0.6		Detailed	2.1
Civil Service Buildings				Equipment Room	1.2
Courthouse	Courtroom	1.9		Control Room	0.5
	Confinement Cell	0.9	Lodging Buildings		
	Judges Chambers	1.3	Hotel	Guest Room	1.1
Police Station	Police Station Laboratory	N/A	Motel	Guest Room	1.1
Fire Station	Fire Station Engine Room	0.8	Dormitory	Living Quarters	1.1
	Sleeping Quarters	0.3	Museum Buildings		
Post Office	Sorting Area	1.2	Museum	General Exhibition	1.0
Convention Center Buildings				Restoration	1.7
Convention Center	Exhibit Space	1.3	Office Buildings		
Educational Buildings			Office	Banking Activity Area	1.7
Library	Card File/Cataloging	1.1		Laboratory	1.4
	Stacks	1.7	Penitentiary Buildings		
	Reading Area	1.2	Penitentiary	Confinement Cells	0.9
Hospital/ Healthcare Buildings			Religious Buildings		
Emergency		2.7		Worship – Pulpit, Choir	2.4
Recovery		0.8		Fellowship Hall	0.9
Nurse Station		1.0	Retail Buildings		
Exam/Treatment		1.5	Retail	General Sales Area	1.7
Pharmacy		1.2		Mall Concourse	1.7
Patient Room		0.7	Sports Arena Building		
Operating Room		2.2	Sports Arena	Ring Sports Arena	2.7
Nursery		0.6		Court Sports Arena	2.3

Medical Supply	1.4
Physical Therapy	0.9
Radiology	0.4
Laundry - Washing	0.6

	Indoor Playing	1.4
	Field Area	
Storage		
Buildings		
Warehouse	Fine Material	1.4
	Storage	
	Medium/Bulky	0.9
	Material Storage	
Parking Garage	Parking Area –	0.2
	Pedestrian	
	Parking Area –	0.2
	Attendant only	

Baselines/Guidelines for 2005 CBES Categories Lighting Power Densities (w/ft²) Space by Space Method - Building Specific Space Type (cont'd)

Building Type	Space Type	Initiated prior to 1/2/2012 ASHRAE 90.1-2004
Transportation Buildings		
Transportation	Airport Concourse	0.6
	Air/Train/Bus Baggage Area	1.0
	Terminal – Ticket Counter	1.5

Baselines/Guidelines for 2005 CBES Categories Lighting Power Densities (w/ft²)

Space by Space Method - Common Activity Areas						
Building Type	Space Type	Initiated prior to 1/2/2012 ASHRAE 90.1-2004 (w/ft ²)		Building Type	Space Type	Initiated prior to 1/2/2012 ASHRAE 90.1-2004 (w/ft ²)
Lobby				Office – enclosed plan	General	1.1
	General	1.3		Office – open plan	General	1.1
	Hotel	1.1		Conference/meeting room	General	1.3
	Performing Arts	3.3		Classroom/lecture/ training	General	1.4
	Motion Picture	1.1			Penitentiary	1.3
Atrium (multi-story)				Audience/seating area	Athletic facility	N/A
	First 3 floors	0.6			Gymnasium	0.4
	Each additional floor	0.2			Exercise center	0.3
Lounge/recreation room		1.2			Civil service building	N/A
Lounge/recreation for hospital		0.8			Convention center	0.7
Dining Area					Penitentiary building	0.7
	General/Cafeteria	0.9			Religious building	1.7
	Bar/lounge leisure dining	1.4			Sports arena	0.4

	Family	2.1		
	Hotel	1.3	Performing arts theatre	2.6
	Motel	1.2	Motion picture theatre	1.2
Food preparation		1.2	Transportation	0.5
Restrooms		0.9		
Corridor/Transition				
	General	0.5		
	Hospital/healthca	1.0		
	re			
	Manufacturing	0.5		
Stairs-active	General	0.6		
Active Storage	General	0.8		
	Hospital/healthca	0.9		
	re			
	Museum	N/A		
Inactive Storage	General	0.3		
	Museum	0.8		
Electrical/	General	1.5		
Mechanical				

Baselines/Guidelines for Exterior Lighting for projects initiated with EVT prior to January 3, 2012				
Application	Baseline *			
Tradable Surfaces (Lighting power densities for the following surfaces may be traded)				
Uncovered Parking Areas				
Parking lots and drives	0.15 W/ft^2			
Building Grounds	•			
Walkways less than 10 feet wide	1.0 W/linear ft			
Walkways 10 feet wide or wider, plaza areas and special feature areas	0.2 W/ft ²			
Stairways	1.0 W/ft^2			
Building Entrances and Exits				
Main entries	30 W/linear ft of door width			
Other doors 20 W/linear ft of door width				
Canopies and Overhangs				
Canopies (free standard, attached and overhangs)	1.25 W/ft^2			
Outdoor Sales				
Open areas (including vehicle sales lots)	0.5 W/ft^2			
Street frontage for vehicle sales lots in addition to "open area" allowance	20 W/linear ft			
Nontradable Surfaces (Lighting power densities for the following surfaces can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise permitted in the "Tradable Surfaces" section)				
Building Facades	0.2 W/ft ² for each illuminated wall or surface or 5W/linear ft for each illuminated wall or surface length			
Automated Teller Machines and Night Depositories	270 W per location plus 90 watts per additional ATM per location			
Entrances and Gatehouse Inspection Stations at Guarded Facilities	1.25 W/ft ² of uncovered area (covered areas are included in the "Canopies and Overhangs" section)			
Loading Areas for Law Enforcement, Fire, Ambulance and other Emergency Service Vehicles	0.5 W/ft ² of uncovered area (covered areas are included in the "Canopies and Overhangs" section)			
Drive-up Windows at Fast Food Restaurants	400 W per drive-through			
Parking near 24-hour Retail Entrances	800 W per main entry			

* Baselines from ASHRAE 90.1-2004, Table 9.4.5

T5 Fixtures and Lamp/Ballast Systems

Measure Number: I-C-18-d (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft Portfolio:Portfolio86Effective date:1/1/2014End date:TBD

Referenced Documents

- 1. HPT8-T5 TRM Reference Tables Oct 2014.xlsx
- 2. WasteHeatAdjustment.doc
- 3. NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf

Description

T5 lamp/ballast systems have higher lumens per watt than a typical T8 system. In addition, the smaller lamp diameter allows for better optical systems, and more precise control of light. The combination of these characteristics results in light fixtures that produce equal or greater light than T8 fixtures, while using fewer watts. When used in a high-bay application, T5 fixtures can provide equal light to HID High-Bay fixtures, while using fewer watts. Eligible fixtures include new and replacement.

Algorithms

Deman ∆kW	d Savings	= ((Watts _{BASE} – Watts _{EE}) / 1000) × ISR × WHF _d × BDB
Energy ∆kWh	Savings	= ((Watts _{BASE} – Watts _{EE}) / 1000) × HOURS × ISR × WHF _e × BDB
Where:		
	ΔkW	= gross customer connected load kW savings for the measure
	Watts _{BASE}	= Baseline connected kW from table located in Reference Tables section.
	Watts _{EE}	= Energy efficient connected kW from table located in Reference Tables section.
	ISR	= In service rate, or the percentage of units rebated that actually get used. For prescriptive measures, this is assumed to be 98%. ¹¹¹
	WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For prescriptive lighting in existing buildings, the default value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1)$) ¹¹² . For prescriptive lighting in new buildings, the value is 1.084 (calculated as $1 + (0.47*0.67*.808) / 3.4)$) ¹¹³ . The cooling savings are only added to the summer peak savings.
	WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For prescriptive lighting in existing buildings, the default value is 1.033 (calculated as $1 + ((0.47*0.29*.75)/3.1))^{114}$. For prescriptive lighting

¹¹¹ 2005 TAG agreement.

 ¹¹² Based on the following assumptions: 3.1 COP typical cooling system efficiency for existing buildings; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.
 ¹¹³ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for

¹¹³ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.

¹¹⁴ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

	in new buildings, the value is 1.030 (calculated as $1 + ((0.47*0.29*.75) / 3.4))^{115}$.
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= annual lighting hours of use per year; collected from prescriptive application
	form. If operating hours are not available, then the value will be selected from
	the table 'Operating Hours by Building Type' in the reference tables section
	of this document.
BDB	= Bonus Savings from Bi-Level or Dimming Controls. Without controls, the
	value is one. With controls, the factor is calculated as $(1 + ((percent savings)$
	* (percent of time) * (Watts _{EE}) / (Watts _{BASE} – Watts _{EE}). The values for each
	measure are in the table 'T5 New and Baseline Assumptions'.

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF).

Heating Increased Usage

-	
$\Delta MMBTU_{WH}$	= $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$

Where:

$\Delta MMBTU_{WH}$	= gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{116}$.
AR	= Typical aspect ratio factor. ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of building within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont ¹¹⁷
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
HEff	= Average heating system efficiency, For prescriptive lighting, assumed to be 79% in existing buildings and 83 % in new Construction ¹¹⁸ .

Baseline Efficiencies

Refer to reference table T5 New and Baseline Assumptions (also in 'HPT8-T5 TRM Reference Tables Oct 2014.xlsx').

High Efficiency

Refer to reference table T5 New and Baseline Assumptions (also in 'HPT8-T5 TRM Reference Tables Oct 2014.xlsx').

Operating Hours

Operating hours will be collected from the prescriptive application form or from the table of hours by building type located in the reference tables section of this document.

 ¹¹⁵ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.
 ¹¹⁶ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and

¹¹⁶ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

¹¹⁷ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

¹¹⁸ See WasteHeatAdjustment.doc.

Loadshape

12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings

Freeridership/Spillover Factors

		Lighting l	Hardwired	Lighting	Efficiency
Measure Category		Fixture			
Measure Code		LFHLFT05		LFHST5HB	
		New T5 Fixture		New T5	
Product Description				High-Bay	
Track Name	Track No.	Freerider	Spillover		
Cust Equip Rpl	6013CUST	0.99	1.15	0.95	1.05
C&I NC Cust	6014CUST	0.95	1.05	0.95	1.05
Pres Equip Rpl	6013PRES	1.0	1.15	0.95	1.05
C&I NC Pres	6014PRES	0.95	1.05	0.95	1.05
C&I Retro	6012CNIR	0.99	1.15	0.90	1.0

Persistence

The persistence factor is assumed to be one for all measures.

Lifetimes

15 years

Analysis period is the same as lifetime.

Measure Cost

Refer to reference table 'T5 New and Baseline Assumptions' (also in HPT8-T5 TRM Reference Tables Oct 2014.xlsx).

Component Costs and Lifetimes Used in Computing O&M Savings

Refer to reference table 'T5 Component Costs and Lifetimes' (also in 'HPT8-T5 TRM Reference Tables Oct 2014.xlsx').

Fossil Fuel Descriptions

See algorithm in 'Heating Increased Usage'

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Interior Lighting Operating Hours by Building Type

Building Type	Annual Hours
Grocery/Convenience Store	6,019
Hospital	4,007
K-12 Schools	2,456
Lodging/Hospitality	4,808
Manufacturing	4,781
Office	3,642
Public Assembly	3,035
Public Safety	3,116

Religious	2,648	
Restaurant	4,089	
Retail	4,103	
Service	3,521	
University/College	3,416	
Warehouse 4,009		
From <u>C&I Lighting Load Shape Project FINAL Report</u> , July 19, 2011, prepared by KEMA for NEEP. See document NEEP CI Lighting LS FINAL Report_ver 5_7-19-11.pdf		

Reference	file:	HPT8	-T5	TRM	Reference	Tables	Oct	2014.xlsx
-----------	-------	------	-----	-----	-----------	--------	-----	-----------

EE Measure Description	Watts _{EE}	System Lumens _{EE}	References _{EE}	Baseline Description	Watts _{BASE}	System Lumens _{EE}	References _{BASE}	Watts _{SAVE}	Incremental Cost	Bi-Level / Dimming Savings Assumptions	Bi-Level / Dimming Bonus Factor (BDF)	Bi-Level / Dimming Cost	Measure Code
3-Lamp T5HO High-Bay	176	12,000	4	4-Lamp T8HO High-Bay	196	11,600	7	20	\$100.00	50% Power, 20% of Time	1.88	\$40.00	LFHST5HB
4-Lamp T5HO High-Bay	235	16,000	5	6-Lamp T8HO High-Bay	294	17,400	8	59	\$100.00	50% Power, 20% of Time	1.40	\$40.00	LFHST5HB
6-Lamp T5HO High-Bay	352	24,000	6	8-Lamp T8HO High-Bay	392	23,300	9	40	\$100.00	50% Power, 20% of Time	1.88	\$40.00	LFHST5HB
1-Lamp T5 Fixture	32			Proportionally adjusted according to 2- Lamp T5 Equivalent to 3-Lamp T8	44			12	\$35.00	50% Power, 20% of Time	1.27	\$40.00	LFHST5TW
2-Lamp T5 Fixture	64			3-Lamp F32T8 Equivalent w/ Elec. Ballast	88			24	\$40.00	50% Power, 20% of Time	1.27	\$40.00	LFHST5TW
3-Lamp T5 Fixture	96			4-Lamp F32T8 Equivalent w/ Elec. Ballast	114			18	\$45.00	50% Power, 20% of Time	1.53	\$40.00	LFHST5TW

EE Measure Description	EE Lamp Life (hrs)	Total EE Lamp Replacement Cost	EE Lamp Qty	EE Lamp Cost	EE Ballast Life (hrs)	Total EE Ballast Replacement Cost	EE Ballast Qty	EE Ballast Cost	EE Ballast Rep. Labor Cost	Baseline Description	Base Lamp Life (hrs)	Total Base Lamp Replacement Cost	Base Lamp Qty	Base Lamp Cost	Base Lamp Replacement Rate (\$/hr)	Base Ballast Life (hrs)	Total Base Ballast Replacement Cost	Base Ballast Qty	Base Ballast Cost
3-Lamp T5HO High-Bay	30,000	\$56.00	3	\$12.00	70,000	\$74.50	1	\$52.00	\$22.50	4-Lamp T8HO High-Bay	20,000	\$70.67	4.0	\$11.00	\$20.00	70,000	\$75.00	2.0	\$15.00
4-Lamp T5HO High-Bay	30,000	\$74.67	4	\$12.00	70,000	\$74.50	1	\$52.00	\$22.50	6-Lamp T8HO High-Bay	20,000	\$106.00	6.0	\$11.00	\$20.00	70,000	\$112.50	3.0	\$15.00
6-Lamp T5HO High-Bay	30,000	\$112.00	6	\$12.00	70,000	\$149.00	2	\$52.00	\$22.50	8-Lamp T8HO High-Bay	20,000	\$141.33	8.0	\$11.00	\$20.00	70,000	\$150.00	4.0	\$15.00
1-Lamp T5 Fixture	30,000	\$14.67	1	\$12.00	70,000	\$67.00	1	\$52.00	\$15.00	Proportionally adjusted according to 2-Lamp T5	20,000	\$7.75	1.5	\$2.50	\$20.00	70,000	\$15.00	0.5	\$15.00
2-Lamp T5 Fixture	30,000	\$29.33	2	\$12.00	70,000	\$67.00	1	\$52.00	\$15.00	3-Lamp F32T8 Equivalent w/ Elec. Ballast	20,000	\$15.50	3.0	\$2.50	\$20.00	70,000	\$30.00	1.0	\$15.00
3-Lamp T5 Fixture	30,000	\$44.00	3	\$12.00	70,000	\$67.00	1	\$52.00	\$15.00	4-Lamp F32T8 Equivalent w/ Elec. Ballast	20,000	\$20.67	4.0	\$2.50	\$20.00	70,000	\$30.00	1.0	\$15.00

SMARTLIGHT Lighting Distributor Incentives

Measure Number: I-C-21-f (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft Portfolio:	Portfolio 84
Effective date:	1/1/2013
End Date:	TBD

Referenced Documents:

1) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

2) PIP #67a: Upstream Distributor Incentive Model

3) SMARTLIGHT Reference Tables Final 072013.xlsx

4) LED Standard Decorative Delta Watts Calculation.xls

5) SMARTLIGHT Hours Assumptions 2012.xlsx

6) WasteHeatAdjustment.doc

7) SMARTLIGHT QA 2012.docx

8) 2013 LED Sales Review.xlsx

Description

In reference to PIP #67a: Upstream Distributor Incentive Model, Efficiency Vermont will offer "upstream" incentives to Vermont Electrical Distributors for certain eligible energy-efficient commercial replacement lamps. The eligible technologies are Screw Base LED lamps, Reduced-Wattage T8 and T5 Lamps, Reduced-Wattage pin-based CFL lamps, and Reduced-Wattage Metal-Halide Lamps. Both replacements and new installations are eligible. See PIP #67a (updated 5/1/2012) for a further discussion of eligible technologies and program procedures.

Algorithms

Demand ∆kW	l Savings	= ((Watts _{BASE} – Watts _{EE}) /1000) × ISR × WHF _d
Energy ∆kWh	Savings	= (Watts _{BASE} – Watts _{EE}) / 1000 × HOURS × ISR × WHF _e
Where:		
	ΔkW	= gross customer connected load kW savings for the measure
	Watts _{BASE}	= Baseline connected Watts from table located in Reference Tables Section.
	Watts _{EE}	= Energy efficient connected Watts from table located in Reference Tables Section.
	ISR	= In service rate, or the percentage of units rebated that actually get used (see table below).
	WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For prescriptive commercial lighting in existing buildings, the default value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1))^{119}$. The cooling savings are only added to the summer peak savings. The value for Residential lighting is assumed to be 1.0.
	WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For prescriptive commercial lighting in existing buildings, the

¹¹⁹ Based on the following assumptions: 3.1 COP typical cooling system efficiency for existing buildings; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

default value is 1.033 (calculated as $1 + ((0.47*0.29*.75)/3.1))^{120}$. The value
for Residential lighting is assumed to be 1.0.
= gross customer annual kWh savings for the measure
= annual lighting hours of use per year. See 'Operating Hours' section.

120

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

$\Delta MMBTU_{WH}$	$= (\Delta kWh / WHF_e) \times$	$0.003413 \times (1 -$	$OA) \times AR \times H$	F × DFH / HEff
	(0.000 (-		

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{121}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont ¹²² . Assumed to be 0.0 for residential lighting
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
HEff	= Average heating system efficiency, For prescriptive lighting, assumed to be 79% in existing buildings and 83 % in new Construction ¹²³ .

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

Refer to the tables in the Reference Tables section for lighting baseline efficiencies and savings.

Baseline Adjustment

Federal legislation stemming from the Energy Independence and Security Act of 2007 requires all generalpurpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs. From 2012, 100W incandescents could no longer be manufactured, 75W incandescents are restricted from 2013, followed by restrictions on 60W and 40W in 2014. The baseline for Standard LED Screw and Pin-based Bulbs will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the savings for this measure will be reduced to account for the higher baselines. The appropriate adjustments as a percentage of the base year savings for each Standard and Decorative Screw and Pin-based LED range are provided below¹²⁴:

¹²⁰ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

¹²¹ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

¹²² From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

¹²³ See WasteHeatAdjustment.doc.

¹²⁴ See 2013 LED Sales Review.xls for details on how the baseline and efficient wattages for the LED bulbs were determined based on a year's worth of sales data from a cross section of product brands and Vermont geography. Note that the baseline for Reduced Wattage CFL is a standard CFL and therefore there is no baseline adjustment.

			Baseline Bulb Wattages Assumed in Calculation						
	LED Wattage Range	LED Wattage	2013 Baseline	2014 Baseline	2020 Baseline				
Standard	<10W	8.4	39.5	28.8	11.8				
	>=10W	12.1	59.9	43.2	18.1				

				Mid Measure Life Savings Adjustments						
	Market	LED Wattage Range	LED Wattage	2013	After # of years	2014	After # of years	2015	After # of years	
Standard	Residential	<10W	8.4	23%	3	17%	6	17%	5	
	Residential	>=10W	12.1	21%	3	19%	6	19%	5	
	G	<10W	8.4	66%	1	n/a	n/a	17%	5	
	Commercial	>=10W	12.1	64%	1	19%	6	19%	5	

See "SMARTLIGHT LED delta watts and EISA Calculation_2013.xls" for calculation details. Note that the 2014 Commercial <10W group does not have an EISA adjustment since the measure life is shorter than the number of years to 2020.

This adjustment should be applied to both electric and fossil fuel savings and will be recalculated for subsequent years.

High Efficiency

Refer to the tables in the Reference Tables section for efficient lighting wattage and savings.

Operating Hours & In Service Rate

Fixed annual operating hours will be used for each measure. Commercial and residential participation will be established through sales data collected and reported by participating distributors.

Measure Group	Measure Code	Commercial Operating Hours ¹²⁵	ISR
LED - Commercial	LBLSCLED	3500	0.898^{126}
LED - Residential	LBLSRLED	1241	0.870^{127}
Reduced Wattage T8	LBLRWLT8	3214	
Reduced Wattage T5	LBLRWLT5	4162	0 0128
Reduced Wattage MH	LBLRWLMH	4243	0.9
Reduced Wattage CFL	LBLRWLCF	2800	

¹²⁵ LED commercial hours in-line with the Efficient Products "ENERGY STAR Integrated Screw Based SSL (LED) Lamps" TRM. LED residential hours in-line with the Efficient Products "ENERGY STAR Integrated Screw Based SSL (LED) Lamps" TRM. CFL hours in-line with Efficient Products "Interior Fluorescent Fixture" TRM. Hours for all other measures are based on 5 years of EVT data for installed measures of similar type from 2007 through 2011. See SMARTLIGHT Hours Assumptions 2012.xlsx for more detail. ¹²⁶ See SMARTLIGHT QA 2012.docx for commercial LED in service rate

¹²⁷ Ibid

¹²⁸ Per 2005 TAG agreement for prescriptive measures

Loadshape

Commercial: Loadshape # 12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings. Residential: Loadshape #1: Residential Indoor Lighting

Freeridership/Spillover Factors

Measure Category		Light Bul	bs/Lamps	Light Bulbs/Lamps			
				LBLRWLT8,			
Maggura Coda				LBLR	WLT5,		
Measure Code		LDLSKLED,	LDLSCLED	LBLRWLCF,			
				LBLRWLMH			
				Reduced W	Vattage T8,		
	Screw based SSL Lamps,			Reduced-Wattage T5,			
		Residential an	d Commercial	Reduced-Wattage CFL			
Product Description				Reduced-Wattage MH			
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover		
C&I Upstream	6013UPST	0.95	1.05	0.9	1.0		

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is the life of the product, at the reported operating hours (lamp life in hours divided by operating hours per year – see reference table 'LED Component Costs and Lifetimes' for lamp life assumption). The analysis period is the same as the lifetime, capped at 15 years.

Measure Cost

Refer to 'New and Baseline Assumptions' reference tables.

O&M Cost Adjustments

Refer to 'Component Costs and Lifetimes' reference tables.

Baseline shift due to EISA Legislation:

The Screw Based Standard LED measures have a baseline shift due to the EISA legislation. For these measures an annual equivalent O&M baseline cost is calculated in "SMARTLIGHT LED delta watts and EISA Calculation_2013.xls" using the following assumptions:

		Incandescent	EISA 2012-2014 Compliant	EISA 2020 Compliant
	Baseline Lamp Costs	\$0.50	\$1.50	\$5.00
Standard and Decorative	Baseline Lamp Life (hours)	1000	1000	8,000 for Residential 10,000 for Commercial

The result is presented below:

			Annual ba	seline O&M a	ssumption
		LED Wattage	2013	2014	2015
Standard and Decorative	Decidential	<10W	\$1.16	\$1.23	\$1.16
	Kesidentiai	>=10W	\$1.19	\$1.17	\$1.10
	Commondial	<10W	\$13.70	\$14.38	\$12.32
	Commerciai	>=10W	\$14.02	\$12.72	\$11.11

Fossil Fuel Descriptions See algorithm in 'Heating Increased Usage'

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

LED	Screw Base New and Baseline Assump	otions											
Year	EE Measure Description	EE Cost	System WattsEE	Baseline Description	Base Cost	System Watts Base	Measure Cost	Watts SAVE	Measure Code	Default Loadshape Description	Default Space Type	Baseline Shift?	Time Period for Baseline Shift
2012	LED Screw and Pin-based Bulbs, Std < 10W	\$12.00	8.4	Baseline LED Screw and Pin- based Bulbs, Std < 10W	\$0.50	39.4	\$11.50	31.0	LBLSBLED			Y	2014 and 2020
2013	LED Screw and Pin-based Bulbs, Std >= 10W	\$26.00	12.1	Baseline LED Screw and Pin- based Bulbs, Std >= 10W	\$0.50	59.9	\$25.50	47.8	LBLSBLED			Y	2014 and 2020
2014	LED Screw and Pin-based Bulbs, Std < 10W	\$12.00	8.4	Baseline LED Screw and Pin- based Bulbs, Std < 10W	\$1.50	28.8	\$10.50	20.4	LBLSBLED			Y	2020
2014	LED Screw and Pin-based Bulbs, Std >= 10W	\$26.00	12.1	Baseline LED Screw and Pin- based Bulbs, Std >= 10W	\$1.50	43.2	\$24.50	31.1	LBLSBLED	Commercial Indoor Lighting-	Prescriptive	Y	2020
All	LED Screw and Pin-based Bulbs. Decorative <10W	\$21.00	3.6	Baseline LED Screw and Pin- based Bulbs, Decorative < 10W	\$1.00	21.9	\$20.00	18.3	LBLSBLED	Blended or Residential Indoor Lighting	Interior (50% cooled)	N	N/A
All	LED Screw-based Bulbs, Directional, < 15W	\$41.00	9.7	Baseline LED Screw and Pin- based Bulbs, Directional, < 15W	\$5.00	44.3	\$36.00	34.6	LBLSBLED			N	N/A
All	LED Screw-based Bulbs, Directional, >= 15W	\$57.00	16.7	Baseline LED Screw and Pin- based Bulbs, Directional, >= 15W	\$5.00	46.3	\$52.00	29.6	LBLSBLED			N	N/A

High-Performance T8 and Reduced-V	Vattage T	8 New a	nd Baseline Assumption	S						
					System				Default	
		System		Base	Watts	Measure	WattsS	Measure	Loadshape	Default
EE Measure Description	EE Cost	WattsEE	Baseline Description	Cost	Base	Cost	AVE	Code	Description	Space Type
RWT8 - F28T8 Lamp	\$4.50	25	F32T8 Standard Lamp	\$2.50	28	\$2.00	4	LBLRWLT8		
RWT8 - F28T8 Extra Life Lamp	\$4.50	25	F32T8 Standard Lamp	\$2.50	28	\$2.00	4	LBLRWLT8		
RWT8 - F32/25W T8 Lamp	\$4.50	22	F32T8 Standard Lamp	\$2.50	28	\$2.00	6	LBLRWLT8		
RWT8 - F32/25W T8 Lamp Extra Life	\$4.50	22	F32T8 Standard Lamp	\$2.50	28	\$2.00	6	LBLRWLT8	Commercial	Prescriptive
RWT8 - F17T8 Lamp - 2 Foot	\$4.80	14	F17T8 Standard Lamp - 2 foot	\$2.80	16	\$2.00	2	LBLRWLT8	Indoor Lighting-	Interior (50%
RWT8 - F25T8 Lamp - 3 Foot	\$5.10	20	F25T8 Standard Lamp - 3 foot	\$3.10	23	\$2.00	3	LBLRWLT8	Blended	cooled)
RWT8 - F30T8 Lamp - 6" Utube	\$11.31	26	F32T8 Standard Utube Lamp	\$9.31	28	\$2.00	2	LBLRWLT8		
RWT8 - F29T8 Lamp - Utube	\$11.31	26	F32T8 Standard Utube Lamp	\$9.31	28	\$2.00	3	LBLRWLT8		
RWT8 - F96T8 Lamp - 8 Foot	\$9.00	57	F96T8 Standard Lamp - 8 foot	\$7.00	62	\$2.00	5	LBLRWLT8		
Notes: Wattage assumptions for Reduced-Watta	ge T8 base	d on Existi	ng 0.88 Normal Ballast Factor.							

Reduced Wattage T5 New and Baseline Assumptions System Default System Loadshape Default Base Watts Measure WattsS Measure EE Cost WattsEE EE Measure Description Baseline Description Cost Base Cost AVE Code Description Space Type RWT5 - F14T5 Lamp - 2 Foot \$14.00 13 F14T5 Standard Lamp \$12.00 14 \$2.00 1 LBLRWLT5 RWT5 - F21T5 Lamp - 3 Foot \$14.00 20 F21T5 Standard Lamp \$12.00 LBLRWLT5 21 \$2.00 1 RWT5 - F28T5 Lamp - 4 Foot \$14.00 F28T5 Standard Lamp \$12.00 28 \$2.00 2 LBLRWLT5 26 Commercial Prescriptive RWT5 - F35T5 Lamp - 5 Foot LBLRWLT5 \$14.00 33 F35T5 Standard Lamp \$12.00 35 \$2.00 2 Indoor Lighting-Interior (50% \$12.00 RWT5 - F54T5 Lamp - 4 Foot 44W \$14.00 44 F54T5 Standard Lamp 54 \$2.00 10 LBLRWLT5 Blended cooled) RWT5 - F54T5 Lamp - 4 Foot 47W \$14.00 47 F54T5 Standard Lamp \$12.00 54 \$2.00 7 LBLRWLT5 RWT5 - F54T5 Lamp - 4 Foot 49W 49 F54T5 Standard Lamp \$12.00 54 \$2.00 5 LBLRWLT5 \$14.00 RWT5 - F54T5 Lamp - 4 Foot 51W \$14.00 F54T5 Standard Lamp \$12.00 54 \$2.00 3 LBLRWLT5 51

Reduced Wattage Metal Halide New and Baseline Assumptions

					System				Default	
		System		Base	Watts	Measure	WattsS	Measure	Loadshape	Default
EE Measure Description	EE Cost	WattsEE	Baseline Description	Cost	Base	Cost	AVE	Code	Description	Space Type
RWMH - 150 Watt	\$38.00	180	175 Watt MH	\$28.00	205	\$10.00	25	LBLRWMHL		
RWMH - 205 Watt	\$51.00	250	250 Watt MH	\$21.00	295	\$30.00	45	LBLRWMHL		
RWMH - 330 Watt	\$51.00	385	400 Watt MH	\$21.00	455	\$30.00	70	LBLRWMHL	Industrial Indoor	Heating Only
RWMH - 360 Watt	\$36.00	415	400 Watt MH	\$21.00	455	\$15.00	40	LBLRWMHL	Lighting	Heating Only
RWMH - 830 Watt	\$88.00	905	1000 Watt MH	\$48.00	1075	\$40.00	170	LBLRWMHL		
RWMH - 950 Watt	\$68.00	1025	1000 Watt MH	\$48.00	1075	\$20.00	50	LBLRWMHL		

Reduced Wattage Pin Based CFL New and Baseline Assumptions											
		System			Default						
		System		Base	Watts	Measure	WattsS	Measure	Loadshape	Default	
EE Measure Description	EE Cost	WattsEE	Baseline Description	Cost	Base	Cost	AVE	Code	Description	Space Type	
RWCFL - 4 Pin Dulux Supersaver	\$14.80	25	CFL - 4 Pin Dulux	\$12.80	36	\$2.00	11	LBLRWCFL	Commercial		
RWCFL - Pin Based 14 Watt	\$10.70	13	CFL - Pin Based 18 Watt	\$8.70	16	\$2.00	4	LBLRWCFL	Indoor Lighting-	Prescriptive	
RWCFL - Pin Based 21 Watt	\$11.70	19	CFL - Pin Based 26 Watt	\$9.70	23	\$2.00	5	LBLRWCFL	Blended or	Interior (50%	
RWCFL - Pin Based 27 Watt	\$14.80	24	CFL - Pin Based 32 Watt	\$12.80	29	\$2.00	5	LBLRWCFL	Residential	cooled)	
RWCFL - Pin Based 33 Watt	\$14.80	30	CFL - Pin Based 42 Watt	\$12.80	38	\$2.00	8	LBLRWCFL	Indoor Lighting		
LED Screw Base Componen	t Costs	and Life	times								
---	--------------------	-----------------------	--	--------------------------	--------------------------------	-------------------------------------	---------------------------	--------------------------	--------------------------------	-------------------------------------	---------------------------
EE Measure Description	EE Lamp Cost	EE Lamp Life (hrs)	Baseline Description	Base Lamp Cost (1)	Base Lamp Life (hrs) (1)	Base Lamp Rep. Labor Cost (1)	Assumed Technology (1)	Base Lamp Cost (2)	Base Lamp Life (hrs) (2)	Base Lamp Rep. Labor Cost (2)	Assumed Technology (2)
LED Screw and Pin-based Bulbs, Std < 10W	\$12.00	20000	See annu	al levelize	d payment t	able in "O&M	Cost Adjustments" s	ection abo			
LED Screw and Pin-based Bulbs, Std >= 10W	\$26.00	25000		anevenzer	u payment t			ectionabl	ve		
LED Screw and Pin-based Bulbs. Decorative <10W	\$21.00	20000	Baseline LED Screw and Pin-based Bulbs, Decorative < 10W	\$1.00	10000	\$2.67	INC			N/A	
LED Screw-based Bulbs, Directional, < 15W	\$41.00	28000	Baseline LED Screw and Pin-based Bulbs, Directional, < 15W	\$5.00	10000	\$2.67	15% CFL 15W	\$10.00	2500	\$2.67	85% Halogen PAR20
LED Screw-based Bulbs, Directional, >= 15W	\$57.00	44000	Baseline LED Screw and Pin-based Bulbs, Directional, >= 15W	\$5.00	10000	\$2.67	15% CFL 25W	\$10.00	2500	\$2.67	85% Halogen PAR30/38

High-Performance T8 and Re	duced	Wattage	T8 Component Costs and Lifetimes			
	EE	-	-	Base	Base	Base Lamp
	Lamp	EE Lamp		Lamp	Lamp Life	Rep. Labor
EE Measure Description	Cost	Life (hrs)	Baseline Description	Cost	(hrs)	Cost
RWT8 - F28T8 Lamp	\$4.50	30000	F32T8 Standard Lamp	\$2.50	15000	\$2.67
RWT8 - F28T8 Extra Life Lamp	\$4.50	36000	F32T8 Standard Lamp	\$2.50	15000	\$2.67
RWT8 - F32/25W T8 Lamp	\$4.50	30000	F32T8 Standard Lamp	\$2.50	15000	\$2.67
RWT8 - F32/25W T8 Lamp Extra Life	\$4.50	36000	F32T8 Standard Lamp	\$2.50	15000	\$2.67
RWT8 - F17T8 Lamp - 2 Foot	\$4.80	18000	F17T8 Standard Lamp - 2 foot	\$2.80	15000	\$2.67
RWT8 - F25T8 Lamp - 3 Foot	\$5.10	18000	F25T8 Standard Lamp - 3 foot	\$3.10	15000	\$2.67
RWT8 - F30T8 Lamp - 6" Utube	\$11.31	24000	F32T8 Standard Utube Lamp	\$9.31	15000	\$2.67
RWT8 - F29T8 Lamp - Utube	\$11.31	24000	F32T8 Standard Utube Lamp	\$9.31	15000	\$2.67
RWT8 - F96T8 Lamp - 8 Foot	\$9.00	24000	F96T8 Standard Lamp - 8 foot	\$7.00	15000	\$2.67

Reduced Wattage T5 Component Costs and Lifetimes											
	EE			Base	Base	Base Lamp					
	Lamp	EE Lamp		Lamp	Lamp Life	Rep. Labor					
EE Measure Description	Cost	Life (hrs)	Baseline Description	Cost	(hrs)	Cost					
RWT5 - F14T5 Lamp - 2 Foot	\$14.00	30000	F14T5 Standard Lamp	\$12.00	20000	\$2.67					
RWT5 - F21T5 Lamp - 3 Foot	\$14.00	30000	F21T5 Standard Lamp	\$12.00	20000	\$2.67					
RWT5 - F28T5 Lamp - 4 Foot	\$14.00	30000	F28T5 Standard Lamp	\$12.00	20000	\$2.67					
RWT5 - F35T5 Lamp - 5 Foot	\$14.00	30000	F35T5 Standard Lamp	\$12.00	20000	\$2.67					
RWT5 - F54T5 Lamp - 4 Foot 44W	\$14.00	30000	F54T5 Standard Lamp	\$12.00	20000	\$2.67					
RWT5 - F54T5 Lamp - 4 Foot 47W	\$14.00	30000	F54T5 Standard Lamp	\$12.00	20000	\$2.67					
RWT5 - F54T5 Lamp - 4 Foot 49W	\$14.00	30000	F54T5 Standard Lamp	\$12.00	20000	\$2.67					
RWT5 - F54T5 Lamp - 4 Foot 51W	\$14.00	30000	F54T5 Standard Lamp	\$12.00	20000	\$2.67					

Reduced Wattage Metal Halide Component Costs and Lifetimes											
	EE			Base	Base	Base Lamp					
	Lamp	EE Lamp		Lamp	Lamp Life	Rep. Labor					
EE Measure Description	Cost	Life (hrs)	Baseline Description	Cost	(hrs)	Cost					
RWMH - 150 Watt	\$38.00	10000	175 Watt MH	\$28.00	10000	\$2.67					
RWMH - 205 Watt	\$51.00	20000	250 Watt MH	\$21.00	10000	\$2.67					
RWMH - 330 Watt	\$51.00	20000	400 Watt MH	\$21.00	20000	\$2.67					
RWMH - 360 Watt	\$36.00	20000	400 Watt MH	\$21.00	20000	\$2.67					
RWMH - 830 Watt	\$88.00	18000	1000 Watt MH	\$48.00	15000	\$2.67					
RWMH - 950 Watt	\$68.00	18000	1000 Watt MH	\$48.00	15000	\$2.67					

Reduced Wattage Pin Based	CFL Co	omponer	nt Costs and Lifetimes			
_	EE			Base	Base	Base Lamp
	Lamp	EE Lamp		Lamp	Lamp Life	Rep. Labor
EE Measure Description	Cost	Life (hrs)	Baseline Description	Cost	(hrs)	Cost
RWCFL - 4 Pin Dulux Supersaver	\$14.80	20000	CFL - 4 Pin Dulux	\$12.80	10000	\$2.67
RWCFL - Pin Based 14 Watt	\$10.70	12000	CFL - Pin Based 18 Watt	\$8.70	10000	\$2.67
RWCFL - Pin Based 21 Watt	\$11.70	12000	CFL - Pin Based 26 Watt	\$9.70	10000	\$2.67
RWCFL - Pin Based 27 Watt	\$14.80	16000	CFL - Pin Based 32 Watt	\$12.80	10000	\$2.67
RWCFL - Pin Based 33 Watt	\$14.80	16000	CFL - Pin Based 42 Watt	\$12.80	10000	\$2.67

LED Lighting Systems

Measure Number: I-C-22-i (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft Portfolio:Portfolio 86Effective date:1/1/2014End date:TBD

Referenced Documents:

- 1) LED Lighting TRM Assumptions 2014_Final.xlsx
- 2) LED Refrig Lighting ERCO_Talking_Pointsv3.pdf
- 3) 2008-2010 LED Measure Data and Aggregation.xls
- 4) WasteHeatAdjustment.doc
- 5) LED Standard Decorative Delta Watts Calculation.xls
- 6) "Calculating lighting and HVAC interactions", ASHRAE Journal November 1993
- 7) 2009 ASHRAE Handbook Fundamentals
- 8) NEEP DLC QPL 2.21.2014.xls & NEEP DLC QPL 9.17.2014

Description

LED lighting systems have source efficacies (lumens per watt) that can match or exceed efficacies of incandescent, compact fluorescent, linear fluorescent and HID lighting. In addition, LED's inherent directionality reduces or eliminates the need for a reflector to direct light, thereby reducing or eliminating fixture efficiency losses. This inherent directionality can also be used to provide better uniformity and eliminate hot spots under fixtures, as often occurs with outdoor HID lighting. By eliminating hot spots, further reductions in energy are realized. Eligible fixtures and lamps must be ENERGY STAR labeled, listed on the DesignLights Consortium Qualified Products List, or pass the Efficiency Vermont photometric criteria on Lighting Facts. Eligible measures include new and replacement.

Algorithms Demand Sa ∆kW	vings	= ((Watts _{BASE} – Watts _{EE}) / 1000) × ISR × WHF _d
Energy Sav ∆kWh	ings	= ((Watts _{BASE} – Watts _{EE}) / 1000) × HOURS × ISR × WHF _e
Where:		
Δk	W	= gross customer connected load kW savings for the measure
Wa	utts _{BASE}	= Baseline connected kW from table located in Reference Tables section.
Wa	itts _{FE}	= Energy efficient connected kW from table located in Reference Tables section.
ISF	2	= In service rate, or the percentage of units rebated that actually get used. For prescriptive measures, this is assumed to be 98%. ¹²⁹
WH	-IF _d	= Waste heat factor for demand to account for cooling savings from efficient
	-	lighting. For prescriptive lighting in existing buildings, the default value is 1.082
		$(\text{calculated as } 1 + (0.47*0.67*.808) / 3.1))^{130}$. For prescriptive lighting in new
		buildings, the value is 1.084 (calculated as $1 + (0.47*0.67*.808)/(3.4))^{131}$. The cooling
		savings are only added to the summer peak savings. For refrigerated case lighting, the
		value is 1.29 (calculated as $(1 + (1.0 / 3.5)))$). Based on the assumption that all lighting

¹²⁹ 2005 TAG agreement.

¹³⁰ Based on the following assumptions: 3.1 COP typical cooling system efficiency for existing buildings; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

¹³¹ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new buildings. See WasteHeatAdjustment.doc for additional discussion.

	in refrigerated cases is mechanically cooled, with a typical 3.5 ¹³² COP refrigeration
	system efficiency, and assuming 100% of lighting heat needs to be mechanically
	cooled at time of summer peak. For freezer case lighting, the value is 1.50 (calculated
	as $(1 + (1.0 / 2.0)))$. Based on the assumption that all lighting in freezer cases is
	mechanically cooled, with a typical 2.0 COP ¹³⁵ freezer system efficiency, and
	assuming 100% of lighting needs to be mechanically cooled at time of summer peak.
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= annual lighting hours of use per year; collected from prescriptive application form. If
	operating hours are not available, then the value will be selected from the table
	'Operating Hours by Building Type' in the reference tables section of this document.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For
	prescriptive lighting in existing buildings, the default value is 1.033 (calculated as 1 +
	$((0.47*0.29*.75) / 3.1))^{134}$. For prescriptive lighting in new buildings, the value is
	1.030 (calculated as $1 + ((0.47*0.29*.75) / 3.4))^{135}$. For refrigerated case lighting, the
	value is 1.29 (calculated as $(1 + (1.0 / 3.5)))$). Based on the assumption that all lighting
	in refrigerated cases is mechanically cooled, with a typical 3.5^{132} COP refrigeration
	system efficiency, and assuming 100% of lighting heat needs to be mechanically
	cooled at time of summer neak. For freezer case lighting, the value is 1.50 (calculated
	as $(1 + (10/20)))$ Based on the assumption that all lighting in freezer cases is
	machanically cooled with a typical 2.0 COP^{133} frequer system afficiency, and
	assuming 100% of lighting poads to be machanically cooled at time of summar poak
	assuming 100% of nghung needs to be meenanicany cooled at time of summer peak.

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF).

Heating ∆MMB7	; Increased Usage ГU _{WH}	= $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$
Where:		
	$\Delta MMBTU_{WH}$	= gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
	0.003413	= conversion from kWh to MMBTU
	OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{136}$.
	AR	= Typical aspect ratio factor. ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of building within 15 feet of exterior wall.
	HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont ^{137}
	DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
	HEff	= Average heating system efficiency, For prescriptive lighting, assumed to be 79% in existing buildings and 83 % in new Construction ¹³⁸ .

Oil heating is assumed typical for commercial buildings.

buildings. See WasteHeatAdjustment.doc for additional discussion.

¹³² Assumes 3.5 COP for medium temp cases based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of 20°F and a condensing temperature of 90°F.

¹³³ Assumes 2.0 COP for low temp cases based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F and a condensing temperature of 90°F.

 ¹³⁴ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.
 ¹³⁵ Based on the same assumptions used for existing buildings, except 3.4 COP typical cooling system efficiency for new

¹³⁶ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

¹³⁷ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

¹³⁸ See WasteHeatAdjustment.doc.

Baseline and High Efficiencies

Refer to reference tables listed below for baseline wattage assumptions ¹³⁹

Operating Hours

Operating hours will be collected from the prescriptive application form or from the table of hours by building type located in the reference tables section of this document.

Loadshape

For Interior lighting applications, # 12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings.

For Exterior lighting applications, #13 (Commercial Outdoor Lighting)

For refrigerated and freezer case lighting applications, # 87 (Grocery/Conv. Store Indoor Lighting) for demand and lighting energy savings and #14 (Commercial Refrigeration) for refrigeration and freezer (cooling bonus) energy savings.

Freeridership/Spillover Factors

Measure Category		Lighting H	Lighting Hardwired Fixture				
		LFHRDL	ED, LFHSDLED,				
		LFHORL	ED, LFHODLED,				
		LFHOWL	LFHOWLED, LFHPGLED,				
		LFHOBL	ED, LFHOSLED,				
		LFHOPLE	ED, LFHWWLED,				
		LFHDHL	ED, LFHPTLED,				
		LFHUSLI	ED, LFHRCLED,				
		LFHFLLI	ED, LBLSBLED,				
		LFHFCLI	ED, LFHDCLED,				
		LFH22L	ED, LFH24LED,				
		LFH14LED, LFHHBLED,					
Measure Code		LBL4TLED					
Product Description		LED Lighting System					
Track Name	Track No.	Freerider	Spillover				
C&I Retrofit	6012CNIR	0.95	1.05				
Cust Equip Rpl	6013CUST	0.95	1.05				
Pres Equip Rpl	6013PRES	0.95	1.05				
C&I NC Cust	6014CUST	0.95	1.05				
C&I NC Pres	6014PRES	0.95	1.05				
LIMF NC	6018LINC	0.95	1.05				
MF Mkt NC	6019MFNC	0.95	1.05				

Persistence

The persistence factor is assumed to be one for all measures.

¹³⁹ See the file LED Lighting TRM Assumptions 2011-2012.xlsx for details. Baseline assumptions for all measures except "LED Screw and Pin-based Bulbs, Std and Decorative", "LED 2x and 1x Recessed Light Fixtures", and "LED High- and Low-Bay Fixtures" are based on analysis of actual EVT installations of LED lighting. See the file 2008-2010 LED Measure Data and Aggregation.xls for more details of that analysis. Baseline assumption for "LED Screw and Pin-based Bulbs, Std and Decorative" based on a blend of Decorative and Standard Screw-based lamps, using assumptions consistent with the Efficient Products characterization of these measures. See the file LED Standard Decorative Delta Watts Calculation.xls for more details. Baseline assumptions for "LED 12x and 1x Recessed Light Fixtures", and "LED High- and Low-Bay Fixtures" based on average watts of DLC qualified products as of 11/21/11. See the file NEEP DLC QPL 11.21.11.xls for more details.

Lifetimes

For Fixtures: 15 years Analysis period is the same as lifetime.

For Screw-base lamps:

Lifetime is the life of the product, at the reported operating hours (lamp life in hours divided by operating hours per year – see reference table 'LED Component Costs and Lifetimes' for LED lamp life assumption). The analysis period is the same as the lifetime, capped at 15 years.

Measure Cost

Refer to reference tables listed below for measure cost data¹⁴⁰.

Fossil Fuel Descriptions

See algorithm in 'Heating Increased Usage'

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Interior Lighting Operating Hours by Building Type

Building Type	Annual Hours
Grocery/Convenience Store	6,019
Hospital	4,007
K-12 Schools	2,456
Lodging/Hospitality	4,808
Manufacturing	4,781
Office	3,642
Public Assembly	3,035
Public Safety	3,116
Religious	2,648
Restaurant	4,089
Retail	4,103
Service	3,521
University/College	3,416
Warehouse	4,009
From <u>C&I Lighting Load Shape Project FINAL Report</u> , July 19, 2011, pr NEEP. See document NEEP CI Lighting LS FINAL Report_ver 5_7-19-	epared by KEMA for 11.pdf

¹⁴⁰ See reference file LED Lighting TRM Assumptions 2014_Final.xlsx for details.

LED New and Baseline Assumptions		1		-				
LED Measure Description	WattsEE	Basis for WattsEE	Baseline Description	Watts BASE	Basis for WattsBASE	Delta Watts	Incremental Cost	Measure Code
LED Recessed, Surface, Pendant Downlights	17.6	2008-2010 EVT Historical Data of 947 Measures	Baseline LED Recessed, Surface, Pendant Downlights	54.3	2008-2010 EVT Historical Data of 947 Measures	36.7	\$50.00	LFHRDLED
LED Track Lighting	12.2	2008-2010 EVT Historical Data of 947 Measures	Baseline LED Track Lighting	60.4	2008-2010 EVT Historical Data of 242 Measures	48.2	\$100.00	LFHDHLED
LED Wall-Wash Fixtures	8.3	2008-2010 EVT Historical Data of 947 Measures	Baseline LED Wall-Wash Fixtures	17.7	2008-2010 EVT Historical Data of 220 Measures	9.4	\$80.00	LFHWWLED
LED Portable Desk/Task Light Fixtures	7.1	2008-2010 EVT Historical	Baseline LED Portable Desk/Task Light	36.2	2008-2010 EVT Historical Data	29.1	\$50.00	LFHPTLED
LED Undercabinet Shelf-Mounted Task Light Fixtures	7.1 per ft	2008-2010 EVT Historical Data of 947 Measures	Baseline LED Undercabinet Shelf- Mounted Task Light Fixtures	36.2 per ft	2008-2010 EVT Historical Data of 21 Measures	29.1 per ft	\$25.00/ft	LFHUSLED
LED Surface & Suspended Linear Fixture, <= 1000 lumens/ft	7.7 per ft	QPL (#18-21) and LightingFacts lists as of 2/21/2014	1,2 lamp F32T8, 1,2 lamp F28T5, 1 lamp F54T5HO	12.3 per ft	Typical operating wattage for lumen equivalent baseline.	4.6 per ft	\$25.00/ft	LFHSLLED
LED Surface & Suspended Linear Fixture, > 1000 lumens/ft	15.4 per ft	DLC Qualifying meaures from QPL (#18-21) and LightingFacts lists as of 2/21/2014	3 lamp F32T8, 3 lamp F28T5, 2,3 lamp F54T5HO	30.3 per ft	Typical operating wattage for lumen equivalent baseline.	14.9 per ft	\$50.00/ft	LFHSLLED
LED Refrigerated Case Light, Horizontal or Vertical	7.6 per ft	PG&E Refrigerated Case Study normalized to per foot	Baseline LED Refrigerated Case Light, Horizontal or Vertical (per foot)	15.2 per ft	PG&E Refrigerated Case Study	7.6 per ft	\$50.00/ft	LFHRCLED
LED Freezer Case Light. Horizontal or Vertical	7.7 per ft	PG&E Refrigerated Case Study	Baseline LED Freezer Case Light,	18.7 per ft	PG&E Refrigerated Case Study	11.0 per ft	\$50.00/ft	LFHFCLED
		normalized to per foot. Modeled after LED	Horizontal or Vertical (per foot)		normalized to per foot. Modeled after LED Undercabinet			
LED Display Case Light Fixture	7.1 per ft	Undercabinet Shelf-Mounted Task Light Fixtures (per foot) Average wattage of DLC	Baseline LED Display Case Light Fixture	36.2 per ft	Shelf-Mounted Task Light Fixtures (per foot)	29.1 per ft	\$25.00/ft	LFHDCLED
LED 2x2 Recessed Light Fixture, 1500-3000 Im	32.3	qualified products as of 12/12/2013	T8 U-Tube 2L-FB32 w/ Elec - 2'	59.0	Typical operating wattage for lumen equivalent T8 fixture	26.7	\$36.00	LFH22LED
LED 2x2 Recessed Light Fixture, 3001-4500 Im	38.9	qualified products as of 12/12/2013	T8 U-Tube 3L-FB32 w/ Elec - 2'	88.0	Typical operating wattage for lumen equivalent T8 fixture	49.1	\$105.00	LFH22LED
LED 2x4 Recessed Light Fixture, 2500-4000 Im	36.0	Average wattage of DLC qualified products as of 12/12/2013	T8 2L-F32 w/ Elec - 4'	59.0	Typical operating wattage for lumen equivalent T8 fixture	23.0	\$86.00	LFH24LED
LED 2x4 Recessed Light Fixture, 4001-5500 Im	49.7	Average wattage of DLC qualified products as of 12/12/2013	T8 3L-F32 w/ Elec - 4'	88.0	Typical operating wattage for lumen equivalent T8 fixture	38.3	\$155.00	LFH24LED
LED 2x4 Recessed Light Fixture, 5501-7000 Im	68.2	Average wattage of DLC qualified products as of 12/12/2013	T8 4L-F32 w/ Elec - 4'	114.0	Typical operating wattage for lumen equivalent T8 fixture	45.8	\$224.00	LFH24LED
LED 1x4 Recessed Light Fixture, 1000-2500 Im	24.8	Average wattage of DLC qualified products as of 12/12/2013	T8 1L-F32 w/ Elec - 4'	32.0	Typical operating wattage for lumen equivalent T8 fixture	7.2	\$16.00	LFH14LED
LED 1x4 Recessed Light Fixture, 2501-4000 Im	35.7	Average wattage of DLC qualified products as of 12/12/2013	T8 2L-F32 w/ Elec - 4'	59.0	Typical operating wattage for lumen equivalent T8 fixture	23.3	\$86.00	LFH14LED
LED 1x4 Recessed Light Fixture, 4001-5500 Im	48.7	Average wattage of DLC qualified products as of 12/12/2013	T8 3L-F32 w/ Elec - 4'	88.0	Typical operating wattage for lumen equivalent T8 fixture	39.3	\$155.00	LFH14LED
LED 4' Linear Replacement Lamp	19.5	Average wattage of DLC qualified products as of 12/12/2013	T8 F32 w/ Elec - 4' - per lamp	29.1	Weighted average for historic EVT distribution of T8 fixtures	9.6	\$71.00	LBL4TLED
LED High- and Low-Bay Fixtures	148.7	Based on weighted average watts of DLC qualified products in three size categories as of 9/17/2014	T8HO high bay fixtures (4 to 8 lamps)	254.8	Weighted average of typical operating wattage for 4, 6, and 8- lamp T8HO high bay fixtures	106.1	\$200.00	LFHHBLED
LED Outdoor Pole/Arm Mounted Parking/Roadway, < 30W	18.6	2008-2010 EVT Historical Data of 2,813 Measures	Baseline LED Outdoor Pole/Arm Mounted Parking/Roadway, < 30W	124.3	2008-2010 EVT Historical Data of 2,813 Measures	105.7	\$125.00	LFHORLED
LED Outdoor Pole/Arm Mounted Parking/Roadway, 30W - 75W	52.5	2008-2010 EVT Historical Data of 1,081 Measures	Baseline LED Outdoor Pole/Arm Mounted Parking/Roadway, 30W - 75W	182.9	2008-2010 EVT Historical Data of 1,081 Measures	130.4	\$250.00	LFHORLED
LED Outdoor Pole/Arm Mounted Parking/Roadway, >= 75W	116.8	2008-2010 EVT Historical Data of 806 Measures	Baseline LED Outdoor Pole/Arm Mounted Parking/Roadway, >= 75W	361.4	2008-2010 EVT Historical Data of 806 Measures	244.6	\$375.00	LFHORLED
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, < 30W	18.6	2008-2010 EVT Historical Data of 2,813 Measures	Baseline LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, < 30W	124.3	2008-2010 EVT Historical Data of 2,813 Measures	105.7	\$125.00	LFHODLED
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, 30W - 75W	52.5	2008-2010 EVT Historical Data of 1,081 Measures	Baseline LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, 30W - 75W	182.9	2008-2010 EVT Historical Data of 1,081 Measures	130.4	\$250.00	LFHODLED
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, >= 75W	116.8	2008-2010 EVT Historical Data of 806 Measures	Baseline LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, >= 75W	361.4	2008-2010 EVT Historical Data of 806 Measures	244.6	\$375.00	LFHODLED
LED Parking Garage/Canopy, < 30W	18.6	2008-2010 EVT Historical Data of 2,813 Measures	Baseline LED Parking Garage/Canopy, < 30W	124.3	2008-2010 EVT Historical Data of 2.813 Measures	105.7	\$125.00	LFHPGLED
LED Parking Garage/Canopy, 30W - 75W	52.5	2008-2010 EVT Historical	Baseline LED Parking Garage/Canopy,	182.9	2008-2010 EVT Historical Data	130.4	\$250.00	LFHPGLED
LED Darking Caracter Connection 2511	110.0	Data of 1,081 Measures 2008-2010 EVT Historical	30W - 75W Baseline LED Parking Garage/Canopy.	364.5	ot 1,081 Measures 2008-2010 EVT Historical Data	244.5	6375.00	IEUDOLED
LED Farking Garage/Canopy, >= /5W	110.8	Data of 806 Measures	>= 75W	301.4	of 806 Measures	244.0	\$375.00	LEARCHER
LED Wall-Mounted Area Lights, < 30W	18.6	Data of 2,813 Measures	Lights, < 30W	124.3	of 2,813 Measures	105.7	\$125.00	LFHOWLED
LED Wall-Mounted Area Lights, 30W - 75W	52.5	2008-2010 EVT Historical Data of 1.081 Measures	Baseline LED Wall-Mounted Area Lights. 30W - 75W	182.9	2008-2010 EVT Historical Data of 1.081 Measures	130.4	\$250.00	LFHOWLED
LED Wall-Mounted Area Lights, >= 75W	116.8	2008-2010 EVT Historical	Baseline LED Wall-Mounted Area	361.4	2008-2010 EVT Historical Data	244.6	\$375.00	LFHOWLED
LED Bollard. < 30W	13.9	2008-2010 EVT Historical	Baseline LED Bollard. < 30W	54.3	2008-2010 EVT Historical Data	40.4	\$150.00	LEHOBIED
	44.0	Data of 33 Measures 2008-2010 EVT Historical	Develop ICD Dellevitic DOM	70.0	of 33 Measures 2008-2010 EVT Historical Data	27.0		15100150
LED Bollard, >= 30W	41.0	Data of 15 Measures	Baseline LED Bollard, >= 30W	78.0	of 15 Measures	37.0	\$250.00	THORFD
LED Flood and Spot Light, < 1000 lumens	13.0	Average wattage of products in the Lighting Facts database (insufficient DLC data)	Baseline LED Flood Light, <= 1000 Iumens	52.5	Typical operating wattage for lumen equivalent PAR38 EISA compliant bulb	39.5	\$150.00	LFHFLLED
LED Flood and Spot Light, 1000-4000 lumens	32.3	Average wattage of products in the Lighting Facts database (insufficient DLC data)	Baseline LED Flood Light, 1001-4000 Iumens	108.7	Typical operating wattage for lumen equivalent PAR38 EISA compliant bulb	76.4	\$245.00	LFHFLLED
LED Flood and Spot Light, > 4000 lumens	107.5	Average wattage of products in the Lighting Facts database (insufficient DLC data)	Baseline LED Flood Light, > 4000 Iumens	205.0	Typical operating wattage for lumen equivalent metal halide flood fixture.	97.5	\$315.00	LFHFLLED

LED Component Costs and	Lifetimes											
LED Measure Description	LED Minimum Lamp Life (hrs)	LED Lamp Cost	LED Lamp Replacement Time (min)	LED Lamp Replacement Rate (\$/hr)	LED Lamp Rep. Labor Cost	LED Lamp Cost Total	LED Driver Life (hrs)	LED Driver Cost	LED Driver Replacement Time (min)	LED Driver Replaceme nt Rate (\$/hr) _▼	LED Driver Rep. Labor Cost	LED Driver Cost Total
LED Recessed, Surface, Pendant Downlights	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Track Lighting	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Wall-Wash Fixtures	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Portable Desk/Task Light Fixtures	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Undercabinet Shelf- Mounted Task Light Fixtures	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Surface & Suspended Linear Fixture, <= 1000 lumens/ft	50,000	\$14.67/ft	7.5 per ft	\$45.00	\$5.63/ft	\$20.29/ft	70,000	\$6.25/ft	7.5 per ft	\$45.00	\$5.63/ft	\$11.88/ft
LED Surface & Suspended Linear Fixture, >1000 lumens/ft	50,000	\$30.88/ft	7.5 per ft	\$45.00	\$5.63/ft	\$36.51/ft	70,000	\$6.25/ft	7.5 per ft	\$45.00	\$5.63/ft	\$11.88/ft
LED Refrigerated Case Light, Horizontal or Vertical	50,000	\$5.00/ft	6.0 per ft	\$45.00	\$4.50/ft	\$9.50/ft	70,000	\$5.00/ft	6.0 per ft	\$45.00	\$4.50/ft	\$9.50/ft
LED Freezer Case Light, Horizontal or Vertical	50,000	\$5.00/ft	5.0 per ft	\$45.00	\$3.75/ft	\$8.75/ft	70,000	\$4.17/ft	5.0 per ft	\$45.00	\$3.75/ft	\$7.92/ft
LED Display Case Light Fixture	35,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$6.25	30	\$45.00	\$22.50	\$28.75
LED 2x2 Recessed Light Fixture, 1500-3000 Im	50,000	\$45.00	30	\$45.00	\$22.50	\$67.50	70,000	\$25.00	20	\$45.00	\$15.00	\$40.00
LED 2x2 Recessed Light Fixture, 3001-4500 Im	50,000	\$76.00	30	\$45.00	\$22.50	\$98.50	70,000	\$25.00	20	\$45.00	\$15.00	\$40.00
LED 2x4 Recessed Light Fixture, 2500-4000 lm	50,000	\$66.00	30	\$45.00	\$22.50	\$88.50	70,000	\$25.00	20	\$45.00	\$15.00	\$40.00
LED 2x4 Recessed Light Fixture, 4001-5500 lm	50,000	\$96.00	30	\$45.00	\$22.50	\$118.50	70,000	\$25.00	20	\$45.00	\$15.00	\$40.00
LED 2x4 Recessed Light Fixture, 5501-7000 lm	50,000	\$126.00	30	\$45.00	\$22.50	\$148.50	70,000	\$25.00	20	\$45.00	\$15.00	\$40.00
LED 1x4 Recessed Light Fixture, 1000-2500 Im	50,000	\$35.00	30	\$45.00	\$22.50	\$57.50	70,000	\$25.00	20	\$45.00	\$15.00	\$40.00
LED 1x4 Recessed Light Fixture, 2501-4000 lm	50,000	\$66.00	30	\$45.00	\$22.50	\$88.50	70,000	\$25.00	20	\$45.00	\$15.00	\$40.00
LED 1x4 Recessed Light Fixture, 4001-5500 lm	50,000	\$96.00	30	\$45.00	\$22.50	\$118.50	70,000	\$25.00	20	\$45.00	\$15.00	\$40.00
LED 4' Linear Replacement Lamp	50,000	\$20.00	8	\$20.00	\$2.67	\$22.67	70,000	\$9.90	20	\$45.00	\$5.17	\$15.07
LED High- and Low-Bay Fixtures	35,000	\$75.00	30	\$75.00	\$37.50	\$112.50	70,000	\$25.00	30	\$75.00	\$37.50	\$62.50
LED Outdoor Pole/Arm Mounted Parking/Roadway, < 30W	50,000	\$25.00	30	\$75.00	\$37.50	\$62.50	70,000	\$25.00	30	\$75.00	\$37.50	\$62.50
LED Outdoor Pole/Arm Mounted Parking/Roadway, 30W - 75W	50,000	\$50.00	30	\$75.00	\$37.50	\$87.50	70,000	\$25.00	30	\$75.00	\$37.50	\$62.50
LED Outdoor Pole/Arm Mounted Parking/Roadway, >= 75W	50,000	\$75.00	30	\$75.00	\$37.50	\$112.50	70,000	\$25.00	30	\$75.00	\$37.50	\$62.50
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, < 30W	50,000	\$25.00	30	\$75.00	\$37.50	\$62.50	70,000	\$25.00	30	\$75.00	\$37.50	\$62.50
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, 30W - 75W	50,000	\$50.00	30	\$75.00	\$37.50	\$87.50	70,000	\$25.00	30	\$75.00	\$37.50	\$62.50
LED Outdoor Pole/Arm Mounted Decorative Parking/Roadway, >= 75W	50,000	\$75.00	30	\$75.00	\$37.50	\$112.50	70,000	\$25.00	30	\$75.00	\$37.50	\$62.50
30W	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Parking Garage/Canopy, 30W - 75W	50,000	\$50.00	30	\$45.00	\$22.50	\$72.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Parking Garage/Canopy, >= 75W	50,000	\$75.00	30	\$45.00	\$22.50	\$97.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Wall-Mounted Area Lights, < 30W	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Wall-Mounted Area Lights, 30W - 75W	50,000	\$50.00	30	\$45.00	\$22.50	\$72.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Wall-Mounted Area Lights, >= 75W	50,000	\$75.00	30	\$45.00	\$22.50	\$97.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Bollard, < 30W	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Bollard, >= 30W	50,000	\$50.00	30	\$45.00	\$22.50	\$72.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Flood and Spot Light, < 1000 lumens	50,000	\$25.00	30	\$45.00	\$22.50	\$47.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Flood and Spot Light, 1000- 4000 lumens	50,000	\$50.00	30	\$45.00	\$22.50	\$72.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50
LED Flood and Spot Light, > 4000 lumens	50,000	\$75.00	30	\$45.00	\$22.50	\$97.50	70,000	\$25.00	30	\$45.00	\$22.50	\$47.50

Baseline Component Co	sts and Life	times																	
Baseline Technology (1)	Number of Lamps	Lamp (1) Life (hrs)	Lamp (1) Cost	Lamp (1) Replacement Time (min)	Lamp (1) Replaceme nt Rate (\$/hr)	Lamp (1) Rep. Labor Cost	Lamp (1) Rep. Recycle Cost	Ballast (1) Life (hrs)	Ballast (1) Cost	Ballast (1) Replacement Time (min)	Ballast (1) Replacemen t Rate (\$/hr)	Ballast (1) Rep. Labor Cost	Ballast (1) Rep. Disposal Cost	Baeline Technolog y (2)	Lamp (2) Life (hrs)	Lamp (2) Cost	Lamp (2) Replacement Time (min)	Lamp (2) Replaceme nt Rate (\$/hr)	Lamp (2) Rep. Labor Cost
40% CFL 26W Pin Base		10,000	\$9.70	8.0	\$20.00	\$2.67	\$0.25	40,000	\$16.00	20.0	\$45.00	\$15.00	\$5.00	60% Halogen PAR30/38	2,500	\$10.00	8.0	\$20.00	\$2.67
10% CMH PAR38		12,000	\$60.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$90.00	20.0	\$45.00	\$15.00	\$5.00	90% Halogen PAR38	2,500	\$10.00	8.0	\$20.00	\$2.67
40% CFL 42W Pin Base		10,000	\$12.80	8.0	\$20.00	\$2.67	\$0.25	40,000	\$47.50	20.0	\$45.00	\$15.00	\$5.00	60% Halogen PAR38	2,500	\$10.00	8.0	\$20.00	\$2.67
50% 13W CFL Pin Base		10,000	\$2.60	8.0	\$20.00	\$2.67	\$0.25	40,000	\$5.00	20.0	\$45.00	\$15.00	\$5.00	50% 50W Halogen	2,500	\$10.00	8.0	\$20.00	\$2.67
50% 2' T5 Linear		7,500	\$7.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$25.00	20.0	\$45.00	\$15.00	\$5.00	50% 50W Halogen	2,500	\$10.00	8.0	\$20.00	\$2.67
T8 2L-F32 w/ Elec - 4'	2	15,000	\$1.25/ft	4.0 per ft	\$20.00	\$1.33/ft	\$0.25/ft	40,000	\$3.75/ft	5.0 per ft	\$45.00	\$3.75/ft	\$1.25/ft	N/A	N/A	N/A	N/A	N/A	N/A
T8 3L-F32 w/ Elec - 4'	3	15,000	\$1.88/ft	6.0 per ft	\$20.00	\$2.00/ft	\$0.38/ft	40,000	\$3.75/ft	5.0 per ft	\$45.00	\$3.75/ft	\$1.25/ft	N/A	N/A	N/A	N/A	N/A	N/A
5' T8		15,000	\$0.50/ft	1.6 per ft	\$20.00	\$0.53/ft	\$0.10/ft	40,000	\$4.00/ft	6.0 per ft	\$45.00	\$4.50/ft	\$1.00/ft	N/A	N/A	N/A	N/A	N/A	N/A
6' T12HO		12,000	\$0.42/ft	1.3 per ft	\$20.00	\$0.44/ft	\$0.08/ft	40,000	\$3.33/ft	5.0 per ft	\$45.00	\$3.75/ft	\$0.83/ft	N/A	N/A	N/A	N/A	N/A	N/A
50% 2' T5 Linear		7,500	\$7.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$25.00	20.0	\$45.00	\$15.00	\$5.00	50% 50W Halogen	2,500	\$10.00	8.0	\$20.00	\$2.67
T8 U-Tube 2L-FB32 w/ Elec - 2'	2	15,000	\$18.62	16.0	\$20.00	\$5.33	\$1.00	40,000	\$32.00	20.0	\$45.00	\$15.00	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
T8 U-Tube 3L-FB32 w/ Elec - 2'	3	15,000	\$27.93	24.0	\$20.00	\$8.00	\$1.50	40,000	\$15.00	20.0	\$45.00	\$15.00	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
T8 2L-F32 w/ Elec - 4'	2	15,000	\$5.00	16.0	\$20.00	\$5.33	\$1.00	40,000	\$15.00	20.0	\$45.00	\$15.00	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
T8 3L-F32 w/ Elec - 4'	3	15,000	\$7.50	24.0	\$20.00	\$8.00	\$1.50	40,000	\$15.00	20.0	\$45.00	\$15.00	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
T8 4L-F32 w/ Elec - 4'	4	15,000	\$10.00	32.0	\$20.00	\$10.67	\$2.00	40,000	\$15.00	20.0	\$45.00	\$15.00	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
T8 1L-F32 w/ Elec - 4'	1	15,000	\$2.50	8.0	\$20.00	\$2.67	\$0.50	40,000	\$15.00	20.0	\$45.00	\$15.00	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
T8 2L-F32 w/ Elec - 4'	2	15,000	\$5.00	16.0	\$20.00	\$5.33	\$1.00	40,000	\$15.00	20.0	\$45.00	\$15.00	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
T8 3L-F32 w/ Elec - 4'	3	15,000	\$7.50	24.0	\$20.00	\$8.00	\$1.50	40,000	\$15.00	20.0	\$45.00	\$15.00	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
T8 F32 w/ Elec - 4' - per lamp	1	15,000	\$2.50	8.0	\$20.00	\$2.67	\$0.50	40,000	\$9.90	20.0	\$45.00	\$5.17	\$1.92	N/A	N/A	N/A	N/A	N/A	N/A
6-lamp T8HO	6	20,000	\$66.00	30.0	\$75.00	\$37.00	\$3.00	70,000	\$45.00	42.0	\$75.00	\$52.50	\$15.00	N/A	N/A	N/A	N/A	N/A	N/A
100W MH		10,000	\$34.00	16.0	\$75.00	\$20.00	\$0.25	40,000	\$124.20	30.0	\$75.00	\$37.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
175W MH		10,000	\$28.00	16.0	\$75.00	\$20.00	\$0.25	40,000	\$67.50	30.0	\$75.00	\$37.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
250W MH		10,000	\$21.00	16.0	\$75.00	\$20.00	\$0.25	40,000	\$87.75	30.0	\$75.00	\$37.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
100W MH		10,000	\$34.00	16.0	\$75.00	\$20.00	\$0.25	40,000	\$124.20	30.0	\$75.00	\$37.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
175W MH		10,000	\$28.00	16.0	\$75.00	\$20.00	\$0.25	40,000	\$67.50	30.0	\$75.00	\$37.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
250W MH		10,000	\$21.00	16.0	\$75.00	\$20.00	\$0.25	40,000	\$87.75	30.0	\$75.00	\$37.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
100W MH		10,000	\$34.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$124.20	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
175W MH		10,000	\$28.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$67.50	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
250W MH		10,000	\$21.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$87.75	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
100W MH		10,000	\$34.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$124.20	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
175W MH		10,000	\$28.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$67.50	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
250W MH		10,000	\$21.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$87.75	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
50W MH		10,000	\$34.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$108.00	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
70W MH		10,000	\$34.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$115.00	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A
Halogen PAR38		2,500	\$10.00	8.0	\$20.00	\$2.67	\$0.25	0	0	\$0.00	0.0	\$0.00	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A
Halogen PAR38		2,500	\$10.00	8.0	\$20.00	\$2.67	\$0.25	0	0	\$0.00	0.0	\$0.00	\$0.00	N/A	N/A	N/A	N/A	N/A	N/A
175W MH		10,000	\$28.00	8.0	\$20.00	\$2.67	\$0.25	40,000	\$67.50	30.0	\$45.00	\$22.50	\$5.00	N/A	N/A	N/A	N/A	N/A	N/A

Commercial Direct Install CFL

Measure Number: I-C-24-a (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 75
Effective date:	1/1/2011
End date:	TBD

Referenced Documents:

1) WasteHeatAdjustment.doc

2) C&I DI CFL baseline savings shift.xls

3) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993

Description

An existing incandescent screw-in bulb is replaced with a lower wattage ENERGY STAR qualified compact fluorescent screw-in bulb through Direct Install in a commercial location.

Algorithms

Demand Savings

ΔkW

= ((Δ Watts) /1000) × ISR × WHF_d

Year	Algorithm	ΔkW
2011 and	(49.0 / 1000) * 0.8 * 1.082	0.0424
2012		
2013	(43.6 / 1000) * 0.8 * 1.082	0.0377
2014	(37.0 / 1000) * 0.8 * 1.082	0.0320

Energy Savings

ΔkWh

 $= \Delta kW \times HOURS \times WHF_e / WHF_d$

Year	Algorithm	ΔkWh
2011 and	0.0424 * 2800 * 1.033/1.082	113.3
2012		
2013	0.0377 * 2800 * 1.033/1.082	100.8
2014	0.0320 * 2800 * 1.033/1.082	85.5

Where:

••		
	∆Watts	= Watts _{BASE} $-$ Watts _{EE} ¹⁴¹
	ΔkW	= gross customer connected load kW savings for the measure
	ΔkWh	= gross customer annual kWh savings for the measure
	ISR	= in service rate or the percentage of units rebated that actually get used $= 0.8^{142}$
	WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For prescriptive commercial lighting, the value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1))^{143}$. The cooling savings are only added to the summer peak savings.

¹⁴¹ Assumed difference in wattage between installed CFL and the incandescent bulb it replaces. Based on EVT and DPS agreement in TAG 2011 to use values proposed in the NEEP Residential Lighting Survey, 2011. Values decrease to account for shifting baseline due to EISA. ¹⁴² TAG 2009 agreement for Residential applications, assumed here for C&I

¹⁴³ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

WHF _e	= Waste heat factor for energy to account for cooling savings from efficient
	lighting. For commercial lighting, the value is 1.033 (calculated as 1 +
	$((0.47*0.29*.75) / 2.5))^{144}$.
HOURS	= average hours of use per year
	$= 2800 \text{ hours}^{145}$

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $\begin{array}{ll} \Delta MMBTU_{WH} &= (\Delta kWh \,/\, WHF_e) \times \, 0.003413 \times (1 - OA) \times AR \times HF \times DFH \,/\, HEff \\ \Delta MMBTU_{WH} \, (Commercial) \\ = (119 \,/\, 1.033) \times \, 0.003413 \times (1 - 0.25) \times \, 0.70 \times \, 0.39 \times \, 0.95 \,/\, 0.79 \\ = 0.0967 \end{array}$

Year	Algorithm	ΔMMBtu
2011 and	(113.3 / 1.033) × 0.003413 × (1-0.25) × 0.70 ×	0.0922
2012	$0.39 imes 0.95 \ / \ 0.79$	
2013	(100.8 / 1.033) × 0.003413 × (1-0.25) × 0.70 ×	0.0820
	$0.39 imes 0.95 \ / \ 0.79$	
2014	(85.5 / 1.033) × 0.003413 × (1-0.25) × 0.70 ×	0.0696
	$0.39 imes 0.95 \ / \ 0.79$	

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{146}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting ¹⁴⁷
DFH HEff	 Percent of lighting in heated spaces, assumed to be 95% Average heating system efficiency, assumed to be 79%¹⁴⁸

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent light bulb.

Baseline Adjustment

¹⁴⁴ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

¹⁴⁵ Based on EVT and DPS agreement made during Savings Verification 2009.

 ¹⁴⁶ Based on 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." See WasteHeatAdjustment.doc.
 ¹⁴⁷ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

¹⁴⁸ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont. See WasteHeatAdjustment.doc.

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs (see percentages in O&M table below).

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012. For measures installed in 2011, the full savings (as calculated above in the Algorithm section) will be claimed for the first year, and the adjusted savings will be claimed for the remainder of the measure life.

The appropriate adjustments are provided below (see C&I DI CFL baseline savings shift.xls for details on how adjustment is calculated):

Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
2011	0.82	2
2012	0.65	2
2013	0.78	1
2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR qualified compact fluorescent lamp.

Operating Hours

2800 hours / year¹⁴⁹

Loadshape

Loadshape # 12 (Commercial Indoor Lighting-Blended) for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings

Measure Category		Light Bulbs/Lamps			
Measure Code		LBLCFDIC			
Product Description	1	Compact Fluorescent			
		screw-base	bulbs Direct		
		Install - Co	ommercial		
Track Name	Track No.	Freerider	Spillover		
C&I Retrofit	6012CNIR	0.89	1.05		
Farm Retrofit	6012FARM	0.89	1.05		
Cust Equip Rpl	6013CUST	0.89	1.05		
Farm Equip Rpl	6013FARM	1.0	1.05		
Farm Rx	6013FRMP	1.0	1.05		
Pres Equip Rpl	6013PRES	0.9	1.05		
Act250 NC	6014A250	0.95	1.0		
Farm NC	6014FARM	1.0	1.05		
Non Act 250 NC	6014NANC	1.0	1.0		

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

¹⁴⁹ Based on agreement made during Savings Verification 2009. Many Direct Install bulbs will be installed by Building Performance contractors. To simplify and streamline implementation EVT will assume an average hours of use consistent with the Efficient Product assumption, rather than burden the contractors with requiring site location specific values.

Lifetimes

Lifetime is a function of the average hours of use for the lamp. For C&I installations the rated lifetime is assumed to be 10,000 hours. That translates to 3.57 years for this measure. Including the 90% persistence value gives 3.2 years. Analysis period is the same as the lifetime.

Measure Cost

The average installed cost is assumed to be $6.09 (2.50 \text{ for the bulb and } 3.59 \text{ for labor})^{150}$.

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see C&I DI CFL baseline savings shift.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen
Replacement Cost	\$0.50	\$1.50
Component Life (hours)	1000	1000
Baseline % in 2009-2011	100%	0%
Baseline % in 2012	67%	33%
Baseline % in 2013	33%	67%
Baseline % in 2014 onward	0%	100%

The calculation results in a levelized assumption of \$9.19 baseline replacement cost every 1 year for CFL installations in 2011, \$9.09 every year for installations in 2012, \$9.58 for installations in 2013 and \$9.77 for installations in 2014. This adjustment will be recalculated for subsequent years.

¹⁵⁰ \$2.50 for CFL is based on TAG 2011 agreement to use recommendation from NEEP Residential Lighting Survey, 2011. Labor rate consistent with other measures.

Agriculture Program: Lighting Products Initiative

Measure Number: I-C-25-a (Business Energy Services, Lighting End Use)

Version Date & Revision History

Draft Portfolio:Portfolio 82Effective date:1/1/2013End Date:TBD

Referenced Documents:

1. Ag Mail Order CFL Lighting.xlsx

2. FINAL REPORT: TIER 1 WORKSHOP MODEL 2007-2008, Prepared for the Governor's Energy Office by Energy Outreach Colorado, July 3, 2008

Description

This characterization provides information related in person distribution during a site visit of free CFLs to a customer in the agricultural sector starting in the calendar year 2013. The CFLs are for use in tie stall barns, farm buildings, farm houses and farm labor housing. The program rebate form indicates that the CFLs must be installed within 30 days. For the bulbs installed in housing, this characterization references the **Interior CFL Direct Install** (Residential Emerging Markets) which should be used to see details of the characterization. The assumptions and savings algorithms are identical except for ISR and cost assumptions. For the bulbs installed in the barns, the assumptions and algorithms are included in the text of this measure characterization.

Customers will be sent any combination of the following products:

For Housing:	For Barns:
14W CFL	18W CFL
19W CFL	23W CFL
23W CFL	32W CFL

Algorithms

Demand Savings

Housing Bulb:

Measure	TRM Reference (Market)	Difference from	Demand Savings	
		Reference TRM	$(\Delta \mathbf{kW})$	
Standard CFL installed in	Interior CFL Direct	ISR = 0.75	0.0368 (2012)	
a home or worker housing	Install		0.0327 (2013)	
	(Residential Emerging		0.0278 (2014)	
	Markets)			

Farm Bulb:

ΔkW

= ((Δ Watts) /1000) \times ISR

Bulb	Algorithm	ΔkW
18W CFL	(35 / 1000) * 0.75	0.0263
23W CFL	(49 / 1000) * 0.75	0.0368
32W CFL	(40 / 1000) * 0.75	0.0300

Where:

 ΔkW $\Delta Watts$ = average kilowattage reduction

= Difference in wattage between baseline and efficient bulb (Watts_{BASE} - Watts_{EE})

Bulb	Baseline Bulb Watts	Delta Watts	ΔkW
		$(\Delta Watts)$	
18W Pro CFL	53W	35W	0.0263
23W Pro CFL	72W	49W	0.0368
32W Pro CFL	$72W^{151}$	40W	0.0300

Watts _{BASE}	= Watts of baseline bulb	
Watts _{EE}	= Watts of energy efficient bulb	
ISR	= In service rate, or the percentage of units mailed that actually get used.	This is
	assumed to be 75% . ¹⁵²	

Energy Savings¹⁵³

For bulbs installed in housing

Measure	TRM Reference	Difference from Reference TRM	Energy Savings (Annual kWh)
Standard CFL	Interior CFL Direct Install	ISR = 0.75	25.50 (2012) 22.69 (2013) 19.26 (2014)

For bulbs installed in barns

Where:

ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= for barns, hours are 2679^{154} hours

Operating Hours

For bulbs installed in housing, refer to the Interior CFL Direct Install (Residential Emerging Markets)

For bulbs installed in barns, operating hours are 2679¹⁵⁵ hours / year

Baseline Efficiencies – New or Replacement

For the baseline condition for bulbs installed in housing, refer to the Interior CFL Direct Install (Residential Emerging Markets)

For the baseline condition for bulbs installed in barns, refer to the table below. Note the baseline for 18W, 23W and 32 W are the post EISA qualified incandescent/halogen wattage wattages.

Bulb	Baseline Bulb Watts
18W Pro CFL	53W
23W Pro CFL	72W
32W Pro CFL	72W

¹⁵¹ The 32W CFL is a replacement a 100W (EISA compliant 72W).

¹⁵² An In Service Rate of 0.75 is chosen for this measure, consistent with the assumption for the Mail Order Efficiency Kit use in the Residential program. ¹⁵³ Commercial lighting measures usually include a waste heat factor and heating penalty. These algorithms were not

included in this TRM because the CFLs in this measure will be installed in either unconditioned barns (no heating or cooling) or in residential buildings. Residential CFLs do not account for a waste heat factor or a heating penalty ¹⁵⁴ Operating hours assume 7.3 hours a day, see AgLightingCalculationsv3.xlsx

¹⁵⁵ Operating hours assume 7.3 hours a day, see AgLightingCalculationsv3.xlsx

High Efficiency

High efficiency is an ENERGY STAR qualified compact fluorescent lamp specified above.

Loadshape

Loadshape #24, Dairy Farm Combined End Uses Loadshape #1 - Residential Indoor Lighting

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps					
Measure Code		LBLCFBLB					
Product Description		Compact Fluorescent screw-base bulbs - Commercial					
		2012 2013		13	2014		
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
C&I Retrofit	6012CNIR	0.60	1.0	0.5	1.0	0.4	1.0
Cust Equip Rpl	6013CUST	0.60	1.0	0.5	1.0	0.4	1.0
Pres Equip Rpl	6013PRES	0.60	1.0	0.5	1.0	0.4	1.0

Persistence

For bulbs installed in housing, refer to the Interior CFL Direct Install (Residential Emerging Markets)

For bulbs installed in barns, the persistence factor is assumed to be 0.9.

Measure Cost

The full cost for this measure is as follows¹⁵⁶

Bulb	Bulb cost
Housing CFL	\$1.87
18W Pro CFL	\$3.91
23W Pro CFL	\$4.49
32W Pro CFL	\$7.65

Lifetimes

Lifetime is a function of the average hours of use for the lamp. Most CFLs have a *rated* lifetime of 10,000 hours. However, units that are turned on and off more frequently have shorter lives and those that stay on for longer periods of time have longer lives.

For bulbs installed in housing, refer to the Interior CFL Direct Install (Residential Emerging Markets)

For bulbs installed in barns, bulb useful life is assumed to be 12,000 hours, based on agreement between EVT and the DPS (TAG 2009). The measure life, including the 90% persistence factor is therefore assumed to be 12,000/2697 * 0.9 = 4.0 years.

Analysis period is the same as the lifetime.

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them.

¹⁵⁶ Bulb costs from EFI estimate

For bulbs installed in housing, refer to the **Interior CFL Direct Install** (Residential Emerging Markets) For bulbs installed in barns, the following assumptions are used to calculate the O&M savings:Baseline bulb cost: \$1.50 per bulb.Life of baseline bulb: 1000 hours /2697. Bulb lasts 0.37 years.

Refrigeration End Use Refrigerated Case Covers

Measure Number: I-E-2-b (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:Portfolio 37Effective date:01/01/06End date:TBD

Description

By covering refrigerated cases the heat gain due to the spilling of refrigerated air and convective mixing with room air is reduced at the case opening. Strip curtains can be deployed continuously and allow the customer to reach through the curtain to select the product. Continuous curtains can be pulled down overnight while the store is closed. Strip curtains are not used for low temperature, multi-deck applications. Glass door retrofits are a better choice for these applications.

Algorithms

Demand Savi ∆kW	ngs = (HG × EF × CL × DF) / (EER × 1000)
Energy Savin ∆kWh	gs = $\Delta kW \times Usage \times 365$
Where:	
∆kW HG	 = gross customer connected load kW savings for the measure (kW) = Loss of cold air or heat gain for refrigerated cases with no cover (Btu/hr-ft opening) The heat gain for multi-deck applications is 760 for medium temperature applications (case temperature 10°F to 40°F) and 610 for high temperature applications (case temperature 45°F to 65°F).¹⁵⁷
EF	= Efficiency Factor: Fraction of heat gain prevented by case cover. The Efficiency Factor for strip curtains is 0.65. ¹⁵⁸ The Efficiency Factor for continuous covers is 0.80.
CL	= Refrigerated case length in feet (ft). Case length is the open length of the refrigerated box. If the unit is two sided use the open length of both sides. Collected from prescriptive form.
DF	= Disabling Factor to account for the portion of the time that the strip curtain is intentionally disabled, as well as time to access the product. The Disabling factor is assumed to be 80%. ¹⁵⁹
EER	= Compressor efficiency (Btu/hr-watt). The average compressor efficiency (EER) is 11.95 for medium temperature applications (case temperature 10° F to 40° F) and 18.5 for high temperature applications (case temperature 45° F to 65° F). ¹⁶⁰
1000	= Conversion from watts to kW (W/kW).
ΔkW	h = gross customer annual kWh savings for the measure (kWh)

¹⁵⁷ Source: Analysis for PG&E by ENCON Mechanical & Nuclear Engineering, 8/24/92.

¹⁵⁸ Source: Analysis for PG&E by ENCON Mechanical & Nuclear Engineering, 8/24/92.

¹⁵⁹ TAG agreement January 2006.

¹⁶⁰ Average EER values were calculated as the average of standard reciprocating and discus compressor efficiencies, using a typical condensing temperature of 90°F and saturated suction temperatures (SST) of 20°F for medium temperature applications and 45°F for high temperature applications.

Usage	= Average hours per day that case cover is in place (hrs/day). Assume 24	
	hrs/day for strip curtains. Assume 8 hours per day for continuous covers.	
365	= (days/yr)	

Baseline Efficiencies – New or Replacement

The baseline condition is a refrigerated case without a cover.

High Efficiency

High efficiency is a refrigerated case with a strip curtain.

Operating Hours

Assume that case covers are in place 24 hrs/day for strip. Assume that continuous covers are in place an average of 8 hours per day.

Loadshapes

Strip Curtain #67 Refrigeration Night Covers #73

Source: Strip curtain uses the same energy distribution as the previously-developed commercial refrigeration loadshape in Vermont State Cost-Effectiveness Screening Tool. Coincident factors for strip curtains are set at 100% since the calculated kW savings is an average for every hour. The night case covers loadshape is based on the savings occurring from 11 PM to 7 AM.

Freeridership / Spillover Factors

Measure Category		Refrigeration End-Use		
Measure Code		RFRCOVER		
		Refrigeration	Refrigeration Case Covers	
		for Merchand	lising Cooler	
Product Description		and Freez	and Freezer Cases	
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	0.95	1.00	
Cust Equip Rpl	6013CUST	0.94	1.00	
Farm NC	6014FARM	1.00	1.00	
Farm Equip Rpl	6013FARM	1.00	1.00	
Non Act 250 NC	6014NANC	1.00	1.00	
Pres Equip Rpl	6013PRES	0.95	1.00	
C&I Retro	6012CNIR	0.94	1.00	
MF Mkt Retro	6012MFMR	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	

Persistence

The persistence factor is assumed to be one.

Lifetimes

Strip curtains: 4 years Continuous covers: 5 years

Measure Cost

Typically installation costs are approximately \$15/ft of case.

Incentive Level

40% of installation costs or \$6/ft of case.

O&M Cost Adjustments

Strip curtains require regular cleaning -- \$2.60/yr/ft (1 minute/foot every two weeks at \$6/hr).

Continuous curtains require that they are pulled down nightly - \$1.52/yr/ft (5 sec. per 4-foot section, twice per day, at \$6/hr)

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Refrigeration Economizer

Measure Number: I-E-6-b (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 37
Effective date:	1/1/06
End date:	TBD

Referenced Documents: <RefrigLoadshapes.xls>, <Economizer Calc.xls>,

Description

Economizers save energy in walk-in coolers by bringing in outside air when it is sufficiently cool, rather than operating the compressor.

Algorithms

Demand	Savings
--------	---------

 ΔkW

 $= \Delta kWh / Hours$

Energy Savings

With Fan Control Installed	talled
----------------------------	--------

∆kWh	$= [HP \times kWh_{Cond}] + [((kW_{Evap} \times n_{Fans}) - kW_{Circ}) \times Hours \times DC_{Comp} \times BF]$
	$-[kW_{Econ} \times DC_{Econ} \times Hours]$

Without Fan Control Instal	led	
ΔkWh	$= [HP \times kWh_{Cond}] - [kW_{Econ}]$	\times DC _{Econ} \times Hours

Where:

•		
	ΔkW	= gross customer connected load kW savings for the measure (kW)
	ΔkWh	= gross customer annual kWh savings for the measure (kWh)
	HP	= Horsepower of Compressor
	kWh_{Cond}	= Condensing unit savings, per hp. (value from savings table in Reference Tables section of this measure write-up)
	Hours	= Number of annual hours that economizer operates. 2,996 hrs based on 38° F cooler setpoint, Burlington VT weather data, and 5 degree economizer deadband.
	DC _{Comp}	= Duty cycle of the compressor (Assume 50%) ¹⁶¹
	kW _{Evap}	= Connected load kW of each evaporator fan (Average 0.123 kW) ¹⁶²
	kW _{Circ}	= Connected load kW of the circulating fan $(0.035 \text{ kW})^{163}$.
	n _{Fans}	= Number of evaporator fans
	DC _{Econ}	= Duty cycle of the economizer fan on days that are cool enough for the economizer to be working (Assume 63%) ¹⁶⁴ .
	BF	= Bonus factor for reduced cooling load from running the evaporator fan less or $(1.3)^{165}$.
	$\mathrm{kW}_{\mathrm{Econ}}$	= Connected load kW of the economizer fan (Average 0.227 kW) ¹⁶⁶ .

¹⁶¹ A 50% duty cycle is assumed based on examination of duty cycle assumptions from Richard Travers (35%-65%), Cooltrol (35%-65%), Natural Cool (70%), Pacific Gas & Electric (58%). Also, manufacturers typically size equipment with a built-in 67% duty factor and contractors typically add another 25% safety factor, which results in a 50% overall duty factor.

¹⁶² Based on an a weighted average of 80% shaded pole motors at 132 watts and 20% PSC motors at 88 watts.

¹⁶³ Wattage of fan used by Freeaire and Cooltrol. This fan is used to circulate air in the cooler when the evaporator fan is turned off. As such, it is not used when fan control is not present.

¹⁶⁴ Average of two manufacturer estimates of 50% and 75%.

¹⁶⁵ Bonus factor (1+ 1/3.5) assumes COP of 3.5, based on the average of standard reciprocating and discus compressor efficiencies with a Saturated Suction Temperature of 20° F and a condensing temperature of 90° F.

Baseline Efficiencies – New or Replacement

The baseline condition is a walk-in refrigeration system without an economizer.

High Efficiency

High efficiency is a walk-in refrigeration system with an outside air economizer.

Operating Hours

The economizer is expected to operate for 2,996 hours per year, based on 38° F Cooler Setpoint, Burlington VT weather data¹⁶⁷, and a 5 degree economizer deadband.

Loadshape

Refrigeration Economizer #66.

Source: The energy distribution and Fall/Spring coincident factor is derived from Burlington, Vermont temperature bin data. See file <RefrigLoadshapes.xls>. Assume summer coincidence is 0%, since the summer peak occurs during the hottest time of the year. Assume winter coincidence is 100%, because the winter peak is driven by the coldest weather.

¹⁶⁶ The 227 watts for an economizer is calculated from the average of three manufacturers: Freeaire (186 Watts), Cooltrol (285 Watts), and Natural Cool (218 Watts).

¹⁶⁷ Burlington weather data is used because it is the most complete data readily available for Vermont, and because its climate is a reasonable weighted average climate for the state.

Freeridership/Spillover Factors

Measure Category		Refrigeration End-Use	
Measure Code		RFRMIZER	
Product Description		Refrigeration Economizer for Walk-in Coolers	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.94	1.00
Farm NC	6014FARM	1.00	1.00
Farm Equip Rpl	6013FARM	1.00	1.00
Non Act 250 NC	6014NANC	1.00	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	0.94	1.00
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

15 years

Measure Cost

The installation cost for an economizer is \$2,558.¹⁶⁸

Incentive Level

50% of installation costs or \$1,250 per economizer.

O&M Cost Adjustments

None

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

¹⁶⁸ Based on average of costs from Freeaire, Natural Cool, and Cooltrol economizer systems.

Reference Tables

Condensing Unit kWh Savings, per HP, from Economizer Calculated Using 'Economizer Calc.xls'

Calculated Using Leononizer Calc.Als

	Hermetic/		
	Semi-		
	Hermetic	Scroll	Discus
kWh / HP	1,256	1,108	1,051

Assumptions:

- 1. 5 HP Compressor data used, based on average compressor size.
- 2. No floating head pressure controls installed.
- 3. Outdoor Compressor Installation

Commercial Solid Door Reach-In Refrigerators

Measure Number: I-E-3-c (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:Portfolio 61Effective date:01/01/10End date:TBD

Referenced Documents: *Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers*, Steven Nadel, ACEEE, December 2002. CEE_Refrig_Specs.pdf, ArthurDLittle_Report.pdf, Nadal_ACEEE_2002.pdf, <Reach in Savings Calcs_2010.xls>

Description

The measure described here is a high-efficiency packaged commercial reach-in refrigerator with solid doors, typically used by foodservice establishments. This includes one, two and three solid door reach-in, roll-in/through and pass-through commercial refrigerators. Beverage merchandisers – a special type of reach-in refrigerator with glass doors – are not included in this characterization.

Algorithms

Demand Savings ∆kW	$= \Delta kWh / FLH$	
Energy Savings		

∆kWh		= value from savings table in Reference Tables section of this measure write-up (varies by size and efficiency tier)
Where:		
	ΔkW	= gross customer connected load kW savings for the measure (kW)
	∆kWh	= gross customer annual kWh savings for the measure (kWh)
	FLH	= Full load hours from DPS commercial refrigeration loadshape (5858 hours).

Baseline Efficiencies – New or Replacement

The baseline is a reach-in refrigerator less efficient than ENERGY STAR. See the average baseline energy use in the savings table in the Reference Tables section.

High Efficiency

A high efficiency reach-in refrigerator can fall into one of two tiers: Tier 1 – those meeting the ENERGY STAR specifications, or Tier 2 – those meeting ENERGY STAR plus 40% more efficient. Refer to the specification table in the Reference Tables section for the precise specification.

Operating Hours

The refrigerator is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5858 hours.¹⁶⁹

Rating Period & Coincidence Factors

Loadshape #14, Commercial Refrigeration

¹⁶⁹ Derived from Washington Electric Coop data by West Hill Energy Consultants

Freeridership/Spillover Factors

Measure Category		Refrigeration End-Use	
Measure Code		RFRCOMRF	
Product Description		Commercial Refrigerator	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.94	1.00
Farm NC	6014FARM	1.00	1.00
Farm Prescriptive	6013FRMP	1.00	1.00
Farm Equip Rpl	6013FARM	1.00	1.00
Non Act 250 NC	6014NANC	1.00	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	0.94	1.00
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	0.98	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

9 years¹⁷⁰

Measure Cost

Based on examination of list prices and price studies performed by others, ACEEE (2002) reported (Nadal_ACEEE_2002.pdf) that the incremental cost for energy-efficient commercial refrigerators is relatively small¹⁷¹. An inflation factor was calculated using RS Means pricing data on current baseline technology compared with baseline costs listed in the 2002 ACEEE report. For analysis purposes, the door (30 to 95301253050 cf), and \$155 for a three-door (over 50 cf). These costs are consistent with the range of incremental costs identified by ACEEE. The incremental costs for Tier 2 are estimated to be twice the incremental costs for Tier 1, or \$190 for a one-door, \$250 for a two-door, and \$310 for a three-door.

Incentive Level

Incentives are equal to the incremental costs mentioned above, which is the approach suggested by ACEEE.¹⁷² Therefore, for Tier 1, this would be \$95 for a one-door (3030-50 cf), 12530-50and \$155 for a

¹⁷⁰ The following report estimates life of a commercial reach-in refrigerator at 8-10 years: *Energy Savings Potential for Commercial Refrigeration Equipment*, Arthur D. Little, Inc., 1996.

⁽ArthurDLittle_Report.pdf)

¹⁷¹ From examination of list prices by ACEEE and reported in *Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers*, Steven Nadel, ACEEE, December 2002 (Nadal ACEEE 2002,pdf)

⁽Nadal_ACEEE_2002.pdf) ¹⁷² From Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, Steven Nadel, ACEEE, December 2002, p. 22. (Nadal_ACEEE_2002.pdf)

three-door (over 50 cf). Incentives for Tier 2 will be twice those for Tier 1, or \$190 for a one-door, \$250 for a two-door, and \$310 for a three-door.

O&M Cost Adjustments

No differences in O&M costs are apparent between the standard and efficient refrigerators.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Savings for Solid Door Reach-In Refrigerators meeting ENERGY STAR and CEE Tier 2 Specifications

Internal Volume	Annual Energy	Annual kWh Savin	gs Relative to Base
(cubic feet)	Use of Average	Case	
	Base Case Model	ENERGY STAR	Tier 2
	(kWh/year)	(Tier 1)	
less than 15 cf (one door)	1,097	268	600
15-30 cf (one door)	1,549	448	888
30-50 cf (two door)	2,318	840	1,431
greater than 50 cf (three door)	3,239	1,225	2,031

Source: See "Reach in savings calcs.xls" for savings calculations.

Specification for Solid-Door Reach-in Refrigerators

Description of Specification	Maximum Energy Use
	(kWh/day)
BASELINE (all sizes)	0.10V + 2.04
CEE Tier 1 (i.e. Energy Star)	
• $0 < V < 15 cf$	0.089V + 1.411
• $15 \le V < 30 cf$	0.037V + 2.200
• $30 \le V < 50 cf$	0.056V + 1.635
• 50 cf \leq V	0.060V + 1.416
CEE Tier 2	[CEE Tier 1 kWh/day] – 40%

Note: V= internal volume

Commercial Glass Door Reach-In Refrigerators

Measure Number: I-E-14-b (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 61
Effective date:	01/01/10
End date:	TBD

Referenced Documents:

Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, Steven Nadel, ACEEE, December 2002., <Reach in Savings Calcs_2010.xls>, *Energy Savings Potential for Commercial Refrigeration Equipment*, Arthur D. Little, Inc., 1996, http://www.energystar.gov/ia/partners/product_specs/program_reqs/commer_refrig_glass_prog_req_Refrig _Specs.pdf, ,

Description

The measure described here is a high-efficiency packaged commercial reach-in glass door refrigerator, also known as beverage merchandiser, typically used by foodservice establishments.

Algorithms

Demand Savings ∆kW	$= \Delta kWh / FLH$
Energy Savings	
ΔKWN	(varies by size and efficiency tier)
Where:	
ΔkW	= gross customer connected load kW savings for the measure (kW)
∆kWh	= gross customer annual kWh savings for the measure (kWh)

= Full load hours from DPS commercial refrigeration loadshape (5858 hours).

Baseline Efficiencies – New or Replacement

The baseline is a reach-in refrigerator that does not meet CEE Tier 1 specifications. See the average baseline energy use in the savings table in the Reference Tables section.

High Efficiency

FLH

A high efficiency reach-in refrigerator can fall into one of two tiers: Tier 1 - the 25% of top-performing products, or Tier 2 - those meeting Tier 1 plus 28% more efficient. Refer to the specification table in the Reference Tables section for the precise specification.

Operating Hours

The refrigerator is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5858 hours.¹⁷³

Loadshape

Loadshape #14, Commercial Refrigeration

Freeridership/S	pillover Factors
-----------------	------------------

Measure Category		Refrigeration End-Use	
Measure Code		RFRCOMRF	
Product Description		Commercial Refrigerator	
Track Name	Track No.	Freerider	Spillover

¹⁷³ Derived from Washington Electric Coop data by West Hill Energy Consultants

Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.94	1.00
Farm NC	6014FARM	1.00	1.00
Farm Prescriptive	6013FRMP	1.00	1.00
Farm Equip Rpl	6013FARM	1.00	1.00
Non Act 250 NC	6014NANC	1.00	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	0.94	1.00
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	0.98	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

9 years¹⁷⁴

Measure Cost

Based on examination of list prices, incremental costs for glass door refrigerators are assumed to be equal to solid door models. An inflation factor was calculated using RS Means pricing data on current baseline technology compared with baseline costs listed in the 2002 ACEEE report. For analysis purposes, the incremental cost for Tier 1 (EnergyStar) is assumed to be \$120 for a one-door (up to 30 cf), \$155 for a two-door (30 to 50 cf), and \$195 for a three-door (greater than 50 cf). These costs are consistent with the range of incremental costs identified by ACEEE. The incremental costs for Tier 2 are estimated to be twice the incremental costs for Tier 1, or \$240 for a one-door, \$310 for a two-door, and \$390 for a three-door

Incentive Level

Incentives are equal to the incremental cost, and are identical to the incentives suggested by ACEEE (5% of the total equipment cost).¹⁷⁵ For Tier 1, this would be \$120 for a one-door (up to 30 cf), \$155 for a two-door (30 to 50 cf), and \$195 for a three-door (greater than 50 cf). Incentives for Tier 2 will be twice those for Tier 1, or \$240 for a one-door, \$310 for a two-door, and \$390 for a three-door.

O&M Cost Adjustments

No differences in O&M costs are apparent between the standard and efficient refrigerators.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

¹⁷⁴ The following report estimates life of a commercial reach-in refrigerator at 8-10 years: *Energy Savings Potential for Commercial Refrigeration Equipment*, Arthur D. Little, Inc., 1996. (ArthurDLittle_Report.pdf)

¹⁷⁵ From *Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers*, Steven Nadel, ACEEE, December 2002, p. 22. (Nadal_ACEEE_2002.pdf)

Reference Tables

Savings for Glass-Door Reach-In Refrigerators meeting ENERGY STAR and CEE Tier 2

	opecifications		
Internal Volume	Annual Energy	Annual kWh Savir	ngs Relative to Base
(cubic feet)	Use of Average	Case	
	Base Case Model	Tier 1	Tier 2
	(kWh/year)		
less than 15 cf (one door)	1,667	722	987
15-30 cf (one door)	2,094	690	1083
30-50 cf (two door)	3,004	737	1372
greater than 50 cf (three door)	4,285	927	1867

Specifications

Source: See <Reach in Savings Calcs_2010.xls> for savings calculations.

Specification for Glass-Door Reach-in Refrigerators

Description of Specification	Maximum Energy Use
	(kWh/day)
BASELINE	0.12 V + 3.34
CEE Tier 1 (top 25% of products.)	
Description of Specification	Maximum Energy Use
	(kWh/day)
BASELINE	0.12 V + 3.34
CEE Tier 1 (top 25% of products.)	
• $0 < V < 15 cf$	0.118V + 1.382
• $15 \le V < 30 \text{ cf}$	0.140V + 1.050
• $30 \le V \le 50 cf$	0.088V + 2.625
• 50 cf \leq V	0.110V + 1.500
CEE Tier 2 (28% more efficient than Tier 1)	[CEE Tier 1 kWh/day] – 28%

Note: V= internal volume

Sources: Baseline: *Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers*, Steven Nadel, ACEEE, December 2002, p.10, Table 6.

(Nadal_ACEEE_2002.pdf), CEE_Refrig_Specs:

http://www.energystar.gov/ia/partners/product_specs/program_reqs/commer_refrig_glass_prog_req.pdf

Commercial Solid Door Reach-In Freezer

Measure Number: I-E-4-c (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 77
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1) CEE_Refrig_Specs.pdf,
- 2) ArthurDLittle_Report.pdf,
- 3) Nadal_ACEEE_2002.pdf,
- 4) Reach in Savings Calcs_2012.xls
- 5) DOE Final Rules Commercial Refrigeration Equipment_1.1.2012.pdf

Description

The measure described here is a high-efficiency packaged commercial reach-in freezer with solid doors, typically used by foodservice establishments. This includes one, two and three solid door reach-in, roll-in/through and pass-through commercial freezers.

Algorithms

Demand Savings ∆kW	$= \Delta kWh / FLH$
Energy Savings ∆kWh	 value from savings table in Reference Tables section of this measure write-up (varies by number of doors and efficiency tier)
Where:	
ΔkW	= gross customer connected load kW savings for the measure (kW)
ΔkWh	= gross customer annual kWh savings for the measure (kWh)
FLH	= Full load hours from DPS commercial refrigeration loadshape (5858 hours).

Baseline Efficiencies – New or Replacement

The baseline is a reach-in freezer less efficient than ENERGY STAR. See the average baseline energy use in the savings table in the Reference Tables section.

High Efficiency

A high efficiency reach-in freezer can fall into one of two tiers: Tier 1 – those meeting the ENERGY STAR specifications, or Tier 2 – those meeting ENERGY STAR plus 30% more efficient. Refer to the specification table in the Reference Tables section for the precise specification.

Operating Hours

The freezer is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5858 hours.¹⁷⁶

Loadshape

Loadshape #14, Commercial Refrigeration

Freeridership/Spillover Factors

Measure Category

Refrigeration End-Use

¹⁷⁶ Derived from Washington Electric Coop data by West Hill Energy Consultants

Measure Code		RFRC	RFRCOMFZ	
Product Description		Commercial Refrigerator		
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	0.95	1.00	
Cust Equip Rpl	6013CUST	0.94	1.00	
Farm NC	6014FARM	1.00	1.00	
Farm Prescriptive	6013FRMP	1.00	1.00	
Farm Equip Rpl	6013FARM	1.00	1.00	
Non Act 250 NC	6014NANC	1.00	1.00	
Pres Equip Rpl	6013PRES	0.95	1.00	
C&I Retro	6012CNIR	0.94	1.00	
MF Mkt Retro	6020MFMR	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	
Customer Credit	6015 CC	n/a	n/a	
EDirect	6021 DIRI	0.98	1.0	

Persistence

The persistence factor is assumed to be one.

Lifetimes

9 years¹⁷⁷

Measure Cost

Based on examination of list prices and price studies performed by others, ACEEE ((see Nadal_ACEEE_2002.pdf) reported that the incremental cost for energy-efficient commercial freezers is relatively small¹⁷⁸. An inflation factor was calculated using RS Means pricing data on current baseline technology compared with baseline costs listed in the 2002 ACEEE report. For analysis purposes, the incremental cost for Tier 1 (EnergyStar) is assumed to be \$90 for a one-door (less than 30 cf), \$125 for a two-door (30 to 50 cf), and \$155 for a three-door (greater than 50 cf). These costs are consistent with the range of incremental costs identified by ACEEE. The incremental costs for Tier 2 are estimated to be twice the incremental costs for Tier 1, or \$180 for a one-door, \$250 for a two-door, and \$310 for a three-door.

O&M Cost Adjustments

No differences in O&M costs are apparent between the standard and efficient freezers.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

¹⁷⁷ The following report estimates life of a commercial reach-in freezer at 8-10 years: *Energy Savings Potential for Commercial Refrigeration Equipment*, Arthur D. Little, Inc., 1996.
(ArthurDLittle_Report.pdf)
¹⁷⁸ From examination of list prices by ACEEE and reported in *Packaged Commercial Refrigeration Equipment: A*

¹⁷⁸ From examination of list prices by ACEEE and reported in *Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers*, Steven Nadel, ACEEE, December 2002 (Nadal_ACEEE_2002.pdf)

Reference Tables

Savings for Reach-In Freezers meeting ENERGY STAR and CEE Tier 2 Specifications

Internal Volume	Annual Energy	Annual kWh Savings Relative to Base	
(cubic feet)	Use of Average	Case	
	Base Case Model ENERGY STAR		Tier 2 ∆kWh
	(kWh/year)	(Tier 1) ∆kWh	
0 < V < 15 cf	1,563	353	716
$15 \le V \le 30 cf$	3,469	668	1,508
$30 \le V \le 50 \text{ cf}$	6,575	1,903	3,305
$50 \text{ cf} \le \text{V}$	9,709	3,805	5,576

Source: See "Reach in savings calcs 2012.xls" for savings calculations.

CEE Specification for Solid-Door Reach-in Freezers

Description of Specification	Maximum Energy Use
	(kWh/day)
Baseline (Any Size)	0.38 V + 0.88
CEE Tier 1 (ENERGY STAR)	
• $0 < V < 15 cf$	0.250V + 1.250
• $15 \le V < 30 \text{ cf}$	0.400 V - 1.000
• $30 \le V \le 50 cf$	0.163V + 6.125
• $50 \text{ cf} \le V$	0.158V + 6.333
CEE Tier 2	[Tier 1 kWh/day] – 30%

Note: V= internal volume

Sources: DOE Final Rules Commercial Refrigeration Equipment_1.1.2012.pdf; CEE_Refrig_Specs.pdf; Reach in Savings Calcs_2012.xls;

Commercial Glass Door Reach-In Freezer

Measure Number: I-E-17-a (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:Portfolio 84Effective date:1/1/2014End date:TBD

Referenced Documents:

- 1) CEE_Refrig_Specs.pdf,
- 2) Effective Useful Life EUL_Summary_10-1-08.xls,
- 3) Nadel_ACEEE_2002.pdf,
- 4) Focus On Energy Incremental Cost report 2009.pdf
- 5) Reach in Savings Calcs_2013.xlsx
- 6) DOE Final Rules Commercial Refrigeration Equipment_1.1.2012.pdf

Description

The measure described here is a high-efficiency packaged commercial reach-in freezer with glass doors, typically used by food service establishments. This includes one, two and three glass door reach-in, roll-in/through and pass-through commercial freezers. This measure relates to the installation of a new reach-in, glass door commercial freezers are more energy efficient because they are designed with components such as ECM evaporator and condenser fan motors, hot gas anti-sweat heaters, or high-efficiency compressors, which significantly reduce energy consumption. This measure was developed to be applicable to Time of Sale and New Construction programs.

Algorithms

Demand Savings

 $\Delta kW = \Delta kWh / FLH$

Energy Savings

 $\Delta kWh =$ gross customer annual kWh savings for the measure, value from savings table in Reference Tables section of this measure write-up (varies by freezer volume)

Where:

ΔkW	= gross customer connected load kW savings for the measure (kW)
ΔkWh	= gross customer annual kWh savings for the measure, value from savings table in
	Reference Tables section of this measure write-up (varies by freezer volume)
FLH	= Full load hours from DPS commercial refrigeration loadshape (5858 hours).

Baseline Efficiencies – New or Replacement

The baseline is a reach-in freezer less efficient than ENERGY STAR. The baseline equipment is assumed to be an existing glass door freezer meeting the minimum federal manufacturing standards as specified by Federal Standards Effective January 10, 2010.¹⁷⁹

High Efficiency

The High Efficiency unit is one that qualifies for ENERGY STAR V 2.0 label, equivalent to the CEE qualification. There is only one CEE Tier for high efficiency reach-in, glass door freezers.¹⁸⁰

¹⁸⁰ High Efficiency Specifications for Commercial Refrigerators and Freezers Effective Date 01/01/2010, CEE_Refrig_Specs.pdf,

¹⁷⁹ DOE Final Rules Commercial Refrigeration Equipment_1.1.2012.pdf

Operating Hours

The freezer is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5858 hours.¹⁸¹

Loadshape

Loadshape #14, Commercial Refrigeration

Freeridership/Spillover Factors

Measure Category		Refrigeration End-Use	
Measure Code		RFRCOMFZ	
Product Description		Commercial Refrigerator	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.94	1.00
Farm NC	6014FARM	1.00	1.00
Farm Prescriptive	6013FRMP	1.00	1.00
Farm Equip Rpl	6013FARM	1.00	1.00
Non Act 250 NC	6014NANC	1.00	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	0.94	1.00
EDirect	6021 DIRI	0.98	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

The expected measure life is assumed to be 12 years ¹⁸².

Measure Cost

The incremental capital cost for this measure is provided below¹⁸³.

Internal volume (cubic feet)	Glass Door Freezer Incremental Cost, per unit
0 < V < 15	\$142
15 ≤ V < 30	\$166
30 ≤ V < 50	\$166
V ≥ 50	\$407

¹⁸¹ Derived from Washington Electric Coop data by West Hill Energy Consultants

¹⁸²2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

Effective Useful Life EUL_Summary_10-1-08.xls

¹⁸³ Estimates of the incremental cost of commercial refrigerators and freezers varies widely by source. Nadel, S., Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, December 2002, indicates that incremental cost is approximately zero. ACEEE notes that incremental cost ranges from 0 to 10% of the baseline unit cost (Nadel_ACEEE_2002.pdf). For the purposes of this characterization, assume an incremental cost adder of 5% on the full unit costs presented in Goldberg et al, State of Wisconsin Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs: Incremental Cost Study, KEMA, October 28, 2009 (Focus On Energy Incremental Cost report 2009.pdf).

O&M Cost Adjustments

No differences in O&M costs are apparent between the standard and efficient freezers.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

	kWhbase ¹⁸⁴	CEE/ ENERGY STAR 2.0	Annual kWh Savings CEE/
		Freezer	ENERGY STAR 2.0 Freezer
Туре		kWh _{ee}	∆kWh ¹⁸⁵
0 < V < 15	0.75 * V + 4.10	≤ 0.607V + 0.893	1,562
15 ≤ V < 30	0.75 * V + 4.10	≤ 0.733V – 1.000	2,001
30 ≤ V < 50	0.75 * V + 4.10	≤ 0.250V + 13.500	3,869
V ≥ 50	0.75 * V + 4.10	≤ 0.450V + 3.500	7,884
Chest Configuration	0.75 * V + 4.10	≤ 0.270V + 0.130	3,902

V

= the frozen compartment volume (ft^3) (as defined in the Association of Home Appliance Manufacturers Standard HRF1-1979)

¹⁸⁴U.S. federal standards as of January 1, 2010: DOE Final Rules Commercial Refrigeration Equipment_1.1.2012.pdf
¹⁸⁵For calculations, see Reach in Savings Calcs_2013.xlsx
ENERGY STAR Commercial Ice-makers

Measure Number: I-E-5-c (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 84
Effective date:	01/01/2014
End date:	TBD

Referenced Documents:

- 1. Nadel, S., Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, December 2002.
- 2. "A Field Study to Characterize Water and Energy Use of Commercial Ice-Cube Machines and Quantify Saving Potential", Food Service Technology Center, December 2007
- 3. Ice Machine Field Study: Energy and Water Savings with Ice Machine Upgrade and Load Shifting
- 4. 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values," California Public Utilities Commission, December 16, 2008.
- 5. ENERGY STAR calculator (commercial_kitchen_equipment_calculator.xls), <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/commercial_kitchen_equipment_calculator.xlsx</u> as of October 28, 2013.

Description

A typical ice-maker consists of a case, insulation, refrigeration system, and a water supply system. They are used in hospitals, hotels, food service, and food preservation. Energy-savings for ice-makers can be obtained by using highefficiency compressors and fan motors, thicker insulation, and other measures. ENERGY STAR Commercial Ice Machines are on average 15 percent more energy-efficient and 25 percent more water-efficient than standard models. The ENERGY STAR specification applies to new air-cooled, batch and continuous machines including icemaking heads, self-contained units, and remote-condensing units with ice harvest rates between 50 and 4,000 pounds of ice per day, depending on equipment type. This is a time of replacement measure.

Algorithms

Demand ∆kW	Savings	$= \Delta kWh / FLH$, see Reference Table 2
Energy \$ ∆kWh	Savings	= value from savings table in Reference Table 2 (varies by type)
Where:	ΔkW ΔkWh FLH	 = gross customer connected load kW savings for the measure (kW) = gross customer annual kWh savings for the measure (kWh) = Full load hours

Baseline Efficiencies – New or Replacement

The baseline equipment is assumed to be new air-cooled, batch and continuous machines including ice-making heads, self-contained units, and remote-condensing units with ice harvest rates between 50 and 4,000 pounds of ice per day, depending on equipment type meeting federal equipment standards established January 1, 2010.

High Efficiency

The efficient equipment is assumed to new air-cooled, batch and continuous machines including ice-making heads, self-contained units, and remote-condensing units with ice harvest rates between 50 and 4,000 pounds of ice per day, depending on equipment type meeting the minimum ENERGY STAR efficiency level standards.

Operating Hours

The ice-maker is assumed to always be plugged in but the average unit operates at 57% of capacity.¹⁸⁶ The full load hours is therefore expected to be 57% of 8760 hrs or 4997 hours.

Loadshape

Loadshape #14, Commercial Refrigeration

Freeridership/Spillover Factors

Measure Category	Refrigeration End-Use		on End-Use
Measure Code		RFRCOMIM	
Product Description		Commercial Icemaker	
Track Name Track No.		Freerider	Spillover
Cust Equip Rpl	6013CUST	0.94	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	0.94	1.00

Persistence

The persistence factor is assumed to be one.

Lifetimes

10 years¹⁸⁷

Measure Cost

There is no incremental capital cost for this measure.¹⁸⁸

O&M Cost Adjustments

No differences in O&M costs are apparent between the standard and efficient ice-makers.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

Continuous ice machines have zero water savings. Batch type machines have water savings given by type in Reference Table 3.

Reference Tables

Reference Table #1

Energy Savings Algorithms ¹⁸⁹				
Ice Machine Type Baseline kWh per 100 Efficient kWh per 100				

¹⁸⁶ Duty cycle varies considerably from one installation to the next. The ENERGY STAR Commercial Ice Machine Savings Calculator assumes a value of 75%. A report prepared by ACEEE assumed a value of 40% (Nadel, S., Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, December 2002). A field study of eight ice machines in California indicated an average duty cycle of 57% ("A Field Study to Characterize Water and Energy Use of Commercial Ice-Cube Machines and Quantify Saving Potential", Food Service Technology Center, December 2007). A more recent study *Ice Machine Field Study: Energy and Water Savings with Ice Machine Upgrade and Load Shifting* found a duty cycle of 64%. The value of 57% was utilized since it is from a higher quality data source.
¹⁸⁷ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values,"

¹⁸⁸ ENERGY STAR calculator (commercial_kitchen_equipment_calculator.xls), as of September 30, 2013.

¹⁸⁹ ENERGY STAR calculator (commercial_kitchen_equipment_calculator.xls),

^{18/} 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values," California Public Utilities Commission, December 16, 2008.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/commercial_kitchen_equipment_calculator.xlsx as of October 28, 2013.

Air Cooled, batch or continuous	gallons of ice	gallons of ice
Ice Making Head (H < 450)	10.26 – 0.0086×H	9.23 – 0.0077×H
Ice Making Head ($H \ge 450$)	$6.89 - 0.0011 \times H$	6.20 – 0.0010×H
Remote Condensing Unit(H < 1000)	$8.85 - 0.0038 \times H$	8.05 − 0.0035×H
Remote Condensing Unit (H \geq 1000)	5.1	4.64
Self Contained Unit (H < 175)	18-0.0469×H	16.7 – 0.0436×H
Self Contained Unit ($H \ge 175$)	9.8	9.11

Reference Table #2

Annual Energy Consumption/Savings per Ice Machine¹⁹⁰

Ice Machine Type	Assumed Ice harvest rate	ΔkWh	ΔkW
Air Cooled, batch or continuous	(H) (lbs. ice/day)		
Ice Making Head (H < 450)	400	558	0.112
Ice Making Head ($H \ge 450$)	665	863	0.173
Remote Condensing Unit(H < 1000)	900	992	0.199
Remote Condensing Unit (H \geq 1000)	1,160	1,110	0.222
Self Contained Unit (H < 175)	170	261	0.052
Self Contained Unit (H \geq 175)	240	345	0.069

Reference Table #3

Annual Water Consumption per Ice Machine for Batch Machines (gallons)¹⁹¹

	Batch		
	Conventional ENERGY STAR Saving		
Ice Making Head	29,481	24,748	4,733
Remote Cond./ Split System	48,091	43,066	5,024
Self Contained Unit	10,646	6,897	3,749

¹⁹⁰ Ibid. ¹⁹¹ Ibid.

Evaporator Fan Motor Controls

Measure Number: I-E-7-b (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio No. 37a
Effective date:	1/1/06
End date:	TBD

Referenced Documents: <RefrigLoadshapes.xls>.

Description

Walk-in cooler evaporator fans typically run all the time; 24 hrs/day, 365 days/yr. This is because they must run constantly to provide cooling when the compressor is running, and to provide air circulation when the compressor is not running. However, evaporator fans are a very inefficient method of providing air circulation. Each of these fans uses more than 100 watts. Installing an evaporator fan control system will turn off evaporator fans while the compressor is not running, and instead turn on an energy-efficient 35 watt fan to provide air circulation, resulting in significant energy savings.

Algorithms

Demand Savings ∆kW	$= ((kW_{Evap} \times n_{Fans} \times DC_{Evap}) - kW_{Circ}) \times (1-DC_{Comp}) \times BF$
Energy Savings	
ΔkWh	$= \Delta kW \times 8760$
Where:	
ΔkW	= gross customer connected load kW savings for the measure (kW)
kW _{Evap}	= Connected load kW of each evaporator fan (Average $0.123 \text{ kW})^{192}$
n _{Fans}	= Number of evaporator fans
kW _{Circ}	= Connected load kW of the circulating fan $(0.035 \text{ kW})^{193}$.
DC _{Comp}	= Duty cycle of the compressor (Assume 50%) ¹⁹⁴
DC _{Evap}	= Duty cycle of the evaporator fan (100% for cooler, 94% for freezer) ¹⁹⁵
BF	= Bonus factor for reduced cooling load from replacing the evaporator fan with a lower wattage circulating fan when the compressor is not running (1.5 for low temp, 1.3 for medium temp, and 1.2 for high temp) ¹⁹⁶
ΔkWh	= gross customer annual kWh savings for the measure (kWh)
8760	= (hours/year)

Baseline Efficiencies – New or Replacement

The baseline condition is a refrigeration system without an evaporator fan control.

¹⁹² Based on a weighted average of 80% shaded pole motors at 132 watts and 20% PSC motors at 88 watts. This weighted average is based on discussions with refrigeration contractors and is considered conservative (market penetration estimated at approximately 10%).

¹⁹³ Wattage of fan used by Freeaire and Cooltrol.

¹⁹⁴ A 50% duty cycle is assumed based on examination of duty cycle assumptions from Richard Traverse (35%-65%), Cooltrol (35%-65%), Natural Cool (70%), Pacific Gas & Electric (58%). Also, manufacturers typically size equipment with a built-in 67% duty factor and contractors typically add another 25% safety factor, which results in a 50% overall duty factor.

¹⁹⁵ A evaporator fan in a cooler runs all the time, but a freezer only runs 8273 hours per year due to defrost cycles (4 20-min defrost cycles per day)

¹⁹⁶ Bonus factor (1+ 1/COP) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20° F, 20° F, and 45° F, respectively, and a condensing temperature of 90° F.

High Efficiency

High efficiency is a refrigeration system with an evaporator fan control and a smaller wattage circulating fan.

Operating Hours

The evaporator fan run time without a fan control is 8760 hours per year. With a fan control the evaporator fan would be replaced with a smaller wattage fan for 50% of the time, or 4380 hours per year.

Loadshape

Evaporator Fan Control #68 Source: Derived from the standard refrigeration loadshape, with a 50% reduction in run time. See file <RefrigLoadshapes.xls>.

Measure Category Refrigeration End		on End-Use	
Measure Code		RFRFMCON	
Product Description		Fan moto	r control
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.94	1.00
Farm NC	6014FARM	1.00	1.00
Farm Equip Rpl	6013FARM	1.00	1.00
Non Act 250 NC	6014NANC	1.00	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	0.94	1.00
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Freeridership / Spillover Factors

Persistence

The persistence factor is assumed to be one.

Lifetimes

15 years

Measure Cost

The installation cost for a fan control is \$2,254.¹⁹⁷

Incentive Level

25% of installation costs or \$550 per fan control.

O&M Cost Adjustments

None

¹⁹⁷ Based on average of costs from Freeaire and Cooltrol fan control systems.

Fossil Fuel Descriptions There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None

Brushless DC Motors (also known as ECM) for Walk-In Coolers, Freezers, and Refrigerated Buildings

Measure Number: I-E-8-c (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:Portfolio 61Effective date:01/01/10End date:TBD

Referenced Documents:

CEE_Refrig_Specs.pdf <Reach in Savings Calcs_2010.xls> GE_ECM_revised.pdf

Description

Cooler or freezer evaporator fan boxes typically contain two to six evaporator fans that run nearly 24 hours each day, 365 days each year. Not only do these fans use electricity, but the heat that each fan generates must also be removed by the refrigeration system to keep the product cold, adding more to the annual electricity costs. If the cooler or freezer has single-phase power, the electricity usage can be reduced by choosing permanent brushless DC motors instead of conventional, shaded-pole motors. Brushless DC motors are also sometimes known by the copyrighted trade name ECM (electronically commutated motor).

Algorithms

Demand Savings

 $kW_{ECM} = (kW_{SP} - kW_{BDC}) \times DC_{Evap} \times BF$

Energy Savings

 $kWh_{ECM} = \Delta kW_{ECM} \times 8760$

Where:

ΔkW	= gross customer connected load kW savings for the measure (kW)
kW _{SP}	= Connected load kW of a shaded pole evaporator fan (Average 0.132 kW) ¹⁹⁸
kW _{BDC}	= Connected load kW of a brushless DC evaporator fan $(0.040 \text{ kW})^{199}$
DC _{Evap}	= Duty cycle of the evaporator fan (100% for cooler, 94% for freezer) ²⁰⁰
BF	= Bonus factor for reduced cooling load from replacing a shaded-pole evaporator fan with a brushless DC fan (1.5 for low temp, 1.3 for medium temp, and 1.2 for high temp) ²⁰¹
∆kWh 8760	<pre>= gross customer annual kWh savings for the measure (kWh) = (hours/year)</pre>

¹⁹⁸ Based on metered data from R.H. Travers. See also GE_ECM_revised.pdf.

¹⁹⁹ Based on metered data from Natural Resource Management and Efficiency Vermont See also GE_ECM_revised.pdf.

²⁰⁰ A evaporator fan in a cooler runs all the time, but a freezer only runs 8273 hours per year due to defrost cycles (4 20-min defrost cycles per day)

²⁰¹ Bonus factor (1+ 1/COP) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F.

Baseline Efficiencies – New or Replacement

The baseline condition for retrofitting of old units is shaded pole evaporator fan motor. The baseline for new units is a brushless DC motor. No incentive will be given on a new unit with an ECM motor.

High Efficiency

High efficiency is a brushless DC fan motor.

Operating Hours

A cooler evaporator fan runs all the time or 8760 hours per year. A freezer evaporator fan runs 8273 hours per year due to defrost cycles (4 20-min defrost cycles per day). The smaller number of hours for freezer fan run time is captured in the duty cycle factor in the ΔkW calculation, so that 100% coincidence factors may be applied to both applications.

Loadshape

Flat (8760 hours) #25

Measure Category	Measure Category		Refrigeration End-Use	
Measure Code RFRBL		LFAN		
Product Description		Efficient B	lower Fans	
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	0.95	1.00	
Cust Equip Rpl	6013CUST	0.94	1.00	
Farm NC	6014FARM	1.00	1.00	
Farm Equip Rpl	6013FARM	1.00	1.00	
Non Act 250 NC	6014NANC	1.00	1.00	
Pres Equip Rpl	6013PRES	0.95	1.00	
C&I Retro	6012CNIR	0.89	1.00	
MF Mkt Retro	6012MFMR	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.

Lifetimes

15 years

Measure Cost

Retrofit cost for a brushless DC fan motor is \$245 (\$185 for the motor, \$60 for installation labor including travel time).²⁰²

Incentive Level

For brushless DC motors, the incentive is \$100, which is 41% of the full installed retrofit cost.

 $^{^{202}}$ Based on costs from Natural Resource Management (\$250) and direct from the manufacturer GE (\$120).

O&M Cost Adjustments

None

Fossil Fuel Descriptions There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None

Zero-Energy Doors and Frames

Measure Number: I-E-9-c (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio No. 58
Effective date:	1/1/09
End date:	TBD

Referenced Documents: < Door Heater Control Study.xls>

Description

Cooler reach-ins with glass doors typically have electric resistance heaters installed within the doors and frames. Refrigerator door manufacturers include these resistance heaters to prevent condensation from forming on the glass, blocking the customer's view, and to prevent frost formation on door frames. Zero-energy doors and frames may be chosen in place of standard cooler doors. These doors consist of two or three panes of glass and include a lowconductivity filler gas (e.g., Argon) and low-emissivity glass coatings. This system keeps the outer glass warm and prevents external condensation. Manufacturers can provide information on how well these systems work with "respiring" products.

Algorithms

Demand Savings	
ΔkW	$= kW_{door} \times BF$
Fnorgy Savings	

Ellergy Savings	
∆kWh	$= \Delta kW \times 8760$

Where:

ΔkW	= gross customer connected load kW savings for the measure (kW)
kW _{door}	= Connected load kW of a typical reach-in cooler door and frame with electric heaters $(0.131 \text{ kW})^{203}$
BF	= Bonus factor for reduced cooling load from eliminating heat generated by the door heater from entering the cooler $(1.22 \text{ for medium temp, and } 1.15 \text{ for high temp})^{204}$
ΔkWh 8760	<pre>= gross customer annual kWh savings for the measure (kWh) = (hours/year)</pre>

Baseline Efficiencies – New or Replacement

The baseline condition is a cooler glass door and frame that is continuously heated to prevent condensation.

High Efficiency

High efficiency is a cooler glass door that prevents condensation with multiple panes of glass, inert gas, and low-e coatings instead of using electrically generated heat. The cooler high efficiency frame has a less conductive coating to minimize condensation, in place of electrically generated heat.

²⁰³ Based on range of wattages from manufacturers data (115 to 215 watts per door for door and frame heaters combined). See Door heater wattages.xls.

²⁰⁴ Bonus factor (1+0.65/COP_R + 0.35×.75×.29/2.5) assumes 3.5 COP_R for medium temp and 5.4 COP_R for high temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of 20°F and 45°F. respectively, and a condensing temperature of 90°F, and EVT assumption that 65% of heat generated by door enters the refrigerated case. It further assumes that 75% of stores have mechanical cooling, where the remaining 35% of heat that enters the store must also be cooled, with a typical 2.5 COP cooling system efficiency and 0.29 ASHRAE Lighting waste heat cooling factor for Vermont (From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993).

Operating Hours

8760 hours per year

Loadshape Loadshape #25, Flat (8760 Hours)

Freeridership

5% Act 250 NC; 6% Cust Equip Replace and C&I Retro

Spillover

0%

Persistence The persistence factor is assumed to be one.

Lifetimes 10 years²⁰⁵

Measure Cost The incremental cost of a cooler zero energy door and frame is estimated at \$290,²⁰⁶

Incentive Level \$100 or 34% of the incremental cost for a cooler door and frame . **O&M** Cost Adjustments None

Fossil Fuel Descriptions There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables None

²⁰⁵ The following report estimates life of a refrigerated display case at 5-15 years: Energy Savings Potential for Commercial *Refrigeration Equipment*, Arthur D. Little, Inc., 1996. ²⁰⁶ Based on manufacturers cost data and EVT project experience.

Door Heater Controls

Measure Number: I-E-10-c (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio No. 58
Effective date:	1/1/09
End date:	TBD

Referenced Documents: <Door_heater_controls_loadshape_051503.xls>; < Door Heater Control Study.xls>

Description

Another option to zero-energy doors – that is also effective on existing reach-in cooler or freezer doors – is "on-off" control of the operation of the door heaters. Because relative humidity levels differ greatly across the United States, a door heater in Vermont needs to operate for a much shorter season than a door heater in Florida. By installing a control device to turn off door heaters when there is little or no risk of condensation, one can realize energy and cost savings.

There are two strategies for this control, based on either (1) the relative humidity of the air in the store or (2) the "conductivity" of the door (which drops when condensation appears). In the first strategy, the system activates your door heaters when the relative humidity in your store rises above a specific setpoint, and turns them off when the relative humidity falls below that setpoint. In the second strategy, the sensor activates the door heaters when the door conductivity falls below a certain setpoint, and turns them off when the conductivity rises above that setpoint.

Algorithms

Demand Savings ∆kW	$= kW_{door} \times N_{door} \times ES \times BF$
Energy Savings	
ΔkWh	$= \Delta kW \times 8760$
Where:	
ΔkW	= gross customer connected load kW savings for the measure (kW)
$\mathrm{kW}_{\mathrm{door}}$	= Connected load kW of a typical reach-in cooler or freezer door and frame with a heater (cooler 0.131 kW, freezer 0.245) ²⁰⁷
N_{door}	= Number of doors controlled by sensor
BF	= Bonus factor for reduced cooling load from eliminating heat generated by the door heater from entering the cooler or freezer (1.36 for low temp, 1.22 for medium temp, and 1.15 for high temp) ²⁰⁸
ΔkWh	= gross customer annual kWh savings for the measure (kWh)
8760	= (hours/year)
ES	= Percent annual energy savings (55% for humidity-based control ²⁰⁹ , 70% for conductivity-based control ²¹⁰)

²⁰⁷ Based on data pulled from the Express Refrigeration walk-in cooler retrofit program for GT customers in 2008. See Door Heater Control Study.xls.

²⁰⁸ Bonus factor (1+ 0.65/COP_R + 0.35×.75×.29/2.5) assumes 2.0 COP_R for low temp, 3.5 COP_R for medium temp, and 5.4 COP_R for high temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F, and EVT assumption that 65% of heat generated by door enters the refrigerated case. It further assumes that 75% of stores have mechanical cooling, where the remaining 35% of heat that enters the store must also be cooled, with a typical 2.5 COP cooling system efficiency and 0.29 ASHRAE Lighting waste heat cooling factor for Vermont (From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993).

²⁰⁹ R.H.Travers' estimate of savings.

²¹⁰ Door Miser savings claim.

Baseline Efficiencies – New or Replacement

The baseline condition is a cooler or freezer glass door that is continuously heated to prevent condensation.

High Efficiency

High efficiency is a cooler or freezer glass door with either a humidity-based or conductivity-based door-heater control.

Operating Hours

Door heaters operate 8760 hours per year.

Loadshape

Loadshape #69, Door Heater Control

Source: Based on assumption that the door heater savings will occur when the interior humidity levels are lowest – primarily the winter months, with declining savings during the fall and spring. See <Door_heater_controls_loadshape_051503.xls>

Freeridership/Spillover Factors

Measure Category		Refrigeratio	on End-Use
Measure Code		RFRDRCON	
		Refrigeration	n door heater
Product Description		cont	rols
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.15
Cust Equip Rpl	6013CUST	0.94	1.00
Farm NC	6014FARM	0.94	1.00
Farm Equip Rpl	6013FARM	1.00	1.00
Non Act 250 NC	6014NANC	1.00	1.15
Pres Equip Rpl	6013PRES	1.00	1.00
C&I Retro	6012CNIR	0.94	1.00
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

10 years²¹¹

²¹¹ The following report estimates life of a refrigerated display case at 5-15 years: *Energy Savings Potential for Commercial Refrigeration Equipment*, Arthur D. Little, Inc., 1996.

Measure Cost

The cost for humidity-based control is \$300 for a complete circuit, regardless of the number of doors. The cost for conductivity-based control is \$200 per door.

Incentive Level

\$15 per cooler door and \$30 per freezer door for a humidity-based control and \$100 per door or 50% of the cost for a conductivity-based control.

O&M Cost Adjustments None

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None

Efficient Refrigeration Compressors

Measure Number: I-E-11-d (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:Portfolio 82Effective date:1/1/2013End date:TBD

Referenced Documents:

1) Refrigeration Compressor Pricing Analysis v1.0.xlsx

2) Compressor efficiency analysis EVT Refrigeration 2013.xlsx

3) "Performance Standards for Walk-In Refrigerator and Freezer Systems," AHRTI Report No. 09002-01, prepared by Bryan R. Becker, et al., January 2012

Description

This measure relates to the installation of an efficient refrigeration compressor that exceeds the energy efficiency requirements specified in this characterization. This characterization is intended to apply to lost-opportunity applications only.

This characterization was developed to be "technology-neutral." In other words, as long as an applicant compressor exceeds the EER performance requirements as specified in this characterization, the equipment should qualify for an incentive (assuming all other program requirements are met). However, some aspects of the characterization such as incremental costs, O&M costs, and measure lifetimes are closely linked to compressor technology type. Therefore, compressor technology remains an input into the characterization. For reference, typical high efficiency compressor technologies are described below.

Reed Valve Technology. For decades, the most common refrigeration compressors utilized reed valve technology to control the flow of refrigerant to and from the compresson chamber. The reed valves are a constrained thin strip of steel laid across the valve opening that flap open due to a differential pressure across the valve. This is a reliable technology but limited in efficiency due to leakage at the valve opening.

Discus Technology (patented by Copeland) involves using effective gas and oil flow management through more advanced valving that provides the best operating efficiency in the range of the compressor load. This eliminates capillary tubes typically used for lubrication, that also offers maximum compressor protection as well as environmental integrity. Tapered disk type valves, similar to the valves used in automotive engines, improve efficiency and lower sound levels. The disks open to permit a higher refrigerant gas flow at reduced differential pressures reduces system losses and enhances efficiency.

Scroll Technology involves using two identical, concentric scrolls, one inserted within the other. One scroll remains stationary as the other orbits around it. This movement draws gas into the compression chamber and moves it through successively smaller pockets formed by the scroll's rotation, until it reaches maximum pressure at the center of the chamber. At this point, the required discharge pressure has been achieved. There, it is released through a discharge port in the fixed scroll. During each orbit, several pockets are compressed simultaneously, making the operation continuous.

Algorithms

Energy Savings

= ((Avg Cap TLH) ((T/LEKis, base) - (T/LEKis chicken))/1000

Where:

	ΔkWh	= gross customer annual kWh savings for the measure (kWh). See Table 2 "Compressor Savings Values Based on Capacity and Temperature Application" in the Reference Table section for assumed savings values for prescriptive measures.
	Avg Cap	= Compressor capacity in Btu/h at non-standard rating conditions. See Table 3 "Standard and Non-Standard Rating Conditions for Compressors" in the Reference Table section for the standard and non-standard rating conditions. For prescriptive measures, the average capacity for each range of sizes from Table 2 "Compressor Savings Values Based on Capacity and Temperature Application" in the Reference Table section should be used.
	EERns,base	 Energy Efficiency Ratio of the baseline compressor at non-standard rating conditions. See Table 1 "Baseline and Qualifying EER Values by Capacity, and Temperature Application" in the Reference Tables section for baseline values.
	EERn _{S,Efficient}	= Energy Efficiency Ratio of the efficient compressor at non-standard rating conditions. For prescriptive measures, the qualifying EER from Table 1"Baseline and Qualifying EER Values by Capacity, and Temperature Application" in the Reference Tables section should be used.
	FLH	= Full load hours (Default, 3910 hours for medium temperature and high temperature applications and 4139 hours for low temperature applications. ²¹²).
Demand ∆kW	l Savings	$= \Delta kWh / (FLH * CF)$
Where:		
	ΔkW	= gross customer connected load kW savings for the measure (kW)

Baseline Efficiencies – New or Replacement

The baseline efficiency varies by capacity, temperature application, and type (single phase vs three-phase). See Table 1 "Baseline and Qualifying EER Values by Capacity, and Temperature Application" in the Reference Tables section for baseline values.²¹³

High Efficiency

A high efficiency compressor is one that exceeds the qualifying EER for its capacity, temperature application, and type (single phase vs three-phase) in Table 1 "Baseline and Qualifying EER Values by Capacity, and Temperature Application" in the Reference Tables section.²¹⁴

(http://www.ahrinet.org/App_Content/ahri/files/RESEARCH/Technical%20Results/AHRTI-Rpt-09002-

²¹² Based on run time estimates from "Performance Standards for Walk-In Refrigerator and Freezer Systems," AHRTI Report No. 09002-01, by Bryan R. Becker, et al., January 2012, Tables 30-33

^{01.}pdf%E2%80%8E.pdf). See referenced document "compressor efficiency analysis EVT Refrigeration 2013.xlsx" for details. ²¹³ Baseline EERs calculated as ¹/₂ standard deviation below average EER for each capacity bin of available models. See referenced document "compressor efficiency analysis EVT Refrigeration 2013 xlsx" for details.

referenced document "compressor efficiency analysis EVT Refrigeration 2013.xlsx" for details. ²¹⁴ Qualifying EER calculated as ½ standard deviation above average EER for each capacity bin of available models. See referenced document compressor efficiency analysis EVT Refrigeration 2013.xlsx for details.

Operating Hours

The refrigeration is assumed to be in operation every day of the year, but because of compressor cycling the full load hours are 3910 hours for medium temperature and high temperature applications and 4139 hours for low temperature applications, as described above in the algorithm section.

Loadshape

Loadshape #14, Commercial Refrigeration

Freeridership/Spillover

Measure Category		Refrige	eration
		RFRCO	DMPR,
		RFRC	MPDS,
Measure Code		RFRCI	MPSC
Product Description		Refrige Compress Compress	eration sor, Scroll or, Discus
Product Description		Complessor	
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	0.94	1.00
Cust Equip Rpl	6013CUST	0.94	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I NC Cust	6014CUST	0.95	1.05
C&I NC Pres	6014PRES	0.95	1.05

Persistence

The persistence factor is assumed to be one.

Lifetimes

Discuss and Scroll compressors have lifetimes of 13 years. A baseline compressor has a shorter lifetime of 10 years. Measure life is assumed to be 13 years.

Measure Cost

Varies by compressor type, horsepower and temperature application. See Table 4 "Compressor Incremental Costs" in Reference Tables section below.

O&M Cost Adjustments

Standard compressors are assumed to require \$325/year for maintenance (2.5 hours twice per year at \$65/hour), compared to \$97.5/year (1.5 hours) for scroll compressors and \$65/year (1 hour) for discus compressors.

The maintenance costs for standard semi-hermetic or hermetic compressors are primarily associated with cleaning the condenser and repairing leaks that are caused by the "slugging" of the liquid refrigerant in the line. The slugging hammers the refrigeration piping and joints become undone and leak.

The maintenance costs associated with Scroll compressors are due to adjustment of onboard mechanical valves and cleaning the condenser. The maintenance costs associated with Discus compressors are simply to check out the moving reed action internal to the compressor and check the refrigerant fluid for particles. There are no other moving parts in the Discus that require maintenance.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

 Table 1: Baseline and Qualifying EER Values by Capacity, and Temperature Application²¹⁵

Low Temperature				
Single-Phase compressor				
Baseline and Qualifying EER				
Condensing temp 90°F, Evap Temp -25°F				
		Efficient Min		
Capacity in	Capacity in Qualifying			
BTU/Hr	Baseline EER	EER		
0-4200	N/A	N/A		
4200-8399	4.64	5.05		
8400-12599	4.89	5.21		
12600-16799	5.17	5.48		
16800-20999	5.33	5.75		

Low Temperature

Three-Phase compressor

Baseline and Qualifying EER Condensing temp 90°F, Evap Temp -25°F

		Efficient Min
Capacity in		Qualifying
BTU/Hr	Baseline EER	EER
0-4200	N/A	N/A
4200-8399	5.03	5.37
8400-12599	5.22	5.52
12600-16799	5.34	5.70
16800-20999	5.40	5.84
21000-25199	5.69	6.06
25200-29399	5.71	6.15
29400-33599	6.14	6.39
33600-37800	5.64	6.06

²¹⁵ See referenced document "compressor efficiency analysis EVT Refrigeration 2013.xlsx" for development details.

Medium Temperature Single-Phase compressor

Baseline and Qualifying EER Condensing temp 90°F, Evap Temp 20°F

		Efficient
		Min
Capacity in		Qualifying
BTU/Hr	Baseline EER	EER
0-7500	N/A	N/A
7500-14999	8.89	10.65
15000-22499	10.48	11.79
22500-29999	10.75	11.72
30000-37499	10.68	11.93
37500-44999	11.59	12.49
45000-52499	11.06	11.79
52500-59999	12.98	13.06

High Temperature Single-Phase compressor

Baseline and Qualifying EER Condensing temp 90°F, Evap Temp 45°F

Capacity in BTU/Hr	Baseline EER	Efficient Min Qualifying EER
0-12000	N/A	N/A
12000-24999	19.76	22.52
25000-49999	19.57	20.43
50000-74999	17.24	20.59

Medium Temperature

Three-Phase compressor

Baseline and Qualifying EER Condensing temp 90°F, Evap Temp 20°F

Capacity in BTU/Hr	Baseline EER	Efficient Min Qualifying EER
0-7500	N/A	N/A
7500-14999	9.66	11.07
15000-22499	10.79	11.88
22500-29999	11.62	12.58
30000-37499	11.55	12.85
37500-44999	11.90	12.91
45000-52499	12.29	13.25
52500-59999	12.10	13.19
60000-67499	12.46	13.13
67500-75000	11.44	12.37

High Temperature

Three-Phase compressor

Baseline and Qualifying EER Condensing temp 90°F, Evap Temp 45°F

Capacity in		Efficient Min Qualifying
BTU/Hr	Baseline EER	EER
0-24999	N/A	N/A
25000-49999	20.61	23.15
50000-74999	19.20	22.36
75000-99999	19.48	21.93
100000-124999	19.79	21.65

 Table 2: Compressor Savings Values Based on Capacity and Temperature Application ²¹⁶

Low Temperature Single-Phase compressor Assumed Average Capacity and Savings					
Capacity Bins BTU/Hr	Capacity Bins Avg Cap KWh kW BTU/Hr BTU/hr Savings reduction				
0-4200	N/A	N/A	N/A		
4200-8399	6,169	553	0.10		
8400-12599	10,086	639	0.11		
12600-16799	14,537	791	0.14		
16800-20999	18,283	1,283	0.22		

Low Temperature

Three-Phase compressor

Assumed Average Capacity and Savings Condensing temp 90°F, Evap Temp -25°F

Capacity Bins BTU/Hr	Avg Cap BTU/hr	Annual KWh Savings	kW reduction
0-4200	N/A	N/A	N/A
4200-8399	6,092	388	0.07
8400-12599	10,162	527	0.09
12600-16799	14,617	875	0.15
16800-20999	18,986	1,353	0.23
21000-25199	22,609	1,220	0.21
25200-29399	27,060	1,729	0.30
29400-33599	31,860	1,032	0.18
33600-37800	35,964	2,261	0.39

Medium Temperature

Single-Phase compressor

Assumed Average Capacity and Savings Condensing temp 90°F, Evap Temp 20°F

Capacity Bins BTU/Hr	Avg Cap BTU/hr	Annual KWh Savings	kW reduction
0-7500	N/A	N/A	N/A
7500-14999	11,952	975	0.17
15000-22499	18,898	879	0.15
22500-29999	26,719	901	0.16
30000-37499	33,067	1,420	0.25
37500-44999	40,393	1,105	0.19
45000-52499	48,467	1,184	0.20
52500-59999	56,250	103	0.02

Medium Temperature

Three-Phase compressor

Assumed Average Capacity and Savings Condensing temp 90°F, Evap Temp 20°F

Capacity Bins BTU/Hr	Avg Cap BTU/hr	Annual KWh Savings	kW reduction
0-7500	N/A	N/A	N/A
7500-14999	12,030	704	0.12
15000-22499	18,763	703	0.12
22500-29999	26,714	782	0.13
30000-37499	33,848	1,314	0.22
37500-44999	40,113	1,170	0.20
45000-52499	48,152	1,250	0.21
52500-59999	57,000	1,730	0.30
60000-67499	64,367	1,182	0.20
67500-75000	70,570	2,049	0.35

²¹⁶ See referenced document "compressor efficiency analysis EVT Refrigeration 2013.xlsx" for development details.

High Temperature

Single-Phase compressor

Assumed Average Capacity and Savings Condensing temp 90°F, Evap Temp 45°F

Capacity Bins BTU/Hr	Avg Cap BTU/hr	Annual KWh Savings	kW reduction
0-12000	N/A	N/A	N/A
12000-24999	18,064	723	0.18
25000-49999	36,808	892	0.23
50000-74999	54,250	458	0.12

High Temperature

Three-Phase compressor

Assumed Average Capacity and Savings Condensing temp 90°F, Evap Temp 45°F

Capacity Bins BTU/Hr	Avg Cap BTU/hr	Annual KWh Savings	kW reduction
0-24999	N/A	N/A	N/A
25000-49999	36,805	882	0.15
50000-74999	62,553	2,076	0.36
75000-99999	86,864	2,249	0.39
100000-124999	108,909	2,127	0.37

Table 3: Standard and Non-Standard Rating Conditions

				Non-
			Standard	Standard
			Conditions	Conditions
	Setpoint	Evaporator	Condensing	Condensing
Application	Temperature	Temperature	Temperature	Temperature
Low	< 25°	-25°F	105°F	90°F
Medium	24° to 40°	20°F	120°F	90°F
High	41° to 65°	45°F	130°F	90°F

Table 4: Compressor Incremental Costs²¹⁷

		v 1	
Capacity (Btu/h)	Semi-Hermetic	Scroll	Discus
4200-8399	\$530	\$530	-
8400-12599	\$615	\$615	\$1,405
12600-16799	-\$273	-\$273	\$552
16800-20999	-\$652	-\$652	\$342
21000-25199	-\$120	-\$120	-\$150
25200-29399	\$294	\$294	-\$109
29400-33599	\$708	\$708	\$542
33600-37799	\$749	\$749	\$960

Low Temperature Application - Incremental Costs by Compressor Type

Medium Temperature Application - Incremental Costs by Compressor Type

Capacity (Btu/h)	Semi-Hermetic	Scroll	Discus
7500-14999	\$624	\$624	-
15000-22499	\$618	\$618	-
22500-29999	\$597	\$597	-
30000-37499	\$580	\$580	\$1,434
37500-44999	-\$653	-\$653	\$205
45000-52499	-\$771	-\$771	\$393
52500-59999	-\$892	-\$892	\$177
60000-67499	-\$354	-\$354	\$107
67500-75000	\$185	\$185	-\$10

High Temperature Application - Incremental Costs by Compressor Type

Capacity (Btu/h)	Semi-Hermetic	Scroll	Discus
12000-23999	\$563	\$563	-
24000-35999	-	\$538	-

²¹⁷ See referenced document "Refrigeration Compressor Pricing Analysis v1.0.xlsx" for details.

Brushless DC Motors (also known as ECM) for Merchandising **Case Coolers and Freezers**

Measure Number: I-E-13-a (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date: Portfolio 37 Effective date: 01/01/06 End date: TBD

Referenced Documents:

Description

Cooler and Freezer Case evaporator fans typically contain three to twelve evaporator fans that run nearly 24 hours each day, 365 days each year. Not only do these fans use electricity, but the heat that each fan generates must also be removed by the refrigeration system to keep the product cold, adding more to the annual electricity costs. If the cooler or freezer has single-phase power, the electricity usage can be reduced by choosing brushless DC motors instead of conventional, shaded-pole motors. Brushless DC motors are also sometimes known by the copyrighted trade name ECM (electronically commutated motor).

Algorithms

Demand Saving ∆kW	$\mathbf{s} = (\mathbf{k}\mathbf{W}_{\mathrm{SP}} - \mathbf{k}\mathbf{W}_{\mathrm{BDC}}) \times \mathrm{DC}_{\mathrm{Evap}} \times \mathrm{BF}$
Energy Savings	
ΔkWh	$= \Delta \mathbf{k} \mathbf{W} \times 8760$
Where:	
ΔkW	= gross customer connected load kW savings for the measure (kW)
kW _{SP}	= Connected load kW of a shaded pole evaporator fan (Average 0.0413 kW) ²¹⁸
kW _{BDC}	= Connected load kW of a brushless DC evaporator fan $(0.0113 \text{kW})^{219}$
DC _{Evap}	= Duty cycle of the evaporator fan (100% for cooler, 94% for freezer) ²²⁰
BF	= Bonus factor for reduced cooling load from replacing a shaded-pole
	evaporator fan with a lower wattage brushless DC fan (1.5 for low temp, 1.3 for medium temp, and 1.2 for high temp) ²²¹
ΔkWh	= gross customer annual kWh savings for the measure (kWh)
8760	= (hours/year)

Baseline Efficiencies – New or Replacement

The baseline condition is shaded pole evaporator fan motor.

High Efficiency

High efficiency is a brushless DC evaporator fan motor.

²¹⁸ Based on Technical Data Sheets from Tyler Refrigeration (48W), Hussmann Refrigeration (46W), and Hill-Phoenix Refrigeration (30W) ²¹⁹ Based on Technical Data Sheets from Tyler Refrigeration (11W), Hussmann Refrigeration (9W), and Hill-Phoenix

Refrigeration (14W)

²²⁰ A evaporator fan in a cooler runs all the time, but a freezer only runs 8273 hours per year due to defrost cycles (4 20-min defrost cycles per day) ²²¹ Bonus factor (1+ 1/COP) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp,

based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F.

Operating Hours

A cooler evaporator fan runs all the time or 8760 hours per year. A freezer evaporator fan runs 8273 hours per year due to defrost cycles (4 20-min defrost cycles per day). The smaller number of hours for freezer fan run time is captured in the duty cycle factor in the ΔkW calculation, so that 100% coincidence factors may be applied to both applications.

Loadshape

Flat (8760 hours) #25

Freeridership / Spillover Factors

Measure Category		Refrigeration End-Use	
Measure Code		RFRBLFAN	
Product Description		Efficient B	lower Fans
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.94	1.00
Farm NC	6014FARM	1.00	1.00
Farm Equip Rpl	6013FARM	1.00	1.00
Non Act 250 NC	6014NANC	1.00	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	0.94	1.00
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

5 years

Measure Cost

The incremental cost of a brushless DC fan motor compared to a shaded-pole fan motor is \$25.²²² Retrofit cost for a brushless DC fan motor is \$120 (\$60 for the motor, \$60 for installation labor including travel time).

Incentive Level

\$20, which is 80% of the incremental cost at the time of replacement and 17% of the full installed retrofit cost.

O&M Cost Adjustments

None

²²² Based on actual costs from Hussmann Refrigeration.

Fossil Fuel Descriptions There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None

Evaporator Coil Defrost Control

Measure Number: I-E-15-a (Business Energy Services, Refrigeration End Use) Version Date & Revision History Draft date: Portfolio 49 Effective date: 01/01/08 End date: TBD

Referenced Documents: <InterLinkSDK_ETLRept_0607.pdf>, <MasterControllerMap.pdf>, <Bohn Evap 306-0D.pdf>, <LC-03A.pdf>

Description

This measure applies to electric defrost control on small commercial walk-in freezer systems. A freezer refrigeration system with electric defrost is set to run the defrost cycle periodically throughout the day. A Defrost Control uses temperature and pressure sensors to monitor system processes and statistical modeling to learn the operations and requirements of the system. When the system calls for a defrost cycle, the control determines if it is necessary and skips the cycle if it is not.

Algorithms

Demand Savings

= # fans * kW_{DE} * SVG * BF

Energy Savings

ΔkWh $= \Delta kW * FLH$

Where:

ΔkW

ΔkW	= gross customer connected load kW savings for the measure (kW)
∆kWh	= gross customer annual kWh savings for the measure (kWh)
# Fans	= number of evaporator fans
kW _{DE}	= kW of defrost element per evaporator fan $(0.9 \text{kW})^{223}$
SVG	= % of defrost cycles saved by control (average of 30%) ²²⁴
BF	= Bonus factor for reduced cooling load from eliminating heat generated by the
	defrost element from entering the cooler or freezer (1.5 for low temp) ²²⁵
FLH	= Average Full load defrost hours (487 hours).

Baseline Efficiencies – New or Replacement

The baseline is a small commercial walk-in freezer refrigeration system without evaporator coil defrost control.

High Efficiency

High efficiency is a small commercial walk-in freezer refrigeration system with evaporator coil defrost control.

²²³ The total Defrost Element kW is proportional to the number of evaporator fans blowing over the coil. The typical wattage of the defrost element is 900W per fan. See Bohn <Bohn Evap 306-0D.pdf> and Larkin <LC-03A.pdf>

specifications. ²²⁴ Smart Defrost Kits claim 30-40% savings (with 43.6% savings verified by third party testing by Intertek Testing Services. InterLinkSDK_ETLRept_0607.pdf.)

MasterBilt Demand Defrost claims 21% savings for the northeast. MasterControllerMap.pdf.

Smart Defrost Kits are more common so the assumption of 30% is a conservative estimate.²²⁵ Bonus factor assumes 2.0 COP for low temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, and a condensing temperature of 90°F, and 100% of heat generated by defrost element enters the refrigerated case (1+1/2.0).

Operating Hours

The refrigeration system is assumed to be in operation everyday of the year, while savings from the evaporator coil defrost control will only occur during set defrost cycles. This is assumed to be four, 20 minute cycles per day, or 487 hours.

Loadshape

Loadshape #14, Commercial Refrigeration

Measure Category		Refrigeration End-Use	
Measure Code		RFRFROST	
		Evaporator	Coil Defrost
Product Description		Con	itrol
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.94	1.00
Farm NC	6014FARM	1.00	1.00
Farm Prescriptive	6013FRMP	1.00	1.00
Farm Equip Rpl	6013FARM	1.00	1.00
Non Act 250 NC	6014NANC	1.00	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	0.94	1.00
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	0.98	1.0

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.

Lifetimes 10 years²²⁶.

Measure Cost \$500²²⁷

Incentive Level \$150

²²⁶ This is a conservative estimate based on discussion with Heatcraft. They estimate the measure life based on the components expected life. The only moving part is a relay which has a cycle life that is well over 15 years based on the frequency of the relay operation. ²²⁷ Based on Smart Defrost Kit cost of \$400 to \$600 per system.

http://www.interlinkparts.com/smartdefrostkit/faqs.asp. The MasterBilt Master Controller and Beacon II systems are more complex control and data logging systems that do more than just defrost, and are therefore more costly. This measure and so the measure cost is only for the defrost control portion of the systems.

O&M Cost Adjustments

None

Fossil Fuel Descriptions There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Plate Coolers for Dairy Farms

Measure Number: I-E-16-b (Business Energy Services, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 84
Effective date:	1/1/2014
End date:	TBD

Referenced Documents: AG Plate Cooler Analysis_2013.xls

Description

A system used in dairy applications that cools milk prior to final cooling with a refrigeration system. A plate type heat exchanger is used to transfer heat from the milk stream to a stream of ambient temperature water. Electric savings are gained by reducing the downstream cooling load of the associated refrigerant based system. Generally, there is no opportunity to reclaim heat from the water used in the heat exchange process and it is therefore assumed that this energy is lost. However, Efficiency Vermont encourages farmers to use the plate cooler's warm water to feed cows. Cows prefer to drink warm water and the more water they drink the more milk output they provide. On larger dairy farms, plate coolers are generally used in conjunction with a variable speed milk transfer (VSMT) pump to manage flow rate of the milk to ensure optimal heat exchange and reduce refrigeration use even further. A VSMT is a separate TRM measure. Costs of plate coolers vary greatly based on cooler plate size therefore the rebate is a tiered rebate, with tiers based on the number of cows as proxy for the volume of milk requiring cooling:

- Tier 1: 75^{228} -139 cows
- Tier 2: 140+ cows

Algorithms

Plate Cooler Savings²²⁹

Demand Savings

 Δ kW Tier 1 = 4.89 kW Δ kW Tier 2 = 8.87 kW

Energy Savings

 Δ kWh Tier 1 = 4,496 kWh Δ kWh Tier 2 = 19,744 kWh

Where:

ΔkW	= gross customer connected load kW savings for the measure
ΔkWh	= gross customer average annual kWh savings for the measure

Baseline Efficiencies – Retrofit or Replacement

The baseline state is a milk cooling system where milk is not pre-cooled with a plate cooler, but goes directly into a refrigerated cooling system²³⁰.

²²⁸ Minimum number of cows for which the measure screened

 ²²⁹ Savings estimates are the average savings claimed for EVT custom projects from 2003 through 2011, see AG Plate Cooler Analysis_2013.xls
 ²³⁰ While a plate cooler unit would be baseline for a new construction project, farmers typically re-use old equipment

²³⁰ While a plate cooler unit would be baseline for a new construction project, farmers typically re-use old equipment when extensively renovating old facilities. New construction, due to construction of new facilities, is rare and EVT staff has only heard of one case (between 2006 and 2012) where a new construction project resulted in purchase of new equipment.

High Efficiency

The high efficiency case is installation and use of a plate cooler to pre-cool milk using ambient temperature water prior to refrigerated cooling.

Operating Hours

N/A.

Loadshapes

Loadshape #122, Farm Plate Cooler / Heat Recovery Unit

Freeridership/Spillover Factors

Measure Category		Refrigeration	
Measure Code		RFRPLATE	
Product Description		Dairy Farm Heat Recovery	
		Unit	
Track Name	Track No.	Freerider Spillover	
Farm Equip Rpl	6013FARM	1.00	1.00
Farm Rx	6013FRMP	1.00	1.00

Persistence

The persistence factor is assumed to be one.²³¹

Lifetime

10 years.

Measure Cost²³²

	Average cost
Tier 1	\$2,875
Tier 2	\$6,530

O&M Cost Adjustments

There are no standard operation and maintenance cost adjustments used for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default savings for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Compressed Air End Use

²³¹ This equipment has no moving parts or controls and therefore rarely experiences downtime prior to failure due to corrosion at the end of service life. ²³² Value derived from Efficiency Vermont custom data 2003-2011, AG Plate Cooler Analysis_2013.xls

Efficient Compressors 40 hp and Below

Measure Number: I-F-3-a (Business Energy Services, Compressed Air End Use)

Version Date & Revision History

Draft date: Portfolio 53 Effective date: 1/1/08 End date: TBD

Referenced Documents: "Compressed Air Analysis.xls", "BHP Weighted Compressed Air Load Profiles v3.xls", "Compiled Data Request Results.xls"

Description

Baseline compressors choke off the inlet air to modulate the compressor output, which is not efficient (Modulating). Efficient compressors use a variable speed drive on the motor to match output to the load. Savings are calculated using representative baseline and efficient demand numbers for compressor capacities according to the facility's load shape, and the number of hours the compressor runs at that capacity. Demand curves are as per DOE data for a Variable Speed compressor versus a Modulating compressor. This measure applies only to an individual compressor ≤ 40 hp.

Algorithms²³³

Energy Savings

 $\Delta kWh = 0.9 \text{ x } hp_{compressor} \text{ x } HOURS \text{ x } (CF_b - CF_e)$

Demand Savings

 $\Delta kW = \Delta kWh / HOURS$

Where:

ΔkWh	= gross customer annual kWh savings for the measure
hp _{compressor}	= compressor motor nominal hp
0.9^{234}	= compressor motor nominal hp to full load kW conversion factor
HOURS	= compressor total hours of operation (see Operating Hours section)
CF _b	= baseline compressor factor (see "Compressor Factors by Control Type" in Reference
	Tables section)
CF _e	= efficient compressor factor (see "Compressor Factors by Control Type" in Reference
	Tables section)

Baseline Efficiencies – Retrofit or Replacement

The baseline equipment is a modulating compressor with blow down ≤ 40 hp.

High Efficiency

The high efficiency equipment is a compressor ≤ 40 hp with variable speed control.

Operating Hours

Single shift (8/5) - 1976 hours (7 AM – 3 PM, weekdays, minus some holidays and scheduled down time) 2-shift (16/5) - 3952 hours (7AM – 11 PM, weekdays, minus some holidays and scheduled down time) 3-shift (24/5) - 5928 hours (24 hours per day, weekdays, minus some holidays and scheduled down time) 4-shift (24/7) - 8320 hours (24 hours per day, 7 days a week minus some holidays and scheduled down time)

²³³ See "Compressed Air Analysis.xls" for algorithm details.

²³⁴ Conversion factor based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and full load kW from power measurements of 72 compressors at 50 facilities on Long Island. See "BHP Weighted Compressed Air Load Profiles v2.xls".

Loadshape²³⁵

Loadshape #44: Indust. 1-shift (8/5) (e.g., comp. air, lights) Loadshape #45: Indust. 2-shift (16/5) (e.g., comp. air, lights) Loadshape #46: Indust. 3-shift (24/5) (e.g., comp. air, lights) Loadshape #47: Indust. 4-shift (24/7) (e.g., comp. air, lights)

Freeridership/Spillover Factors²³⁶

Measure Category		Compressed Air	
Measure Code		CMPCOMPR	
Product Description		Air Con	npressor
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.75	1.00
Cust Equip Rpl	6013CUST	0.75	1.00
Farm NC	6014FARM	n/a	n/a
Farm Prescriptive	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	0.75	1.00
Pres Equip Rpl	6013PRES	0.75	1.00
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

10 years. Analysis period is the same as the lifetime.

Measure Cost

Incremental Cost (\$) = $(127 \text{ x hp}_{compressor}) + 1446$

Where:

127 and 1446^{237} = compressor motor nominal hp to incremental cost conversion factor and offset

²³⁵ Calculated demand impacts (kW) represent diversified kW demand savings over each typical hour that compressed air system is operating. Therefore, for shifts that totally encompass the peak capacity periods, the coincidence factor equals 100%. For shifts that only encompass a portion of the peak capacity period, the coincidence factor represents the portion of the peak capacity period included in the shift hours.
²³⁶ Based on professional judgment and current market activity as reported by several compressed air equipment

²³⁰ Based on professional judgment and current market activity as reported by several compressed air equipment vendors. See "Compiled Data Request Results.xls" for details.

hp_{compressor} = compressor motor nominal hp

Incentive Level

The incentive for this measure is half the calculated incremental cost.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Compressor Factors by Control Type²³⁸

Control Type	Compressor Factor		
Modulating w/ BD	0.890		
Variable speed drive	0.705		

²³⁷ Conversion factor and offset based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and incremental cost. Several Vermont vendors were surveyed to determine the cost of equipment. See "Compressed Air Analysis.xls" and "Compiled Data Request Results.xls" for incremental cost details.
²³⁸ Compressor factors were developed using DOE part load data for different compressor control types as well as load

²³⁰ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. "See "BHP Weighted Compressed Air Load Profiles.xls" for source data and calculations (The "variable speed drive" compressor factor has been adjusted up from the 0.675 presented in the analysis to 0.705 to account for the additional power draw of the VSD).

Cycling Dryers

Measure Number: I-F-4-a (Business Energy Services, Compressed Air End Use)

Version Date & Revision History

Draft date:	Portfolio 53
Effective date:	1/1/08
End date:	TBD

Referenced Documents: "Compressed Air Analysis.xls", "BHP Weighted Compressed Air Load Profiles v3.xls", "Compiled Data Request Results.xls", "Air Dryer Calc.xls"

Description

Use of a refrigerated dryer that cycles on and off as required by the demand for compressed air instead of running continuously. **This measure only applies to dryers with capacities of 600 cfm and below.** Larger dryers will be handled on a custom basis.

Algorithms²³⁹

Energy Savings

 $\Delta kWh = [(4 \text{ x } hp_{compressor}) \text{ x } 0.0087 \text{ x } HOURS \text{ x } (1 - APC)] \text{ x } RTD$

Demand Savings

 $\Delta kW = \Delta kWh / HOURS$

Where:

ΔkWh	= gross customer annual kWh savings for the measure
hp _{compressor}	= compressor motor nominal hp
4^{240}	= approximate compressor output CFM per compressor motor nominal hp
0.0087^{241}	= compressor CFM to baseline dryer kW conversion factor
HOURS	= compressor total hours of operation (see Operating Hours section)
APC ²⁴²	= Average % Capacity; average operating capacity of compressor (65%)
RTD	= Chilled Coil Response Time Derate (0.925) (from "Air Dryer Calc.xls")
ΔkW	= gross customer kW savings for the measure

Baseline Efficiencies – Retrofit or Replacement

The baseline equipment is a non-cycling refrigerated air dryer with a capacity of 600 cfm or below.

High Efficiency

The high efficiency equipment is a cycling refrigerated air dryer with a capacity of 600 cfm or below.

Operating Hours

Single shift (8/5) - 1976 hours (7 AM – 3 PM, weekdays, minus some holidays and scheduled down time) 2-shift (16/5) - 3952 hours (7AM – 11 PM, weekdays, minus some holidays and scheduled down time) 3-shift (24/5) - 5928 hours (24 hours per day, weekdays, minus some holidays and scheduled down time) 4-shift (24/7) - 8320 hours (24 hours per day, 7 days a week minus some holidays and scheduled down time)

²³⁹ See "Compressed Air Analysis.xls" for algorithm details.

²⁴⁰ Manufacturer's data suggests that cfm output per compressor hp ranges from 4 to 5. As used in the algorithm, the lower estimate will slightly underestimate savings.

 ²⁴¹ Conversion factor based on a linear regression analysis of the relationship between air compressor full load capacity and non-cycling dryer full load kW assuming that the dryer is sized to accommodate the maximum compressor capacity. See "Compressed Air Analysis.xls" for source calculations.
 ²⁴² Based on an analysis of load profiles from 50 facilities using air compressors 40 hp and below. See "BHP Weighted

²⁴² Based on an analysis of load profiles from 50 facilities using air compressors 40 hp and below. See "BHP Weighted Compressed Air Load Profiles.xls" for source calculations.

Loadshape²⁴³

Loadshape #44: Indust. 1-shift (8/5) (e.g., comp. air, lights) Loadshape #45: Indust. 2-shift (16/5) (e.g., comp. air, lights) Loadshape #46: Indust. 3-shift (24/5) (e.g., comp. air, lights) Loadshape #47: Indust. 4-shift (24/7) (e.g., comp. air, lights)

Freeridership/Spillover Factors²⁴⁴

Measure Category		Compressed Air	
Measure Code		CMPDRYER	
Product Description		Air Dryer	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.50	1.00
Cust Equip Rpl	6013CUST	0.50	1.00
Farm NC	6014FARM	n/a	n/a
Farm Prescriptive	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	0.50	1.00
Pres Equip Rpl	6013PRES	0.50	1.00
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

10 years. Analysis period is the same as the lifetime.

Measure Cost²⁴⁵

The incremental cost for this measure is \$750.

Incentive Level

The incentive for this measure is \$375.

²⁴³ Calculated demand impacts (kW) represent diversified kW demand savings over each typical hour that compressed air system is operating. Therefore, for shifts that totally encompass the peak capacity periods, the coincidence factor equals 100%. For shifts that only encompass a portion of the peak capacity period, the coincidence factor represents the portion of the peak capacity period included in the shift hours.²⁴⁴ Based on professional judgment and current market activity as reported by several compressed air equipment

vendors. See "Compiled Data Request Results.xls" for details. ²⁴⁵ See "Compressed Air Analysis.xls" and "Compiled Data Request Results.xls" for incremental cost details.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None.
Air-Entraining Air Nozzles

Measure Number: I-F-5-a (Business Energy Services, Compressed Air End Use)

Version Date & Revision History

Draft date: Portfolio 53 Effective date: 1/1/08 End date: TBD

Referenced Documents: "Compressed Air Analysis.xls", "BHP Weighted Compressed Air Load Profiles v3.xls", "Compiled Data Request Results.xls"

Description

Air entraining air nozzles use compressed air to entrain and amplify atmospheric air into a stream, thus increasing pressure with minimal compressed air use. They are used as replacements for stationary air nozzles in a production application, or on handheld guns.

Algorithms²⁴⁶

Energy Savings

 $\Delta kWh = (CFM_b - CFM_e) \times COMP \times HOURS \times \% USE$

Demand Savings

 $\Delta kW = \Delta kWh / HOURS$

Where:

$\Delta kWh = gross$ customer annual kWh savings for the measure	
CFM_b = Baseline Nozzle CFM (26 CFM - assumes 1/8" diameter orifice)	
CFM_e = Efficient Nozzle CFM (14 CFM)	
COMP = Compressor kW/CFM - the average amount of electrical demand in kW required t	0
produce one cubic foot of air at 100 PSI (see Average Compressor kW/CFM Table	e in
the Reference Tables section)	
HOURS = compressor total operating hours (see Operating Hours section)	
%USE = percent of the compressor total operating hours that the nozzle is in use (5% for 3	
seconds of use per minute) ²⁴⁷	

 ΔkW = gross customer kW savings for the measure

Baseline Efficiencies – Retrofit or Replacement

The baseline equipment is an open copper tube of 1/8" orifice diameter or an inefficient air gun using 26 cfm or more.

High Efficiency

The high efficiency equipment is an air nozzle capable of amplifying the air stream by a factor of 25 using 14 cfm or less.

Operating Hours

Single shift (8/5) - 1976 hours (7 AM - 3 PM, weekdays, minus some holidays and scheduled down time)2-shift (16/5) - 3952 hours (7 AM - 11 PM, weekdays, minus some holidays and scheduled down time)3-shift (24/5) - 5928 hours (24 hours per day, weekdays, minus some holidays and scheduled down time)

²⁴⁶ See "Compressed Air Analysis.xls" for algorithm details.

²⁴⁷ Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor run time is used.

4-shift (24/7) - 8320 hours (24 hours per day, 7 days a week minus some holidays and scheduled down time)

Loadshape²⁴⁸

Loadshape #44: Indust. 1-shift (8/5) (e.g., comp. air, lights) Loadshape #45: Indust. 2-shift (16/5) (e.g., comp. air, lights) Loadshape #46: Indust. 3-shift (24/5) (e.g., comp. air, lights) Loadshape #47: Indust. 4-shift (24/7) (e.g., comp. air, lights)

Freeridership/Spillover Factors²⁴⁹

Measure Category	Compressed Air		
Measure Code	CMPNOZZL		
Product Description	Air Nozzles		
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.90	1.00
Cust Equip Rpl	6013CUST	0.90	1.00
Farm NC	6014FARM	n/a	n/a
Farm Prescriptive	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	0.90	1.00
Pres Equip Rpl	6013PRES	0.90	1.00
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

10 years. Analysis period is the same as the lifetime.

Measure Cost²⁵⁰

\$14 per air nozzle.

²⁴⁸ Calculated demand impacts (kW) represent diversified kW demand savings over each typical hour that compressed air system is operating. Therefore, for shifts that totally encompass the peak capacity periods, the coincidence factor equals 100%. For shifts that only encompass a portion of the peak capacity period, the coincidence factor represents the portion of the peak capacity period included in the shift hours.²⁴⁹ Based on professional judgment and current market activity as reported by several compressed air equipment

vendors. See "Compiled Data Request Results.xls" for details. ²⁵⁰ See "Compressed Air Analysis.xls" for incremental cost details.

Incentive Level

\$7 per air nozzle.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Average Compressor kW/CFM²⁵¹

Compressor Control Type	Average Compressor kW/CFM
Modulating w/ BD	0.32
Load/No Load w/ 1 gal/CFM	0.32
Load/No Load w/ 3 gal/CFM	0.30
Load/No Load w/ 5 gal/CFM	0.28
Variable Speed w/ Unloading	0.23

²⁵¹ The average compressor kW/CFM values were calculated using DOE part load curves and load profile data from 50 facilities employing compressors less than or equal to 40 hp. See "Compressed Air Analysis.xls" for source calculations and "BHP Weighted Compressed Air Load Profiles.xls" for source data.

No Loss Condensate Drains

Measure Number: I-F-7-a (Business Energy Services, Compressed Air End Use)

Version Date & Revision History

Draft date: Portfolio 53 Effective date: 1/1/08 End date: TBD

Referenced Documents: "Compressed Air Analysis.xls", "BHP Weighted Compressed Air Load Profiles v3.xls", "Compiled Data Request Results.xls"

Description

When air is compressed, water in the form of condensation is squeezed out of the compressed air and collects in piping and storage tanks. The water must be drained so as not to interfere with the flow of compressed air and so it will not corrode the piping or tank. Many drains are controlled by a timer and open an orifice for a programmed set amount of time, regardless of the level of the condensate. Thus compressed air is allowed to escape after the condensate has drained. Timed drains typically continue to operate even when the compressor is down, effectively bleeding off useful stored air that must be remade when the compressor is restarted. No Loss Condensate drains are controlled by a sensor and only open when there is a need to drain condensate, and close before compressed air can escape.

Algorithms²⁵²

Energy Savings

 $\Delta kWh = ALR \times COMP \times OPEN \times AF \times PNC$

Demand Savings

 $\Delta kW = \Delta kWh / HOURS$

Where:

∆kWh ALR	 = gross customer annual kWh savings for the measure = Air Loss Rate - an hourly average rate for the timed drain dependent on Drain Orifice Diameter and Pressure, expressed in CFM (see Average Air Loss Rates in the Reference Tables section). The default value, where the actual baseline system is
COMP	 unknown, shall be 100.9 CFM.²⁰⁵ = Compressor kW/CFM - the average amount of electrical demand in kW required to produce one cubic foot of air at 100 PSI (see Average Compressor kW/CFM Table in the Reference Tables section)
OPEN ²⁵⁴	= hours per year the timed drain is open (146 – assuming 10 second drain operation every 10 minutes)
AF	= Adjustment factor to account for the fact that the system may run out of compressed air due to leakage and timed drains when the compressor is down. Savings are only claimed for the average of the compressor hours and the total hours per year (see Adjustment Factors (AF) by Compressor Operating Hours).
PNC HOURS	 % Not Condensate - percentage of time that compressed air escapes instead of condensate (75% - conservative assumption based on professional judgment) = compressor total operating hours (see Operating Hours section)

²⁵² See "Compressed Air Analysis.xls" for algorithm details.

²⁵³ 100.9 CFM based on an orifice size of ¹/₄" and a typical system pressure of 100 psi. Orifice sizes for timed drains found in EVT's research range from 5/32" to 9/16", with the most common size being 7/16"; ¹/₄" is considered a reasonably conservative estimate of average size. 100 psi is a conservative estimate of average system pressure; most systems are run at higher pressure than 100 psi.
²⁵⁴ Based on EVT experience, 10 seconds of drain operation every 10 minutes is a conservative estimate. Many

²⁵⁴ Based on EVT experience, 10 seconds of drain operation every 10 minutes is a conservative estimate. Many facilities simply use the default timed drain setting or adjust the drain to the highest allowable frequency and duration. Both practices are excessive for most operations.

 ΔkW = gross customer kW savings for the measure

Baseline Efficiencies – Retrofit or Replacement

The baseline equipment is a timed drain that operates according to a preset schedule regardless of the presence of condensate.

High Efficiency

The high efficiency equipment is a no loss condensate drain controlled by a sensor and only opens when there is a need to drain condensate and closes before any compressed air is vented.

Operating Hours

Single shift (8/5) - 1976 hours (7 AM - 3 PM, weekdays, minus some holidays and scheduled down time)2-shift (16/5) - 3952 hours (7 AM - 11 PM, weekdays, minus some holidays and scheduled down time)3-shift (24/5) - 5928 hours (24 hours per day, weekdays, minus some holidays and scheduled down time)4-shift (24/7) - 8320 hours (24 hours per day, 7 days a week minus some holidays and scheduled down time)time)

Loadshape²⁵⁵

Loadshape #44: Indust. 1-shift (8/5) (e.g., comp. air, lights) Loadshape #45: Indust. 2-shift (16/5) (e.g., comp. air, lights) Loadshape #46: Indust. 3-shift (24/5) (e.g., comp. air, lights) Loadshape #47: Indust. 4-shift (24/7) (e.g., comp. air, lights)

²⁵⁵ Calculated demand impacts (kW) represent diversified kW demand savings over each typical hour that compressed air system is operating. Therefore, for shifts that totally encompass the peak capacity periods, the coincidence factor equals 100%. For shifts that only encompass a portion of the peak capacity period, the coincidence factor represents the portion of the peak capacity period included in the shift hours.

Freeridership/Spillover Factors²⁵⁶

Measure Category		Compressed Air	
Measure Code		CMPDRAIN	
	No Loss Condensate		
Product Description		Dr	ain
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.95	1.00
Cust Equip Rpl	6013CUST	0.95	1.00
Farm NC	6014FARM	n/a	n/a
Farm Prescriptive	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	0.95	1.00
Pres Equip Rpl	6013PRES	0.95	1.00
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

5 years.

Analysis period is the same as the lifetime.

Measure Cost²⁵⁷

Assume an incremental cost of \$200.

Incentive Level

The incentive for this measure is \$100 per unit.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

 ²⁵⁶ Based on professional judgment and current market activity as reported by several compressed air equipment vendors. See "Compiled Data Request Results.xls" for details.
 ²⁵⁷ See "Compressed Air Analysis.xls" and "Compiled Data Request Results.xls" for incremental cost details.

Reference Tables

Pressure (psig)			Orifice Diam	neter (inches)		
	1/64	1/32	1/16	1/8	1/4	3/8
70	0.29	1.16	4.66	18.62	74.4	167.8
80	0.32	1.26	5.24	20.76	83.1	187.2
90	0.36	1.46	5.72	23.10	92.0	206.6
95	0.38	1.51	6.02	24.16	96.5	216.8
100	0.40	1.55	6.31	25.22	100.9	227.0
105	0.42	1.63	6.58	26.31	105.2	236.7
110	0.43	1.71	6.85	27.39	109.4	246.4
115	0.45	1.78	7.12	28.48	113.7	256.1
120	0.46	1.86	7.39	29.56	117.9	265.8
125	0.48	1.94	7.66	30.65	122.2	275.5

Average Air Loss Rates (CFM)

Source: US DOE Compressed Air Tip Sheet #3, August 2004, from Fundamentals for Compressed Air Systems Training offered by the Compressed Air Challenge

Average Compressor kW/CFM²⁵⁸

Compressor Control Type	Average Compressor kW/CFM
Modulating w/ BD	0.32
Load/No Load w/ 1 gal/CFM	0.32
Load/No Load w/ 3 gal/CFM	0.30
Load/No Load w/ 5 gal/CFM	0.28
Variable Speed w/ Unloading	0.23

Adjustment Factors (AF) by Compressor Operating Hours

Compressor Operating Hours	AF
Single Shift – 2080 Hours	0.62
2-Shift – 4160 Hours	0.74
3-Shift – 6240 Hours	0.86
4-Shift – 8320 Hours	0.97

²⁵⁸ The average compressor kW/CFM values were calculated using DOE part load curves and load profile data from 50 facilities employing compressors less than or equal to 40 hp. See "Compressed Air Analysis.xls" for source calculations and "BHP Weighted Compressed Air Load Profiles.xls" for source data.

Air Receivers for Load/No Load Compressors

Measure Number: I-F-8-a (Business Energy Services, Compressed Air End Use)

Version Date & Revision History

Draft date:Portfolio 53Effective date:1/1/08End date:TBD

Referenced Documents: "Compressed Air Analysis.xls", "BHP Weighted Compressed Air Load Profiles v3.xls", "Compiled Data Request Results.xls"

Description

Using an air receiver (a storage tank) will buffer the air demands of the system on the compressor, thus eliminating short cycling. Although a load/no load compressor unloads in response to lowered demand, it does so over a period of time to prevent lubrication oil from foaming. Therefore, reducing the number of cycles reduces the number of transition times from load to no load and saves energy. Savings are calculated using representative baseline and efficient demand numbers for compressor capacities according to the facility's load shape, and the number of hours the compressor runs at that capacity. Demand curves are as per DOE data for load/no load compressors and various gallon per CFM storage ratios.

Algorithms²⁵⁹

Energy Savings

 $\Delta kWh = 0.9 \text{ x } hp_{compressor} \text{ x } HOURS \text{ x } (CF_b - CF_e)$

Demand Savings

 $\Delta kW = \Delta kWh / HOURS$

Where:

ΔkWh	= gross customer annual kWh savings for the measure
hp _{compressor}	= compressor motor nominal hp
0.9^{260}	= compressor motor nominal hp to full load kW conversion factor
HOURS	= compressor total hours of operation (see Operating Hours section)
CF _b	= baseline compressor factor (see "Compressor Factors by Control Type" in Reference
	Tables section). The default value shall be 0.890, based on a Modulating Compressor
	with Blow Down.
CF _e	= efficient compressor factor (see "Compressor Factors by Control Type" in Reference
	Tables section). The default value shall be 0.812, based on a Load/No Load Compressor
	with 4 gallons of storgage per cfm.

Baseline Efficiencies – Retrofit or Replacement

The baseline equipment is a load/no load compressor with a 1 gal/cfm storage ratio or a modulating w/ BD compressor.

High Efficiency

The high efficiency equipment is a load/no load compressor with a 4 gal/cfm storage ratio or greater.

Operating Hours

Single shift (8/5) - 1976 hours (7 AM - 3 PM, weekdays, minus some holidays and scheduled down time)2-shift (16/5) - 3952 hours (7 AM - 11 PM, weekdays, minus some holidays and scheduled down time)

²⁵⁹ See "Compressed Air Analysis.xls" for algorithm details.

²⁶⁰ Conversion factor based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and full load kW from power measurements of 72 compressors at 50 facilities on Long Island. See "BHP Weighted Compressed Air Load Profiles v2.xls".

3-shift (24/5) – 5928 hours (24 hours per day, weekdays, minus some holidays and scheduled down time) 4-shift (24/7) – 8320 hours (24 hours per day, 7 days a week minus some holidays and scheduled down time)

Loadshape²⁶¹

Loadshape #44: Indust. 1-shift (8/5) (e.g., comp. air, lights) Loadshape #45: Indust. 2-shift (16/5) (e.g., comp. air, lights) Loadshape #46: Indust. 3-shift (24/5) (e.g., comp. air, lights) Loadshape #47: Indust. 4-shift (24/7) (e.g., comp. air, lights)

Freeridership/Spillover Factors²⁶²

Measure Category	Measure Category		ssed Air
Measure Code	CMPRECVR		
Product Description		Air Receiver	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	0.90	1.00
Cust Equip Rpl	6013CUST	0.90	1.00
Farm NC	6014FARM	n/a	n/a
Farm Prescriptive	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	0.90	1.00
Pres Equip Rpl	6013PRES	0.90	1.00
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

10 years. Analysis period is the same as the lifetime.

Measure Cost

Incremental Cost (\$) = 5 x (TANK_e – TANK_b)

Where:

²⁶¹ Calculated demand impacts (kW) represent diversified kW demand savings over each typical hour that compressed air system is operating. Therefore, for shifts that totally encompass the peak capacity periods, the coincidence factor equals 100%. For shifts that only encompass a portion of the peak capacity period, the coincidence factor represents the portion of the peak capacity period included in the shift hours.
²⁶² Based on professional judgment and current market activity as reported by several compressed air equipment

²⁶² Based on professional judgment and current market activity as reported by several compressed air equipment vendors. See "Compiled Data Request Results.xls" for details.

5^{263}	= air receiver tank size (gals) to equipment cost conversion factor
TANK _e	= efficient tank size (gal)
TANK _b	= existing tank size (gal)

Incentive Level

The incentive for this measure is half the calculated incremental cost.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Compressor Factors by Control Type²⁶⁴

Control Type	Compressor Factor
Modulating w/ Blow Down	0.890
Load/No Load with 1 gal/CFM storage	0.909
Load/No Load with 3 gal/CFM storage	0.831
Load/No Load with 4 gal/CFM storage	0.812
Load/No Load with 5 gal/CFM storage	0.806

²⁶³ Conversion factor based on a linear regression analysis of the relationship between air receiver storage capacity and incremental cost. See "Compressed Air Analysis.xls" for source calculations and costs.
²⁶⁴ Compressor factors were developed using DOE part load data for different compressor control types as well as load

²⁰⁴ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. "See "BHP Weighted Compressed Air Load Profiles v3.xls" for source data and calculations.

Multiple End Uses

New Construction Core Performance Package

Measure Number: I-N-1-a (Business Energy Services, Multiple End Uses)

Version Date & Revision History:

Draft date:Portfolio 53Effective date:1/1/07End date:TBD

Referenced Documents: "Measure Level Model Outputs – All Buildings", "Package Level Model Outputs – All Buildings.xls", "Weighted Lifetime and Commissioning Factor.xls", "Enhanced Measures & Load Shapes v.2.xls", "Core Performance Summary Table.xls", "VT Core Performance Cost Estimates 11.14.07.xls", "Core Performance Overview Memo 02.25.08.doc", 2005 Vermont Guidelines for Energy Efficient Commercial Construction, *Core Performance Guide – Vermont Edition*

Description

Applies to new office, retail, or school buildings \geq 10,000 sf and \leq 70,000 sf that meet or exceed the performance requirements as defined in Section 2 of the *Core Performance Guide – Vermont Edition*. Specific measures include high-efficiency heating and cooling equipment, improved envelope and fenestration, lighting controls and improved lighting power density, demand control ventilation, and dual enthalpy economizers.

Energy Savings

 $\Delta kWh = kWh_{SF} x SF x OTF$

Demand Savings

 $\Delta kW = \Delta kWh / RATIO_{kWh-kW}$

Where:

ΔkWh kWh _{SF}	=gross customer annual kWh savings for the measure =annual customer kWh savings per square foot building area (see "Vermont Core Performance - kWh Savings per ft ² " in the Reference Tables section
SE	below)
ЗГ	=building area in square reet
OTF	=operational testing factor. OTF = 1.0 if Section 1 of the <i>Core Performance Guide</i> – <i>Vermont Edition</i> is completed, 0.95 otherwise.
ΔkW	=gross customer connected load kW savings for the measure
RATIO _{kWh-kW}	=kWh/kW ratio (see "Vermont Core Performance – kWh/kW Ratios" in the
	Reference Table section)

Baseline Efficiencies

Building that meets Commercial Building Energy Standards (CBES) for Vermont (see 2005 Vermont Guidelines for Energy Efficient Commercial Construction).

High Efficiency

Building that meets or exceeds the performance requirements as defined in the *Core Performance Guide – Vermont Edition*.

Operating Hours

Not applicable.

Loadshapes²⁶⁵

EndUse	#	Winter- on kWh	Winter- off kWh	Summer -on kWh	Summer -off kWh	Winter kW	Summer kW
Core Performance –	78	32.2%	21.3%	30.7%	15.8%	13.2%	56.1%
Office w/ Pkg VAV							
and Chiller							
Core Performance –	79	41.8%	14.6%	31.0%	12.7%	18.7%	63.5%
Office w/ Pkg RTU							
and HW baseboard							
Core Performance –	80	38.0%	15.2%	32.4%	14.4%	14.6%	57.5%
Office w/ Pkg RTU							
and Furnace							
Core Performance –	81	34.5%	21.7%	27.9%	15.9%	22.3%	74.0%
Office w/ Water							
Source HP							
Core Performance –	82	73.9%	8.2%	14.7%	3.2%	27.7%	8.8%
School w/ Unit							
Vent. and Pkg units							
Core Performance –	83	35.7%	17.7%	31.1%	15.5%	16.0%	39.5%
Retail w/ Pkg RTU							
and Furnace							

²⁶⁵ See "Enhanced Measures & Load Shapes v.2.xls" for more details.

Freeridership/Spillover Factors

Measure Category		Design Incentives		
Measure Codes		DSNCOREP		
Product Description		Core Performance Building		
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	$1 \times 0.95 = 0.95^{-266}$	1.25 ²⁶⁷	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Non Act 250 NC	6014NANC	1.0	1.25	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Retro	6012CNIR	n/a	n/a	
MF Mkt Retro	6012MFMR	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	
Customer Credit	6015 CC	n/a	n/a	
EDirect	6021 DIRI	n/a	n/a	

Persistence

The persistence factor is assumed to be one.

Lifetimes

13.8 years (represents a savings-based weighted average lifetime of all measures within the core package. See "Weighted Lifetime and Commissioning Factor.xls" for details). Analysis period is the same as the lifetime.

Measure Cost

\$2.15 per square foot for non-heat pump mechanical systems; \$1.95 per square foot for heat pump mechanical systems (see "Core Performance Summary Table.xls" and "VT Core Performance Cost Estimates 11.14.07.xls" for more details).

Incentive Level

0.50 per ft² building area.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

 $\Delta MMBtu = MMBtu_{SF} \times SF$

²⁶⁶ Freeridership of 0% per agreement between DPS and EVT. All Act 250 measures will also have a 5% Adjustment Factor applied, which will be implemented through the Freeridership factor.

²⁶⁷ Spillover of 25% for the year 2008 per agreement between DPS and EVT (TAG agreement 9/29/2006).

Where:

ΔMMBtu	= gross customer annual MMBtu fossil fuel savings for the measure
MMBtu _{SF}	= annual customer MMBtu savings per square foot building area (see "Vermont Core
	Performance - MMBtu Savings per ft ² " in the Reference Tables section below)
SF	= building area in square feet

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Vermont Core Performance - kWh Savings per ft ^{2 268}					
	Mechanical Energy Savings				
Building Type	System	(kWh/ft^2)			
Office	Non-Heat Pump	1.5			
	Heat Pump	2.1			
School		0.6			
Retail		2.1			

Vermont Core Performance – kWh/kW Ratios ²⁶⁹					
	Mechanical				
Building Type	System	kWh/kW Ratio			
Office	Non-Heat Pump	1950			
	Heat Pump	2670			
School		2210			
Retail		1040			

Vermont Core Performance - MMBtu Savings per ft ^{2 270}					
		Fossil Fuel			
	Mechanical	Savings			
Building Type	System	(MMBtu/ ft ²)			
Office	Non-Heat Pump	0.003			
	Heat Pump	0.004			
School		0.009			
Retail		0.024			

²⁶⁸ See reference files "Core Performance Summary Table.xls" and "Package Level Model Outputs - All Buildings.xls" for details. ²⁶⁹ See reference files "Core Performance Summary Table.xls" and "Enhanced Measures & Load Shapes v.2.xls" for

details. ²⁷⁰ See reference files "Core Performance Summary Table.xls" and "Package Level Model Outputs - All Buildings.xls" for details.

Hot Water End Use Heat Recovery Units for Dairy Farms

Measure Number: I-K-2-a (Business Energy Services, Hot Water End Use)

Version Date & Revision History

Draft date:Portfolio 77Effective date:1/1/2012End date:TBD

Referenced Documents: AG HRU Analysis.xls

Description

A system used in dairy applications that uses waste heat from the compressor of a refrigerated milk cooling system to pre-heat water for either an electric or fossil fuel water heating system.

Algorithms

Heat Recover Unit (Electric Savings)²⁷¹

Demand Savings $\Delta kW = 4.475 \text{ kW}$

Energy Savings $\Delta kWh = 6,378 kWh$

Heat Recover Unit (Fossil Fuel Savings)²⁷²

Energy Savings ΔMMBTU= 52.46 MMBTU

Where:

ΔkW	= gross customer connected load kW savings for the measure
ΔkWh	= gross customer average annual kWh savings for the measure
ΔMMBTU	= gross customer average annual MMBTU savings for the measure

Baseline Efficiencies – Retrofit or Replacement

The baseline reflects no heat recovery from the refrigerator compressor²⁷³. **High Efficiency**

The high efficiency case is installation and use of a heat recovery unit on the refrigerator compressor.

Operating Hours

N/A.

Loadshapes

Loadshape #122, Farm Plate Cooler / Heat Recovery Unit

²⁷¹ Savings estimates are the average savings claimed for EVT custom projects from 2003 through 2012, see AG HRU Analysis.xls

 ²⁷² Savings estimates are the average savings claimed for EVT custom projects from 2003 through 2011, see AG HRU Analysis.xls
 ²⁷³ While a heat recovery unit would be baseline for a new construction project, farmers typically re-use old equipment

²⁷³ While a heat recovery unit would be baseline for a new construction project, farmers typically re-use old equipment when extensively renovating old facilities. New construction, due to construction of new facilities, is rare and EVT staff has only heard of one case (between 2006 and 2012) where a new construction project resulted in purchase of new equipment.

Measure Category		Hot Water Efficiency		
Measure Code		HWEHRCMP		
Product Description	n	Hot Water Heat Recovery,		
	•	Cor	npressor	
Track Name	Track No.	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm Equip Rpl	6013FARM	1.00	1.00	
Farm Rx	6013FRMP	1.00	1.00	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Upstream	6013UPST	n/a	n/a	
Act250 NC	6014A250	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	
MF Mkt Retro	6020MFMR	n/a	n/a	
C&I Lplus	6021LPLU	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
EP GMP Blueline	6042EPEP	n/a	n/a	
GMP Furnace	6042EPEP	n/a	n/a	
GMP HP	6046RETR	n/a	n/a	
VEEP GMP	6048VEEP	n/a	n/a	
LIMF Lplus	6052LPLU	n/a	n/a	
MFMR Lplus	6053LPLU	n/a	n/a	

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.²⁷⁴

Lifetime

10 years.

Measure Cost²⁷⁵

Heat Recovery Unit (Electric or Fossil Fuel Savings): \$3,523

O&M Cost Adjustments

There are no standard operation and maintenance cost adjustments used for this measure.

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default savings when electric savings is claimed for this measure.

 ²⁷⁴ This equipment has no moving parts or controls and therefore rarely experiences downtime prior to failure due to corrosion at the end of service life.
 ²⁷⁵ Value derived from Efficiency Vermont custom data 2003-2012, see AG HRU Analysis.xls

Water Descriptions There are no water algorithms or default values for this measure.

Reference Tables None

Space Heating End Use Envelope

Measure Number: I-M-1-c (Business Energy Services)

Version Date & Revision History

Draft date:	Portfolio 79
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1. 2005 Vermont Guidelines for Energy Efficient Commercial Construction, Table 802.2(1) and 802.2(2);
- 2. 2011 Vermont Commercial Building Energy Standards, tables 502.1(1) through 502.3

Description

Building envelope components with R-values exceeding the Vermont Guidelines for Energy Efficient Commercial Construction.

Algorithms

The savings for windows and glass door assemblies, roof assemblies, above-grade wall assemblies, skylights, and floors over outdoor air or unconditioned space should be calculated using effective whole-assembly R-values and the following algorithms:

Energy Savings

 $\Delta MMBTU = HDD \times 24 \times A \times \left[(1/R_{base} - 1/R_{effic}) \right] / \eta / 10^{6}$

Where:

ΔMMBTU	=	gross customer annual MMBTU fuel savings for the measure
HDD	=	heating degree days determined on a site-specific and application-specific basis
		(4400 typical HDD for high development areas in Vermont, using 50 degree F base
		temperature)
24	=	hours/day
A	=	area of increased insulation
R _{base}	=	baseline effective whole-assembly thermal resistance value (hr-ft ² -°F/BTU)
R _{effic}	=	efficient effective whole-assembly thermal resistance value (hr-ft ² -°F/BTU) ¹
η	=	space heating system efficiency including distribution losses
10^{6}	=	conversion from BTU to MMBTU

The savings for slab insulation and below-grade walls are calculated on a custom basis with baseline technologies established in the reference tables.

Baseline Efficiencies – New or Replacement

For all business new construction projects commencing construction prior to January 3rd, 2012 OR initiated with Efficiency Vermont prior to January 3rd, 2012, but completed on or after January 3rd, 2012, savings should be calculated using "2005 Vermont Guidelines for Energy Efficient Commercial Construction" as baseline. See Reference Tables section.

For all business new construction projects commencing construction after January 3rd, 2012 and iniated with Efficiency Vermont on or after January 3rd, 2012, regardless of when they are completed, savings shall be calculated using "2011 Vermont Commercial Building Energy Standards" as baseline. See Reference Tables section.

High Efficiency

Building envelope more efficient than the minimum efficiencies in the Vermont Guidelines for Energy Efficient Commercial Construction.

Operating Hours

Heating degree-days determined on a site-specific and application-specific basis.

Loadshapes

Not applicable

Freeridership/Spillover Factors

Measure Category		Envelope		
Measure Codes		TSHNACWL, TSHWINDO, TSHNFNDN		
Product Description	n	Efficient Envelope		
Track Name	Track No.	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Farm Rx	6013FRMP	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Upstream	6013UPST	n/a	n/a	
Act250 NC	6014A250	0.95	1.05	
Farm NC	6014FARM	n/a	n/a	
Non Act 250 NC	6014NANC	0.95	1.05	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	
MF Mkt Retro	6020MFMR	n/a	n/a	
C&I Lplus	6021LPLU	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
EP GMP Blueline	6042EPEP	n/a	n/a	
GMP Furnace	6042EPEP	n/a	n/a	
GMP HP	6046RETR	n/a	n/a	
VEEP GMP	6048VEEP	n/a	n/a	
LIMF Lplus	6052LPLU	n/a	n/a	
MFMR Lplus	6053LPLU	n/a	n/a	

* Freeridership of 0% per agreement between DPS and EVT. All Act 250 measures will also have a 5% Adjustment Factor applied, which will be implemented through the Freeridership factor.

Persistence

The persistence factor is assumed to be one.

Lifetimes

30 years.

Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is site-specific.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

 $\Delta MMBTU = HDD \times 24 \times A \times \left[(1/R_{base} - 1/R_{effic}) \right] / \eta / 10^{6}$

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

2005 Vermont Guidelines for Energy Efficient Commercial Construction

To be used as the baseline for projects initiated prior to 1/3/2012

Measure Description	Maximum U-Factor	Minimum
- Doors and Windows	for Entire Assembly	R-Value for Entire
	J.	Assembly
Windows/Glass Doors w/ Framing		
Materials other than Metal	U-0.35	2.9
Windows/Glass Doors w/ Metal		
framing - Curtain Wall/Storefront	U-0.45	2.2
Windows/Glass Doors w/ Metal		
framing - Entrance Door	U-0. 80	1.3
Windows/Glass Doors w/ Metal		
framing - All Other	U-0.50	2.0
Skylight, Glass $(0 - 5.0\% \text{ of roof})$	U-0.60	1.7
Skylight, Plastic $(0 - 5.0\% \text{ of roof})$	U-0.60	1.7

2005 Vermont Guidelines for Energy Efficient Commercial Construction					
To be used as the baseline for projects initiated initiated prior to $1/3/2$	012				
Measure Description Solar Heat Ga					
	Coefficient				
	(SHGC)				
Vertical Fenestration (50% max of gross above-grade wall area)					
- All Frame Types – Projection Factor <0.25	0.4				
- All Frame Types – 0.25 < Projection Factor > 0.5	0.55				
- All Frame Types – Projection Factor ≥ 0.5	NR				
Skylights					
- Glass	0.4				
- Plastic	0.62				

NR = No Requirement

2005 Vermont Guidelines for Energy Efficient Commercial Construction To be used as the baseline for projects initiated prior to 1/3/2012

To be used as the baseline for	r projects initiated pi	rior to 1/3/2012	
Measure Description	Maximum	Minimum	Minimum R-Value for Added
- Roof, walls and	Overall	Effective R-	Insulation
floors	Factor for	Value for	
	Entire	Entire	
	Assembly	Assembly	
Roof - Insulation entirely above deck	U-0.040	R-25.0	R-24 ci
Roof - Metal building	U-0.051	R-19.6	R-19 + 10 (with R-5 thermal blocks) or R-30 (with R-5 thermal blocks)
Roof - Steel joist	U-0.027	R-37.0	R-30 + R-5 ci (with R-5 thermal blocks)
Roof - Attic and other	U-0.027	R-37.0	R-38
Above-grade walls - Mass	U-0.104	R-9.6	R-9.5 ci
Above-grade walls - Metal Building	U-0.070	R-14.3	R-19 or R-6 + R-13
Above-grade walls - Metal framed	U-0.064	R-15.6	R-13 + R-7.5 ci
Above-grade walls - Wood framed or other	U-0.064	R-15.6	R-19 or R-7.5 ci or R-13 + R-3.8 ci
Below-grade walls	C-0.092 ¹	R-10.9	R-10 ci
Floor - Mass	U-0.074	R-13.9	R-10ci
Floor - Steel joist	U-0.038	R-26.3	R-30
Floor - Wood frame and other	U-0.033	R-30.3	R-30
Floor - Slab-on-grade - Unheated slab	F-0.64 ²	$R_{\rm F}$ -1.6 ³	R-10 for 48 inches
Floor - Slab-on-grade - Heated slab	F-0.55 ²	R _F -1.6 ³	R-10 for entire slab (under slab and perimeter)
Opaque Doors - Swinging	U-0.050	R-2.0	NR
Opaque Doors - Roll-up or Sliding	NR	NR	R-10

Notes:

ci = Continuous Insulation

NR = No Requirement

1. The C and U-Factors are expressed in the same units but the C-Factor does not include soil or air films.

2. F-Factor is the perimeter heat loss for slab-on-grade floors, expressed in Btu/h/ft/deg F

3. R_F is the equivalent R-value per linear foot (in hr-ft-°F/BTU), based on the slab F-Factor

2011 Vermont Commercial Building Energy Standards

To be used as the baseline for projects initiated on or after 1/3/2012

	MAXIMUM OVE	RALL U-FACTOR®	MINIMUM	MINIMUM <i>R</i> -VALUES		
COMPONENT	All other	Group R	All other	Group R		
Roofs		•	L.			
Insulation entirely above deck	U-	0.032	R-f	30ci		
Metal buildings ^{c, d}	U-1	0.049	See Table 502.1(2) a assembly descriptions	nd Table 502.1(3) for and assembly U-factors		
Attic and other	U-1	0.027	R	-38		
Walls, Above grade						
Mass	U-0.080	U-0.071	R-13.3ci	R-15.2ci		
Metal building ^c	U-	0.054	R-11 + R-13	ci or R-19.5ci		
Metal framed	U-	0.064	R-13 + R-7.	5ci or R-13ci		
Wood-framed and other	U-0.051 R-13 + R-7.50 R-20 + R-3.80 R-23 or R-11		₹-7.5ci or ₹-3.8ci or r R-15ci			
Walls, Below grade ^e						
Below-grade wal1	C-(0.092	R-	10ci		
Floors						
Mass	U-0.064	U-0.057	R-12.5ci	R-14.6ci		
Joist/framing-metal	U-0.038	U-0.032	R-30	R-38 ^f		
Joist/framing-wood and other	U-	0.033	R	-30		
Slab-on-grade floors				•		
Unheated slabs	F-0.480	F-0.450	R-10 for 48 in. below	R-15 for 48 in. below		
Heated slabs ^g	F-0).550	R-10 for entire slab			
Opaque doors						
Swinging	U	0.37	N/A			
Roll-up or sliding	U	0.20	N	/A		
Upward-acting, sectional	1	V/A	R	R-10		

	TABLE 502.1(1)		
BUILDING ENVEL	OPE REQUIREMENTS-OPAQUE	ASSEMBLIES	S AND ELEMENTS ^{a,b}

For SI: 1 inch = 25.4 mm, ci = continuous insulation.

a. U-Factors include overall F-Factors and C-Factors.

b. For all envelope categories except metal building walls and metal building roofs, the use of opaque assembly U-factors, C-factors and F-factors from ASHRAE 90.1-2007 Appendix A, including Addendum "G", shall be permitted, provided the construction complies with the applicable construction details from such appendix. Alternatively, assembly U-factors for metal buildings shall be determined following ASHRAE 90.1-2007 Appendix A9 methodology.

c. Refer to Table 502.1(3) for metal building roof assembly U-factors and Table 502.1(4) for metal building wall assembly U-factors.

d. A minimum R-3 thermal spacer block between the purlins and the metal roof panels is required, unless compliance is shown by the overall assembly U-factor.

e. Where heated slabs are placed below grade, below-grade walls shall comply with the exterior insulation requirements for heated slabs.

f. Steel floor joist systems shall be R-38 minimum for residential structures.

g. Insulation placed under entire heated slab and around perimeter.

BUILDING ENVELOPE		
REQUIREMENTS- METAL BUILDING		
ASSEMBLY DESCRIPTIONS	DESCRIPTION	REFERENCE
	ROOFS	
Single layer plus continuous insulation (See Table 502.1(3) for qualifying assemblies)	The first rated <i>R</i> -value of insulation is for insulation installed perpendicular to and draped over purlins and then compressed when the metal roof panels are attached. A minimum R-3 thermal spacer block between the purlins and the metal roof panels is required, unless compliance is shown by the overall assembly <i>U</i> -factor. The second rated <i>R</i> -value is for continuous insulation (e.g., insulation boards or blankets), it is assumed that the insulation is installed below the purlins and is uninterrupted by framing members. Insulation exposed to the conditioned space or semiheated space shall have a facing, and all insulation seams shall be continuously sealed to provide a continuous air barrier.	ANSI/ASHRAE/IESNA 90.1-2007 including Addendum "G" Section A2.3.2
Double layer plus continuous insulation (See Table 502.1(3) for qualifying assemblies)	The first rated <i>R</i> -value of insulation is for insulation installed perpendicular to and draped over purlins. The second rated <i>R</i> -value of insulation is for unfaced insulation installed above the first layer and parallel to the purlins and then compressed when the metal roof panels are attached. A minimum R-3 thermal spacer block between the purlins and the metal roof panels is required, unless compliance is shown by the overall assembly <i>U</i> -factor. The third rated <i>R</i> -value is for continuous insulation (e.g., insulation boards or blankets), it is assumed that the insulation is installed below the purlins and is uninterrupted by framing members. Insulation exposed to the conditioned space or semiheated space shall have a facing, and all insulation seams shall be continuously sealed to provide a continuous air barrier.	ANSI/ASHRAE/IESNA 90.1-2007 including Addendum "G" Section A2.3.2
Liner system (Ls) (See Table 502.1(3) for qualifying assemblies)	A continuous membrane installed below the purlins and uninterrupted by framing members. Uncompressed, unfaced insulation rests on top of the membrane between the purlins. For multilayer installations, the last rated <i>R</i> -value of insulation is for unfaced insulation draped over purlins and then compressed when the metal roof panels are attached. A minimum R-3 thermal spacer block between the purlins and the metal roof panels is required, unless compliance is shown by the overall assembly <i>U</i> -factor.	ANSI/ASHRAE/IESNA 90.1-2007 including Addendum "G" Section A2.3.2
Filled Cavity (Fc) (See Table 502.1(3) for Qualifying Assemblies)	The first rated R-value of insulation is for faced insulation installed parallel to the purlins. The second rated R-value of insulation is for unfaced insulation installed above the first layer, parallel to and between the purlins and compressed when the metal roof panels are attached. The face of the first layer of insulation is of sufficient width to be continuously sealed to the top flange of the purlins and to accommodate the full thickness of the second layer of insulation. A supporting structure retains the bottom of the first layer at the prescribed depth required for the full thickness of the second layer of insulation being installed above it. A minimum R-5 thermal spacer block between the purlins and the metal roof panels is required, unless compliance is shown by the overall assembly U-factor.	ANSI/ASHRAE/IESNA 90.1-2007 including Addendum "G" Section A2.3.2

TABLE 502.1(2) BUILDING ENVELOPE REQUIREMENTS-METAL BUILDING ASSEMBLY DESCRIPTIONS

(continued)

BUILDING ENVELOPE REQUIREMENTS- METAL BUILDING ASSEMBLY		
DESCRIPTIONS	DESCRIPTION	REFERENCE
	WALLS	
	The first rated <i>R</i> -Value of insulation is for insulation compressed between metal wall panels and the steel structure.	
R-11 + R-13ci	The second rated <i>R</i> -value is for continuous insulation (e.g., insulation boards). It is assumed that the insulation boards are installed on the inside of the girts and uninterrupted by the framing members.	ANSI/ASHRAE/IESNA 90.1-2007 including Addendum "G" Section A3.2.2
	Insulation exposed to the conditioned space or semi-heated space shall have a facing, and all insulation seams shall be continuously sealed to provide a continuous air barrier.	
R-19.5ci	The rated R-value is for continuous insulation (e.g., insulation boards). It is assumed that the insulation boards are installed on the inside of the girts and uninterrupted by the framing members.	ANSI/ASHRAE/IESNA 90.1-2007 including Addendum "G" Section
	Insulation exposed to the conditioned space or semi-heated space shall have a facing, and all insulation seams shall be continuously sealed to provide a continuous air barrier.	A3.2.2

TABLE 502.1(2)-continued BUILDING ENVELOPE REQUIREMENTS-METAL BUILDING ASSEMBLY DESCRIPTIONS

		OVERALL U-FACTOR	RALL OVERALL U-FACTOR FOR ASSEMBLY OF BASE ROOF CTOR PLUS CONTINUOUS INSULATION (UNINTERRUPTED BY FRAMING)		NG)			
INSULATION SYSTEM	RATED <i>R</i> -VALUE OF INSULATION	FOR ENTIRE BASE ROOF ASSEMBLY		Rate	d <i>R</i> -Value of Co	ontinuous Insula	ation	
Standing Sear	n Roofs with Thermal Spac	er Blocks ^a	R-6.5	R-13	R-19.5	R-26	R-32.5	R-39
	None	_	_	_	0.049	0.037	0.030	0.025
	R-10	_	_	0.046	0.035	0.029	0.024	0.021
	R-11	_	_	0.045	0.035	0.028	0.024	0.021
Single layer ⁶	R-13	_	_	0.044	0.034	0.028	0.024	0.020
	R-16	_	_	0.043	0.033	0.027	0.023	0.020
	R-19	_	_	0.040	0.031	0.026	0.022	0.020
	R-10 + R-10	_	_	0.041	0.032	0.027	0.023	0.020
	R-10 + R-11	_	_	0.041	0.032	0.027	0.023	0.020
	R-11 + R-11	_	_	0.040	0.032	0.026	0.023	0.020
	R-10 + R13	_	_	0.040	0.032	0.026	0.023	0.020
	R-11 + R-13	_	_	0.040	0.032	0.026	0.022	0.020
Double layer ^b	R-13 + R-13	_	_	0.038	0.030	0.025	0.022	0.019
	R-10 + R-19	_	_	0.038	0.030	0.025	0.022	0.019
	R-11 + R-19	_	0.049	0.037	0.030	0.025	0.022	0.019
	R-13 + R-19	_	0.047	0.036	0.029	0.025	0.021	0.019
	R-16 + R-19	_	0.046	0.035	0.029	0.024	0.021	0.018
	R-19 + R-19	_	0.043	0.034	0.028	0.023	0.020	0.018
	R-19 + R-11 Ls	0.035						
T in an anatamb	R-25 + R-11 Ls	0.031						
Liner system ^o	R-30 + R-11 Ls	0.029	_	_	_	_	_	_
	R-25 + R-11+ R-11 Ls	0.026						
Filled cavityc	R-10 + R-19 Fc	0.057	0.042	0.033	0.027	0.023	0.020	0.018
Standing Seam Ro	ofs without Thermal Space	Blocks						
Liner system	R-19 + R-11 Ls	0.040	_	_	_	_	_	_
Thru-fastened Roo	fs without Thermal Spacer	Blocks						
Liner system	<i>R</i> -19 + R-11 Ls	0.044	—	—	—	—	—	—
(Multiple <i>R</i> -values are listed in order from inside to outside)								

TABLE 502.1(3) ASSEMBLY U-FACTORS FOR METAL BUILDING ROOFS

a. A standing seam roof clip that provides a minimum 1.5 in. distance between the top of the purlins and the underside of the metal roof panels is required.

b. A minimum R-3 thermal spacer block is required.
c. A minimum R-5 thermal spacer block is required.

	ASSEMBLY U-FACTORS FOR METAL BUILDING WALLS							
		OVERALL U-FACTORS FOR ASSEMBLY OF BASE WALL PLUS CONTINUOUS INSULATION (UNINTERRUPTED BY FRAMING)						
SYSTEM	OF INSULATION		Rated <i>R</i> -value of Continuous Insulation					
Single Layer		R-13	R-13 R-19.5 R-26 R-32.5 R-39					
	None	_	0.049	0.037	0.030	0.025		
	R-10	0.054	0.040	0.032	0.026	0.023		
	R-11	0.054	0.040	0.032	0.026	0.023		
	R-13	0.052	0.039	0.031	0.026	0.022		
	R-16	0.051	0.039	0.031	0.026	0.022		
	R-19	0.050	0.038	0.03	0.025	0.022		

TABLE 502.1(4)

Vertical fenestration (40% maximum of above-grade wall)					
Framing materials other than metal with or without metal reinforcement or cladding					
U-factor	0.35				
Metal framing with or without thermal break					
Curtain wall/storefront U-factor	0.42				
Entrance door U-factor	0.80				
All other U-factor ^a	0.50				
SHGC-all frame types					
SHGC: <i>PF</i> < 0.25	0.40				
SHGC: $0.25 \le PF < 0.5$	NR				
SHGC: $PF \ge 0.5$ NR					
Skylights (3% maximum)					
U-factor	0.60				
SHGC	0.40				

TABLE 502.3 BUILDING ENVELOPE REQUIREMENTS: FENESTRATION

NR = No requirement. *PF* = Projection factor (see Section 502.3.2).
a. All others includes operable windows, fixed windows and nonentrance doors.

Multifamily Program

Lighting End Use Lighting Fixtures

Measure Number: III-A-2-d (Multifamily New Construction Program, Lighting End Use)

Version Date & Revision History

Draft date: Portfolio 74 Effective Date: 1/1/2012 End Date: TBD

Referenced Documents:

1) MF 2012 EISA Adjustments.xls

Description

This measure characterization describes savings assumptions for interior fixtures installed through the Multi Family program.

<u>In-unit fixtures</u>: For in unit fixtures a single prescriptive savings assumption will be used for Hardwired Fluorescent Fixtures, Circline and LED downlights (to streamline implementation and ensure consistency with other market sectors). The Multi Family program requires 100% of rooms to have at least one fixture and that all fixtures be hard wired high efficacy fixtures (CFL, HPT8 or LED). The 2011 RBES code requires 50% of fixtures to have high efficacy lamps.

<u>Common area fixtures</u>: Assumptions are provided for Hardwired Fluorescent Fixtures, Circline, High Performance T8 and LED downlights and hours of use assumptions provided for different locations. The 2011 RBES code requires 50% of fixtures to have high efficacy lamps.

<u>Exterior fixtures</u>: Exterior fixtures on the common meter (i.e. not tenant controlled) will be analyzed with Lighting Power Density (See Lighting Power Density TRM entry for more information).

<u>Lighting Controls</u>: Lighting Controls will be analyzed using the assumptions presented in the Business Energy Services Lighting Controls TRM entry.

Savings Algorithms

Demand Savings

 $\Delta kW = ((Watts_{BASE} - Watts_{EE}) / 1000) * ISR$

Energy Savings

 $\Delta kWh = \Delta kW \times HOURS$

Where:

ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW (see table below)
Watts _{EE}	= Energy efficient connected kW (see table below)
ISR	= in service rate or the percentage of units rebated that actually get used $= 1.0$
∆kWh HOURS	 = gross customer annual kWh savings for the measure = average hours of use per year (dependent on fixture for in unit and location for common area – see section below)

Baseline Efficiencies – New or Replacement

The 2011 RBES code requires 50% of fixtures to have high efficacy lamps. Efficiency Vermont will therefore assume a baseline made up of 50% high efficacy as defined by the Code and 50% baseline lamps. The table below specifies the baseline assumption for each fixture type.

High Efficiency

The Multi Family program requires 100% of rooms to have at least one fixture and that all fixtures be hard wired high efficacy fixtures (CFL, HPT8 or LED).

The table below specifies the common efficient fixtures. Any other fixtures installed will use the wattage assumptions in the C&I Lighting TRM entries and the hours of use specified below²⁷⁶.

Efficient Fixture	Baseline Fixture	Efficient	Baseline	Demand	Energy
	Assumption	Watts	Watts	Savings (kW)	Savings (kWh) ²⁷⁷
Hardwired CFL	0.5 x Incandescent	29.9	54.25	0.0244	23.1
lamp (1)	lamp				
	0.5 x CFL lamp				
Circline fixture (2)	1 x Incandescent	32	74	0.042	39.9
	lamp				
	1 x CFL lamp				
2 Lamp High	2 x Standard T8	49	59	0.01	9.5
Performance T8 (3)	lamp				
2 x 17W Standard	2 x 17W Standard	26	34	0.008	7.6
T8 with HPT8	T8 lamp				
ballast (3)					
LED Downlight (4)	0.5 x Incandescent	12	40	0.028	34.7
	Downlight				
	0.5 x CFL Downlight				

In unit Fixtures

Notes:

1. Hardwired CFL fixture is consistent with Efficient Products Interior Fluorescent Fixture delta watts of 48.7. Since 50% are assumed to be CFL, this delta watts is halved.

2. The baseline watts for the 32W Circline fixtures assumes 0.5 * 2 x 60W incandescent and 0.5 * 2 x 14W CFL.

3. The assumed wattages for the High Performance T8 measure are equal to those found in the Business Energy Services High Performance T8 TRM entry.

4. The baseline watts for the LED downlight assumes 0.5 * 65W incandescent (wattage consistent with Efficient Product's Solid State (LED) Recessed Downlight TRM entry baseline) and 0.5 * equivalent 15W CFL.

Efficient Fixture	Baseline Fixture Assumption	Efficient Watts	Baseline Watts	Demand Savings (kW)	Energy Savings (kWh)
Hardwired CFL	0.5 x Incandescent lamp	29.9	49.5	0.0196	
lamp	0.5 x CFL lamp				
Circline fixture	1 x Incandescent lamp	32	74	0.042	Hours of
	1 x CFL lamp				Use
2 Lamp High	2 x Standard T8 lamp	49	59	0.0105	dependent
Performance T8					on
LED Downlight	0.5 x Incandescent	12	40	0.028	location
	Downlight				
	0.5 x CFL Downlight				

Common Area Fixtures

²⁷⁶ Any measure with a baseline of incandescent will apply only 50% of the savings to account for the code baseline, any with a standard T8 baseline will apply full savings.²⁷⁷ Hours of use provided in 'Operating Hours' section below.

Screw based	0.5 x Incandescent	6.5	20.3	0.014	
LED bulbs	0.5 x CFL				
(<10W)					

Notes:

1. The baseline watts for the Screw based LED bulb assumes 0.5 * 33.3W incandescent and 0.5 * 7.2W CFL (wattage consistent with assumptions in Efficient Product's ENERGY STAR Integrated Screw Based SSL (LED) Lamps TRM entry)

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure will become EISA qualified Incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage.

Measure	Year	Savings Adjustment	Years of Full Savings
	Installed		Before Adjustment
Hardwired CFL lamp	2012	0.69	1
(in-unit)			
Hardwired CFL lamp	2012	0.69	1
(Common area – 8760 hours)			
Hardwired CFL lamp	2012	0.69	1
(Common area – 4380 hours)			
Circline	2012	0.60	2
(in-unit)			
Circline	2012	0.60	2
(Common area – 8760 hours)			
Circline	2012	0.60	2
(Common area – 4380 hours)			
Screw based LED bulbs (<10W)	2012	0.84	2
(Common area – 8760 hours)			
Screw based LED bulbs (<10W)	2012	0.84	2
(Common area – 4380 hours)			

The appropriate adjustments are provided below (see MF 2012 EISA Adjustments.xls for details):

Operating Hours

The assumed hours of operation are specified in the table below and are consistent with the assumptions from other markets for the same applications:

	Measure or Location	Annual Hours of Use
	Hardwired CFL Fixture	949
In IInit I ishting	Circline Fixture	949
In Unit Lighting	HPT8 Fixture	949
	LED Downlight	1241
Common Area Lighting ²⁷⁸	Indoor Hall/Stairway	8760
	Corridor	8760
	Laundry/common areas	4380

²⁷⁸ If different hours are appropriate, based on conversation with building owner or observations of usage, then custom hours of use will be used.

Loadshapes Loadshape #1, Residential Indoor Lighting Loadshape #25, Flat

Freeridership/Spillover Factors

Measure Category		Lighting Hardwired		Lighting Hardwired	
		Fixture		Fixture	
Measure Code		LFHCNFIX, LFHCRFIX		LFHST8TW	
Product Description		Compact f	luorescent	New Su	per T8
		interior fixtu	ure, Circline	Troffer/	Wrap
		fluoresce	nt fixture		~
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a	n/a	n/a
Act250 NC	6014A250	n/a	n/a	n/a	n/a
Farm NC	6014FARM	n/a	n/a	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0	1.0	1.0
LIMF NC	6018LINC	0.9	1.1	1.0	1.0
LIMF Rehab	6018LIRH	0.9	1.1	1.0	1.0
MF Mkt NC	6019MFNC	0.86	1.1	1.0	1.0
MF Mkt Retro	6020MFMR	0.9	1.05	1.0	1.0
C&I Lplus	6021LPLU	n/a	n/a	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a	n/a	n/a
RNC VESH	6038VESH	n/a	n/a	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a	n/a	n/a
GMP HP	6046RETR	n/a	n/a	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a	n/a	n/a

Measure Category		Lighting Hardwired		Light Bulbs/Lamps	
		Fixt	ure		
Measure Code		LFHRI	DLED,	LBLI	LEDSC
Product Descriptio	n	Solid State	Recessed	LED – Int	egral Screw
-		Downlight		Based Lamp	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a	n/a	n/a

Pres Equip Rpl	6013PRES	n/a	n/a	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a	n/a	n/a
Act250 NC	6014A250	n/a	n/a	n/a	n/a
Farm NC	6014FARM	n/a	n/a	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0	1.0	1.0
LIMF NC	6018LINC	0.9	1.0	0.9	1.0
LIMF Rehab	6018LIRH	0.9	1.0	0.9	1.0
MF Mkt NC	6019MFNC	0.88	1.1	0.88	1.1
MF Mkt Retro	6020MFMR	0.9	1.0	0.9	1.0
C&I Lplus	6021LPLU	n/a	n/a	n/a	n/a
Efficient	6032EPEP	n/a	n/a	n/a	n/a
Products					
LISF Retrofit	6034LISF	n/a	n/a	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a	n/a	n/a
RNC VESH	6038VESH	n/a	n/a	n/a	n/a
EP GMP	6042EPEP	n/a	n/a	n/a	n/a
Blueline					
GMP Furnace	6042EPEP	n/a	n/a	n/a	n/a
GMP HP	6046RETR	n/a	n/a	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

Hardwired CFL and Circline Fixtures: Fixture analysis period is 20 years, although savings will only be claimed until 2020, so the savings lifetime is 8 years for 2012, 7 years for 2013 etc.

Fluorescent Replacement Lamp and Ballast:

The measure life for HPT8 is assumed to be 20 years. Analysis period is the same as lifetime.

LED Downlight and Screw based LED

The ENERGY STAR specification requires 70% lumen maintenance at 25,000 hours for Omnidirectional lamps. In unit bulbs therefore assume to have life of 25000/1241 = 20.1 years, common areas with 8760 hours have life of 2.8 years and common areas with 4380 hours have life of 5.7 years. Analysis period is equal to measure life.

Incremental Costs per Unit

Incremental cost per installed fixture is presented in the table below.

	Measure	Incremental Cost Assumption per Fixture
	Hardwired CFL Fixture	\$10
In Unit Lighting	Circline Fixture	\$17.50
	LED Downlight	\$50
	Hardwired CFL lamp	\$10
	Circline fixture	\$17.50
Common Anos	2 x 17W Standard T8 with HPT8	\$17.50
Lighting	ballast	
Lignung	2 Lamp High Performance T8	\$17.50
	LED Downlight	\$50
	Screw based LED bulbs (<10W)	\$28.75

costs

All are

based on mixed baselines as presented above. Costs of lamps are consistent with other TRM entries with similar measures.

O&M Cost Adjustments

The O&M adjustments are provided in two tables below. Table A is for those measures impacted by the EISA baseline shift regulation. Due to the change in baseline replacement cost over the life of the measure, a single annual levelized replacement cost for the baseline and efficient case is calculated (see MF 2012 EISA Adjustments.xls for details). Table B is for those measures not impacted by the EISA regulation and therefore the O&M assumptions can be incorporated in the standard way.

	Measure	Annual baseline replacement cost	Annual efficient replacement cost
In Unit	Hardwired CFL Fixture	\$1.33	\$0.38
Lighting	Circline Fixture	\$1.16	\$0.18
Common	Hardwired CFL lamp	\$24.44	\$16.59
Area	Circline fixture	\$17.88	\$10.11
Lighting	Screw based LED bulbs	\$8.25	n/a
(8760 hours)	(<10W)		
Common	Hardwired CFL lamp	\$11.23	\$7.25
Area	Circline fixture	\$7.98	\$4.01
Lighting	Screw based LED bulbs	\$9.24	n/a
(4380 hours)	(<10W)		

A. EISA impacted measure levelized annual replacement costs.

B. Non EISA impacted measures Lamp and Ballast O & M Cost Assumptions

Measure	Baseline Me	Baseline Measure			Efficient Me	Efficient Measure		
	Comp 1		Comp 2		Comp 1		Comp 2	
	Life	Cost	Life	Cost	Life	Cost	Life	Cost
LED Downlight (in unit)	4.4	\$4.09 279						
LED Downlight (common area – 8760 hours)	0.6	\$6.76 280						
LED Downlight (common area – 4380 hours)	1.3	\$6.76						

²⁷⁹ Based on mix of incandescent and CFL baseline (see MF 2012 EISA Adjustments.xls for details).

²⁸⁰ Includes standard labor rate of \$2.67

2 x 17W Standard	n/a^{281}							
T8 with HPT8								
ballast								
(in unit)								
2 Lamp HPT8	n/a^{282}							
(in unit)								
2 Lamp HPT8	2.28	\$5.17	8.0	$$30^{284}$	2.74	7.67^{285}	8.0	\$47.5
(common area –		283						286
8760 hours)								
2 Lamp HPT8	4.57	\$5.17	15.9	\$30	5.48	\$7.67	15.9	\$47.5
(common area –								
4380 hours)								

²⁸¹ No replacements assumed within the analysis period for either baseline or efficient case.
²⁸² No replacements assumed within the analysis period for either baseline or efficient case.
²⁸³ Baseline lamp life is assumed to be 20,000 hours. Cost includes lamp cost of \$2.50 and labor cost of \$2.67.
²⁸⁴ Baseline ballast life is assumed to be 70,000 hours. Cost includes ballast cost of \$15 and labor cost or \$15.
²⁸⁵ Efficient lamp life is assumed to be 24,000 hours. Cost includes lamp cost of \$5.00 and labor cost of \$2.67.
²⁸⁶ Efficient ballast life is assumed to be 70,000 hours. Cost includes ballast cost of \$32.50 and labor cost or \$15.

Standard CFL Direct Install

Measure Number: III-A-4-d (Multifamily New Construction Program, Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Lighting End Use)

Version Date & Revision History:

Draft date:	Portfolio 76
Effective date:	1/1/2012
End date:	12/31/2014

Referenced Documents:

- 1. DI Cost Query.xls, Direct Install Prescriptive Lighting TAG.doc
- 2. Residential Lighting Markdown Impact Evaluation, Nexus Market Research, RLW Analytics, and GDS Associated, January 20, 2009
- 3. MF 2012 EISA Adjustments.xls
- 4. Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

Description

A compact fluorescent lamp replaces an incandescent bulb in an in-unit interior lighting fixture or a tenant controlled exterior lighting fixture in a multifamily direct install application.

Algorithms

Demand Savings

ΔkW

= $((Watts_{BASE} - Watts_{EE}) / 1000)$ * ISR

Year	Algorithm	ΔkW
2012	(49.0 / 1000) * 0.8	0.0392
2013	(43.6 / 1000) * 0.8	0.0349
2014	(37.0 / 1000) * 0.8	0.0296

Energy Savings

∆kWh

 $= \Delta kW \times HOURS$

Year	ΔkWh
2012	27.2
2013	24.2
2014	20.5

Where:

ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW^{287}
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used $= 0.8^{288}$
HOURS	= average hours of use per year = 694^{289}

Baseline Efficiencies – New or Replacement

The baseline is an incandescent bulb.

²⁸⁷ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

²⁸⁸ 0.8 ISR based on TAG 2009 agreement.

²⁸⁹ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become Halogen bulbs (see percentages in O&M table below).

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012. For example, measures installed in 2012, the full savings (as calculated above in the Algorithm section) will be claimed for the first two years, and the adjusted savings will be claimed for the remainder of the measure life. The appropriate adjustments are provided below (see MF 2012 EISA Adjustments.xls s for details on how adjustment is calculated):

Year Installed	Savings Adjustment	ent Years of Full Savings Before Adjustment	
2012	0.66	2	
2013	0.77	1	
2014	0.88	1	

High Efficiency

High efficiency is an ENERGY STAR compact fluorescent bulb. Delta watts based on NEEP RLS, 2011.

Operating Hours²⁹⁰

Operating hours will be assumed as 1.9 hours per day or 694 hours per year.

Loadshape

Loadshape #1, Residential Indoor Lighting Loadshape #2, Residential Outdoor Lighting

Freeridership/Spillover Factors

Measure Category		Lighting End-Use	
Measure Code		LBLCFBLB	
		Compact Fluorescent Screw-	
Product Description		base bulb	
Track Name	Track No.	Freerider	Spillover
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	1.0	1.0
MF Mkt NC	6019MFNC	1.0	1.0
MF Mkt Retro	6020MFMR	0.9	1.05

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). At 694 hours per year and including the 90% persistence factor this equates to 11 years. A provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the measure life will reduce each year and be equal to the number of years remaining to 2020; in 2012 this will be 8 years, in 2013 this will be 7 years.

²⁹⁰ Ibid.
Analysis period is the same as the lifetime.

Measure Cost ²⁹¹

The average installed cost is assumed to be \$6.09 (\$2.50 for the bulb and \$3.59 for labor).

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see MF 2012 EISA Adjustments.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen	CFL
Replacement Cost	\$0.50	\$1.50	\$2.50
Component Life (hours)	1000	1000	8500
Baseline % in 2009-2011	100%	0%	0%
Baseline % in 2012	67%	33%	0%
Baseline % in 2013	33%	67%	0%
Baseline % in 2014 onward	0%	100%	0%
Baseline % in 2020 onward	0%	0%	100%

The calculation results in a levelized assumption of \$0.93 baseline replacement cost every 1 year for CFL installations in 2012, \$0.96 every year for installations in 2013, and \$0.98 for installations in 2014. This adjustment will be recalculated for subsequent years.

²⁹¹ \$2.50 for CFL is based on TAG 2011 agreement to use recommendation from NEEP Residential Lighting Survey, 2011. Labor rate consistent with other measures.

CFL Installed by Owner

Measure Number: III-A-6-a (Multifamily New Construction Program, Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Lighting End Use)

Version Date & Revision History:

Draft date:	Portfolio 74
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1. DI Cost Query.xls, Direct Install Prescriptive Lighting TAG.doc
- 2. Residential Lighting Markdown Impact Evaluation, Nexus Market Research, RLW Analytics, and GDS Associated, January 20, 2009
- 3. MF 2012 EISA Adjustments.xls

Description

A compact fluorescent lamp is installed by a Multi Family building owner, replacing an incandescent bulb in an in-unit interior lighting fixture or a tenant controlled exterior lighting fixture.

Algorithms

ΔkW

= $((Watts_{BASE} - Watts_{EE}) / 1000)$ * ISR

Year	Algorithm	ΔkW
2012	(49.0 / 1000) * 0.75	0.0368
2013	(43.6 / 1000) * 0.75	0.0327
2014	(37.0 / 1000) * 0.75	0.028

Energy Savings

 ΔkWh

 $= \Delta kW \times HOURS$

Year	ΔkWh
2012	25.5
2013	22.7
2014	19.3

Where:

ΛkW	= gross customer connected load kW sayings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW^{292}
∆kWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units provided that actually get used $= 0.75^{293}$
HOURS	= average hours of use per year = 694^{294}

²⁹² Based on TAG 2011 agreement to use recommendation from NEEP Residential Lighting Survey, 2011.

²⁹³ An In Service Rate of 0.75 is used for an owner installed bulb. This is lower than the Direct Install ISR assumption and is consistent with the Efficiency Kit TRM entry, which is based on results from a similar program performed in Colorado, which found installation rates of over 90% for products in an Easy Savings Kit; *FINAL REPORT: TIER 1 WORKSHOP MODEL 2007-2008, Prepared for the Governor's Energy Office by Energy Outreach Colorado, July 3,* 2008.

²⁹⁴ Based on TAG 2011 agreement to use recommendation from NEEP Residential Lighting Survey, 2011.

Baseline Efficiencies – New or Replacement

The baseline is an incandescent bulb.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become Halogen bulbs (see percentages in O&M table below).

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012. For example, measures installed in 2012, the full savings (as calculated above in the Algorithm section) will be claimed for the first two years, and the adjusted savings will be claimed for the remainder of the measure life.

The appropriate adjustments are provided below (see MF 2012 EISA Adjustments.xls for details on how adjustment is calculated):

Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
2012	0.66	2
2013	0.77	1
2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR compact fluorescent bulb.

Operating Hours²⁹⁵

Operating hours will be assumed as 1.9 hours per day or 694 hours per year.

Loadshape

Loadshape #1, Residential Indoor Lighting Loadshape #2, Residential Outdoor Lighting

Freeridership/Spillover Factors

Measure Category	sure Category Lighting End-Use		End-Use
Measure Code LBLCF		FBLB	
		Compact Fluorescent Screw-	
Product Description base bulb		bulb	
Track Name	Track No.	Freerider	Spillover
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	1.0	1.0
MF Mkt NC	6019MFNC	1.0	1.0
MF Mkt Retro	6020MFMR	0.9	1.05

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). At 694 hours per year and including the 90% persistence factor this equates to 11 years. A provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the measure life will reduce

²⁹⁵ Ibid.

each year and be equal to the number of years remaining to 2020; so for 2012 this will be 8 years, 2013 7 years.

Analysis period is the same as the lifetime.

Measure Cost ²⁹⁶

The average installed cost is assumed to be \$6.09 (\$2.50 for the bulb and \$3.59 for labor).

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see MF 2012 EISA Adjustments.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen	CFL
Replacement Cost	\$0.50	\$1.50	\$2.50
Component Life (hours)	1000	1000	8500
Baseline % in 2009-2011	100%	0%	0%
Baseline % in 2012	67%	33%	0%
Baseline % in 2013	33%	67%	0%
Baseline % in 2014 onward	0%	100%	0%
Baseline % in 2020 onward	0%	0%	100%

The calculation results in a levelized assumption of \$0.93 baseline replacement cost every 1 year for CFL installations in 2012, \$0.96 every year for installations in 2013, and \$0.98 for installations in 2014. This adjustment will be recalculated for subsequent years.

²⁹⁶ \$2.50 for CFL is based on TAG 2011 agreement to use recommendation from NEEP Residential Lighting Survey, 2011. Labor rate consistent with other measures.

Specialty CFL Direct Install

Measure Number: III-A-7-a (Low Income Multifamily Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 75
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1. 2009 to 2011 bulbs installed.xlsx
- Xenergy, 1998; "Process and Impact Evaluation of Joint Utilities Starlights Residential Lighting 2. Program".

Description

An existing incandescent bulb is replaced with a lower wattage ENERGY STAR qualified specialty compact fluorescent bulb through a Direct Install program. Specialty CFL bulbs are defined as lamps for general illumination that use fluorescent light emitting technology and an integrated electronic ballast with or without a standard Edison screw-base. They can be dimmable, designed for special applications, have special color enhancement properties or have screw-bases that are not standard Edison bases, and include A-lamps, candelabras, G-lamps (globe), reflectors, torpedoes, dimmables, and 3-way bulbs. This TRM should be used for both interior and exterior installations, the only difference being the loadshape. Note specialty bulbs are currently exempt from EISA regulations.

Algorithms

Demand Savings

ΔkW	= ((Δ Watts) /1000) × ISR
$\Delta kW(\text{Res.} <=15W)$	$= ((43.9) / 1000) \times 0.8 = 0.0351$
$\Delta kW(\text{Res.} > 15W)$	$= ((62.6) / 1000) \times 0.8 = 0.0501$

Energy Savings

ΔkWh	$= \Delta kW \times HOURS$
ΔkWh (Res. <=15W)	$=(0.0351 \times 694) = 24.4$
ΔkWh (Res. >15W)	$=(0.0501 \times 694) = 34.8$

Where:

∆kW	= gross customer connected load kW savings for the measure
Awatts	= Average defa waits between specialty CFL and includescent waits $_{BASE} - Watts_{EE}^{297}$
ISR	= in service rate or the percentage of units rebated that actually get used 298
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= average hours of use per year

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent specialty light bulb.

High Efficiency

High efficiency is an ENERGY STAR qualified specialty compact fluorescent lamp.

²⁹⁷ The delta watts is calculated by finding the weighted average wattage of specialty bulbs installed in Existing Homes, Low Income and RNC from 01/2009-04/2011. The equivalent incandescent wattage was used to calculate delta watts. See 2009 to 2011 bulbs installed.xlsx ²⁹⁸ ISR is assumed to be equal to standard CFL Direct Install measure, and is based on a 2009 TAG agreement.

Operating Hours

Assumed to be 1.9 hours a day or 694 hours per year ²⁹⁹.

Loadshape

Loadshape #1: Residential Indoor Lighting Loadshape #2: Residential Outdoor Lighting

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Freeridership/Spillover Factors

Measure Category	Light Bulbs/Lamps				
Measure Code	LBLCFSPD				
	Compact Fluorescent				
		– Specia	lty Bulb		
Product Description	1	Direct	Direct Install		
Track Name	Track No.	Freerider	Spillover		
C&I Retrofit	6012CNIR	n/a	n/a		
Farm Retrofit	6012FARM	n/a	n/a		
Cust Equip Rpl	6013CUST	n/a	n/a		
Farm Equip Rpl	6013FARM	n/a	n/a		
Farm Rx	6013FRMP	n/a	n/a		
Pres Equip Rpl	6013PRES	n/a	n/a		
C&I Upstream	6013UPST	n/a	n/a		
Act250 NC	6014A250	n/a	n/a		
Farm NC	6014FARM	n/a	n/a		
Non Act 250 NC	6014NANC	n/a	n/a		
LIMF Retrofit 6017RETR		1	1		
LIMF NC	6018LINC	1	1		
LIMF Rehab	6018LIRH	1	1		
MF Mkt NC	6019MFNC	1	1		
MF Mkt Retro	6020MFMR	1	1		
C&I Lplus	6021LPLU	n/a	n/a		
Efficient Products	6032EPEP	n/a	n/a		
LISF Retrofit	6034LISF	1	1		
RES Retrofit	6036RETR	0.9	1		
RNC VESH	6038VESH	1	1		
EP GMP Blueline	6042EPEP	n/a	n/a		
GMP Furnace	6042EPEP	n/a	n/a		
GMP HP	6046RETR	n/a	n/a		
VEEP GMP 6048VEEP		n/a	n/a		
LIMF Lplus 6052LPLU		n/a	n/a		
MFMR Lplus 6053LPLU		n/a	n/a		

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

²⁹⁹ Hours of use are based on TAG 2011 agreement to use the NEEP Residential Lighting Survey, 2011 proposed values.

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). The measure life, including the 90% persistence factor is therefore assumed to be 8500/694 * 0.9 = 11 years. Analysis period is the same as the lifetime.

Measure Cost³⁰⁰

Cost (Watts <=15)	= \$8.16 + \$3.59 (labor)	= \$11.75
Cost (Watts >15)	= \$8.84 + \$3.59 (labor)	= \$12.43

Incentive Level

The incentive level is equal to the measure cost (these bulbs are free to the customer).

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Component Costs and Lifetimes Used in Computing O&M Savings

Residential

	Baseline Measures		
Component	Cost ³⁰¹	Life ³⁰²	
Lamp<=15W	\$2.71	1.4	
Lamp>15W	\$4.29	1.4	

³⁰⁰ Incremental cost of bulb is consistent with the assumptions from the NEEP Residential Lighting Survey, 2011. This evaluation did not provide the <=15W and >15W categories and so the costs from EVT's analysis of incremental costs are adjusted such that the average matches the values from the NEEP study. Labor cost is consistent with the standard

bulb direct install measures. ³⁰¹ Baseline cost is consistent with the assumptions from the NEEP Residential Lighting Survey, 2011. This evaluation did not provide the <=15W and >15W categories and so the costs from EVT's analysis of baseline costs are adjusted such that the average matches the values from the NEEP study 302 Based on the assumption that the incandescent bulb rated life is 1000 hours. 1000/694 = 1.4 years.

Clothes Washing End Use Common Area Commercial Clothes Dryer Fuel Switch

Measure Number: III-B-1-b (Multifamily New Construction Program, Clothes Washing End Use)

Version Date & Revision History

Draft date:Portfolio 74Effective date:1/1/2012End date:TBD

Referenced Documents:

1) ea_template_3h_MFDryer.xls

2) Incremental Dryer Costs.xls

Description

Install a commercial-grade propane- or natural gas-fired clothes dryer instead of electric clothes dryer in a central onsite laundry facility.

Algorithms Energy Savings

	ΔkWh	= NumUnits × kWh _{save} / NumDryers
Where:		
	∆kWh NumUnits NumDryers kWh _{save}	 = gross annual customer kWh savings per clothes dryer for the measure = number of residential units served by the central laundry facility = total number of clothes dryers in central laundry facility = annual customer kWh savings per residential unit for the measure = 675 kWh³⁰³ / apartment
Demand	Savings ∆kW	= ΔkWh_{save} /HOURS x NumUnits / NumDryers
Where:	HOURS	= Full load hours

Baseline Efficiencies – New or Replacement

Baseline efficiency is an electric dryer used in conjunction with a standard top-loading clothes washer.

High Efficiency

High efficiency is a propane or natural gas dryer used in conjunction with a standard top-loading clothes washer.

Loadshape

Loadshape #9, Residential Clothes Washer

Freeridership/ Spillover Factors

Measure Category	Other Fuel Switch

³⁰³ See ea_template_3h_MFDryer.xls for calculation. Savings assumes a 2 bedroom unit with three residents. Tool adjusts dryer usage assumption from MEF to calculate dryer usage per load (for heat only, not motor usage). Assumes 261 clothes washing loads per unit (apartment) and 90% of the washer loads being dried in the dryer (to equal 244 loads dried). When possible this value will be calculated with the specifics of the installation using the ea_template.xls tool.

³⁰⁴ Assuming 235 loads of laundry dried and estimate average run time of 45 minutes.

Measure Code		OTFYNPROP; OTFYNNGAS	
Product Description	oduct Description		r Fuel Switch
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	0.7	1.0
LIMF Rehab	6018LIRH	0.7	1.0
MF Mkt NC	6019MFNC	0.7	1.0
MF Mkt Retro	6020MFMR	0.9	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years (same as for clothes washers in DPS screening of Efficiency Utility Core programs). Analysis period is 30 years (fuel switch).

Incremental Cost per Dryer

The average purchase cost for a gas dryer is \$618 and for an equivalent electric dryer is \$535, making the incremental cost for each unit \$83. The cost to run gas line and hook up the dryer is approximately \$280. Therefore the incremental cost for a gas dryer is assumed to be $$363^{305}$.

O&M Cost Adjustments

Within the 30 year analysis period of this fuel switch, after 14 and 28 years the dryer would be required to be replaced and so a cost of \$618 for the efficient case and \$535 for the baseline case will be incorporated.

Fossil Fuel Descriptions

 Δ MMBtu = -2.60 MMBtu ³⁰⁶ (negative indicates increase in fuel consumption)

³⁰⁵ Based on 2011 EVT survey of local installers and gas companies, see Incremental Dryer Costs.xls.

Water Descriptions There are no water algorithms or default values for this measure.

³⁰⁶ Assumes 95% combustion efficiency for gas dryer (per 6/01 agreement between EVT and DPS) and 100% efficiency for electric dryer.

Common Area Commercial Clothes Washer

Measure Number: III-B-2-e

(Multifamily New Construction Program, Clothes Washing End Use)

Version Date & Revision History

Draft date: Portfolio 81 Effective date: 1/1/2013 End date: TBD

Referenced Documents:

1) 2013 MF Common Clothes Washer Savings.xls

Description

Install in a central onsite laundry facility a commercial-grade clothes washer meeting minimum qualifying efficiency standards of ENERGY STAR, CEE Tier 2 or CEE Tier 3, Most Efficient or Top Ten instead of a new standard baseline unit. Efficiency levels are defined below.

Algorithms

Energy Savings

Per unit Energy and Demand savings are presented in the reference tables below, and are dependent on the fuel type of the DHW system and the dryer. The calculations are based on analysis of previous year's rebated units through Efficient Products (see Efficient Product measure for write up of savings methodology). The savings are presented for each efficiency level in the reference table below titled "Customer Energy Savings by Water Heater and Dryer Fuel Type", and the calculation can be reviewed in 2013 MF Common Clothes Washer Savings.xls. Note these savings are for one unit usage. Total savings is therefore calculated by multiplying by number of units (apartments) using the clothes washer as presented below:

ΔkWh	=	NumUnits × kWh _{save} / NumWashers
--------------	---	---

Where:

∆kWh	= gross annual customer kWh savings per clothes washer for the measure
NumUnits	= number of residential units (apartments) served by the central laundry facility
kWh _{save}	= annual customer kWh savings per residential unit for the measure
NumWashers	= total number of clothes washers in central laundry facility

Demand Savings

NumUnits \times kW_{save} / NumWashers

Where:

 ΔkW = gross annual customer kW savings per clothes washer for the measure kWsave = annual customer kW savings per residential unit for the measure

Baseline Efficiencies – New or Replacement

=

Baseline efficiency is a top-loading commercial-grade clothes washer. The federal baseline MEF of 1.26 is inflated by 20% to 1.51 for savings comparison to account for non-qualifying models that are higher than the federal baseline MEF.

High Efficiency

High efficiency is defined as any model meeting or exceeding ENERGY STAR, CEE Tier 2 or Tier 3 standards as of 1/1/2011, ENERGY STAR Most Efficient or Top Ten as defined in the following table:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR	>= 2.0	<= 6.0
CEE TIER 2	>= 2.20	<= 4.5
CEE TIER 3	>= 2.40	<= 4.0

ENERGY STAR Most	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <=2.5 ft3)		
Efficient (as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)		
Top Ten	Defined as the ten most efficient units available.			

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (unit operation, washing and drying); the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Energy and water savings estimates are based on the weighted average MEF factor for qualifying models based on the models rebated during the previous calendar year, except Top Ten which is based upon averaging the units provided on the website (<u>http://www.toptenusa.org/Top-Ten-Clothes-Washers</u>) as of September 2012.

Operating Cycles

265 clothes washer cycles / per apartment / year 307

Operating Hours

265 operating hours / per apartment / year ³⁰⁸

Loadshape

Loadshape #9, Residential Clothes Washing, Vermont State Screening Tool.

Measure Category		Cooking and Laundry					
Product Description	n	Efficient Clothes Washer					
Measure Code		CKLESWRP, CKLC3WRP CKLMEWRP CKLC2WRP CKLTTWRP			EWRP, TWRP		
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
LIMF NC	6018LINC	0.75	1.0	1.0	1.0	1.0	1.0
LIMF Rehab	6018LIRH	0.75	1.0	1.0	1.0	1.0	1.0
MF Mkt NC	6019MFNC	0.5	1.0	0.75	1.0	0.95	1.2

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years³⁰⁹ (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is provided below³¹⁰:

Efficiency Level	Incremental Cost
ENERGY STAR	\$385
CEE Tier 2	\$650

³⁰⁷ EVT found the average household size in MF buildings from the 2010 Census data (1.6 people, compared to 2.3 for single family) and using the values for number of loads for different household sizes (from DOE Technical Support Document U.S. Department of Energy, Final Rule Technical Support Document (TSD): Energy Efficiency Standards for Consumer Products: Clothes Washers, December, 2000. Page 7-6) and the 322 used for single families we estimate the number of loads for a MF building to be 265 per unit. See file 2013 MF Common Clothes Washer Savings.xls.

³⁰⁸ Assume one hour per cycle.

³⁰⁹ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm. ³¹⁰ Based on EVT field study of clothes washer costs, see 2013 MF Common Clothes Washer Savings.xls. Measure cost is higher

than in-unit clothes washers since the common units are larger commercial and more expensive models.

CEE Tier 3	\$900
ENERGY STAR Most Efficient	\$1250
Top Ten	\$1300

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

NumUnits \times MMBtu_{save}. / NumWashers Δ MMBtu =

Where:

ΔMMBtu	= gross annual fossil fuel energy savings in MMBtu (million Btu) per clothes washer for
	the measure
NumUnits	= number of residential units served by the central laundry facility
MMBtu _{save}	= annual customer MMBtu of fossil fuel savings per residential unit for the measure from
	reference table below
NumWashers	= total number of clothes washers in central laundry facility

Water Descriptions

 ΔCCF NumUnits \times CCF_{save} / NumWashers =

Where:

ΔCCF	= annual <i>customer</i> water savings per clothes washer in CCF (hundreds of cubic feet)
NumUnits	= number of residential units served by the central laundry facility
CCF _{save} ³¹¹	= annual <i>customer</i> water savings per clothes washer per residential unit for the measure,
	in CCF (hundreds of cubic feet)
	= 2.4(ENERGY STAR), 6.1 (Tier 2) or 5.8 (Tier 3), 6.9 (Most Efficient) and 6.3 (Top
	Ten)
NumWashers	= total number of clothes washers in central laundry facility

Reference Tables

Customer Energy Savings by Water Heater and Dryer Fuel Type³¹²

ENERGY STAR:

		Per Unit (A	Apartment) Sa	vings	
Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU
			Oil	Propane	Natural
					Gas
Electric Dryer/Electric DHW	133	0.50	0	0	0
Electric Dryer/Propane DHW	49	0.18	0	0.34	0
Electric Dryer/Natural Gas DHW	49	0.18	0	0	0.34
Electric Dryer/Oil DHW	49	0.18	0.34	0	0
Propane Dryer/Electric DHW	85	0.32	0	0.16	0
Propane Dryer/Propane DHW	1	0.01	0	0.50	0
Propane Dryer/Oil DHW	1	0.01	0.50	0.00	0
Natural Gas Dryer/Electric DHW	85	0.32	0	0	0.16
Natural Gas Dryer/Natural Gas DHW	1	0.01	0	0	0.50
Natural Gas Dryer/Oil DHW	1	0.01	0.50	0	0.00

³¹¹ Water savings based on weighted average of 261 clothes washer cycles per year. See file 2013 MF Common Clothes Washer Savings.xls ³¹² Where dryer and DHW use different fossil fuels, savings are combined under the DHW fossil fuel because a single measure can

only have one fuel type for screening purposes and the DHW savings are larger than the Dryer savings.

Tier 2:

		Per Unit (Apartment) Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU	
			Oil	Propane	Natural	
					Gas	
Electric Dryer/Electric DHW	227	0.86	0	0	0	
Electric Dryer/Propane DHW	89	0.34	0	0.55	0	
Electric Dryer/Natural Gas DHW	89	0.34	0	0	0.55	
Electric Dryer/Oil DHW	89	0.34	0.55	0	0	
Propane Dryer/Electric DHW	144	0.54	0	0.28	0	
Propane Dryer/Propane DHW	6	0.02	0	0.84	0	
Propane Dryer/Oil DHW	6	0.02	0.84	0.00	0	
Natural Gas Dryer/Electric DHW	144	0.54	0	0	0.28	
Natural Gas Dryer/Natural Gas DHW	6	0.02	0	0	0.84	
Natural Gas Dryer/Oil DHW	6	0.02	0.84	0	0.00	

Tier 3:

	Per Unit (Apartment) Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU
			Oil	Propane	Natural
					Gas
Electric Dryer/Electric DHW	286	1.08	0	0	0
Electric Dryer/Propane DHW	102	0.39	0	0.73	0
Electric Dryer/Natural Gas DHW	102	0.39	0	0	0.73
Electric Dryer/Oil DHW	102	0.39	0.73	0	0
Propane Dryer/Electric DHW	188	0.71	0	0.33	0
Propane Dryer/Propane DHW	5	0.02	0	1.07	0
Propane Dryer/Oil DHW	5	0.02	1.07	0.00	0
Natural Gas Dryer/Electric DHW	188	0.71	0	0	0.33
Natural Gas Dryer/Natural Gas DHW	5	0.02	0	0	1.07
Natural Gas Dryer/Oil DHW	5	0.02	1.07	0	0.00

Most Efficient:

		Per Unit (Apartment) Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU	
			Oil	Propane	Natural	
					Gas	
Electric Dryer/Electric DHW	366	1.38	0	0	0	
Electric Dryer/Propane DHW	135	0.51	0	0.92	0	
Electric Dryer/Natural Gas DHW	135	0.51	0	0	0.92	
Electric Dryer/Oil DHW	135	0.51	0.92	0	0	
Propane Dryer/Electric DHW	238	0.90	0	0.44	0	
Propane Dryer/Propane DHW	7	0.02	0	1.36	0	
Propane Dryer/Oil DHW	7	0.02	1.36	0.00	0	
Natural Gas Dryer/Electric DHW	238	0.90	0	0	0.44	
Natural Gas Dryer/Natural Gas DHW	7	0.02	0	0	1.36	
Natural Gas Dryer/Oil DHW	7	0.02	1.36	0	0.00	

Top Ten:

		Per Unit (Apartment) Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU	
			Oil	Propane	Natural	
					Gas	
Electric Dryer/Electric DHW	398	1.50	0	0	0	
Electric Dryer/Propane DHW	155	0.58	0	0.97	0	
Electric Dryer/Natural Gas DHW	155	0.58	0	0	0.97	
Electric Dryer/Oil DHW	155	0.58	0.97	0	0	
Propane Dryer/Electric DHW	251	0.95	0	0.50	0	
Propane Dryer/Propane DHW	8	0.03	0	1.47	0	
Propane Dryer/Oil DHW	8	0.03	1.47	0.00	0	
Natural Gas Dryer/Electric DHW	251	0.95	0	0	0.50	
Natural Gas Dryer/Natural Gas DHW	8	0.03	0	0	1.47	
Natural Gas Dryer/Oil DHW	8	0.03	1.47	0	0.00	

In-unit Energy Efficient Clothes Washer

Measure Number: III-B-3-b (Multifamily New Construction Program, Clothes Washing End Use)

Version Date & Revision History

Draft date:Portfolio 81Effective date:1/1/2013End date:TBD

Referenced Documents:

2013 MF In unit Clothes Washer Savings.xls;
 2009 VT Appliance Data_TRMCostAnalysis.xls
 tablehc11.10.pdf

Description

In unit clothes washers are installed exceeding minimum qualifying efficiency standards established as ENERGY STAR, CEE Tier 2 or CEE Tier 3, Most Efficient or Top Ten instead of a new standard baseline unit. Efficiency levels are defined below.

Algorithms

Energy Savings

Energy and Demand Savings are presented in the reference tables below, and are dependent on the fuel type of the DHW system and the dryer. The calculations are based on analysis of rebated units through Efficient Products (see Efficient Product measure for write up of savings methodology). The savings are presented for each efficiency level in the reference table "Customer Energy Savings by Water Heater and Dryer Fuel Type", and 2013 MF In unit Clothes Washer Savings.xls.

Demand Savings

 $\Delta kW = \Delta kWh/Hours$

Where:

ΔkWh	= gross customer annual kWh savings for the measure
ΔkW	= gross customer connected load kW savings for the measure
Hours	= Operating hours of clothes washer = 265

Baseline Efficiencies – New or Replacement

The baseline efficiency is determined according to the modified energy factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. The federal baseline MEF of 1.26 is inflated by 20% to 1.51 for savings comparison to account for non-qualifying models that are higher than the federal baseline MEF.

High Efficiency

High efficiency is defined as any model meeting or exceeding ENERGY STAR, CEE Tier 2 or Tier 3 standards as of 1/1/2011, ENERGY STAR Most Efficient or Top Ten as defined in the following table:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR	>= 2.0	<= 6.0
CEE TIER 2	>= 2.20	<= 4.5
CEE TIER 3	>= 2.40	<= 4.0
ENERGY STAR Most Efficient	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <= 2.5 ft3)
(as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)
Top Ten	Defined as the ten most efficient u	nits available.

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (unit operation, washing and drying); the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Energy and water savings estimates are based on the weighted average MEF factor for qualifying models based on the models rebated during the previous calendar year, except Top Ten which is based upon averaging the units provided on the website (<u>http://www.toptenusa.org/Top-Ten-Clothes-Washers</u>) as of September 2012

Operating Cycles

265 clothes washer cycles / year ³¹³

Operating Hours

265 operating hours / year 314

Loadshape

Loadshape #9, Residential Clothes Washing, Vermont State Screening Tool.

Measure Category Cooking and Laundry								
Product Description	n	Efficient Clothes Washer						
Measure Code		CKLES CKLC	CKLESWRP, CKLC2WRP		CKLC3WRP		CKLMEWRP, CKLTTWRP	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	n/a	n/a	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	n/a	n/a	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	n/a	n/a	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	n/a	n/a	n/a	n/a	
Farm Rx	6013FRMP	n/a	n/a	n/a	n/a	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	n/a	n/a	n/a	n/a	
C&I Upstream	6013UPST	n/a	n/a	n/a	n/a	n/a	n/a	
Act250 NC	6014A250	n/a	n/a	n/a	n/a	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	n/a	n/a	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	n/a	n/a	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	n/a	n/a	n/a	n/a	
LIMF NC	6018LINC	0.75	1.0	1.0	1.0	1.0	1.0	
LIMF Rehab	6018LIRH	0.75	1.0	1.0	1.0	1.0	1.0	
MF Mkt NC	6019MFNC	0.5	1.0	0.75	1.0	0.95	1.2	
MF Mkt Retro	6020MFMR	n/a	n/a	n/a	n/a	n/a	n/a	
C&I Lplus	6021LPLU	n/a	n/a	n/a	n/a	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	n/a	n/a	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	n/a	n/a	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	n/a	n/a	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	n/a	n/a	n/a	n/a	
EP GMP Blueline	6042EPEP	n/a	n/a	n/a	n/a	n/a	n/a	
GMP Furnace	6042EPEP	n/a	n/a	n/a	n/a	n/a	n/a	

Freeridership/Spillover Factors

³¹³ EVT found the average household size in MF buildings from the 2010 Census data (1.6 people, compared to 2.3 for single family) and using the values for number of loads for different household sizes (from DOE Technical Support Document U.S. Department of Energy, Final Rule Technical Support Document (TSD): Energy Efficiency Standards for Consumer Products: Clothes Washers, December, 2000. Page 7-6) and the 322 used for single families we estimate the number of loads for a MF building to be 265. See 2013 MF In unit Clothes Washer Savings.xls for calculation. ³¹⁴ Assume one hour per cycle.

GMP HP	6046RETR	n/a	n/a	n/a	n/a	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a	n/a	n/a	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a	n/a	n/a	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a	n/a	n/a	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years³¹⁵ (same as DPS screening of Efficiency Utility program). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is provided in the table below³¹⁶:

Efficiency Level	Incremental Cost
ENERGY STAR	\$225
CEE Tier 2	\$250
CEE Tier 3	\$350
ENERGY STAR Most Efficient	\$500
Top Ten	\$510

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

Fossil Fuel savings are dependent on the DHW and Dryer fuel type and are presented in the tables below.

Water Descriptions

The water savings for each efficiency level are presented below:

		∆Water
Efficiency Level	WF	(CCF per year)
Federal Standard	7.93	0.0
ENERGY STAR	5.41	2.4
CEE Tier 2	3.61	6.2
CEE Tier 3	3.51	5.9
ENERGY STAR Most Efficient	2.90	7.0
Top Ten	3.54	6.4

Reference Tables Customer Energy Savings by Water Heater and Dryer Fuel Type³¹⁷

ENERGY STAR:

Per Unit Savings

³¹⁵ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm.

³¹⁶ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm_See '2013 In Unit Clothes Washer Savings.xls' for details. ³¹⁷ Where dryer and DHW use different fossil fuels, savings are combined under the DHW fossil fuel because a single measure can

³¹⁷ Where dryer and DHW use different fossil fuels, savings are combined under the DHW fossil fuel because a single measure can only have one fuel type for screening purposes and the DHW savings are larger than the Dryer savings.

Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU
			Oil	Propane	Natural
					Gas
Electric Dryer/Electric DHW	133	0.50	0	0	0
Electric Dryer/Propane DHW	49	0.18	0	0.34	0
Electric Dryer/Natural Gas DHW	49	0.18	0	0	0.34
Electric Dryer/Oil DHW	49	0.18	0.34	0	0
Propane Dryer/Electric DHW	85	0.32	0	0.16	0
Propane Dryer/Propane DHW	1	0.01	0	0.50	0
Propane Dryer/Oil DHW	1	0.01	0.50	0.00	0
Natural Gas Dryer/Electric DHW	85	0.32	0	0	0.16
Natural Gas Dryer/Natural Gas DHW	1	0.01	0	0	0.50
Natural Gas Dryer/Oil DHW	1	0.01	0.50	0	0.00

Tier	2:
IIUI	

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas
Electric Dryer/Electric DHW	227	0.86	0	0	0
Electric Dryer/Propane DHW	89	0.34	0	0.55	0
Electric Dryer/Natural Gas DHW	89	0.34	0	0	0.55
Electric Dryer/Oil DHW	89	0.34	0.55	0	0
Propane Dryer/Electric DHW	144	0.54	0	0.28	0
Propane Dryer/Propane DHW	6	0.02	0	0.84	0
Propane Dryer/Oil DHW	6	0.02	0.84	0.00	0
Natural Gas Dryer/Electric DHW	144	0.54	0	0	0.28
Natural Gas Dryer/Natural Gas DHW	6	0.02	0	0	0.84
Natural Gas Dryer/Oil DHW	6	0.02	0.84	0	0.00

Tier 3:

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU
			Oil	Propane	Natural
					Gas
Electric Dryer/Electric DHW	286	1.08	0	0	0
Electric Dryer/Propane DHW	102	0.39	0	0.73	0
Electric Dryer/Natural Gas DHW	102	0.39	0	0	0.73
Electric Dryer/Oil DHW	102	0.39	0.73	0	0
Propane Dryer/Electric DHW	188	0.71	0	0.33	0
Propane Dryer/Propane DHW	5	0.02	0	1.07	0
Propane Dryer/Oil DHW	5	0.02	1.07	0.00	0
Natural Gas Dryer/Electric DHW	188	0.71	0	0	0.33
Natural Gas Dryer/Natural Gas DHW	5	0.02	0	0	1.07
Natural Gas Dryer/Oil DHW	5	0.02	1.07	0	0.00

Most Efficient:

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas
Electric Dryer/Electric DHW	366	1.38	0	0	0
Electric Dryer/Propane DHW	135	0.51	0	0.92	0
Electric Dryer/Natural Gas DHW	135	0.51	0	0	0.92
Electric Dryer/Oil DHW	135	0.51	0.92	0	0
Propane Dryer/Electric DHW	238	0.90	0	0.44	0
Propane Dryer/Propane DHW	7	0.02	0	1.36	0
Propane Dryer/Oil DHW	7	0.02	1.36	0.00	0
Natural Gas Dryer/Electric DHW	238	0.90	0	0	0.44
Natural Gas Dryer/Natural Gas DHW	7	0.02	0	0	1.36
Natural Gas Dryer/Oil DHW	7	0.02	1.36	0	0.00

Top Ten:

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU
			Oil	Propane	Natural
					Gas
Electric Dryer/Electric DHW	398	1.50	0	0	0
Electric Dryer/Propane DHW	155	0.58	0	0.97	0
Electric Dryer/Natural Gas DHW	155	0.58	0	0	0.97
Electric Dryer/Oil DHW	155	0.58	0.97	0	0
Propane Dryer/Electric DHW	251	0.95	0	0.50	0
Propane Dryer/Propane DHW	8	0.03	0	1.47	0
Propane Dryer/Oil DHW	8	0.03	1.47	0.00	0
Natural Gas Dryer/Electric DHW	251	0.95	0	0	0.50
Natural Gas Dryer/Natural Gas DHW	8	0.03	0	0	1.47
Natural Gas Dryer/Oil DHW	8	0.03	1.47	0	0.00

In-Unit Clothes Washer Retrofit

Measure Number: III-B-4-b Washing End Use) (Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Clothes

Version Date & Revision History

Draft date:Portfolio 81Effective date:1/1/2013End date:TBD

Referenced Documents:

1) 2013 MF Clothes Washer Savings_retrofit.xls

2) 2009 VT Appliance Data_TRMCostAnalysis.xls

Description

This is an early retrofit measure of an existing in unit inefficient clothes washer with a new clothes washer exceeding minimum qualifying efficiency standards established as ENERGY STAR, CEE Tier 2 or CEE Tier 3, Most Efficient or Top Ten (defined below). Savings are calculated between the average energy usage of an existing unit and that of the efficient unit for the remaining life of the existing unit, plus the savings between an average baseline unit and the efficient unit for the remainder of the measure life.

Algorithms

Energy Savings

Energy and Demand Savings are presented in the reference tables below, and are dependent on the fuel type of the DHW system and the dryer. The calculations are based on analysis of previous year's rebated units, see 2013 MF In unit Clothes Washer Savings.xls.

Demand Savings

 $\Delta kW = \Delta kWh/Hours$

Where:

∆kWh	= gross customer annual kWh savings for the measure
ΔkW	= gross customer connected load kW savings for the measure
Hours	= Operating hours of clothes washer= 265

Baseline Efficiencies – New or Replacement

The baseline efficiency is determined according to the modified energy factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. For the purpose of this measure it is assumed that the remaining life of the existing clothes washer is 3 years (i.e. it is 11 years in to its 14 year life). The federal baseline for clothes washers prior to 2004 was 0.817 MEF³¹⁸, and the average value of units tested in a 2001 DOE market assessment was 1.164. For the remaining 11 years of the new clothes washer, the current federal baseline MEF of 1.26 is inflated by 20% to 1.51 to account for a transforming market.

High Efficiency

High efficiency is defined as any model meeting or exceeding the efficiency standards presented below.

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR	>= 2.0	<= 6.0
CEE TIER 2	>= 2.20	<= 4.5
CEE TIER 3	>= 2.40	<= 4.0

³¹⁸ http://www.cee1.org/resid/seha/rwsh/press-rel.php3

ENERGY STAR Most Efficient	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <= 2.5 ft3)
(as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)
Top Ten	Defined as the ten most efficient un	nits available.

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (unit operation, washing and drying); the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Energy and water savings estimates are based on the weighted average MEF factor for qualifying models based on the models rebated during the previous calendar year, except Top Ten which is based upon averaging the units provided on the website (<u>http://www.toptenusa.org/Top-Ten-Clothes-Washers</u>) as of September 2012

Operating Cycles

265 clothes washer cycles / year ³¹⁹

Operating Hours

265 operating hours / year ³²⁰

Loadshape

Loadshape #9, Residential Clothes Washing, Vermont State Screening Tool.

Measure Category		Cooking and Laundry			
		CKLESWER	, CKLT2WER,		
		CKLT3WER, CKLMEWER			
Measure Code		CKLTTWER			
		Energy Star C	Clothes Washer		
Product Description	l	Early Replacement			
Track Name	Track No.	Freerider	Spillover		
LIMF Retrofit	6017RETR	1.0	1.0		
MF Mkt Retro	6020MFMR	0.9	1.0		

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years (same as DPS screening of Efficiency Utility program). Analysis period is the same as the lifetime.

Measure Cost

The full measure cost assumption is provided below:

Efficiency Level	Full Measure Cost
ENERGY STAR	\$825
CEE Tier 2	\$850
CEE Tier 3	\$950
ENERGY STAR Most Efficient	\$1100
Top Ten	\$1110

³¹⁹ EVT found the average household size in MF buildings from the 2010 Census data (1.6 people, compared to 2.3 for single family) and using the values for number of loads for different household sizes (from DOE Technical Support Document U.S. Department of Energy, Final Rule Technical Support Document (TSD): Energy Efficiency Standards for Consumer Products: Clothes Washers, December, 2000. Page 7-6) and the 322 used for single families we estimate the number of loads for a MF building to be 265. See 2013 MF In unit Clothes Washer Savings.xls for calculation. ³²⁰ Assume one hour per cycle.

The deferred (for 3 years) baseline replacement clothes washer cost is assumed to be \$600.³²¹

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

See reference tables below

Water Descriptions

The water savings for each efficiency level are presented below:

		∆Water			
			(CCF per year)		
		Remaining	Remaining	Weighted	
		life of existing	measure life	average for	
		unit (first 3	(Next 11 years)	use in	
Efficiency Level	WF	years)		screening ³²²	
Existing unit	12.87 ³²³	n/a	n/a		
Federal Standard	7.93	n/a	n/a		
ENERGY STAR	5.41	7.2	2.4	3.4	
CEE Tier 2	3.61	13.3	6.2	7.7	
CEE Tier 3	3.51	12.4	5.9	7.3	
ENERGY STAR Most Efficient	2.90	13.8	7.0	8.5	
Top Ten	3.54	13.6	6.4	7.9	

Reference Tables

Customer Energy Savings by Water Heater and Dryer Fuel Type³²⁴

ENERGY STAR

For remaining life of existing unit (first 3 years):

		Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	276	1.05	0	0	0		
Electric Dryer/Propane DHW	142	0.54	0	0.58	0		
Electric Dryer/Natural Gas DHW	142	0.54	0	0	0.58		
Electric Dryer/Oil DHW	142	0.54	0.58	0	0		
Propane Dryer/Electric DHW	144	0.54	0	0.45	0		
Propane Dryer/Propane DHW	9	0.04	0	1.03	0		
Propane Dryer/Oil DHW	9	0.04	1.03	0.00	0		

³²¹ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm. See '2013 MF In unit <u>Clothes Washer Savings_Retrofit.xls' for details.</u> ³²² Efficiency Vermont's screening tool does not allow for mid-life savings adjustments for water, thus a single value is required.

 ³²² Efficiency Vermont's screening tool does not allow for mid-life savings adjustments for water, thus a single value is required.
 ³²³ US DOE, Life Cycle Cost Model, spreadsheet dated December 1999

⁽http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadsheet.xls), indicates 38.61 gallons of water per cycle. Assume average size of 3 cu ft gives 12.87 WF assumption.

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadsheet.xls

³²⁴ Where dryer and DHW use different fossil fuels, savings are combined under the DHW fossil fuel because a single measure can only have one fuel type for screening purposes and the DHW savings are larger than the dryer savings.

Natural Gas Dryer/Electric DHW	144	0.54	0	0	0.45
Natural Gas Dryer/Natural Gas DHW	9	0.04	0	0	1.03
Natural Gas Dryer/Oil DHW	9	0.04	1.03	0	0.00

For remaining measure life (Next 11 years):

		Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	133	0.50	0	0	0		
Electric Dryer/Propane DHW	49	0.18	0	0.36	0		
Electric Dryer/Natural Gas DHW	49	0.18	0	0	0.36		
Electric Dryer/Oil DHW	49	0.18	0.36	0	0		
Propane Dryer/Electric DHW	85	0.32	0	0.16	0		
Propane Dryer/Propane DHW	1	0.01	0	0.52	0		
Propane Dryer/Oil DHW	1	0.01	0.52	0.00	0		
Natural Gas Dryer/Electric DHW	85	0.32	0	0	0.16		
Natural Gas Dryer/Natural Gas DHW	1	0.01	0	0	0.52		
Natural Gas Dryer/Oil DHW	1	0.01	0.52	0	0.00		

CEE T2

For remaining life of existing unit (first 3 years):

		Per Un	it Savings		
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas
Electric Dryer/Electric DHW	439	1.66	0	0	0
Electric Dryer/Propane DHW	227	0.86	0	0.91	0
Electric Dryer/Natural Gas DHW	227	0.86	0	0	0.91
Electric Dryer/Oil DHW	227	0.86	0.91	0	0
Propane Dryer/Electric DHW	230	0.87	0	0.71	0
Propane Dryer/Propane DHW	18	0.07	0	1.63	0
Propane Dryer/Oil DHW	18	0.07	1.63	0.00	0
Natural Gas Dryer/Electric DHW	230	0.87	0	0	0.71
Natural Gas Dryer/Natural Gas DHW	18	0.07	0	0	1.63
Natural Gas Dryer/Oil DHW	18	0.07	1.63	0	0.00

For remaining measure life (Next 11 years):

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	227	0.86	0	0	0	
Electric Dryer/Propane DHW	89	0.34	0	0.59	0	
Electric Dryer/Natural Gas DHW	89	0.34	0	0	0.59	
Electric Dryer/Oil DHW	89	0.34	0.59	0	0	

Propane Dryer/Electric DHW	144	0.54	0	0.28	0
Propane Dryer/Propane DHW	6	0.02	0	0.88	0
Propane Dryer/Oil DHW	6	0.02	0.88	0.00	0
Natural Gas Dryer/Electric DHW	144	0.54	0	0	0.28
Natural Gas Dryer/Natural Gas DHW	6	0.02	0	0	0.88
Natural Gas Dryer/Oil DHW	6	0.02	0.88	0	0.00

CEE T3

For remaining life of existing unit (first 3 years):

		Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	482	1.82	0	0	0		
Electric Dryer/Propane DHW	229	0.87	0	1.09	0		
Electric Dryer/Natural Gas DHW	229	0.87	0	0	1.09		
Electric Dryer/Oil DHW	229	0.87	1.09	0	0		
Propane Dryer/Electric DHW	268	1.01	0	0.73	0		
Propane Dryer/Propane DHW	15	0.06	0	1.82	0		
Propane Dryer/Oil DHW	15	0.06	1.82	0.00	0		
Natural Gas Dryer/Electric DHW	268	1.01	0	0	0.73		
Natural Gas Dryer/Natural Gas DHW	15	0.06	0	0	1.82		
Natural Gas Dryer/Oil DHW	15	0.06	1.82	0	0.00		

For remaining measure life (Next 11 years):

		Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	286	1.08	0	0	0		
Electric Dryer/Propane DHW	102	0.39	0	0.79	0		
Electric Dryer/Natural Gas DHW	102	0.39	0	0	0.79		
Electric Dryer/Oil DHW	102	0.39	0.79	0	0		
Propane Dryer/Electric DHW	188	0.71	0	0.33	0		
Propane Dryer/Propane DHW	5	0.02	0	1.12	0		
Propane Dryer/Oil DHW	5	0.02	1.12	0.00	0		
Natural Gas Dryer/Electric DHW	188	0.71	0	0	0.33		
Natural Gas Dryer/Natural Gas DHW	5	0.02	0	0	1.12		
Natural Gas Dryer/Oil DHW	5	0.02	1.12	0	0.00		

Most Efficient

For remaining life of existing unit (first 3 years):

Per Unit Savings

Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas
Electric Dryer/Electric DHW	571	2.16	0	0	0
Electric Dryer/Propane DHW	268	1.01	0	1.30	0
Electric Dryer/Natural Gas DHW	268	1.01	0	0	1.30
Electric Dryer/Oil DHW	268	1.01	1.30	0	0
Propane Dryer/Electric DHW	321	1.21	0	0.85	0
Propane Dryer/Propane DHW	18	0.07	0	2.16	0
Propane Dryer/Oil DHW	18	0.07	2.16	0.00	0
Natural Gas Dryer/Electric DHW	321	1.21	0	0	0.85
Natural Gas Dryer/Natural Gas DHW	18	0.07	0	0	2.16
Natural Gas Dryer/Oil DHW	18	0.07	2.16	0	0.00

For remaining measure life (Next 11 years):

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas
Electric Dryer/Electric DHW	366	1.38	0	0	0
Electric Dryer/Propane DHW	135	0.51	0	0.99	0
Electric Dryer/Natural Gas DHW	135	0.51	0	0	0.99
Electric Dryer/Oil DHW	135	0.51	0.99	0	0
Propane Dryer/Electric DHW	238	0.90	0	0.44	0
Propane Dryer/Propane DHW	7	0.02	0	1.43	0
Propane Dryer/Oil DHW	7	0.02	1.43	0.00	0
Natural Gas Dryer/Electric DHW	238	0.90	0	0	0.44
Natural Gas Dryer/Natural Gas DHW	7	0.02	0	0	1.43
Natural Gas Dryer/Oil DHW	7	0.02	1.43	0	0.00

Top Ten

For remaining life of existing unit (first 3 years):

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	613	2.32	0	0	0	
Electric Dryer/Propane DHW	294	1.11	0	1.37	0	
Electric Dryer/Natural Gas DHW	294	1.11	0	0	1.37	
Electric Dryer/Oil DHW	294	1.11	1.37	0	0	
Propane Dryer/Electric DHW	339	1.28	0	0.94	0	
Propane Dryer/Propane DHW	20	0.08	0	2.31	0	
Propane Dryer/Oil DHW	20	0.08	2.31	0.00	0	
Natural Gas Dryer/Electric DHW	339	1.28	0	0	0.94	
Natural Gas Dryer/Natural Gas DHW	20	0.08	0	0	2.31	
Natural Gas Dryer/Oil DHW	20	0.08	2.31	0	0.00	

i or remaining measure me (ritent ri years):						
	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	398	1.50	0	0	0	
Electric Dryer/Propane DHW	155	0.58	0	1.05	0	
Electric Dryer/Natural Gas DHW	155	0.58	0	0	1.05	
Electric Dryer/Oil DHW	155	0.58	1.05	0	0	
Propane Dryer/Electric DHW	251	0.95	0	0.50	0	
Propane Dryer/Propane DHW	8	0.03	0	1.55	0	
Propane Dryer/Oil DHW	8	0.03	1.55	0.00	0	
Natural Gas Dryer/Electric DHW	251	0.95	0	0	0.50	
Natural Gas Dryer/Natural Gas DHW	8	0.03	0	0	1.55	
Natural Gas Dryer/Oil DHW	8	0.03	1.55	0	0.00	

For remaining measure life (Next 11 years):

Common Area Clothes Washer Retrofit

Measure Number: III-B-5-b Washing End Use) (Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Clothes

Version Date & Revision History

Draft date:Portfolio 81Effective date:1/1/2013End date:TBD

Referenced Documents:

1) 2013 MF Common Clothes Washer Savings_retrofit.xls

Description

This is an early retrofit measure of an existing inefficient clothes washer in a central onsite laundry facility, with a new clothes washer exceeding minimum qualifying efficiency standards established as ENERGY STAR, CEE Tier 2 or CEE Tier 3 Most Efficient or Top Ten (defined below).. Savings are calculated between the average energy usage of an existing unit and that of the efficient unit for the remaining life of the existing unit, plus the savings between an average baseline unit and the efficient unit for the remainder of the measure life. Note these savings are for one unit usage. Total savings is therefore calculated by multiplying by number of units (apartments) using the clothes washer as presented below:

Algorithms

Energy Savings

Energy and Demand Savings are presented in the reference tables below, and are dependent on the fuel type of the DHW system and the dryer. The calculations are based on analysis of previous year's rebated units through Efficient Products (see Efficient Product measure for write up of savings methodology). The savings are presented for each efficiency level in the reference table below titled "Customer Energy Savings by Water Heater and Dryer Fuel Type", and the calculation can be reviewed in 2013 MF Common Clothes Washer Savings.xls. Note these savings are for one unit (apartment) usage. Total savings is therefore calculated by multiplying by number of units using the clothes washer as presented below:

	ΔkWh	=	NumUnits \times kWh _{save} / NumWashers
Where:			
	∆kWh	= gros	s annual customer kWh savings per clothes washer for the measure
	NumUnits	= num	ber of residential units (apartments) served by the central laundry facility
	kWh _{save}	= annı	al customer kWh savings per residential unit for the measure
	NumWashers	= total	number of clothes washers in central laundry facility
Deman	d Savings		
	ΔkW	=	NumUnits \times kW _{save} / NumWashers
Where:			
	ΔkW	= gros	s annual customer kW savings per clothes washer for the measure
	kWsave	= annı	al customer kW savings per residential unit for the measure

Baseline Efficiencies – New or Replacement

The baseline efficiency is determined according to the modified energy factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. For the purpose of this measure it is assumed that the remaining life of the existing clothes washer is 3 years (i.e. it is 11 years in to its 14 year life). The federal baseline for clothes washers prior to 2004 was 0.817 MEF³²⁵, and the average value of units tested in a 2001 DOE market assessment was 1.164. For the remaining 11 years of the new

³²⁵ http://www.cee1.org/resid/seha/rwsh/press-rel.php3

clothes washer, the current federal baseline MEF of 1.26 is inflated by 20% to 1.51 to account for a transforming market. See 2013 MF Common Clothes Washer Savings_retrofit.xls for more details.

High Efficiency

High efficiency is defined as any model meeting or exceeding the efficiency standards presented below.

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)		
ENERGY STAR	>= 2.0	<= 6.0		
CEE TIER 2	>= 2.20	<= 4.5		
CEE TIER 3	>= 2.40	<= 4.0		
ENERGY STAR Most Efficient	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <=2.5 ft3)		
(as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)		
Top Ten	Defined as the ten most efficient units available.			

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (unit operation, washing and drying); the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Energy and water savings estimates are based on the weighted average MEF factor for qualifying models based on the models rebated during the previous calendar year, except Top Ten which is based upon averaging the units provided on the website (<u>http://www.toptenusa.org/Top-Ten-Clothes-Washers</u>) as of September 2012.

Operating Cycles

265 clothes washer cycles / per apartment / year ³²⁶

Operating Hours

265 operating hours / apartment / year ³²⁷

Loadshape

Loadshape #9, Residential Clothes Washing, Vermont State Screening Tool.

Measure Category		Cooking and Laundry			
		CKLESWER, CKLT2WER,			
		CKLT3WER, CKLMEWE			
Measure Code		CKLTTWER			
		Energy Star C	Clothes Washer		
Product Descriptio	n	Early Replacement			
Track Name	Track No.	Freerider	Spillover		
LIMF Retrofit	6017RETR	1.0	1.0		
MF Mkt Retro	6020MFMR	0.9	1.0		

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years ³²⁸ (same as DPS screening of Efficiency Utility program).

³²⁶ EVT found the average household size in MF buildings from the 2010 Census data (1.6 people, compared to 2.3 for single family) and using the values for number of loads for different household sizes (from DOE Technical Support Document U.S. Department of Energy, Final Rule Technical Support Document (TSD): Energy Efficiency Standards for Consumer Products: Clothes Washers, December, 2000. Page 7-6) and the 322 used for single families we estimate the number of loads for a MF building to be 265 per unit. See file 2013 MF Common Clothes Washer Savings_Retrofit.xls.

³²⁷ Assume one hour per cycle.

Analysis period is the same as the lifetime.

Measure Cost

The full measure cost assumption is provided below³²⁹:

Efficiency Level	Full Measure Cost
ENERGY STAR	\$1035
CEE Tier 2	\$1300
CEE Tier 3	\$1550
ENERGY STAR Most Efficient	\$1900
Top Ten	\$1950

The deferred (for 3 years) baseline replacement clothes washer cost is assumed to be \$650.³³⁰

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

See reference tables below

NumUnits × MMBtu_{save}. / NumWashers MMBtu =

Where:

ΔMMBtu	= gross annual fossil fuel energy savings in MMBtu (million Btu) per clothes washer for
	the measure
NumUnits	= number of residential units served by the central laundry facility
MMBtu _{save}	= annual <i>customer</i> MMBtu of fossil fuel savings per residential unit for the measure from
	reference table below
NumWashers	= total number of clothes washers in central laundry facility

Water Descriptions

ΔCCF NumUnits \times CCF_{save} / NumWashers =

Where:

ΔCCF	= annual <i>customer</i> water savings per clothes washer in CCF (hundreds of cubic feet)
NumUnits	= number of residential units served by the central laundry facility
CCF _{save} ³³¹	= annual <i>customer</i> water savings per clothes washer per residential unit for the measure
	in CCF (hundreds of cubic feet)

		∆Water
Efficiency Level	WF	(CCF per year)

³²⁸ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm.

Based on EVT field study of clothes washer costs, see 2013 MF Common Clothes Washer Savings retrofit.xls. Measure cost is higher than in-unit clothes washers since the common units are larger commercial and more expensive models. ³³⁰ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database)

and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm. See '2013 MF In unit Clothes Washer Savings_Retrofit.xls' for details. ³³¹ Water savings based on weighted average of 261. See file 2013 MF Common Clothes Washer Savings_Retrofit.xls.

		Remaining life of existing unit (first 3 years)	Remaining measure life (Next 11 years)	Weighted average for use in screening ³³²
Existing unit	12.87 ³³³	n/a	n/a	n/a
Federal Standard	7.93	n/a	n/a	n/a
ENERGY STAR	5.41	7.2	2.4	3.4
CEE Tier 2	3.61	13.1	6.1	7.6
CEE Tier 3	3.51	12.3	5.8	7.2
ENERGY STAR Most Efficient	2.90	13.6	6.9	8.3
Top Ten	3.54	13.4	6.3	7.8

NumWashers = total number of clothes washers in central laundry facility

Reference Tables

Customer Energy Savings by Water Heater and Dryer Fuel Type³³⁴

ENERGY STAR

For remaining life of existing unit (first 3 years):

	Per Unit Savings						
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	276	1.05	0	0	0		
Electric Dryer/Propane DHW	142	0.54	0	0.58	0		
Electric Dryer/Natural Gas DHW	142	0.54	0	0	0.58		
Electric Dryer/Oil DHW	142	0.54	0.58	0	0		
Propane Dryer/Electric DHW	144	0.54	0	0.45	0		
Propane Dryer/Propane DHW	9	0.04	0	1.03	0		
Propane Dryer/Oil DHW	9	0.04	1.03	0.00	0		
Natural Gas Dryer/Electric DHW	144	0.54	0	0	0.45		
Natural Gas Dryer/Natural Gas DHW	9	0.04	0	0	1.03		
Natural Gas Dryer/Oil DHW	9	0.04	1.03	0	0.00		

For remaining measure life (Next 11 years):

	Per Unit Savings						
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	133	0.50	0	0	0		
Electric Dryer/Propane DHW	49	0.18	0	0.36	0		
Electric Dryer/Natural Gas DHW	49	0.18	0	0	0.36		

³³² Efficiency Vermont's screening tool does not allow for mid-life savings adjustments for water, thus a single value is required. ³³³ US DOE, Life Cycle Cost Model, spreadsheet dated December 1999

⁽http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadsheet.xls)

[,] indicates 38.61 gallons of water per cycle. Assume average size of 3 cu ft gives 12.87 WF assumption.

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadsheet.xls ³³⁴ Where dryer and DHW use different fossil fuels, savings are combined under the DHW fossil fuel because a single measure can only have one fuel type for screening purposes and the DHW savings are larger than the dryer savings.

Electric Dryer/Oil DHW	49	0.18	0.36	0	0
Propane Dryer/Electric DHW	85	0.32	0	0.16	0
Propane Dryer/Propane DHW	1	0.01	0	0.52	0
Propane Dryer/Oil DHW	1	0.01	0.52	0.00	0
Natural Gas Dryer/Electric DHW	85	0.32	0	0	0.16
Natural Gas Dryer/Natural Gas DHW	1	0.01	0	0	0.52
Natural Gas Dryer/Oil DHW	1	0.01	0.52	0	0.00

CEE T2

For remaining life of existing unit (first 3 years):

	Per Unit Savings						
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	439	1.66	0	0	0		
Electric Dryer/Propane DHW	227	0.86	0	0.91	0		
Electric Dryer/Natural Gas DHW	227	0.86	0	0	0.91		
Electric Dryer/Oil DHW	227	0.86	0.91	0	0		
Propane Dryer/Electric DHW	230	0.87	0	0.71	0		
Propane Dryer/Propane DHW	18	0.07	0	1.63	0		
Propane Dryer/Oil DHW	18	0.07	1.63	0.00	0		
Natural Gas Dryer/Electric DHW	230	0.87	0	0	0.71		
Natural Gas Dryer/Natural Gas DHW	18	0.07	0	0	1.63		
Natural Gas Dryer/Oil DHW	18	0.07	1.63	0	0.00		

For remaining measure life (Next 11 years):

	Per Unit Savings						
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	227	0.86	0	0	0		
Electric Dryer/Propane DHW	89	0.34	0	0.59	0		
Electric Dryer/Natural Gas DHW	89	0.34	0	0	0.59		
Electric Dryer/Oil DHW	89	0.34	0.59	0	0		
Propane Dryer/Electric DHW	144	0.54	0	0.28	0		
Propane Dryer/Propane DHW	6	0.02	0	0.88	0		
Propane Dryer/Oil DHW	6	0.02	0.88	0.00	0		
Natural Gas Dryer/Electric DHW	144	0.54	0	0	0.28		
Natural Gas Dryer/Natural Gas DHW	6	0.02	0	0	0.88		
Natural Gas Dryer/Oil DHW	6	0.02	0.88	0	0.00		

	Per Unit Savings							
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas			
Electric Dryer/Electric DHW	482	1.82	0	0	0			
Electric Dryer/Propane DHW	229	0.87	0	1.09	0			
Electric Dryer/Natural Gas DHW	229	0.87	0	0	1.09			
Electric Dryer/Oil DHW	229	0.87	1.09	0	0			
Propane Dryer/Electric DHW	268	1.01	0	0.73	0			
Propane Dryer/Propane DHW	15	0.06	0	1.82	0			
Propane Dryer/Oil DHW	15	0.06	1.82	0.00	0			
Natural Gas Dryer/Electric DHW	268	1.01	0	0	0.73			
Natural Gas Dryer/Natural Gas DHW	15	0.06	0	0	1.82			
Natural Gas Dryer/Oil DHW	15	0.06	1.82	0	0.00			

For remaining measure life (Next 11 years):

	Per Unit Savings							
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas			
Electric Dryer/Electric DHW	286	1.08	0	0	0			
Electric Dryer/Propane DHW	102	0.39	0	0.79	0			
Electric Dryer/Natural Gas DHW	102	0.39	0	0	0.79			
Electric Dryer/Oil DHW	102	0.39	0.79	0	0			
Propane Dryer/Electric DHW	188	0.71	0	0.33	0			
Propane Dryer/Propane DHW	5	0.02	0	1.12	0			
Propane Dryer/Oil DHW	5	0.02	1.12	0.00	0			
Natural Gas Dryer/Electric DHW	188	0.71	0	0	0.33			
Natural Gas Dryer/Natural Gas DHW	5	0.02	0	0	1.12			
Natural Gas Dryer/Oil DHW	5	0.02	1.12	0	0.00			

Most Efficient

For remaining life of existing unit (first 3 years):

	Per Unit Savings						
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	571	2.16	0	0	0		
Electric Dryer/Propane DHW	268	1.01	0	1.30	0		
Electric Dryer/Natural Gas DHW	268	1.01	0	0	1.30		
Electric Dryer/Oil DHW	268	1.01	1.30	0	0		
Propane Dryer/Electric DHW	321	1.21	0	0.85	0		
Propane Dryer/Propane DHW	18	0.07	0	2.16	0		
Propane Dryer/Oil DHW	18	0.07	2.16	0.00	0		
Natural Gas Dryer/Electric DHW	321	1.21	0	0	0.85		

Natural Gas Dryer/Natural Gas DHW	18	0.07	0	0	2.16
Natural Gas Dryer/Oil DHW	18	0.07	2.16	0	0.00

For remaining measure life (Next 11 years):

	Per Unit Savings						
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	366	1.38	0	0	0		
Electric Dryer/Propane DHW	135	0.51	0	0.99	0		
Electric Dryer/Natural Gas DHW	135	0.51	0	0	0.99		
Electric Dryer/Oil DHW	135	0.51	0.99	0	0		
Propane Dryer/Electric DHW	238	0.90	0	0.44	0		
Propane Dryer/Propane DHW	7	0.02	0	1.43	0		
Propane Dryer/Oil DHW	7	0.02	1.43	0.00	0		
Natural Gas Dryer/Electric DHW	238	0.90	0	0	0.44		
Natural Gas Dryer/Natural Gas DHW	7	0.02	0	0	1.43		
Natural Gas Dryer/Oil DHW	7	0.02	1.43	0	0.00		

Top Ten For remaining life of existing unit (first 3 years):

	Per Unit Savings							
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas			
Electric Dryer/Electric DHW	613	2.32	0	0	0			
Electric Dryer/Propane DHW	294	1.11	0	1.37	0			
Electric Dryer/Natural Gas DHW	294	1.11	0	0	1.37			
Electric Dryer/Oil DHW	294	1.11	1.37	0	0			
Propane Dryer/Electric DHW	339	1.28	0	0.94	0			
Propane Dryer/Propane DHW	20	0.08	0	2.31	0			
Propane Dryer/Oil DHW	20	0.08	2.31	0.00	0			
Natural Gas Dryer/Electric DHW	339	1.28	0	0	0.94			
Natural Gas Dryer/Natural Gas DHW	20	0.08	0	0	2.31			
Natural Gas Dryer/Oil DHW	20	0.08	2.31	0	0.00			

For remaining measure life (Next 11 years):

	Per Unit Savings						
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas		
Electric Dryer/Electric DHW	398	1.50	0	0	0		
Electric Dryer/Propane DHW	155	0.58	0	1.05	0		
Electric Dryer/Natural Gas DHW	155	0.58	0	0	1.05		
Electric Dryer/Oil DHW	155	0.58	1.05	0	0		
Propane Dryer/Electric DHW	251	0.95	0	0.50	0		
Propane Dryer/Propane DHW	8	0.03	0	1.55	0		

Propane Dryer/Oil DHW	8	0.03	1.55	0.00	0
Natural Gas Dryer/Electric DHW	251	0.95	0	0	0.50
Natural Gas Dryer/Natural Gas DHW	8	0.03	0	0	1.55
Natural Gas Dryer/Oil DHW	8	0.03	1.55	0	0.00

Refrigeration End Use Energy Efficient Refrigerators

Measure Number: III-C-1-e (Multifamily New Construction Program, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 74
Effective:	1/1/2012
End:	TBD

Referenced Documents: 1) 2011 RF Savings Analysis.xls;

2) 2009 VT Appliance Data w doc_CostAnalysisTRM

3) SFvMF Refrigerator Retrofit.xls

Description

A refrigerator meeting either Energy Star specifications or the higher efficiency specifications of a CEE Tier 2, or CEE Tier 3 rated refrigerator is installed instead of a new unit of baseline efficiency.

Algorithms

Energy Savings³³⁵

ENERGY S	TAR:
∆kWh	= $(kWh_{base} - kWh_{ES}) * MF_{size facto}$ = $(578.8 - 463.0) * 0.72$ = 83.4

CEE Tier 2:

ΔkWh	= $(kWh_{base} - kWh_{CT2}) * MF_{size factor}$
ΔkWh	=(578.8-434.1)*0.72
	= 104.2

CEE Tier 3:

ΔkWh_{CT3}	$= (kWh_{base} - kWh_{CT3}) * MF_{size factor}$
ΔkWh_{CT3}	= (578.8 - 405.1) * 0.72
	= 125.1

Where:

ΔkW	= gross customer connected load kW savings for the measure
kWh _{base}	= Baseline unit consumption
kWh _{ES}	= Energy-Star unit consumption
kWh _{CT2}	= CEE Tier 2 unit consumption
kWh _{CT3}	= CEE Tier 3 unit consumption
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= average hours of use per year
MF _{size factor}	= Factor applied to the savings derived based on Residential Program to account
	for smaller units being installed in Multi Family buildings.
	$=0.72^{336}$

 ³³⁵ Delta watts is based on analysis of previous year's rebated units through Efficient Products, see 2011 RF Savings Analysis.xls. When this characterization is updated, this TRM entry will be adjusted accordingly.
 ³³⁶ Size Factor is calculated by comparing the average MF retrofitted energy savings per unit (525kwh) to the average

³³⁶ Size Factor is calculated by comparing the average MF retrofitted energy savings per unit (525kwh) to the average single family residential retrofitted energy savings (726kWh) indicating a 72% savings factor. See SFvMF Refrigerator Retrofit.xls.
Demand Savings³³⁷

ENERGY STAR:

ΔkW	$= \Delta kWh_{ES} / Hours$
ΔkW	= 83.4 / 5000
	= 0.0167

CEE Tier 2:

ΔkW	$= \Delta kWh_{CT2} / Hours$
ΔkW	= 104.2/ 5000
	= 0.0208

CEE Tier 3:

ΔkW_{CT3}	$= \Delta kWh_{CT3} / Hours$
ΔkW_{CT3}	= 125.1 / 5000
	=0.0250

Baseline Efficiencies – New

Baseline efficiency is an existing refrigerator or new refrigerator meeting the minimum federal efficiency standard for refrigerator efficiency.

High Efficiency

The High Efficiency level is a refrigerator meeting Energy Star specifications for efficiency effective on April 28th, 2008 (20% above federal standard), a refrigerator meeting CEE Tier 2 specifications (25% above federal standard), or meeting CEE Tier 3 specifications (30% above federal standards).

Operating Hours

5000 hours / year

Loadshape

Loadshape #4, Residential Refrigeration

Freeridership/ Spillover Factors

Measure Category		Refrigeration		
Measure Codes		RFRESRRP, RFRESRT2, RFRESRT3		
		Energy Star refrigerator,		
Product Description		CEE Tier 2, CEE Tier 3		
Track Name	Track No.	Freerider Spillover		
LIMF NC	6018LINC	1.0	1.0	
LIMF Rehab	6018LIRH	1.0	1.0	
MF Mkt NC	6019MFNC	0.9 1.0		

Persistence

The persistence factor is assumed to be one.

Lifetimes

17 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost to the Energy Star level is \$49, to CEE Tier 2 level is \$105 and to CEE Tier 3 is \$158³³⁸.

³³⁷ Based on analysis of previous year's rebated units, see 2011 RF Savings Analysis.xls.

³³⁸ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Appliance Data_TRMCostAnalysis.xlsfor data. These incremental costs (\$70 for ENERGY STAR, \$150 for CEE Tier 2 and \$225 for CEE Tier 3) are multiplied by the 70% size factor to account for the smaller units being installed in MF.

Refrigerator Early Replacement

Measure Number: III-C-2-b (Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Refrigeration End Use)

Version Date & Revision History

Draft date: Portfolio 80 Effective date: 1/1/2012 End date: TBD

Referenced Documents:

- 1) 2012 Refrigerator Retrofit Savings.xls
- 2) SFvMF Refrigerator Retrofit.xls
- 3) http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf
- 4) Refrigerator kW Calculations.xls

Description

This is an early replacement measure of an existing pre-2001 inefficient refrigerator with a new refrigerator exceeding minimum qualifying efficiency standards established as Energy Star or optionally CEE Tier 2 and CEE Tier 3. Savings are calculated between the average energy usage of an existing unit and that of a higher efficiency unit for the remaining life of the existing unit, plus the savings between an average baseline unit and that of a higher efficiency unit for the remaining life of the remainder of the measure life. Prior to 2012, eligibility was restricted to pre-1993 refrigerators. Efficiency Vermont has decided to expand eligibility to the next refrigerator standard change (2001). The estimated decrease in consumption of a post-1993 / pre-2001 unit over a pre-1993 unit is 43%. EVT has assumed that 30% of the future replacements will fall in to the 1993-2001 category³³⁹ and have adjusted the savings accordingly (see '2012 Refrigerator Retrofit Savings.xls' for more details). We will review this assumption after a year and adjust as necessary.

Algorithms

Energy Savings

Savings are based on applying a multifamily size factor adjustment (72%) to the single family based values.

ΔkWh – Energy Star for remaining life of existing unit (3 years)	= 709 * 0.72	= 510 kWh
ΔkWh – CEE Tier 2 for remaining life of existing unit (3 years)	= 737 * 0.72	= 530 kWh
ΔkWh – CEE Tier 3 for remaining life of existing unit (3 years)	= 764 * 0.72	= 550 kWh
ΔkWh – Energy Star for remaining measure life (9 years)	= 113 * 0.72	= 81 kWh
ΔkWh – CEE Tier 2 for remaining measure life (9 years)	= 141 * 0.72	= 102 kWh
ΔkWh – CEE Tier 3 for remaining measure life (9 years)	= 169 * 0.72	= 122 kWh
Demand Savings $\Delta kW = \Delta kWh/Hours$ $\Delta kW - Energy Star for remaining life of existing unit (3 years)$ $\Delta kW - CEE Tier 2 for remaining life of existing unit (3 years)$ $\Delta kW - CEE Tier 3 for remaining life of existing unit (3 years)$	= 510/8477 = 530/8477 = 550/8477	= 0.060 kW = 0.063 kW = 0.065 kW
ΔkW – Energy Star for remaining measure life (9 years)	= 81/8477	= 0.010 kW
ΔkW – CEE Tier 2 for remaining measure life (9 years)	= 102/8477	= 0.012 kW
ΔkW – CEE Tier 3 for remaining measure life (9 years)	= 122/8477	= 0.014 kW

Where:

³³⁹ Based upon conversations with the weatherization agencies.

∆kWh	= gross customer annual kWh savings for the measure
HOURS	= Equivalent Full Load Hours
	$= 8477^{340}$
ΔkW	= gross customer connected load kW savings for the measure
MF _{size factor}	= Factor applied to the savings derived based on Residential Program to account
	for smaller units being installed in Multi Family buildings.
	$= 0.72^{341}$

Baseline Efficiencies – New or Replacement

The existing pre-2001 refrigerator baseline consumption is estimated using actual meter measurements from replacements installed through EVT from 2008-2009³⁴². For the purpose of this measure it is assumed that the remaining life of the existing refrigerator is 3 years. For the remaining 14 years of the new refrigerator, the 2001 federal minimum standard is set as the baseline efficiency. See 2012 Refrigerator Retrofit Savings.xls for more details.

High Efficiency

High efficiency is defined as any model meeting or exceeding 2007 Energy Star standard – currently set to 20% over the 2001 federal minimum standard or optionally 25% or 30% to meet CEE Tier 2 or Tier 3. EVT's energy savings estimates are based on the weighted average test measurements for qualifying models based on the models rebated during the previous calendar year.

Loadshape

Loadshape #4, Residential Refrigerator

Measure Category		Refrigeration		
		RFRESRER, RFRT2RER,		
Measure Code		RFR	T3RER	
		Energy Star	Energy Star Refrigerator	
Product Description		Early Re	Early Replacement	
Track Name	Track No.	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Farm Rx	6013FRMP	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Upstream	6013UPST	n/a	n/a	
Act250 NC	6014A250	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
LIMF Retrofit	6017RETR	1.0 1.0		
LIMF NC	6018LINC	n/a	n/a	

Freeridership/Spillover Factors

³⁴⁰ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

³⁴¹ Size Factor is calculated by comparing the average MF retrofitted energy savings per unit (525kwh) to the average single family residential retrofitted energy savings (726kWh) indicating a 72% savings factor. See SFvMF Refrigerator Retrofit.xls.

³⁴² Note that in 2009 this measure became prescriptive and so individual unit consumption values were no longer tracked.

LIMF Rehab	6018LIRH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
MF Mkt Retro	6020MFMR	0.9	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

12 Years³⁴³ Analysis period is the same as the lifetime.

Measure Cost

The initial measure cost for an Energy Star refrigerator is \$533, Tier 2 is \$612, Tier 3 is \$670. The avoided replacement cost (after 3 years) of a baseline refrigerator is \$504.344

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel savings for this measure.

Water Descriptions

There are no water savings for this measure.

³⁴³ From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-

¹⁵²⁶/₃₄₄ Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data. ESTAR incremental cost reduced to \$40 based on ENERGY STAR Calculator;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678f5e6

These calculated full costs (\$740 for ENERGY STAR, \$850 for CEE Tier 2, \$930 for CEE Tier 3 and \$700 for a baseline unit) are multiplied by the 72% size factor to account for the smaller units being installed in MF.

Freezer Early Replacement

Measure Number: III-C-5-a (Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1) 2012 Freezer Retrofit Savings.xls;
- 2) 2009 VT Appliance Data_TRMCostAnalysis.xls
- 3) http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf
- 4) Refrigerator kW Calculations.xls

Description

This is an early replacement measure of an existing pre-2001 inefficient freezer with a new freezer exceeding minimum qualifying efficiency standards established as ENERGY STAR. Savings are calculated between the average energy usage of an existing unit and that of a higher efficiency unit for the remaining life of the existing unit, plus the savings between an average baseline unit and that of a higher efficiency unit for the remainder of the measure life. Prior to 2012, eligibility was restricted to pre-1993 refrigerators. Efficiency Vermont has decided to expand eligibility to the next freezer standard change (2001). The estimated decrease in consumption of a post-1993 / pre-2001 unit over a pre-1993 unit is 25%. EVT has assumed that 30% of the future replacements will fall in to the 1993-2001 category³⁴⁵ and have adjusted the savings accordingly (see '2012 Freezer Retrofit Savings.xls' for more details). We will review this assumption after a year and adjust as necessary.

Algorithms

Energy Savings

Savings are based on applying a multifamily size factor adjustment (72%) to the single family based values.

$\Delta kWh -$	ENERGY STAR for remaining life of existing unit (3 years)	= 269 * 0.72	= 194 kWh
$\Delta kWh -$	ENERGY STAR for remaining measure life (9 years)	= 52.5 * 0.72	= 37.8 kWh

Demand Savings

 $\Delta kW = \Delta kWh/Hours$

ΔkW – ENERGY STAR for remaining life of existing unit (3 years)	= 194/8477 = 0.023 kW
ΔkW – ENERGY STAR for remaining measure life (9 years)	= 37.8/8477 = 0.0045 kW

Where:

 $\begin{array}{ll} \Delta k W h &= {\rm gross} \mbox{ customer annual } k W h \mbox{ savings for the measure} \\ HOURS &= Equivalent \mbox{ Full Load Hours} \\ &= 8477^{346} \\ \Delta k W &= {\rm gross} \mbox{ customer connected load } k W \mbox{ savings for the measure} \end{array}$

³⁴⁵ Based upon conversations with the weatherization agencies.

³⁴⁶ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

Baseline Efficiencies – New or Replacement

The existing pre-2001 freezer baseline efficiency is estimated by calculating the estimated kWh for an equivalent unit at the Federal Standard in 1990 and 1993 for all units incentivized through the Efficient Product program in 2009-2010³⁴⁷. For the purpose of this measure it is assumed that the remaining life of the existing freezer is 3 years. For the remaining 14 years of the new freezer, the 2001 Federal minimum standard is set as the baseline efficiency.

High Efficiency

High efficiency is defined as any model meeting or exceeding 2007 ENERGY STAR standard – currently set to 10% over the 2001 Federal minimum standard .

Loadshape

Loadshape #4, Residential Refrigerator

r reendersinp/spinover ractors				
Measure Category		Refrigeration		
Measure Code		RFRESFZR		
		Energy Star	Freezer Early	
Product Description		Repla	cement	
Track Name	Track No.	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Farm Rx	6013FRMP	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Upstream	6013UPST	n/a	n/a	
Act250 NC	6014A250	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
LIMF Retrofit	6017RETR	0.9	1.0	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	0.9	1.0	
MF Mkt NC	6019MFNC	n/a	n/a	
MF Mkt Retro	6020MFMR	0.9	1.0	
C&I Lplus	6021LPLU	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	1.0	1.0	
RES Retrofit	6036RETR	0.9	1.0	
RNC VESH	6038VESH	n/a	n/a	
EP GMP Blueline	6042EPEP	n/a	n/a	
GMP Furnace	6042EPEP	n/a	n/a	
GMP HP	6046RETR	n/a	n/a	
VEEP GMP	6048VEEP	n/a	n/a	
LIMF Lplus	6052LPLU	n/a	n/a	
MFMR Lplus	6053LPLU	n/a	n/a	

Freeridership/Spillover Factors

³⁴⁷ Energy usage algorithms taken from: http://eec.ucdavis.edu/ACEEE/1994-96/1996/VOL09/207.PDF and <u>http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf</u>. Note that in 2010 this measure became prescriptive and so individual unit consumption values were no longer tracked.

Persistence

The persistence factor is assumed to be one.

Lifetimes 12 Years³⁴⁸

12 Years³⁴⁸ Analysis period is the same as the lifetime.

Measure Cost

The full cost for an ENERGY STAR unit is \$360. The cost of a baseline replacement freezer is \$335.³⁴⁹

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

N/A

³⁴⁸ From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678f5e6

 ^{f5e6}/₃₄₉ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data. These calculated full costs (\$500 for ENERGY STAR and \$465 for a baseline unit) are multiplied by the 72% size factor to account for the smaller units being installed in MF.

Refrigerator Early Removal

Measure Number: III-C-3-a

(Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. ADM Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program;
- 2. KEMA Residential Refrigerator Recycling Ninth Year Retention Study;
- Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"
- 4. The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010
- 5. Appliance Recycling data2008-2012_V2.xls
- 6. Refrigerator kW Calculations.xls

Description

This is an early retirement measure for the removal of an existing inefficient secondary refrigerator from service observed during a site visit by a weatherization agency, Home Performance contractor or Efficiency Vermont staff member. The contractor has signed an agreement that the unit will be rendered permanently inoperable and properly recycled or disposed of. The program will target refrigerators with an age greater than 10 years, although data from the Efficient Product program suggests the average age of retired units is over 30 years. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Algorithms

Energy Savings

 $\Delta kWh = UEC * PartUse * MF_{size factor}$ = 956 * 0.779 * 0.72= 537 kWh

Demand Savings

 $\Delta kW = \Delta kWh/Hours$ = 537/8477= 0.063 kW

Where:

ΔkWh	= gross customer annual kWh savings for the measure
UEC	= Unit Energy Consumption
	$= 956 \text{ kWh}^{350}$
PartUse	= adjustment factor for weighted partial use of appliance = 0.779^{351}

³⁵⁰ Unit Energy Consumption is based upon review of the data collected by Jaco from units retired in the program from 2009-2012. To estimate the consumption of the retired units EVT used a regression equation with multiple attributes from a recent Illinois evaluation (Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"). The regression analysis is likely the most accurate for a large enough population. For information see "Appliance Recycling data2008-2012_V2.xls".

MF _{size factor}	= Factor applied to the savings based on Residential Program to account for
	smaller units being installed in Multi Family buildings.
	$= 0.72^{352}$
HOURS	= Equivalent Full Load Hours
	$= 8477^{353}$
ΔkW	= gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

The existing refrigerator baseline consumption is based upon data collected by Jaco from units retired in the Efficient Products program from 2009-2012 and adjusted for part use consumption and smaller units in Multi Family buildings.

High Efficiency

N/A

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrigeration	
Measure Code		RFRRERPS	
		Multi Family Refrigerator	
Product Description		Early Retirement	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	1.0	1.0
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	1.0	1.0
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC 6019MFNC		n/a	n/a

³⁵¹ Based on analysis of Jaco data. Participants were asked how much the refrigerator was run through the year. The data was weighted assuming the response "All months" equaled 12 months, "Summer" or "Winter" equaled 3 months and "Spring/Fall" equaled 6 months.
³⁵² Size Factor is calculated by comparing the average MF retrofitted energy savings per unit (525kwh) to the average

³⁵² Size Factor is calculated by comparing the average MF retrofitted energy savings per unit (525kwh) to the average single family residential retrofitted energy savings (726kWh) indicating a 72% savings factor. See SFvMF Refrigerator Retrofit.xls.

³⁵³ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

Persistence

The persistence factor is assumed to be one.

Lifetimes

8 years ³⁵⁴ Analysis period is the same as the lifetime.

Measure Cost

The cost of pickup and recycling of the refrigerator is \$50 based upon agreement with contractors or vendors who will collect secondary units when replacing the primary unit. Contractors have signed an agreement that the units will be recycled and not placed on the secondary market.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel savings for this measure.

Water Descriptions

There are no water savings for this measure.

³⁵⁴ KEMA "Residential refrigerator recycling ninth year retention study", 2004

Freezer Early Removal

Measure Number: III-C-4-a

(Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. ADM Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program;
- 2. KEMA Residential Refrigerator Recycling Ninth Year Retention Study;
- Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"
- 4. The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010
- 5. Appliance Recycling data2008-2012_V2.xls
- 6. Refrigerator kW Calculations.xls

Description

This is an early retirement measure for the removal of an existing inefficient freezer from service observed during a site visit by a weatherization agency, Home Performance contractor or Efficiency Vermont staff member. The contractor has signed an agreement that the unit will be rendered permanently inoperable and properly recycled or disposed of. The program will target freezers with an age greater than 10 years, although data from the Efficient Product program suggests the average age of retired units is over 30 years. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Algorithms

Energy Savings

 $\Delta kWh = UEC * PartUse * MF_{size factor}$ = 1231 * 0.777 * 0.72 = 689 kWh

Demand Savings

 $\Delta kW = \Delta kWh/Hours$ = 689 /8477 = 0.081 kW

Where:

ΔkWh	= gross customer annual kWh savings for the measure
UEC	= Unit Energy Consumption
	$= 1231 \text{ kWh}^{355}$
PartUse	= adjustment factor for weighted partial use of appliance
	$= 0.777^{356}$

³⁵⁵ Unit Energy Consumption is based upon review of the data collected by Jaco from units retired in the program from 2009-2012. To estimate the consumption of the retired units EVT used a regression equation with multiple attributes from a recent Illinois evaluation (Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"). For information see "Appliance Recycling data2008-2012_V2.xls".
³⁵⁶ Based on analysis of Jaco data. Participants were asked how much the freezer was run through the year. The data

³²⁰ Based on analysis of Jaco data. Participants were asked how much the freezer was run through the year. The data was weighted assuming the response "All months" equaled 12 months, "Summer" or "Winter" equaled 3 months and "Spring/Fall" equaled 6 months.

MF _{size factor}	= Factor applied to the savings derived based on Residential Program to account
	for smaller units being installed in Multi Family buildings.
	$= 0.72^{357}$
HOURS	= Equivalent Full Load Hours
	$= 8477^{358}$
ΔkW	= gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

The existing freezer baseline consumption is based upon data collected by Jaco from units retired in the Efficient Products program from 2009-2012 and adjusted for part use consumption.

High Efficiency

N/A

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrigeration	
Measure Code		RFRFERPS	
Product Description		Freezer Early Retirement	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	1.0	1.0
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	1.0	1.0
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

8 years ³⁵⁹ Analysis period is the same as the lifetime.

³⁵⁹ KEMA "Residential refrigerator recycling ninth year retention study", 2004

³⁵⁷ Size Factor is calculated by comparing the average MF retrofitted energy savings per unit (525kwh) to the average single family residential retrofitted energy savings (726kWh) indicating a 72% savings factor. See SFvMF Refrigerator Retrofit.xls.

³⁵⁸ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

Measure Cost

The cost of pickup and recycling of the refrigerator is \$50 based upon agreement with contractors or vendors who will collect secondary units when replacing the primary unit. Contractors have signed an agreement that the units will be recycled and not placed on the secondary market.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel savings for this measure.

Water Descriptions

There are no water savings for this measure.

Hot Water End Use Low Flow Showerhead

Measure Number: III-D-5-c (Multifamily New Construction Program, Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Hot Water End Use)

Version Date & Revision History

Draft date:	Portfolio 81
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. Energy Policy Act of 1992
- 2. 2010 Census
- 3. NREL, National Residential Efficiency Measures Database
- 4. AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx
- 5. CADMUS and Opinion Dynamics. "Showerhead and Faucet Aerator Meter Study." prepared for the Michigan Evaluation Working Group, 2013.
- East Bay Municipal Utility District; "Water Conservation Market Penetration Study" 6. http://www.ebmud.com/sites/default/files/pdfs/market penetration study 0.pdf
- 7. SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm
- 8. Champlain Water District, 2010 Water Quality Report, http://www.cwdh2o.org/vertical/Sites/%7B0A660058-838C-4456-B2E9-CCDA30420B07%7D/uploads/2011 Water Ouality Report1.pdf

Description

An existing shower head with a high flow rate is replaced with new unit that has a low flow rate. This is a retrofit measure.

Algorithms

Energy Savings

If electric domestic water heater:

∆kWh ³⁶⁰	0	$= (((GPM_{base} \times min/person/day_{base} - GPM_{efficient} \times min/person/day_{efficient}) \times \#$ people × days/year) / SH/home) × 8.3 × (TEMP_{sh} - TEMP_{in}) / DHW Recovery Efficiency / 3412 × ISR
Where:		
	GPM _{base}	= Gallons Per Minute of baseline shower head = 2.02^{361}
	GPM _{efficient}	= Gallons Per Minute of low flow shower head = 1.5^{-362}
	min/person/day _{ba}	$_{se}$ = Average minutes in the shower per person per day with baseline showerhead = 4.7 363

³⁶⁰ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all shower head installations. ³⁶¹ Mean showerhead GPM, 4. AWWA, Re

AWWA, Residential End Uses of Water, 1999,

http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx ³⁶² EVT program documentation as of November 2012

³⁶³ Based on 7.8 minutes per shower and 0.6 showers per person per day ($7.8 \times 0.6 = 4.7$ minutes per person per day); CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.

min/person/day_{efficient} = Average minutes in the shower per person per day with low flow showerhead 20

		$=4.7^{-304}$
	# people	= Average number of people per household = 1.6^{365}
	days/y	= Days shower used per year
	SH/home	= 365 = Average number of showers in the home = 1.0^{-366}
	83	- Constant to convert gallons to lbs
	TEMP _{sh}	= Assumed temperature of water used by shower head = $101F^{367}$
	TEMP _{in}	= Assumed temperature of water entering house = 54 F^{368}
	DHW Recovery	Efficiency = Recovery efficiency of electric water heater = 0.98^{-369}
	3412	= Constant to converts BTU to kWh
	ISR	= In Service Rate = 0.95^{370}
	ΔkWh 0.95	= [((2.02 × 4.7 – 1.5 × 4.7) × 1.6 × 365) / 1.0] × 8.3 × (101-54) / 0.98 / 3412 ×
D	1 G	= 158 kWh
Demano ∆kW	1 Savings	$= \Delta kWh / hours$
Where		
where.	Hours	 = Operating hours from Residential DHW Conservation Loadshape³⁷¹ = 3427
	ΔkW	= 158 kWh / 3427 = 0.0460 kW

Baseline Efficiencies – New or Replacement

The baseline condition is an existing shower head with a high flow.

High Efficiency

³⁶⁴ Ibid.

³⁶⁵ Average people per household in Vermont multi-family buildings, 2010 Census ³⁶⁶ Estimate based on review of a number of studies:

a. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf

b. AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-enduses-of-water-study-1999.aspx

SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, c. http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm

³⁶⁷ CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013. ³⁶⁸ Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h2o.org/vertical/Sites/%7B0A660058-</u>

⁸³⁸C-4456-B2E9-CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf ³⁶⁹ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40 ³⁷⁰ Navigant, 2013, Draft Evaluation of Multi-Family Home Energy Savings Program for ComEd PY4 and Nicor Gas PY1

³⁷¹ Based on Itron eShapes (8760 data) and adjusted for diversity within the hour

High efficiency is a low flow shower head.

Loadshape

For DHW systems not on Utility Controlled DHW program (Default): Loadshape #8, Residential DHW Conservation

For DHW systems on Utility Controlled DHW program: Loadshape #54, Controlled DHW Conservation

Freeridership/Spillover Factors

Measure Category Hot Water			
Measure Code		HWESHOWR	
		Low Flow	
Product Description		Shower Head	
Track Name	Track No.	Freerider	Spillover
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	1.0	1.0
MF Mkt NC	6019MFNC	0.9	1.0
MF Mkt Retro	6020MFMR	0.9	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

9 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for low-flow shower heads is presumed to be zero for new construction or major rehab projects, and \$15 for retrofit applications.372

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions³⁷³

If fossil fuel water heating: **AMMBtu**

 $=((\Delta kWh \times \eta WH_{electric}) \ / \ \eta WH_{combustion}) \times 0.003412$

Where:

$\eta WH_{electric}$	= Recovery efficiency of electric water heater
	$= 0.98^{-374}$
$\eta WH_{combustion}$	= Recovery efficiency of fossil fuel water heater
	$= 0.76^{3/5}$

³⁷² Includes showerhead cost of \$2.5 for a regular, \$2.97 for chrome and \$7.26 for handheld, plus labor installation

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40 375 NREL, National Residential Efficiency Measures Database,

costs. ³⁷³ Fossil fuel savings based on efficiency factors of .62 for oil, natural gas, and liquid propane high efficiency stand alone DHW heaters as approved by the VT- DPS and used by Efficiency Vermont. Efficiency factor of .88 is used for electric DHW heater. ³⁷⁴ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

Other factors as defined above

 Δ MMBtu = ((158 × 0.98) / 0.76) × 0.003412

= 0.695 MMBtu

Water Descriptions

 $\Delta CCF = ((GPM_{base} \times min/person/day_{base} - GPM_{efficient} \times min/person/day_{efficient}) \times \# people \times days/year) / (SH/home \times 748)$

Where:

 ΔCCF = customer water savings in hundreds of cubic feet for the measure 748 = Conversion from gallons to CCF Other factors are as defined above

$$\Delta CCF = ((2.02 \times 4.7 - 1.5 \times 4.7) \times 1.6 \times 365) / (1.0 \times 748)$$

= 1.91 CCF

Low Flow Faucet Aerator

Measure Number: III-D-6-c (Multifamily New Construction Program, Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Hot Water End Use)

Version Date & Revision History

Draft date: Portfolio 81 Effective date: 1/1/2013 End date: TBD

Referenced Documents:

- 1. DOE, "Energy and Water Conservation Standards," Federal Register Vol. 63, No. 52, March 18, 1998.13307
- 2. AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx
- 3. Ontario Energy Board, "Measures and Assumptions for Demand Side Management Planning." 4. East Bay Municipal Utility District; "Water Conservation Market Penetration Study"
 - http://www.ebmud.com/sites/default/files/pdfs/market penetration study 0.pdf
- 5. CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.
- 6. Champlain Water District, 2010 Water Quality Report, http://www.cwdh2o.org/vertical/Sites/%7B0A660058-838C-4456-B2E9-CCDA30420B07%7D/uploads/2011_Water_Quality_Report1.pdf
- 7. NREL. National Residential Efficiency Measures Database. http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40
- 2010 Census 8.

Description

An existing faucet aerator with a high flow rate is replaced with new unit that has a low flow rate. This is a retrofit measure.

Algorithms

Energy Savings

If electric domestic water heater:

ΔkWh^{37}	6	= ((($GPM_{base} - GPM_{efficient}$) / $GPM_{base} \times #$ people \times gpcd \times days/year \times DR) /
		$(F/home)) \times 8.3 \times (TEMP_{ft} - TEMP_{in}) / DHW Recovery Efficiency / 3412$
Where:		
	GPM _{base}	= Gallons Per Minute of baseline faucet
		$= 2.2^{377}$
	GPM _{efficient}	= Gallons Per Minute of low flow faucet
		= 1.5 or
		= 1.0
	# people	= Average number of people per household
		$= 1.6^{378}$
	gpcd	= Average gallons per person per day using faucets
		$= 10.9^{379}$

³⁷⁶ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all faucet aerator installations.

³⁷⁷ In 1998, the Department of Energy adopted a maximum flow rate standard of 2.2 GPM at 60 psi for all faucets: DOE, "Energy and Water Conservation Standards," Federal Register Vol. 63, No. 52, March 18, 1998, 13307 ³⁷⁸ Average people per household in Vermont multi-family buildings, 2010 Census

³⁷⁹ AWWA, Residential End Uses of Water, 1999, <u>http://www.allianceforwaterefficiency.org/residential-end-uses-of-</u> water-study-1999.aspx

	days/y	= Days faucet used per year
	DR	= S05 = Percentage of water flowing down drain (if water is collected in a sink, a faucet aerator will not result in any saved water) = $50\%^{380}$
	F/home	= Average number of faucets in the home = 2.3^{381}
	8.3	= Constant to convert gallons to lbs
	TEMP _{ft}	= Assumed temperature of water used by faucet = 88 F^{382}
	TEMP _{in}	= Assumed temperature of water entering house = 54 F^{383}
	DHW Recovery	Efficiency = Recovery efficiency of electric water heater = 0.98^{-384}
	3412	= Constant to converts BTU to kWh
	Aerator at 1.5 gp ΔkWh =	m = $((2.2 - 1.5) / 2.2 \times 1.6 \times 10.9 \times 365 \times 0.5) / 2.3 \times 8.3 \times (88 - 54) / 0.98 / 3412$
		= 37.2 kWh
	Aerator at 1.0 gp ΔkWh =	m = ((2.2 - 1.0) / 2.2 × 1.6 × 10.9 × 365 × 0.5) / 2.3 × 8.3 × (88 - 54) / 0.98 / 3412
		= 63.7 kWh
Demand ∆kW	l Savings	$= \Delta kWh / hours$
Where:	Hours	 = Operating hours from Residential DHW Conservation Loadshape³⁸⁵ = 3427
	Aerator at 1.5 gp	m
	ΔkW	= 37.2 kWh / 3427 = 0.0108 kW
	Aerator at 1.0 gp	m
	ΔkW	= 63.7 kWh / 3427 = 0.0186 kW
Baseline The base	e Efficiencies – N eline condition is a	ew or Replacement an existing faucet aerator using 2.2 gpm.

³⁸⁰ Estimate consistent with Ontario Energy Board, "Measures and Assumptions for Demand Side Management Planning." ³⁸¹ Estimate based on East Bay Municipal Utility District; "Water Conservation Market Penetration Study"

http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf ³⁸² Weighted average of kitchen (93F) and bathroom (86F) faucet use temperatures, CADMUS and Opinion Dynamics,

[&]quot;Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013. ³⁸³ Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h2o.org/vertical/Sites/%7B0A660058-</u>

⁸³⁸C-4456-B2E9-CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf ³⁸⁴ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40 ³⁸⁵ Based on Itron eShapes (8760 data) and adjusted for diversity within the hour

High Efficiency

High efficiency is a low flow aerator, 1.5 or 1.0 gpm.

Loadshape

For DHW systems not on Utility Controlled DHW program (Default): Loadshape #8, Residential DHW Conservation

For DHW systems on Utility Controlled DHW program: Loadshape #54, Controlled DHW Conservation

Freeridership/Spillover Factors

Measure Category		Hot Water	
Measure Code		HWEFAUCT	
Product Description		Low Flow Faucet Aerator	
Track Name	Track No.	Freerider	Spillover
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	1.0	1.0
MF Mkt NC	6019MFNC	0.9	1.0
MF Mkt Retro	6020MFMR	0.9	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

The expected lifetime of the measure is 9 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for low-flow faucet aerators is presumed to be zero for new construction or major rehab projects, and \$10 for retrofit applications.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions³⁸⁶

If fossil fuel water heating: Δ MMBtu

= (($\Delta kWh \times \eta WH_{electric}$) / $\eta WH_{combustion}$) × 0.003412

Where:

 $\begin{array}{ll} \eta WH_{electric} & = \mbox{Recovery efficiency of electric water heater} \\ & = 0.98 \ ^{387} \\ \eta WH_{combustion} & = \mbox{Recovery efficiency of fossil fuel water heater} \\ & = 0.76 \ ^{388} \\ \mbox{Other factors as defined above} \end{array}$

Aerator at 1.5 gpm

 ³⁸ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>
 ³⁸⁸ NREL, National Residential Efficiency Measures Database,

 ³⁸⁶ Fossil fuel savings based on efficiency factors of .62 for oil, natural gas, and liquid propane high efficiency standalone DHW heaters as approved by the VT- DPS and used by Efficiency Vermont. Efficiency factor of .88 is used for electric DHW heater.
 ³⁸⁷ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

 Δ MMBtu = ((24.4 × 0.98) / 0.76) × 0.003412

= 0.107 MMBtu

Aerator at 1.0 gpm $\Delta MMBtu = \left(\left(41.9 \times 0.98 \right) / 0.76 \right) \times 0.003412$

= 0.184 MMBtu

Water Descriptions

 $\Delta CCF = ((GPM_{base} - GPM_{efficient}) / GPM_{base} \times \# people \times gpcd \times days/year \times DR) / (F/home \times 748)$

Where:

ΔCCF	= customer water savings in hundreds of cubic feet for the measure
748	= Conversion from gallons to CCF

Other factors are as defined above

Aerator at 1.5 gpm $\Delta CCF = ((2.2 - 1.5) / 2.2 \times 1.6 \times 10.9 \times 365 \times 0.5) / (2.3 \times 748)$

= 0.589 CCF

Aerator at 1.0 gpm $\Delta CCF = ((2.2 - 1.0) / 2.2 \times 1.6 \times 10.9 \times 365 \times 0.5) / (2.3 \times 748)$

= 1.01 CCF

Domestic Hot Water Recirculation Pipe Insulation

Measure Number: III-D-7-a (Multifamily New Construction Program, Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Space Heating End Use)

Version Date & Revision History

Draft date: Portfolio 74 Effective date: 1/1/2012 End date: TBD

Referenced Documents:

- 1. Domestic Water Re-heat_MF.xls
- 2. GDS Associates 2007 "Measure Life Report";
- http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf
- 3. MeasureCost_StevePitkin6-15-11.xls

Description

Domestic Hot Water Recirculation Pipe that is continuously circulating is insulated with 1.5 or 2 inches of insulation instead of a baseline level of 0.5 inch.

Algorithms

Energy and Demand Savings

n/a

Baseline Efficiency

Domestic Hot Water Recirculation Pipe insulated with 0.5 inch of insulation.

Efficient Efficiency

Domestic Hot Water Recirculation Pipe insulated with 1.5 or 2 inches of insulation.

Loadshape

Loadshape #25, Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Domestic Ho	Domestic Hot Water End	
		Use		
Measure Code		HWERECIN		
Product Description		Domestic	Hot Water	
		Recircula	tion Pipe	
Track Name	Track No.	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Farm Rx	6013FRMP	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Upstream	6013UPST	n/a	n/a	
Act250 NC	6014A250	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	1.0	1.0	
LIMF Rehab	6018LIRH	1.0	1.0	

MF Mkt NC	6019MFNC	1.0	1.0
MF Mkt Retro	6020MFMR	n/a	n/a
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetime

20 years³⁸⁹.

Analysis period is the same as the lifetime.

Incremental Cost per Unit

The incremental cost is assumed to be \$0.50 per linear foot for 1.5 inch pipe insulation and \$1.0 per linear foot for 2 inch pipe insulation³⁹⁰.

Fossil Fuel Descriptions

Deemed fossil fuel savings per linear foot of DHW circulation pipe are provided below³⁹¹.

DHW fuel source	MMBtu Savings for Insulation Thickness per Linear Foot		
	1.5"	2"	
Natural Gas or LP	0.0382	0.0443	
Oil	0.0422	0.049	

Assumes an average 1" circulation pipe. The boiler efficiency is assumed to be Tier 1 standard (i.e. 94% for gas, 85% for oil). Savings are based on the following pipe heat loss table³⁹²:

Insulation		Pipe 1	Heat Loss (btu/	'lf-yr)	
Thickness	1/2"	3/4"	1"	1-1/4"	1-1/2"
Bare Pipe	181,300	218,900	265,700	325,800	367,200
0.5	59,750	67,800	79,320	98,350	110,400
1	42,440	50,990	53,010	68,110	68,980
1.5	34,540	40,000	43,440	48,510	54,880

³⁸⁹ Consistent with GDS Associates 2007 "Measure Life Report";

http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf

³⁹⁰ Cost estimates provided by Steve Pitkin, construction project manager and cost estimator. See 'MeasureCost_StevePitkin6-15-11.xls' for more information.

³⁹¹ Calculated using EVT developed spreadsheet tool 'Domestic Water Re-heat_MF.xls'.

³⁹² Taken from free software called "3EPlusv4" developed by NAIMA, the North American Insulation Manufacturer's Association. The delta T used to develop the pipe heat loss table was 50 degrees (120 degree water in the pipe and 70 degree ambient temperature). The software can be download here: http://www.pipeinsulation.org/pages v4/download.html

2	30,620	34,830	37,660	44,650	43,570
2.5	26,750	29,910	33,910	39,460	39,470

Reference Tables

None

Boiler Hot Water Distribution Pipe Insulation

Measure Number: III-D-8-a (Multifamily New Construction Program, Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Space Heating End Use)

Version Date & Revision History

Draft date: Portfolio 74 Effective date: 1/1/2012 End date: TBD

Referenced Documents:

- 1. Boiler_Distribution_Pipe Insulation.xls
- 2. GDS Associates 2007 "Measure Life Report";
- http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf
- 3. MeasureCost_StevePitkin6-15-11.xls
- 4. Boiler with Reset_Hot Water Temp.xls'

Description

Boiler hot water recirculation pipe that is continuously circulating during the heating season (assumed to be when outside temperature is about 65 degrees F) is insulated with 1.5 or 2 inches of insulation instead of a baseline level of 1 inch.

Algorithms

Energy and Demand Savings

n/a

Baseline Efficiency

Boiler Hot Water Recirculation Pipe insulated with 1 inch of insulation as required by CBES 2011 code.

Efficient Efficiency

Boiler Hot Water Recirculation Pipe insulated with 1.5 or 2 inches of insulation.

Loadshape

n/a

Freeridership/Spillover Factors

Measure Category	Ieasure Category Heating End Use		End Use
Measure Code		HWEBREIN	
Product Description		Boiler H	ot Water
		Recircula	tion Pipe
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	1.0	1.0

LIMF Rehab	6018LIRH	1.0	1.0
MF Mkt NC	6019MFNC	1.0	1.0
MF Mkt Retro	6020MFMR	n/a	n/a
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetime

20 years³⁹³. Analysis period is the same as the lifetime.

Incremental Cost per Unit

The incremental cost is assumed to be \$0.50 per linear foot for 1.5 inch pipe insulation and \$1.0 per linear foot for 2 inch pipe insulation³⁹⁴.

Fossil Fuel Descriptions

Deemed fossil fuel savings per linear foot of boiler circulation pipe are based on the following algorithm:

MMBtu/ft	= ((Circulation Temp - Ambient Temp) x Operating Hours x ($U_{Base} - U_{Eff}$) * SA/ft)/
	μHeat / 1,000,000

Where

Circulation Temp _{no reset control}	$= 180^{\circ} F$
Circulation Tempgas boilers w/reset	= 132°F
Circulation Tempoil boilers w/reset	$= 146^{\circ} F^{395}$
Ambient Temp	$= 65^{\circ} F$
Operating Hours	$= 6260^{396}$
U_{Base}	= U Factor of 1" insulation
	= 1/3.5
	= 0.286
$\mathrm{U}_{\mathrm{Eff}}$	= U Factor of 1.5" or 2" insulation
	= 0.190 (1/(3.5*1.5))
	or 0.143 (1/(3.5*2))
SA/ft	= Surface Area per foot of pipe

³⁹³ Consistent with GDS Associates 2007 "Measure Life Report";

http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf ³⁹⁴ Cost estimates provided by Steve Pitkin, construction project manager and cost estimator. See

^{'MeasureCost_StevePitkin6-15-11.xls' for more information.} ³⁹⁵ Circulation temperatures for boilers with reset controls were calculated assuming 180°F water when outside air is below zero and at 60°F outside air we assume reset controls reduce the temperature to 100°F for gas-fired boilers and 140°F for oil (typically oil boilers are not reset as much as gas boilers due to thermal and condensing issues), and assume a linear relationship between those two points. See 'Boiler with Reset Hot Water Temp.xls' for calculation. ³⁹⁶ Number of hours where outside temperature is below 60°F, based on Bin Analysis see Pipe Insulation.xls.

	$= 0.295^{397}$ (assuming 1" pipe diameter)
μHeat	= Boiler efficiency assumed to be Tier 1 standard
	= 94% for gas, 85% for oil

Deemed values presented below. For calculation see Boiler_Distribution_Pipe Insulation.xls.

DHW fuel source	MMBtu Savings for Insulation Thickness per Linear Foot	
	1.5"	2"
Gas (no reset control)	0.022	0.032
Oil (no reset control)	0.024	0.036
Gas (with reset control)	0.013	0.019
Oil (with reset control)	0.017	0.025

Reference Tables

None

³⁹⁷ Based on ASHRAE look up tables.

Drain Water Heat Recovery Device

Measure Number: III-D-9-a (Multifamily New Construction Program, Hot Water End Use)

Version Date & Revision History

Draft date:	Portfolio 74
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

1.	Energy Savings calculations based on Drain Water Heat Recovery
	Characterization and Modeling – Final Report, C. Zaloum, M. Lafrance, J
	Gusdorf, 2007.
•	

2. DWHR Calculator.xls

Description

Drain water heat exchanger installed to capture and reuse energy from main drain pipe to preheat incoming cold water to water heater and shower. This measure is only applicable to units serving 2 or more apartments and is not supported for buildings with natural gas since it has been found to not be cost effective.

Algorithms

Demand Savings

N/A

Energy Savings³⁹⁸

$\Delta kWh =$	(0.017 x ε x 8.623 x HS x 365 /	(DHW _e)) * FLAG
	\	

Where:

∆kWh	= gross customer annual kWh savings for the measure (kWh)
0.017	= 60/1000/3.6 (minutes/watts/megajoules)
3	= Drain Water Heat Recovery device efficiency ³⁹⁹
8.623	= Heat Flux ⁴⁰⁰
HS	= Household/Apartment Shower Minutes/Day [(Bedrooms + 1) x 5.3^{401}]
365	= Days per year
DHW _e	= Domestic Hot Water Recovery Efficiency
	$= 0.98^{402}$
FLAG	= 1 if domestic hot water system is electric; 0 otherwise

Baseline Efficiencies – New or Replacement

The baseline condition is an existing or proposed main drain pipe without heat recovery.

³⁹⁹ For example efficiencies see Zaloum, Lafrance, Gusdorf, p. 13.

³⁹⁸ Energy Savings calculations based on Drain Water Heat Recovery Characterization and Modeling – Final Report, C. Zaloum, M. Lafrance, J Gusdorf, 2007, p. 29

⁴⁰⁰ Assumed Showerhead flow of 1.5 gpm, Incoming Cold Water Temp of 55°F, Shower Water Temp of 105°F and a drop of 6°F from shower to drain. See 'DWHR Calculator.xls' for details of the calculation. ⁴⁰¹ 5.3 minutes per person per day is derived from EPA WaterSense document

⁽http://www.epa.gov/watersense/docs/home_suppstat508.pdf) which suggests 11.6 gallons of water per person per day for shower use. This was based on a 1999 study

⁽http://www.waterrf.org/ProjectsReports/PublicReportLibrary/RFR90781_1999_241A.pdf) that metered 1088 households for 4 weeks. The average flow rate for these showers was 2.2 gpm making the number of minutes per day 11.6/2.2 = 5.27 minutes.

⁴⁰² Electric water heaters have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

High Efficiency

High efficiency is installation of drain water heat recovery device.

Operating Hours

N/A

Loadshape

Loadshape #8, Residential DHW conserve

Freeridership/ Spillover Factors

Measure Category		Hot Water End Use		
Measure Code		HWEDRAIN		
Product Description		Drain Water Heat Recovery		
Track Name	Track No.	Freerider	Spillover	
C&I Retrofit	6012CNIR	n/a	n/a	
Farm Retrofit	6012FARM	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Farm Rx	6013FRMP	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Upstream	6013UPST	n/a	n/a	
Act250 NC	6014A250	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	1.0	1.0	
LIMF Rehab	6018LIRH	1.0	1.0	
MF Mkt NC	6019MFNC	1.0	1.0	
MF Mkt Retro	6020MFMR	n/a	n/a	
C&I Lplus	6021LPLU	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
EP GMP Blueline	6042EPEP	n/a	n/a	
GMP Furnace	6042EPEP	n/a	n/a	
GMP HP	6046RETR	n/a	n/a	
VEEP GMP	6048VEEP	n/a	n/a	
LIMF Lplus	6052LPLU	n/a	n/a	
MFMR Lplus	6053LPLU	n/a	n/a	

Persistence

The persistence factor is assumed to be one.

Lifetimes 25 years⁴⁰³

Measure Cost

The incremental cost for drain water heat recovery device varies based on the length of the device and the application.

⁴⁰³ Conservative estimate based on product manufacturer published expected lifetime.

	Length	Application	Device Cost ⁴⁰⁴	Installation	Total Cost
				Cost	
SHOPT DWHP Davias	36" – 40"	New Construction	\$560	\$100	\$660
SHORT D WIIK Device	36" – 40"	Retrofit	\$560	\$200	\$760
MEDILIM DWHR Davida	60"	New Construction	\$702	\$100	\$802
MEDIUM DWHR Device	60"	Retrofit	\$702	\$200	\$902
LONG DWHP Davias	80"	New Construction	\$980	\$200	\$1180
LONG D WHR Device	80"	Retrofit	\$980	\$300	\$1280
EXTRA-LONG DWHR	100"-120"	New Construction	\$1200	\$200	\$1400
Device	100"-120"	Retrofit	\$1200	\$300	\$1500

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions

ΔMMBtu	= $(0.017 \text{ x} \in \text{x} 8.623 \text{ x} \text{ HS} \text{ x} 365 / \text{DHWe}) \text{ x} 0.003412 \text{ x} (1-\text{FLAG})$
Where:	
ΔMMBtu	= Annual MMBtu fossil fuel savings per residential unit for the measure
ΔkWh	= kWh savings calculated above
0.003412	= Converts kWh to MMBtu
DHW _e	= Fuel Domestic Hot Water Recovery Efficiency
	= 86% if gas, 78% if oil ⁴⁰⁶
FLAG	= 1 if domestic hot water system is electric; 0 otherwise

Reference Tables

None

 ⁴⁰⁴ Device Costs based on available pricing August 2011. Prices vary based on quantity, location, and retailer.
 ⁴⁰⁵ Installation costs for retrofit application assumes typical accessibility of main drain line.
 ⁴⁰⁶ Assume Tier 1 efficiency level boilers (94% gas or 85% oil) with indirect water heaters (efficiency assumed to be 0.92 * boiler efficiency).

Ventilation End Use Residential Fan—Quiet, Exhaust-Only Continuous Ventilation

Measure Number: III-E-1-b (Multifamily New Construction Program, Low Income Multifamily Retrofit, Market Rate Multifamily Retrofit, Ventilation End Use)

Version Date & Revision History

Draft date: Portfolio 74 Effective date: 1/1/2012 End date: TBD

Referenced Documents:

- 3. Residential Vent Fan Assessment.xls
- 4. GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures"

105

5. ASHRAE 62.2 Section 4.1 Whole House Ventilation

Description

This market opportunity is defined by the need for continuous mechanical ventilation due to reduced air-infiltration from a tighter building shell. In retrofit projects, existing fans may be too loud, or insufficient in other ways, to be operated as required for proper ventilation. This measure assumes a fan capacity of 50 CFM rated at less than 2.0 sones at 0.1 inches of water column static pressure. This measure may be applied to larger capacity, up to 130 CFM, efficient fans with bi-level controls because the savings and incremental costs are very similar. All eligible installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2.

Algorithms

Demand Savings

 $\Delta kW = CFM * (1/Fan_{Efficiency, Baseline} - 1/Fan_{Efficiency, Effcient})/1000$ = 50 * (1/3.1 - 1/8.3)/1000= 0.01 kW

Where:

CFM	=	Nominal Capacity of the exhaust fan, 50 CFM ⁴⁰⁷
Fan _{Efficiency, Baseline}	=	Average efficacy for baseline fan, 3.1 CFM/Watt ⁴⁰⁸
Fan Efficiency, Effcient	=	Average efficacy for efficient fan, 8.3 CFM/Watt ⁴⁰⁹

Energy Savings

∆kWh	=	Hours $* \Delta kW$
	=	8760 * 0.01
	=	87.6 kWh

Where:

ΔkW	= connected load kW savings per qualified ventilation fan and controls.
Hours	= assumed annual run hours, 8760 for continuous ventilation.

Baseline Efficiencies – New or Replacement

New standard efficiency (average CFM/Watt of 3.1^{410}) exhaust-only ventilation fan, quiet (< 2.0 sones⁴¹¹) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2^{412}

⁴⁰⁷ 50CFM is the closest available fan size to ASHRAE 62.2 Section 4.1 Whole House Ventilation rates based upon typical square footage and bedrooms.

⁴⁰⁸ Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM. Based on fan information gathered and referenced in the spreadsheet, "Residential Vent Fan Assessment.xls"

⁴⁰⁹ Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM. Based on fan information gathered and referenced in the spreadsheet, "Residential Vent Fan Assessment.xls"

⁴¹⁰ Average of efficacies at static pressures of 0.1 and 0.25 inches of water column.

High Efficiency

New efficient (average CFM/watt of 8.3) exhaust-only ventilation fan, quiet (< 2.0 sones) Continuous operation in accordance with recommended ventilation rate indicated by ASHRAE 62.2^{413}

Operating Hours

Continuous, 8760.

Loadshape

Loadshape # 25: Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category	Ventilation		
Measure Code	VNTXCEIL,		
Product Description		Exhaust fan, ceiling,	
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	0.95	1.1
MF Mkt NC	6019MFNC	0.9	1.0
MF Mkt Retro	6020MFMR	1.0	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	1.0	1.0
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0
RNC VESH	6038VESH	0.95	1.1
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetime

 ⁴¹¹ Rated fan sound level at a static pressure of 0.1 inches of water column.
 ⁴¹² On/off cycling controls may be required of baseline fans larger than 50CFM.
 ⁴¹³ Bi-level controls may be used by efficient fans larger than 50 CFM

19 years⁴¹⁴ Analysis period is the same as the lifetime.

Incremental Cost per Unit

Incremental cost per installed fan is \$43.50 for quiet, efficient fans.⁴¹⁵

Reference Tables

None

⁴¹⁴ Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans. ⁴¹⁵ See the Fan Info worksheet of the spreadsheet "Residential Vent Fan Assessment.xls"

Space Heating End Use Comprehensive Thermal Measure

Measure Number: III-F-3-a (Multifamily New Construction Program, Space Heating End Use)

Version Date & Revision History

Draft date:Portfolio 74Effective date:1/1/2012End date:TBD

Reference Documents:

1. MeasureCost_StevePitkin6-15-11.xls

Description

This measure characterization documents key assumptions for a package of shell and HVAC measures performed to meet the requirements of the MultiFamily program (Tier 1 measures). It also documents assumptions for a number of additional measures that may be included and incentivized (Tier 2 measures).

Algorithms

Energy and Demand Savings

Energy (kWh and MMBtu) and Demand (kW) savings will be calculated using REMRate as part of the ENERGY STAR Rating process for buildings 3 stories or less. REMRate will provide the thermal shell, heating, cooling and hot water savings that will be claimed for the project. Note there will be two REMRate ratings performed for each building:

- 1. <u>As Built Rating</u>: based on all measures installed to provide ENERGY STAR certification and customer savings estimate to property owner.
- 2. <u>In Program Rating</u>: will be the basis for Efficiency Vermont savings claim by removing "extraordinary measures" from the As Built rating to extract project savings from non screening measures. The In Program Rating will be compared to a User Defined Reference Home, which will represent the same building built to baseline specifications defined below.

Energy consultants may recommend additional measures and provide extra incentives, as long as they are tested for and pass the cost effectiveness test. The costs for these measures however will be provided on a custom basis.

Baseline and New Efficiencies

The following table presents the baseline assumptions for each component together with the minimum Tier 1 requirements for participation in the Multi Family program. Also provided is a list of additional Tier 2 measures which are eligible for additional incentives.

	Baseline	Minimum TIER 1	Tier 2 Upgrade Measures
		Upgrade Measure	
		Requirements	
Heating	84% AFUE gas or oil	Staged 94% AFUE gas	Staged 95% AFUE gas boilers
	boiler	boilers	Or
		Or	Staged 91% AFUE oil boilers
		Staged 85% AFUE oil	Or
		boilers	Staged 85% AFUE pellet boilers
			(not if NG boiler baseline)
Domestic	Indirect DHW off an	Indirect DHW off a 94%	Indirect DHW off a 95% gas
Hot	84% gas or oil boiler	gas boiler	boiler
Water	-	Or	Or
		Indirect DHW off a 85% oil boiler	Indirect DHW off a 91% oil boiler
--	---	---	--
	80% standalone DHW tanks	96% condensing DHW units	
Cooling (if	Central AC - 13 SEER, 11EER (Federal Standard)	Central AC - 14.5 SEER, 12 EER (ESTAR)	Central AC - 15 SEER, 12.5 EER (CEE T2)
included. Assume 1.5 tons per unit)	Mini-splits - 14 SEER, 12 EER	Mini-splits - 17 SEER, 13 EER	
Air Leakage	5 ACH50 (0.667 cfm50/sq ft)	4 ACH50 (0.533 cfm50/sq ft)	3 ACH50 (0.4 cfm50/sq ft)
Insulation	R-49 attic insulation	R-55 attic insulation	
	R-20 wall insulation	R-25 wall insulation	
	R-5 slab edge	R-15 slab edge	
	R-15 foundation wall insulation	R-20 foundation wall insulation	

"Extraordinary" Non Screening Measures

The following measures do not pass Efficiency Vermont's cost effectiveness tests and therefore are not supported by the program. The costs and savings for these measures are therefore not included in the project and will be removed from the In Program Rating model:

In Program Rating Adjustments				
Component	As Built	In Program Rating Modeled for energy savings		
Domestic Hot Water	Solar domestic hot water	None		
Ventilation	Heat or Energy Recovery Ventilation	Exhaust only ventilation		
Windows	U-Value lower than .28	U28		
Ceiling/Attic Insulation	Greater than R-60 (cavity)	R-60		
Wall insulation	Greater than R-25 (cavity)	R-25		

These measures may be added to projects when custom analysis of savings and installed costs demonstrate cost effectiveness.

Loadshape

Loadshape #5, Residential Space Heat Loadshape #7, Residential DHW insulation Loadshape #11, Residential A/C

Freeridership/Spillover Factors

Measure Category	Comprehensive Thermal		
	Measure		
Measure Code		TSHCOMPH,	
	TSHCO	TSHCOMPC,	
	HWECOMP1		
Product Description	REMRate calculated		
		heating, cooling and DHW	
	savings		
Track Name	Track No.	Freerider	Spillover

C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	1.0	1.0
MF Mkt NC	6019MFNC	0.9	1.1
MF Mkt Retro	6020MFMR	n/a	n/a
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetime⁴¹⁶

Heating Savings:25 yearsAC Savings:15 yearsDHW Savings:15 yearsAnalysis period is the same as the lifetime.

Incremental Cost per Unit Tier 1 Comprehensive Thermal Package

		Incren	nental Cost Ass	sumption Per U	J nit	
Number of Units	1-5	6-10	11-15	16-20	21-25	26+
Heating Savings						
(heating system and						
shell upgrades)	\$ 2,554	\$2,159	\$1,764	\$1,369	\$974	\$500
Air Conditioning						
Savings						
(AC systems)	\$300	\$270	\$240	\$211	\$181	\$145
DHW Savings	\$0	\$0	\$0	\$0	\$0	\$0
Total Cost (with						
cooling)	\$2,854	\$2,429	\$2,004	\$1,580	\$1,155	\$731
Total Cost (without	\$2,554	\$2,159	\$1,764	\$1,369	\$974	\$500

⁴¹⁶ Consistent with lifetime estimates used by Efficiency Vermont in the state screening tool.

cooling)			
37.			

Notes:

1. Incremental costs used are based on the least expensive options provided, since this is the cost required to meet approved efficiency levels. Any costs associated with alternate decisions that the participant may make to achieve similar efficiency levels are not be included.

2. DHW Savings has a zero measure cost since there is no increment in cost between an indirect tank off a 84% boiler or an indirect tank off a 94% boiler. The incremental cost of the boiler itself is captured in the heating savings.

3. Incremental costs were modeled using a 5 unit and a 31 unit building and cost estimates were provided by Steve Pitkin, construction project manager and cost estimator. See 'MeasureCost_StevePitkin6-15-11.xls' for more information. Clearly the incremental cost per unit is much higher for smaller buildings than larger buildings so the per unit cost assumptions are extrapolated for different building sizes assuming a linear relationship.

		Incremental (Cost Assumpti	on (Tier 1 to 7	Tier 2) per uni	t
Number of Units	1-5	6-10	11-15	16-20	21-25	26+
Staged 95% AFUE gas boilers	\$0	\$1	\$2	\$4	\$5	\$6
Staged 91% AFUE oil boilers	\$840	\$698	\$555	\$413	\$271	\$128
Staged 85% AFUE pellet boilers	\$1,760	\$1,711	\$1,661	\$1,612	\$1,562	\$1,513
Indirect DHW off a 95% gas boiler	\$0	\$0	\$0	\$0	\$0	\$0
Indirect DHW off a 91% oil boiler	\$0	\$0	\$0	\$0	\$0	\$0
Central AC - 15 SEER, 12.5 EER (CEE T2)	\$220	\$187	\$154	\$121	\$88	\$55
3 ACH50 (0.4 cfm50/sq ft)	\$767	\$679	\$591	\$502	\$414	\$325

Tier 2: Additional Screening Measures

These costs will be included above the Tier 1 level costs if these measures are included in the project.

Reference Tables

None

Outdoor Reset Control

Measure Number: III-F-4-a (M

(Multifamily New Construction Program, Space Heating End Use)

Version Date & Revision History

Draft date:	Portfolio 74
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- $1) \quad http://www.dteenergy.com/pdfs/boilerResetFactSheet.pdf$
- 2) <u>http://www.heat-timer.com/en/EducationDetail.aspx?Id=3</u>
- 3) http://www.arcmech.com/images/fm/pdir17/OutdoorResetARCreduced.pdf

Description

A boiler outdoor reset control regulates the boiler water temperature used for space heating, reducing the temperature when the outside temperature is higher, during fall and spring, improving boiler efficiency and reducing heat loss off the circulating loop. Outdoor reset controls are typically standard on high efficiency gas boiler models, but are an add on for oil boiler units. This measure characterization documents additional savings that will be claimed when an efficient boiler is installed in place of a baseline model without the controls. The AFUE rating used to claim savings for this upgrade (in the Comprehensive Thermal Measure) does not capture savings associated with the Outdoor Reset Control. Note that if specifics from the installation are available (i.e. the length and insulation level of the circulating loop, the boiler size and run time), then a custom tool will be used to capture site specific savings.

Algorithms

Energy and Demand Savings

n/a

Baseline Efficiency

Standard boiler without outdoor reset control.

Efficient Efficiency

Boiler with outdoor reset control.

Loadshape

n/a. No electric savings.

Freeridership/Spillover Factors

Measure Category	Space Heating End Use			
Measure Code		SHEC	SHECONTR	
Product Description	Staged boiler controls with outdoor reset			
Track Name	Track No.	Freerider	Spillover	
LIMF NC	6018LINC	1.0	1.0	
LIMF Rehab	6018LIRH	1.0	1.0	
MF Mkt NC	6019MFNC	1.0	1.0	

Persistence

The persistence factor is assumed to be one.

Lifetime

15 years Analysis period is the same as the lifetime.

Incremental Cost per Unit

Outdoor reset control is standard on high efficiency gas boiler models. The incremental cost of this measure is therefore assumed to be \$0, since the incremental cost of the boiler is captured in the Comprehensive Thermal measure. For high efficiency oil boiler models, outdoor reset controls are not standard but an optional add on. For oil boilers therefore the incremental cost is assumed to be $$1000^{417}$.

Fossil Fuel Descriptions⁴¹⁸

Δ MMBtu = SF * Annual H	eat Load
Where	
SF	= Savings Factor for Boilers with Outdoor Reset control = $5\%^{419}$
Annual Heat Load	= Annual Heating Load of building served by boilers (MMBtu/year)= Custom (based on heating load result from modeling)
Reference Tables	

None

⁴¹⁷ Based on EVT conversations with local HVAC contractors.

⁴¹⁸If specifics from the installation are available (i.e. the length and insulation level of the circulating loop, the boiler size and run time), then a custom tool will be used to capture site specific savings. ⁴¹⁹ Conservative estimate based on a number of sources:

[&]quot;5%"; http://www.dteenergy.com/pdfs/boilerResetFactSheet.pdf 1.

[&]quot;15% or more"; http://www.heat-timer.com/en/EducationDetail.aspx?Id=3 2.

^{3.} "5 to 30%"; http://www.arcmech.com/images/fm/pdir17/OutdoorResetARCreduced.pdf

Efficient Products Program

Clothes Washing End Use

ENERGY STAR Clothes Washer

Measure Number: IV-A-1-0 (Efficient Products Program, Clothes Washing End Use)

Version Date & Revision History

Draft date: Portfolio 81 Effective date: 1/1/2013 End date: TBD

Referenced Documents:

2013 Clothes Washer Savings.xls;
 2009 RECS_HC3.8 Appliances in Northeast Region.xls

Description

Clothes washers exceeding minimum qualifying efficiency standards established as ENERGY STAR, CEE Tier 2 or Tier 3 as of 1/1/2011, Most Efficient and Top Ten as defined below:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
Federal Standard	>= 1.26	<= 9.5
ENERGY STAR	>= 2.0	<= 6.0
CEE TIER 2	>= 2.20	<= 4.5
CEE TIER 3	>= 2.40	<= 4.0
ENERGY STAR Most Efficient	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <= 2.5 ft3)
(as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)
Top Ten (as of 09/2012)	Defined as the ten most efficient u	nits available.

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (unit operation, washing and drying); the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Algorithms

Energy Savings

1. Calculate clothes washer savings based on Modified Energy Factor (MEF).

The Modified Energy Factor (MEF) includes unit operation, water heating and drying energy use: "*MEF is the quotient of the capacity of the clothes container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, M, the hot water energy consumption, E, and the energy required for removal of the remaining moisture in the wash load, D*^{" 420}.

The hot water and dryer savings calculated here assumes electric DHW and Dryer (this will be separated in Step 2).

MEFsavings = Capacity * (1/MEFbase - 1/MEFeff) * Ncycles

⁴²⁰ Definition provided on the Energy star website.

Where

Capacity	= Clothes Washer capacity (cubic feet)
	= Values provided in table $below^{421}$
MEFbase	= Modified Energy Factor of baseline unit
	$= 1.51^{422}$
MEFeff	= Modified Energy Factor of efficient unit
	= Values provided in table below 423
Ncycles	= Number of Cycles per year
-	$=322^{424}$

MEFsavings is provided below:

Efficiency Level	MEF	Capacity	MEFSavings (kWh)
Federal Standard	1.51	Assumed equal to efficient unit	0.0
ENERGY STAR	2.09	2.75	161.56
CEE Tier 2	2.23	4.05	276.65
CEE Tier 3	2.68	3.75	347.83
ENERGY STAR Most Efficient	3.25	3.91	445.70
Top Ten	3.38	4.11	484.32

- 2. Break out savings calculated in Step 1 for electric DHW and electric dryer, plus water pump savings
- ΔkWh = [(Capacity * 1/MEFbase * Ncycles) * (%CWbase + (%DHWbase * %Electric_DHW) + (%Dryerbase * %Electric_Dryer)] [(Capacity * 1/MEFeff * Ncycles) * (%CWeff + (%DHWeff * %Electric_DHW) + (%Dryereff * %Electric_Dryer)]

Where:

%CW	= Percentage of total energy consumption for Clothes Washer operation
%DHW	= Percentage of total energy consumption used for water heating
%Dryer	= Percentage of total energy consumption for dryer operation
	(dependent on efficiency level – see table below)

	Percentage of Total Energy Consumption ⁴²⁵		
	%CW	%DHW	%Dryer
Baseline	6%	35%	59%
ENERGY STAR	7%	24%	68%
CEE Tier 2	7%	23%	70%
CEE Tier 3	9%	12%	79%
ENERGY STAR Most Efficient	10%	3%	87%

⁴²¹ Based on average of units incentivized through the program, September 2011 to August 2012, see 2013 Clothes Washer Analysis.xls ⁴²² The federal baseline MEF of 1.26 is inflated by 20% to 1.51 to account for non-qualifying models that are higher than the federal baseline MEF.

⁴²³ Based on average of units incentivized through the program, September 2011 to August 2012.

⁴²⁴ Weighted average of 322 clothes washer cycles per year. 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section: <u>http://www.eia.gov/consumption/residential/data/2009/</u>

⁴²⁵ The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and consumption data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm. See "2013 Clothes Washer Analysis.xls" for the calculation.

Top Ten	10%	3%	87%

%Electric_DHW = Percentage of DHW savings assumed to be electric $=31.0\%^{426}$

%Electric_Dryer = Percentage of dryer savings assumed to be electric $= 84.0\%^{427}$

The prescriptive kWH savings based on values provided above are:

	ΔkWH
ENERGY STAR	81.8
CEE Tier 2	144.4
CEE Tier 3	174.5
ENERGY STAR Most Efficient	226.6
Top Ten	251.5

Demand Savings

 ΔkW $= \Delta kWh/Hours$

Where:

ΔkWh	= gross customer annual kWh savings for the measure
ΔkW	= gross customer connected load kW savings for the measure
Hours	= assumed annual run hours of clothes washer
	= 322

	ΔkW
ENERGY STAR	0.25
CEE Tier 2	0.45
CEE Tier 3	0.54
ENERGY STAR Most Efficient	0.70
Top Ten	0.78

Baseline Efficiencies – New or Replacement

The baseline efficiency is determined according to the modified energy factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. The federal baseline MEF of 1.26 is inflated by 20% to 1.51 for savings comparison to account for non-qualifying models that are higher than the federal baseline MEF.

High Efficiency

High efficiency is defined as any model meeting or exceeding ENERGY STAR, CEE Tier 2 or Tier 3 standards as of 1/1/2011, ENERGY STAR Most Efficient of Top Ten as defined in the following table:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR	>= 2.0	<= 6.0
CEE TIER 2	>= 2.20	<= 4.5
CEE TIER 3	>= 2.40	<= 4.0
ENERGY STAR Most Efficient	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <= 2.5 ft3)

 ⁴²⁶ Based on 'Vermont Single-Family Existing Homes Onsite Report', 2/15/2013, p67.
 ⁴²⁷ Ibid, p80.

(as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)
Top Ten	Defined as the ten most efficient units available.	

Energy and water savings estimates are based on the weighted average MEF factor for qualifying models based on the models rebated during the previous calendar year, except Top Ten which is based upon averaging the units provided on the website (http://www.toptenusa.org/Top-Ten-Clothes-Washers) as of September 2012.

Operating Cycles

322 clothes washer cycles / year 428

Operating Hours

322 operating hours / year 429

Loadshape

Loadshape #9, Residential Clothes Washing, Vermont State Screening Tool.

Freeridership/Spillover Factors

Measure Category		Cooking and Laundry					
Product Description	n	Efficient Clothes Washer					
Measure Code		CKLESWRP, CKLC3WRP CKLMEWRP,			EWRP,		
		CKLC2WRP		CKLC2WRP CKLTTWRP		ГWRP	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.5	1.0	0.9	1.1	0.95	1.2

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years⁴³⁰ (same as DPS screening of Efficiency Utility program). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is provided in the table below 431 :

Efficiency Level	Incremental Cost
ENERGY STAR	\$225
CEE Tier 2	\$250
CEE Tier 3	\$350
ENERGY STAR Most Efficient	\$500
Top Ten	\$510

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

⁴²⁸ Weighted average of 322 clothes washer cycles per year. 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section: http://www.eia.gov/consumption/residential/data/2009/

⁴²⁹ Assume one hour per cycle.

⁴³⁰ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm. ⁴³¹ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm. See '2013 Clothes Washer Analysis.xls' for details.

Break out savings calculated in Step 1 of electric energy savings (MEF savings) and extract Natural Gas, LP and Oil DHW and Natural Gas and LP dryer savings from total savings:

= [(Capacity * 1/MEFbase * Ncycles) * ((%DHWbase * %Fuel_DHW * R_eff) + (%Dryerbase * ΔMMBtu %Fuel_dryer)] - [(Capacity * 1/MEFeff * Ncycles) * ((%DHWeff * %Fuel_DHW * R_eff) + (%Dryereff * %Fuel_Dryer)] * MMBtu_convert

Where:

R_eff	= Recovery efficiency factor = 1.26^{432}
MMBtu _convert	= Convertion factor from kWh to MMBtu = 0.003413
%Fuel DHW	= Percentage of DHW savings assumed to be non ele

Percentage of DHW savings assumed to be non electric ⁴				
DHW fuel	%Fuel _DHW			
Natural Gas	20.0%			
LP Gas	12.0%			
Oil	37.0%			

%Gas_Dryer

= Percentage	of drve	r savings a	assumed to	be Natural	Gas ⁴³⁴
- I Creentuge	or aryc.	L Duvingo	ubbuilled to	oc matural	Ous

Dryer fuel	%Gas_Dryer
Natural Gas	5.0%
LP Gas	11.0%

Other factors as defined above

The prescriptive MMBtu savings are:

	ΔMMBtu			
	NG	LP	Oil	
ENERGY STAR	0.10	0.07	0.16	
CEE Tier 2	0.16	0.12	0.27	
CEE Tier 3	0.21	0.16	0.36	
ENERGY STAR Most Efficient	0.27	0.20	0.45	
Top Ten	0.29	0.22	0.47	

Water Descriptions

 Δ Water (CCF) = (Capacity * (WFbase - WFeff)) * Ncycles

Where

WFbase	= Water Factor of baseline clothes washer = 7.93^{435}
WFeff	 Water Factor of efficient clothes washer Values provided below⁴³⁶.

⁴³² To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency

⁽http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Waste Water Heat Recovery Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied. ⁴³³ Based on 'Vermont Single-Family Existing Homes Onsite Report', 2/15/2013, p67.

⁴³⁴ Ibid. p80.

⁴³⁵ Average WF of post 1/1/2007, non-ENERGY STAR units.

⁴³⁶ Based on average of units incentivized through the program, September 2011 to August 2012, see 2013 Clothes Washer Analysis.xls

		∆Water
Efficiency Level	WF	(CCF per year)
Federal Standard	7.93	0.0
ENERGY STAR	5.41	3.0
CEE Tier 2	3.61	7.5
CEE Tier 3	3.51	7.1
ENERGY STAR Most Efficient	2.90	8.5
Top Ten	3.54	7.8

The prescriptive water savings for each efficiency level are presented below:

ENERGY STAR Clothes Dryer

Measure Number: IV-A-2-a (Efficient Products Program, Clothes Washing End Use)

Version Date & Revision History

Draft date:	Portfolio 87c
Effective date:	9/1/2014
End date:	TBD

Referenced Documents:

- 1) 2014 Clothes Dryer Analysis with HVAC Impact.xlsx;
- 2) ENERGY STAR® Program Requirements Product Specification for Clothes Dryers Version 1.0
- 3) 2014 ENERGY STAR® Emerging Technology Advanced Clothes Dryers Criteria
- 4) ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.xlsx
- 5) Appendix J2 To Subpart B Of Part 430—Uniform Test Method For Measuring The Energy Consumption Ofautomatic And Semi-Automatic Clothes Washers
- 6) ENERGY STAR Dryer Specification NEEA Amended comments Mar 26 2013
- 7) 2011-04-18_TSD_Chapter_8_Life-Cycle_Cost_and_Payback_Period_Analyses
- 8) 2013 Vermont Single-Family Existing Homes Onsite Report
- 9) 2014 Emerging Technology Award _Advanced Clothes Dryer Models

Description

Clothes dryers exceeding minimum qualifying efficiency standards established as ENERGY STAR or 2014 Emerging Technology Award as of 9/1/2014, based on Combined Energy Factor (CEF), as described below under High Efficiency.

The CEF measures energy consumption of the total dryer cycle (standby usage, dryer heating and operation) in units of weight (lbs) of clothing dried per kWh of electricity; the higher the number, the greater the efficiency. In the case of gas dryers, the CEF combines both the gas and electric usage into a single CEF metric also measured in units of weight of clothing dried per kWh of electricity.

Baseline Efficiencies – New or Replacement

The baseline efficiency is determined according to the combined energy factor (CEF) that takes into account the active and standby energy required per clothes dryer cycle. The baseline combined energy factor (CEF) was derived in the ENERGY STAR Version 1.0 analysis by multipling 2015 federal standards by the average change in a dryers' assessed CEF between the required (Appendix D1) and optional (Appendix D2) test procedure required by the ENERGY STAR eligibility requirements.

High Efficiency

High efficiency is defined as any model meeting or exceeding ENERGY STAR or 2014 Emerging Technology Award criteria, as defined in the following table:

Efficiency Level	Combined Energy Factor (CEF)
	Lbs / kWh
ENERGY STAR (Electric)	>= 3.93 in "Normal" setting
ENERGY STAR (Gas)	>= 3.48 in "Normal" setting
2014 Emerging Technology Award (Electric) ⁴³⁷	>= 4.3 in "Normal" setting
	>= 5.3 in "Most Efficient" setting

⁴³⁷ Although the 2014 Emerging Technology Award criteria are the basis for program eligibility, the actual performance measurements from the 11/3/2014 list of 2014 Emerging Technology Award Winning Dryers are used for characterizing the measure savings for the ventless Whirlpool and the vented LG award winning dryer models. The performance specification is anticipated to change later in 2015 based on new ENERGY STAR Most Efficient and/or CEE tiered specifications. Eligibility for the current award criteria is anticipated to end on December 31st, 2014.

Energy savings estimates are based on the resulting product from multiplying the average CEF of ENERGY STAR qualified dryers on 9/15/2014 and the average load weight associated with the available paired washer model capacities. The average capacities are used to look up the average load size in the U.S. DOE clothes washer test procedure (10 CFR 430, Subpart B, Appendix J2 Table 5.1).

Algorithms

Electric Energy Savings

ΔkWh	= Weight * $(1/CEF_{base} - 1/CEF_{e})$	(ff) * %Elec * %Washer	* $N_{cycles} + HVAC_{ventless}$
--------------	---	------------------------	----------------------------------

Where

∆kWh	= gross customer annual kWh savings for the measure
Weight	= Average clothes dryer load weight (lbs) based on DOE average
	test load size of paired washer.
	$= 10.4 \text{ lbs}^{438}$
CEF _{base}	= Combined Energy Factor of baseline unit based on full cycle
	testing of conventional dryers 439
	= Values provided in table below
CEF _{eff}	= Combined Energy Factor of efficient unit
	= Values provided in table below
N _{cycles}	= Number of Cycles per year
	$= 322^{440}$
%Elec	= Percentage of electric to total energy for dryer operation
	= Values provided in table below
%Washer	= Reduction in dryer savings from efficient clothes washers ⁴⁴¹
	= Values provided in table below
HVAC _{ventless}	= HVAC In-direct electric savings from ventless dryer ⁴⁴²
	= 3 kWh for ETA ventless dryer; 0 kWh for all others

⁴³⁸ Based on average of ENERGY STAR qualified dryers on 9/15/2014 and available paired washer model capacity. This average capacity is then used to look up the average load size in the U.S. DOE clothes washer test procedure (10 CFR 430, Subpart B, Appendix J2 Table 5.1), see 2014 Clothes Dryer Analysis with HVAC Impact.xlsx

⁴³⁹ The Combined Energy Factor (CEF) includes standby usage, dryer heating and operation electric use: "The clothes dryer test load weight in pounds divided by the sum of the per cycle standby and off mode energy consumption and either the total per-cycle electric dryer energy consumption or the total per-cycle gas dryer energy consumption expressed in kilowatt hours (kWh)." Definition provided in the ENERGY STAR® Program Requirements Product Specification for Clothes Dryers Eligibility Criteria Version 1.0 ⁴⁴⁰ Weighted average of 322 clothes washer cycles per year based on the Efficiency Vermont 2014 Technical Resource Manual clothes

washer measure characterization. A field evaluation completed by NEEA in 50 homes in the Northwest found a higher number of annual dryer cycles (337) than currently represented in the RECS data. Federal standard employs a 0.91 field use factor, based on RECS 2009 survey data suggesting not all clothes washer loads are dried. However, NEEA found a higher number of dryer loads, noting users may not have consolidated their loads to the extent EPA assumed.

http://www.energystar.gov/sites/default/files/specs//ENERGY%20STAR%20Dryer%20Specification%20NEEA%20Amended%20comment s%20Mar%2026%202013.pdf. Page 7.

⁴⁴¹ The percentage of energy reduction reflects the amount of dryer energy already captured by the performance of efficient clothes washers. The effective performance of paired clothes washers for both the ENERGY STAR and 2014 ETA dryers reflect the market share and relative remaining moisture content for clothes washers both in-program (rebated) and out-of-program (non-rebated). See 2014 Clothes Dryer Analysis with HVAC Impact.xlsx. ⁴⁴² HVAC In-direct savings for ventless dryers are based on the penetration of cooling systems, heating fuel types and corresponding

efficiencies identified in the 'Vermont Single-Family Existing Homes Onsite Report', 2/15/2013, see HVAC Inputs tab in 2014 Clothes Drver Analysis with HVAC Impact.xlsx.

	Percentage of Total Energy Consumption ⁴⁴³		
	%Elec%Heat(Electric)(Gas)		
ENERGY STAR (Standard Electric)	100%	0%	
ENERGY STAR (Standard Gas)	19%	81%	

Dryer savings are provided below:

Efficiency Level	CEF (lbs/kWh)	Load Weight (lbs)	% Energy Reduction from Paired Efficient Washers	HVAC Impact from Ventless Dryers (kWh)	Annual Dryer Savings (kWh)
ENERGY STAR Version 1.0 Estimated Baseline (Electric) ⁴⁴⁴	3.11		N/A		N/A
ENERGY STAR Version 1.0 Estimated Baseline (Gas) ⁴⁴⁵	2.84		N/A		N/A
ENERGY STAR (Standard Electric)	3.93	10.4	14%	N/A	194
ENERGY STAR (Standard Gas)	3.48	10.4	14%		36 ⁴⁴⁶
2014 Emerging Technology Award Vented (Electric)	4.35 / 5.6		16%		366 ⁴⁴⁷
2014 Emerging Technology Award Ventless (Electric)	5.43 / 6.17		14%	3	446

Electric Demand Savings

$$\Delta W = \Delta kWh/Hours$$

Where:

∆kW Hours

Δk

= gross customer connected load kW savings for the measure
 = assumed annual run hours of clothes dryer
 = Ncycles * 1 Hour
 = 322⁴⁴⁸

⁴⁴³ The percentage of individual energy consumption used by the machine (%Elec) and separately for heating (%Heat) the dryer drum was derived from the ENERGY STAR Version 1.0 analysis; see 2014 Clothes Dryer Analysis with HVAC Impact.xlsx

⁴⁴⁴ The federal standard electric baseline CEF was derived in the ENERGY STAR Version 1.0 analysis by multipling 2015 standard by the average change in gas dryers' assessed CEF between Appendix D1 and Appendix D2: 3.73 - (3.73 x 0.166) ⁴⁴⁵ The federal standard gas baseline CEF was derived in the ENERGY STAR Version 1.0 analysis by multipling 2015 standard by the

 ⁴⁴⁵ The federal standard gas baseline CEF was derived in the ENERGY STAR Version 1.0 analysis by multipling 2015 standard by the average change in gas dryers' assessed CEF between Appendix D1 and Appendix D2: 3.30 - (3.30 x 0.139)
 ⁴⁴⁶ Savings calculated represent only the portion attributed to the electric operation – motor and controls - of the ENERGY STAR gas dryers

⁴⁴⁶ Savings calculated represent only the portion attributed to the electric operation – motor and controls - of the ENERGY STAR gas dryers ⁴⁴⁷ Estimates a 75/25 split of consumer preference for dryer settings between "most efficient" and "normal" to estimate cumulative annual energy savings. This split is based on the default setting (as shipped) in the most efficient setting and energy savings driver for early adapters are 2014 Clothes Dryer Analysis with HVAC Impact year.

adopters, see 2014 Clothes Dryer Analysis with HVAC Impact.xlsx. ⁴⁴⁸ Weighted average of 322 clothes washer cycles per year based on the Efficiency Vermont 2014 Technical Resource Manual clothes washer measure characterization. Federal standard employs a 0.91 field use factor, based on RECS 2009 survey data suggesting not all clothes washer loads are dried, but in earlier proceedings DOE references a higher percentage (0.96) for households with a dryer. A field evaluation completed by NEEA in 50 homes in the Northwest found a higher number of annual dryer cycles (337) than currently represented in the RECS data, noting users may not have consolidated their loads to the extent EPA assumed and were doing a significant percentage of "touch up" loads. Approximately one hour per cycle based on the ENERGY STAR clothes dryer qualified product list as of 9/15/2014. <u>http://www.energystar.gov/sites/default/files/specs//ENERGY%20STAR%20Dryer%20Specification%20NEEA%20Amended%20comment</u> s%20Mar%2026%202013.pdf. Page 7.

	ΔkW
ENERGY STAR (Standard Electric)	0.54
ENERGY STAR (Standard Gas)	0.12
2014 Emerging Technology Award Vented (Electric)	0.91
2014 Emerging Technology Award Ventless (Electric)	1.09

Fossil Fuel Savings

Break out savings calculated above in gas energy savings (Dryer savings) and extract Natural Gas and LP dryer heat savings from total savings:

$\Delta MMBtu_{fuel}$	= Weight * $(1/CEF_{base} - 1/CEF_{eff})$ * $(1-\% Elec)$ * % Washer * N_{cycles}] * MMBtu_convert
	* % Fuel_Dryer + Δ MMBtu _{ventless}

Where:

$\Delta MMBtu_{fuel}$	= gross customer annual MMBtu savings for the measure, by fuel type
MMBtu _convert	= Convertion factor from kWh to MMBtu
	= 0.003413
$\Delta MMBtu_{ventless}$ 449	= HVAC In-direct fossil fuel savings from ventless dryer, by fuel type
	= Values provided in table below for ETA Ventless dryers; zero for all others
% Fuel_Dryer	= Percentage of dryer savings by fuel type 450
-	

Dryer fuel	% Fuel_Dryer
Natural Gas	31%
LP Gas	69%

Other factors as defined above

The prescriptive annual MMBtu savings per unit are:

	Total MMBtu	NG	LP	Oil	Wood
ENERGY STAR (Electric)	0	0	0	0	0
ENERGY STAR (Gas)	0.51	0.16	0.35	0	0
2014 Emerging Technology Award Vented (Electric)	0	0	0	0	0
2014 Emerging Technology Award Ventless (Electric)	0.39	0.05	0.05	0.17	0.13

Water Savings

There are no water savings.

Operating Hours

322 operating hours / year $^{\rm 451}$

Loadshape

Loadshape #9, Residential Clothes Washing, Vermont State Screening Tool.

⁴⁴⁹ HVAC In-direct savings for ventless dryers are based on the penetration of cooling systems, heating fuel types and corresponding efficiencies identified in the 'Vermont Single-Family Existing Homes Onsite Report', 2/15/2013, see HVAC Inputs tab in 2014 Clothes ⁴⁵⁰ Based on 'Vermont Single-Family Existing Homes Onsite Report', 2/15/2013, p67.
 ⁴⁵¹ Aprroximately one hour per cycle based on the ENERGY STAR clothes dryer qualified product list as of 9/15/2014.

Freeridership/Spillover Factors

Measure Category		Cooking and Laundry					
Product Description	n	Efficient Clothes Dryer					
Measure Code		ENERGY STAR ENERGY STAR gas 2014 Emerging			nerging		
		elec		Technolog	gy Award		
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.9	1.1	0.9	1.1	1.0	1.2

Persistence

The persistence factor is assumed to be one.

Lifetimes 12 years⁴⁵²

Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is provided in the table below⁴⁵³:

Efficiency Level	Incremental Cost
ENERGY STAR	\$61
2014 Emerging Technology Award	\$412

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

 ⁴⁵² Based on average lifetime in DOE Buildings Data Book <u>http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=5.7.15</u>
 ⁴⁵³ See 2014 Clothes Dryer Analysis with HVAC Impact.xlsx. Based on DOE Life-Cycle Cost and Payback Period analysis Table 8.3.1, http://www.regulations.gov/contentStreamer?objectId=0900006480c8ee12&disposition=attachment&contentType=pdf

Refrigeration End Use ENERGY STAR Refrigerator

Measure Number: IV-B-1-i (Efficient Products Program, Refrigeration End Use)

Version Date & Revision History

Portfolio 81 Draft: Effective: 1/1/2013 End: TBD

Referenced Documents: 1) 2013 RF Savings Analysis.xls; 2) 2009 VT Appliance Data w doc_CostAnalysisTRM 3) Refrigerator kW Calculations.xls

Description

A refrigerator of baseline efficiency is replaced by a new refrigerator meeting either Energy Star specifications or the higher efficiency specifications of a CEE Tier 2, or CEE Tier 3 rated refrigerator.

Algorithms

Energy Savings⁴⁵⁴

ENERGY STAR:

∆kWh	$= kWh_{base} - kWh_{ES}$
	= 600.4 - 480.3
	= 120.1

CEE Tier 2:

∆kWh	= kWh _{base} - kWh _{CT2}
ΔkWh	= 600.4 - 450.3
	= 150.1

CEE Tier 3:

ΔkWh_{CT3}	$= kWh_{base} - kWh_{CT3}$
∆kWh _{CT3}	= 600.4 - 420.3
	= 180.1

Demand Savings⁴⁵⁵

ENERGY STAR:

ΔkW	$= \Delta kWh_{ES} / Hours$
ΔkW	= 120.1 / 8477
	= 0.014

CEE Tier 2:

ΔkW	$= \Delta kWh_{CT2} / Hours$
ΔkW	= 150.1 / 8477
	= 0.018

 ⁴⁵⁴ Based on analysis of previous year's rebated units, see 2013 RF Savings Analysis.xls.
 ⁴⁵⁵ Based on analysis of previous year's rebated units, see 2013 RF Savings Analysis.xls.

CEE Tier 3: $\Delta k W_{CT3}$ = $\Delta k W h_{CT3}$ / Hours $\Delta k W_{CT3}$ = 180.1 / 8477

Where:

ΔkW	= gross customer connected load kW savings for the measure
kWh _{base}	= Baseline unit consumption
kWh _{ES}	= Energy-Star unit consumption
kWh _{CT2}	= CEE Tier 2 unit consumption
kWh _{CT3}	= CEE Tier 3 unit consumption
∆kWh	= gross customer annual kWh savings for the measure
HOURS	= Equivalent Full Load Hours
	$= 8\overline{477}^{456}$

Baseline Efficiencies – New or Replacement

=0.021

Baseline efficiency is a refrigerator meeting the minimum federal efficiency standard for refrigerator efficiency.

High Efficiency

The High Efficiency level is a refrigerator meeting Energy Star specifications for efficiency effective on April 28th, 2008 (20% above federal standard), a refrigerator meeting CEE Tier 2 specifications (25% above federal standard), or meeting CEE Tier 3 specifications (30% above federal standards).

Loadshape

Loadshape #4, Residential Refrigeration, Vermont State Cost-Effectiveness Screening Tool.

Freeridership /Spillover Factors	Freeridershi	p ⁴⁵⁷ /Spi	illover I	Factors ⁴⁵
----------------------------------	--------------	-----------------------	-----------	-----------------------

Measure Category		Refrigeration	
Measure Codes		RFRESRRP, RFRESRT2, RFRESRT3	
		Energy Sta	r refrigerator,
Product Description		CEE Tier 2	2, CEE Tier 3
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	0.67	1.33

Persistence

The persistence factor is assumed to be one.

Lifetimes

12 Years⁴⁵⁹ Analysis period is the same as the lifetime.

Measure Cost

The incremental cost to the Energy Star level is \$40⁴⁶⁰, to CEE Tier 2 level is \$150 and to CEE Tier 3 is \$225⁴⁶¹.

⁴⁵⁸ The estimated spillover rate of 33% is consistent with both past Efficiency Vermont experience for clothes washers and qualitative reports from manufacturers and large retailers regarding the number of customers who do not cash rebate coupons-⁴⁵⁹ From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-f5e6

⁴⁵⁶ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".
⁴⁵⁷ The 33% freerider rate assumes that after the rebate is made available the market share in VT will increase to 30% for ENERGY STAR

 ⁴⁵⁷ The 33% freerider rate assumes that after the rebate is made available the market share in VT will increase to 30% for ENERGY STAR refrigerators.
 ⁴⁵⁸ The estimated spillover rate of 33% is consistent with both past Efficiency Vermont experience for clothes washers and qualitative

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁴⁶⁰ From ENERGY STAR Calculator; based on Appliance Magazine, Market Research Report, January 2011;
 <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-f5e6</u>
 ⁴⁶¹ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data.

ENERGY STAR Freezer

Measure Number: IV-B-2-c (Efficient Products Program, Refrigeration End Use)

Version Date & Revision History

Draft:	Portfolio 81
Effective:	1/1/2013
End:	TBD

Referenced Documents:

1) 2003 D&R Int. Freezer Fact Sheet,

2) 2011 Freezer Savings.xls

3) 2009 VT Appliance Data_TRMCostAnalysis.xls

4) Refrigerator kW Calculations.xls

Description

An ENERGY STAR qualifying residential freezer replaces a freezer of baseline efficiency.

Algorithms

Demand Savings

 $\Delta kW = \Delta kWh/Hours$ $\Delta kW = 52.5 / 8477$ = 0.006

Energy Savings 462

∆kWh	= kWh _{Base} - kWh _{ESTAR}
∆kWh	= 507.1 - 454.6
	= 52.5 kWh

Where:

ΔkW	= gross customer connected load kW savings for the measure
kWh _{BASE}	= Baseline kWh consumption per year
kWh _{ESTAR}	= ENERGY STAR kWh consumption per year
∆kWh	= gross customer annual kWh savings for the measure
HOURS	= Equivalent Full Load Hours
	$= 8477^{463}$

Baseline Efficiencies – New or Replacement

Baseline efficiency is a residential freezer meeting the minimum federal efficiency standard for freezer efficiency.

High Efficiency

The High Efficiency level is a freezer meeting ENERGY STAR specifications for efficiency established January 1, 2003 (at least 10% more.efficient than federal standard units).

 ⁴⁶² Base and Energy Star consumption estimates are based on last 18 months of Efficiency Vermont incentivized units, see 2011 Freezer Savings.xls for more details.
 ⁴⁶³ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the

⁴⁰⁵ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

Loadshape

Loadshape #4, Residential Refrigeration, Vermont State Cost-Effectiveness Screening Tool.

Freeridership / Spillover Factors

Measure Category		Refrigeration	
Measure Codes		RFRESFZP	
Product Description		Energy Star Freezer	
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	0.67	1.33

Persistence

The persistence factor is assumed to be one.

Lifetimes 16 years⁴⁶⁴

16 years⁴⁶⁴ Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is $$35^{465}$.

Incentive Level

The incentive level for this measure is \$25.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁴⁶⁴ Source: 2003 D&R Int. Freezer Fact Sheet

⁴⁶⁵ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data.

Refrigerator Early Removal

Measure Number: IV-B-3-b (Residential Efficient Products, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. ADM Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program;
- 2. KEMA Residential Refrigerator Recycling Ninth Year Retention Study;
- 3. Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"
- 4. The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010
- 5. Appliance Recycling data2008-2012_V2.xls
- 6. Refrigerator kW Calculations.xls

Description

This is an early retirement measure for the removal of an existing inefficient secondary refrigerator from service. The program will target refrigerators with an age greater than 10 years, though data from units removed through the program suggests the average age of retired units is over 30 years. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Algorithms

Energy Savings

ΔkWh	= UEC * PartUse
	= 956 * 0.779
	= 745 kWh

Demand Savings

```
\Delta kW = \Delta kWh/Hours= 745/8477= 0.088 kW
```

Where:

 $\begin{array}{lll} \Delta k W h &= {\rm gross\ customer\ annual\ k W h\ savings\ for\ the\ measure} \\ UEC &= {\rm Unit\ Energy\ Consumption} \\ &= 956\ k W h^{466} \\ PartUse &= {\rm adjustment\ factor\ for\ weighted\ partial\ use\ of\ appliance} \\ &= 0.779^{467} \\ HOURS &= {\rm Equivalent\ Full\ Load\ Hours} \\ &= 8477^{468} \end{array}$

⁴⁶⁷ Based on analysis of Jaco data. Participants were asked how much the refrigerator was run through the year. The data was weighted assuming the response "All months" equaled 12 months, "Summer" or "Winter" equaled 3 months and "Spring/Fall" equaled 6 months.
⁴⁶⁸ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the

California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent

 ⁴⁶⁶ Unit Energy Consumption is based upon review of the data collected by Jaco from units retired in the program from 2009-2012. To estimate the consumption of the retired units EVT used a regression equation with multiple attributes from a recent Illinois evaluation (Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results. For information see "Appliance Recycling data2008-2012_V2.xls".
 ⁴⁶⁷ Based on analysis of Jaco data. Participants were asked how much the refrigerator was run through the year. The data was weighted

 ΔkW = gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

The existing refrigerator baseline consumption is based upon data collected by Jaco from units retired in the program from 2009-2012 and adjusted for part use consumption.

High Efficiency

N/A

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrig	geration
Measure Code		RFRI	RERPS
		Refriger	ator Early
Product Description		Retir	ement
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	$.62^{469}$	1.1^{470}
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

8 years 471 Analysis period is the same as the lifetime.

Measure Cost

The cost of the administrative, pickup and recycling of the refrigerator is \$110 based upon cost provided by Jaco.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

ADM Evaluation Study, p. 3-30 for secondary refrigerators

⁴⁷⁰ EVT estimate of effect of campaign awareness of energy consumption of older refrigerators

⁴⁷¹ KEMA "Residential refrigerator recycling ninth year retention study", 2004

Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW ($956 \times .779$)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

Fossil Fuel Descriptions There are no fossil fuel savings for this measure.

Water Descriptions There are no water savings for this measure.

Freezer Early Removal

Measure Number: IV-B-4-b (Residential Efficient Products, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. ADM Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program;
- 2. KEMA Residential Refrigerator Recycling Ninth Year Retention Study;
- 3. Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"
- 4. The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010
- 5. Appliance Recycling data2008-2012_V2.xls
- 6. Refrigerator kW Calculations.xls

Description

This is an early retirement measure for the removal of an existing inefficient freezer from service. The program will target freezers with an age greater than 10 years, although data suggests the average age of retired units is over 30 years. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Algorithms

Energy Savings

 $\Delta kWh = UEC * PartUse$ = 1231 * 0.777 = 956 kWh

Demand Savings

ΔkW	$= \Delta kWh/Hours$
	= 956 /8477
	= 0.113 kW

Where:

⁴⁷² Unit Energy Consumption is based upon review of the data collected by Jaco from units retired in the program from 2009-2012. To estimate the consumption of the retired units EVT used a regression equation with multiple attributes from a recent Illinois evaluation (Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"). For information see "Appliance Recycling data2008-2012_V2.xls".

⁴⁷³ Based on analysis of Jaco data. Participants were asked how much the freezer was run through the year. The data was weighted assuming the response "All months" equaled 12 months, "Summer" or "Winter" equaled 3 months and "Spring/Fall" equaled 6 months. ⁴⁷⁴ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the

The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

ΔkW = gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

The existing freezer baseline consumption is based upon data collected by Jaco from units retired in the program from 2009-2012 and adjusted for part use consumption.

High Efficiency

N/A

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrigeration		
Measure Code		RFRFERPS		
Product Description		Freezer Early Retirement		
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Retro	6012CNIR	n/a	n/a	
MF Mkt Retro	6012MFMR	n/a	n/a	
Efficient Products	6032EPEP	.71475	1.1^{476}	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	

Persistence

The persistence factor is assumed to be one.

Lifetimes

8 years ⁴⁷⁷ Analysis period is the same as the lifetime.

Measure Cost

The cost of the administrative, pickup and recycling of the refrigerator is \$110 based upon cost provided by Jaco.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel savings for this measure.

⁴⁷⁵ ADM Evaluation Study, p. 3-30 for secondary refrigerators

 ⁴⁷⁶ EVT estimate of effect of campaign awareness of energy consumption of older refrigerators
 ⁴⁷⁷ KEMA "Residential refrigerator recycling ninth year retention study", 2004

Water Descriptions There are no water savings for this measure.

Air Conditioning End Use

Energy Star Dehumidifiers

Measure Number: IV-D-2-b (Efficient Products Program, Air Conditioning End Use)

Version Date & Revision History

Draft:	Portfolio 82
Effective:	1/1/2013
End:	TBD

Referenced Documents: 2013 Dehumidifier Calcs.xls

Description

A dehumidifier meeting the new minimum qualifying efficiency standard established by ENERGY STAR Program (Version 3.0), effective 10/1/2012 is purchased and installed in a residential setting in place of a unit that meets the minimum federal standard efficiency.

Algorithms

Energy Savings

 $\Delta kWh = (((Avg Capacity * 0.473) / 24) * Hours) * (1 / (L/kWh_Base) - 1 / (L/kWh_Eff))$

Where:

Avg Capacity	= Average capacity of the unit (pints/day)
0.473	= Constant to convert Pints to Liters
24	= Constant to convert Liters/day to Liters/hour
Hours	= Run hours per year = 1632^{478}
L/kWh_Base L/kWh_Eff	= Baseline unit liters of water per kWh consumed, as provided in tables below= Efficient unit liters of water per kWh consumed, as provided in tables below

Annual kWh results for each capacity class are presented below using the average of the capacity range and an average value to be used for prescriptive savings calculations where the capacity is not tracked.

				Annual kWh	L	
Capacity	Capacity Used	Federal Standard Criteria	ENERGY STAR Criteria	Federal Standard	ENERGY STAR	Savings
(pints/day) Range		(≥ L/kWh)	(≥ L/kWh)			
≤25	20	1.35	1.85	477	348	129
> 25 to ≤35	30	1.35	1.85	715	522	193
> 35 to ≤45	40	1.5	1.85	858	695	162

 ⁴⁷⁸ Based on 68 days of 24 hour operation; ENERGY STAR Dehumidifier Calculator
 <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?f3f7-6a8b&f3f7-6a8b</u>

$> 45 \text{ to} \le 54$	50	1.6	1.85	1005	869	136
> 54 to \le 75	65	1.7	1.85	1230	1130	100
$> 75 \text{ to} \le 185$	130	2.5	2.8	1673	1493	179
Average ⁴⁷⁹	52	1.58	1.88	105	888	169

Demand Savings

 ΔkW $= \Delta kWh/Hours$

Where:

Hours = Annual operating hours

= 1632 hours

Capacity (pints/day) Range	ΔkW
≤25	0.079
> 25 to ≤35	0.118
> 35 to ≤45	0.099
$> 45 \text{ to} \le 54$	0.083
$> 54 \text{ to} \le 75$	0.061
$> 75 \text{ to} \le 185$	0.110
Average	0.103

Baseline Efficiencies – New or Replacement

Baseline efficiency is a dehumidifier that meets the Federal Standard efficiency standards as defined below⁴⁸⁰:

Capacity (pints/day)	Federal Standard Criteria (L/kWh)
≤35	≥1.35
> 35 to ≤ 45	≥1.50
$> 45 \text{ to} \le 54$	≥1.60
> 54 to ≤ 75	≥1.70
$> 75 \text{ to} \le 185$	≥2.50

High Efficiency

High efficiency is defined as any model meeting or exceeding ENERGY STAR qualifying efficiency standard established by the current ENERGY STAR (Version 3.0) Performance Criteria for ENERGY STAR Qualified Dehumidifiers:

⁴⁷⁹ The average is based on a weighted average by the number of product available on the ENERGY STAR Qualified Product List as of 3/6/2013. ⁴⁸⁰ The Federal Standard for Dehumidifiers changed as of October 2012;

https://www.federalregister.gov/articles/2010/12/02/2010-29756/energy-conservation-program-for-consumer-products-testprocedures-for-residential-dishwashers#h-11

Product Capacity (Pints/Day)	Energy Factor Under Test Conditions (L/kWh)
< 75	≥ 1.85
$75 \le 185$	\geq 2.80

Loadshape

Loadshape #73, Residential Dehumidifiers

Freeridership/Spillover Factors

Measure Category		Air Conditioning Efficiency		
Measure Codes		ACEDEHUM		
Product Description		ENERGY STAR Dehumidifier		
Track Name	Track No.	Freerider Spillover		
Efficient Products	6032EPEP	0.77 1.0		

Persistence

The persistence factor is assumed to be one.

Lifetimes

12 years⁴⁸¹

Analysis period is the same as the lifetime.

Measure Cost

The assumed incremental capital cost for this measure is 60^{482}

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions

There are no fossil fuel algorithm or default values for this measure

Water Descriptions

There are no water algorithms or default values for this measure

⁴⁸¹ ENERGY STAR Dehumidifier Calculator

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?f3f7-6a8b&f3f7-6a8b

⁴⁸² Based on available data from the <u>Department of Energy's Life Cycle Cost analysis spreadsheet</u>, weighted by available ENERGY STAR product. See "2013 Dehumidifier calcs.xlsx'.

Lighting End Use Commercial CFL

Measure Number: IV-E-1-0 (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	12/31/14

Referenced Documents:

1) RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)".

2) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

3) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

4) 2012 EISA Adjustment Calculations.xls

Description

An existing incandescent screw-in bulb is replaced with a lower wattage ENERGY STAR qualified compact fluorescent screw-in bulb

Algorithms

Demand Savings⁴⁸³

ΔkW

= ((Δ Watts) /1000) × ISR × WHF_d

Year	Algorithm	ΔkW
2012	(49.0 / 1000) * 0.77 * 1.082	0.0408
2013	(43.6 / 1000) * 0.77 * 1.082	0.0363
2014	(37.0 / 1000) * 0.77 * 1.082	0.0308

Energy Savings

ΔkWh

= ((Δ Watts) /1000) × HOURS × ISR × WHF_e

Year	Algorithm	∆kWh
2012	(49.0 / 1000) * 2800 * 0.77 * 1.033	109.1
2013	(43.6 / 1000) * 2800 * 0.77 * 1.033	97.1
2014	(37.0 / 1000) * 2800 * 0.77 * 1.033	82.3

Where:

Δ Watts	= Watts _{BASE} $-$ Watts _{EE} ⁴⁸⁴
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
	lighting. For commercial lighting, the value is 1.082 (calculated as 1 +

⁴⁸³ Assumed difference in wattage between installed CFL and the incandescent bulb it replaces. Based on EVT analysis of CFLs rebated through Efficient Products Program. ⁴⁸⁴ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

	(0.47*0.67*.808) / 3.1) ⁴⁸⁵ . The cooling savings are only added to the summer
	peak savings.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient
	lighting. For commercial lighting, the value is 1.033 (calculated as 1 +
	$((0.47*0.29*.75)/2.5))^{486}$.
HOURS	= average hours of use per year

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $\Delta MMBTU_{WH}$

 $= (\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$

Year	Algorithm	ΔMMBtu
2012	(109.1 / 1.033) × 0.003413 × (1-0.25) × 0.70 ×	0.0888
	0.39 × 0.95 / 0.79	
2013	$(97 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times$	0.0789
	$0.39 imes 0.95 \ / \ 0.79$	
2014	(82.3 / 1.033) × 0.003413 × (1-0.25) × 0.70 ×	0.0700
	$0.39 imes 0.95 \ / \ 0.79$	

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{487}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting 488
DFH	= Percent of lighting in heated spaces, assumed to be 95%
HEff	= Average heating system efficiency, assumed to be $79\%^{489}$

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent light bulb.

⁴⁸⁵ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁴⁸⁶ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and

WasteHeatAdjustment.doc for additional discussion.

⁴⁸⁷ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." ⁴⁸⁸ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting.

⁴⁸⁹ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Commercial EP	2012	0.65	2
Standard CFL	2013	0.78	1
	2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR qualified compact fluorescent lamp.

Operating Hours

2800 hours / year 490

Loadshape

Loadshape #101: Commercial EP Lighting⁴⁹¹

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps					
Measure Code		LBLCFCOM					
Product Description		Compact Fluorescent screw-base bulbs - Commercial					
		2012		2013		2014	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.60	1.0	0.5	1.0	0.4	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

Assuming the rated life of the CFL is 10,000 hours, the measure life is 10,000/2800 = 3.57 years. This is increased to account for those bulbs that are not included in the In Service Rate but are purchased as spares. The "Residential Lighting Markdown Impact Evaluation" completed by Nexus Market Research, RLW Analytics, and GDS Associated, January 20, 2009, indicates that the Lifetime In Service Rate is 97%, indicating that (97%-77%) 20% are future installs. 20% of installations are therefore assumed to have a measure life equivalent to two CFLs (3.57*2) 7.14 years, giving a weighted measure life of 4.3 years.

Measure Cost⁴⁹²

The incremental cost for this measure is as follows

Year Measure

⁴⁹⁰ Based on agreement made during Savings Verification 2009.

⁴⁹¹ Based on Commercial "Other" Lighting coincidence factors from RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)". Agreement made during Savings Verification 2009.

Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

	Cost
2012	\$1.90
2013	\$1.80
2014	\$1.50

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see CFL baseline savings shift.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen
Replacement Cost	\$0.50	\$1.50
Component Life (hours)	1000	1000
Baseline % in 2012	67%	33%
Baseline % in 2013	33%	67%
Baseline % in 2014 onward	0%	100%

The calculation results in a levelized assumption of \$3.48 baseline replacement cost every 1 year for CFL installations in 2012, \$4.61 for installations in 2013 and \$4.80 for installations in 2014. This adjustment will be recalculated for subsequent years.

Torchiere

Measure Number: IV-E-3-k (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 82
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. 2005_lighting_wattage_EPP.xls
- 2. NREL, National Residential Efficiency Measures Database

Description

A high efficiency ENERGY STAR torchiere replaces a halogen or incandescent torchiere.

Algorithms

Demand Savings

 $\Delta kW = (\Delta Watts / 1000) \times ISR \times WHF_d$ $\Delta kW(Residential) = ((116 / 1000) \times 0.83) \times 1.0 = 0.0963 kW$ $\Delta kW(Commercial) = ((116 / 1000) \times 0.9) \times 1.082 = 0.113 kW$

Where:

ΔkW	= gross customer connected load kW savings for the measure
Δ Watts	= Watts _{BASE} – Watts _{EE}
	$= 116^{493}$
1000	= Conversion of Watts to kilowatts
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
ISR	= In service rate or the percentage of units rebated that actually get used
	Residential = 0.83^{494}
	$Commercial = 0.9^{495}$
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
	lighting. For commercial lighting, the value is 1.082 (calculated as 1 +
	$(0.47*0.67*.808) / 3.1)^{496}$. The cooling savings are only added to the summer
	peak savings.

Energy Savings

 ΔkWh

ΔkWh	$= \Delta kW \times HOURS \times WHF_e / WHF_d$
ΔkWh (Residential)	$= (0.0963 \times 694) \times 1.0 / 1.0 = 66.8 \text{ kWh}$
ΔkWh (Commercial)	$= (0.115 \times 2800) \times 1.033 / 1.1 = 302 \text{ kWh}$

Where:

= gross customer annual kWh savings for the measure

 ⁴⁹³ EVT and DPS October 2004 negotiated delta. Number still consistent with 56 Watt average of over 11,000 EVT incented fixtures between 2002 and 2012, and new halogen fixtures available between 150 and 200 Watts.
 ⁴⁹⁴ Used to establish EVT TRB goals based on a September 2000 negotiated agreement between EVT and VT DPS.

⁴⁹⁵ 2005 TAG agreement

⁴⁹⁶ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.033 (calculated as 1 +
HOURS	$((0.47*0.29*0.75) / 3.1)).^{497}$ = average hours of use per year
	Residential: 694 hours / year ⁴⁹⁸ Commercial: 2,800 hours / year ⁴⁹⁹

Other variables as defined above

Baseline Efficiencies – New or Replacement

The baseline condition is halogen torchiere with sufficient usage to justify replacement.

High Efficiency

High efficiency is an ENERGY STAR torchiere designed for operation with pin-based CFLs.

Loadshape

Residential: Loadshape, #1: Residential Indoor Lighting Commercial: Loadshape #101: Commercial EP Lighting

Freeridership/Spillover Factors

Measure Category		Light Bulb/Lamps	
Measure Code		LBLTORCH	
		Torchiere, Compact	
Product Description		Fluorescent	
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	0.94	1.03

Persistence

The persistence factor is assumed to be one.

Lifetimes

5 years⁵⁰⁰ Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is -\$10,⁵⁰¹ i.e. the efficient case cost less.

Incentive Level

The incentive level for this measure is \$5.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

⁴⁹⁷ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

⁴⁹⁸ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

⁴⁹⁹ Based on agreement made during Savings Verification 2009.

 ⁵⁰⁰ NREL, Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=5&ctId=43</u>
 ⁵⁰¹ Ibid.
Heating Increased Usage

 $\Delta MMBTU_{WH}$ = $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$ $\Delta \text{MMBTU}_{\text{WH}} \text{ (Residential)} = (66.8 / 1.0) \times 0.003412 \times (1 - 0.25) \times 1.0 \times 0.0 \times 0.95 / 0.79 = 0.0$ $\Delta \text{MMBTU}_{\text{WH}} \text{ (Commercial)} = (302 / 1.033) \times 0.003412 \times (1 - 0.25) \times 0.70 \times 0.39 \times 0.95 / 0.79 = 0.246$

Where:

$\Delta MMBTU_{WH}$	= gross customer annual heating MMBTU fuel increased usage for the measure
	from the reduction in lighting heat.
0.003413	= conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{502}$.
AR	= Typical aspect ratio factor. ASHRAE heating factor applies to perimeter zone
	heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of building within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont ⁵⁰³
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
HEff	= Average heating system efficiency. For prescriptive lighting, assumed to be 79% . ⁵⁰⁴

Oil heating is assumed typical for commercial buildings.

Water Descriptions

There are no water algorithms or default values for this measure.

⁵⁰² 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and ⁵⁰³ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. ⁵⁰⁴ See WasteHeatAdjustment.doc.

Dedicated CF Table Lamps

Measure Number: IV-E-4-g (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	12/31/14

Referenced Documents:

1) RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)".

2) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

3) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

4) 2012 EISA Adjustment Calculations.xls

Description

A table lamp dedicated to use with a compact fluorescent bulb replaces a table lamp with an incandescent bulb.

Algorithms

Demand Savings⁵⁰⁵

ΔkW

= ((Δ Watts) /1000) × ISR × WHF_d

Market	Year	Algorithm	ΔkW
Residential	2012	(49.0 / 1000) * 0.95 * 1.0	0.0466
	2013	(43.6 / 1000) * 0.95 * 1.0	0.0414
	2014	(37.0 / 1000) * 0.95 * 1.0	0.0352
Commercial	2012	(49.0 / 1000) * 0.9 * 1.082	0.0477
	2013	(43.6 / 1000) * 0.9 * 1.082	0.0425
	2014	(37.0 / 1000) * 0.9 * 1.082	0.0360

Energy Savings

ΔkWh

= ((Δ Watts) /1000) × HOURS × ISR × WHF_e

Market	Year	Algorithm	ΔkWh
Residential	2012	(49.0 / 1000) * 694 * 0.95 * 1.0	32.3
	2013	(43.6 / 1000) * 694 * 0.95 * 1.0	28.7
	2014	(37.0 / 1000) * 694 * 0.95 * 1.0	24.4
Commercial	2012	(49.0 / 1000) * 2800 * 0.9 * 1.033	127.5
	2013	(43.6 / 1000) * 2800 * 0.9 * 1.033	113.6
	2014	(37.0 / 1000) * 2800 * 0.9 * 1.033	96.2

Δ Watts	= Watts _{BASE} $-$ Watts _{EE} ⁵⁰⁶
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used 507

⁵⁰⁵ Assumed difference in wattage between installed CFL and the incandescent bulb it replaces. Based on EVT analysis ⁵⁰⁶ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011
 ⁵⁰⁷ ISR differs for residential and commercial applications. See table below for ISR in each application.

WHF _d	 Waste heat factor for demand to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.082 (calculated as 1 + (0.47*0.67*.808) / 3.1))⁵⁰⁸. The cooling savings are only added to the summer peak savings.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.033 (calculated as $1 + ((0.47*0.29*.75)/2.5))^{509}$.
HOURS	= average hours of use per year

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $\Delta MMBTU_{WH}$ $= (\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$ Δ MMBTU_{WH} (Residential) = 0.0 $\Delta MMBTU_{WH}$ (Commercial) =

Year	Algorithm	∆MMBtu
2012	$(127.5 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times$	0.10
	$0.39 imes 0.95 \ / \ 0.79$	
2013	$(113.6 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times$	0.09
	$0.39 imes 0.95 \ / \ 0.79$	
2014	(96.2 / 1.033) × 0.003413 × (1-0.25) × 0.70 ×	0.078
	$0.39 imes 0.95 \ / \ 0.79$	

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure
	from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{510}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall. The assumed aspect ratio for residential buildings is 100%.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting ⁵¹¹
DFH HEff	= Percent of lighting in heated spaces, assumed to be 95% = Average heating system efficiency, assumed to be $79\%^{512}$

Oil heating is assumed typical for commercial buildings.

⁵⁰⁸ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁵⁰⁹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and

WasteHeatAdjustment.doc for additional discussion.

⁵¹⁰ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." ⁵¹¹ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting.

⁵¹² Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont.

Baseline Efficiencies – New or Replacement

The Baseline reflects a table lamp with an incandescent bulb.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Dedicated CF Table	2012	0.66	2
Lamp (RES)	2013	0.77	1
	2014	0.88	1
Dedicated CF Table	2012	0.66	2
Lamp (C&I)	2013	0.77	1
	2014	0.88	1

High Efficiency

The High Efficiency reflects a table lamp that is dedicated for use with a plug-in compact fluorescent bulb. These lamps are inoperable with an incandescent bulb.

Operating Hours

Residential: 694 hours / year⁵¹³ Commercial: 2800⁵¹⁴ hours / year

Loadshape

Residential:, Loadshape, #1: Residential Indoor Lighting Commercial: Loadshape #101: Commercial EP Lighting⁵¹⁵

Freeridership/Spillover Factors

Measure Category		Light Bull	bs/Lamps				
Measure Code		LBLTABLE					
Product Description		Table/Desk Lamp, Compact Fluorescent					
		20	12	20	13	20	14
Track Name	Track No.	Freerider Spillover		Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.60 1.0		0.5	1.0	0.4	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

10 years.

⁵¹³ Consistent with lamp assumption based on NEEP RLS, 2011.

⁵¹⁴ Based on agreement made during Savings Verification 2009.

⁵¹⁵ Based on Commercial "Other" Lighting coincidence factors from RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)". Agreement made during Savings Verification 2009.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Measure Cost

The incremental cost for this measure is \$32⁵¹⁶

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours Labor cost to replace any kind of lamp (C&I only): \$2.67 per lamp (8 minutes at \$20/hour) EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.5 per lamp Life of CFL lamp: \$,500 hours (RES), 10,000 hours (C&I)

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see <u>EISA</u> <u>Adjustment Calculations.xls</u> for details)⁵¹⁷:

Measure	Year Installed	Annual baseline	Annual efficient
		replacement cost	replacement cost
Dedicated CF Table	2012	\$0.98	\$0.00
Lamp (RES)	2013	\$1.03	\$0.00
	2014	\$1.06	\$0.00
Dedicated CF Table	2012	\$11.68	\$1.30
Lamp (C&I)	2013	\$12.07	\$1.30
	2014	\$12.40	\$1.30

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

⁵¹⁶ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for interior fixture.
⁵¹⁷ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (10 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Dedicated CF Floor Lamp

Measure Number: IV-E-7-f (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	12/31/14

Referenced Documents:

1) RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)".

2) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

3) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

4) 2012 EISA Adjustment Calculations.xls

Description

An existing floor lamp with incandescent bulbs is replaced by a dedicated ENERGY STAR floor lamp wired for exclusive use with pin-based compact fluorescent lamps.

Algorithms

Demand Savings

ΔkW

= ((Δ Watts) /1000)* ISR× WHF_d

Market	Year	Algorithm	ΔkW
Residential	2012	(49.0 / 1000) * 0.95 * 1.0	0.0466
	2013	(43.6 / 1000) * 0.95 * 1.0	0.0414
	2014	(37.0 / 1000) * 0.95 * 1.0	0.0352
Commercial	2012	(49.0 / 1000) * 0.9 * 1.082	0.0477
	2013	(43.6 / 1000) * 0.9 * 1.082	0.0425
	2014	(37.0 / 1000) * 0.9 * 1.082	0.0360

Energy Savings

∆kWh

= ((Δ Watts) /1000) × HOURS × ISR × WHF_e

Market	Year	Algorithm	∆kWh
Residential	2012	(49.0 / 1000) * 912 * 0.95 * 1.0	42.5
	2013	(43.6 / 1000) * 912 * 0.95 * 1.0	37.8
	2014	(37.0 / 1000) * 912 * 0.95 * 1.0	32.1
Commercial	2012	(49.0 / 1000) * 2800 * 0.9 * 1.033	127.5
	2013	(43.6 / 1000) * 2800 * 0.9 * 1.033	113.6
	2014	(37.0 / 1000) * 2800 * 0.9 * 1.033	96.2

ΔWatts	= Watts _{BASE} $-$ Watts _{EE} ⁵¹⁸
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
∆kWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used ⁵¹⁹
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
	lighting. For commercial lighting, the value is 1.082 (calculated as 1 +

⁵¹⁸ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁵¹⁹ ISR differs for residential and commercial applications. See table below for ISR in each application.

	$(0.47*0.67*.808)/(3.1))^{520}$. The cooling savings are only added to the summer
	peak savings.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient
	lighting. For commercial lighting, the value is 1.033 (calculated as 1 +
	$((0.47*0.29*.75)/2.5))^{521}$.
HOURS	= average hours of use per year 522

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $= (\Delta kWh / WHF_{\circ}) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$ $\Delta MMBTU_{WH}$ Δ MMBTU_{WH} (Residential) = 0.0 $\Delta MMBTU_{WH}$ (Commercial) =

Year	Algorithm	ΔMMBtu
2012	$(127.5 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times 0.39 \times 0.95 / 0.79$	0.10
2013	$(113.6 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times 0.39 \times 0.95 / 0.79$	0.09
2014	$(96.2 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times 0.39 \times 0.95 / 0.79$	0.078

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{523}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall. The assumed aspect ratio for residential buildings is 100%.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting 524
DFH	= Percent of lighting in heated spaces, assumed to be 95%
HEff	= Average heating system efficiency, assumed to be $79\%^{525}$

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

The baseline condition is an interior incandescent light.

WasteHeatAdjustment.doc for additional discussion.

⁵²⁰ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁵²¹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and

⁵²² Hours of usage differs for residential and commercial applications. See table below for HOURS at each application. ⁵²³ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." ⁵²⁴ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting.

⁵²⁵ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Dedicated CF Floor	2012	0.66	2
Lamp (RES)	2013	0.77	1
	2014	0.88	1
Dedicated CF Floor	2012	0.66	2
Lamp (C&I)	2013	0.77	1
	2014	0.88	1

High Efficiency

High efficiency is an interior fluorescent fixture.

Operating Hours

Residential Applications: 949 hours / year Commercial Applications: 2800⁵²⁶ hours / year

Loadshape

Residential:, Loadshape, #1: Residential Indoor Lighting Commercial: Loadshape #101: Commercial EP Lighting⁵²⁷

Freeridership/Spillover Factors

Measure Category	Z Light Bulbs/Lamps						
Measure Code	LBLFLOOR						
Product Description		Floor Lamp, Compact Fluorescent					
		20	2012 2013 2014				14
Track Name	Track No.	Freerider Spillover Freerider Spillover		Freerider	Spillover		
Efficient Products	6032EPEP	0.60	1.0	0.5	1.0	0.4	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

10 years.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

⁵²⁶ Based on agreement made during Savings Verification 2009.

⁵²⁷ Based on Commercial "Other" Lighting coincidence factors from RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)". Agreement made during Savings Verification 2009.

Measure Cost

The incremental cost for this measure is \$32⁵²⁸

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours Labor cost to replace any kind of lamp (C&I only): \$2.67 per lamp (8 minutes at \$20/hour) EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$7.50 per lamp Life of CFL lamp: \$,500 hours (RES), 10,000 hours (C&I)

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see 2012 EISA Adjustment Calculations.xls for details)⁵²⁹:

Measure	Year Installed	Annual baseline	Annual efficient
		replacement cost	replacement cost
Dedicated CF Table	2012	\$1.42	\$0.10
Lamp (RES)	2013	\$1.58	\$0.10
	2014	\$1.75	\$0.10
Dedicated CF Table	2012	\$12.01	\$2.55
Lamp (C&I)	2013	\$12.64	\$2.55
	2014	\$13.29	\$2.55

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

⁵²⁸ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for interior fixture.
⁵²⁹ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (10 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Interior Fluorescent Fixture

Measure Number: IV-E-5-h (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	12/31/14

Referenced Documents:

 RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)".
 "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.
 2005 RLW memo following on from NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"
 Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

5) 2012 EISA Adjustment Calculations.xls

Description

An existing lighting fixture with incandescent bulbs is replaced by an ENERGY STAR lighting fixture wired for exclusive use with pin-based compact fluorescent lamps in an interior setting.

Algorithms

Demand Savings

 ΔkW

= ((Δ Watts) /1000) × ISR × WHF_d

Market	Year	Algorithm	ΔkW
Residential	2012	(49.0 / 1000) * 0.95 * 1.0	0.0466
	2013	(43.6 / 1000) * 0.95 * 1.0	0.0414
	2014	(37.0 / 1000) * 0.95 * 1.0	0.0352
Commercial	2012	(49.0 / 1000) * 0.9 * 1.082	0.0477
	2013	(43.6 / 1000) * 0.9 * 1.082	0.0425
	2014	(37.0 / 1000) * 0.9 * 1.082	0.0360

Energy Savings

 ΔkWh

= ((Δ Watts) /1000) × HOURS × ISR × WHF_e

Market	Year	Algorithm	ΔkWh
Residential	2012	(49.0 / 1000) * 912 * 0.95 * 1.0	42.5
	2013	(43.6 / 1000) * 912 * 0.95 * 1.0	37.8
	2014	(37.0 / 1000) * 912 * 0.95 * 1.0	32.1
Commercial	2012	(49.0 / 1000) * 2800 * 0.9 * 1.033	127.5
	2013	(43.6 / 1000) * 2800 * 0.9 * 1.033	113.6
	2014	(37.0 / 1000) * 2800 * 0.9 * 1.033	96.2

∆Watts	= Watts _{BASE} $-$ Watts _{EE} ⁵³⁰
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
∆kWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used 531

⁵³⁰ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁵³¹ ISR differs for residential and commercial applications. See table below for ISR at each application.

WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1))^{532}$. The cooling savings are only added to the summer peak savings.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.033 (calculated as $1 + ((0.47*0.29*75)/2.5))^{533}$
HOURS	$= \text{ average hours of use per year}^{534}$

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $\Delta MMBTU_{WH}$ $= (\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$ Δ MMBTU_{WH} (Residential) = 0.0 $\Delta MMBTU_{WH}$ (Commercial) =

Year	Algorithm	ΔMMBtu
2012	$(127.5 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times$	0.10
	$0.39 imes 0.95 \ / \ 0.79$	
2013	$(113.6 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times$	0.09
	$0.39 \times 0.95 \ / \ 0.79$	
2014	$(96.2 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times$	0.078
	$0.39 imes 0.95 \ / \ 0.79$	

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure
	from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{535}$.
AR	= Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
	It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall. The assumed aspect ratio for residential buildings is 100%
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington,
	Vermont for commercial lighting, assumed 0.0 for residential lighting ⁵³⁶
DFH	= Percent of lighting in heated spaces, assumed to be 95%
HEff	= Average heating system efficiency, assumed to be $79\%^{537}$

⁵³² Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁵³³ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

⁵³⁴ Hours of usage differs for residential and commercial applications. See table below for HOURS at each application. ⁵³⁵ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." ⁵³⁶ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting.

⁵³⁷ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont.

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

The baseline condition is an interior incandescent light.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Interior Fixture	2012	0.66	2
(RES)	2013	0.77	1
	2014	0.88	1
Interior Fixture (C&I)	2012	0.66	2
	2013	0.77	1
	2014	0.88	1

High Efficiency

High efficiency is a interior fluorescent fixture.

Operating Hours

Residential Applications: 912 hours / year (2.5 hrs per day)⁵³⁸ Commercial Applications: 2800⁵³⁹ hours / year

Loadshape

Residential: Loadshape, #1 - Residential Indoor Lighting Commercial: Loadshape #101: Commercial EP Lighting⁵⁴⁰

Freeridership/Spillover Factors

Measure Category		Lighting Hardwired Fixture					
Measure Code		LFHCNFIX					
Product Description			Compact Fluorescent Interior Fixture				
		2012		2013		2014	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.60	1.0	0.5	1.0	0.4	1.0

Persistence

The persistence factor is assumed to be one.

⁵³⁸ Based upon 2005 results from RLW Metering study (2005 RLW memo following on from "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs") ⁵³⁹ Based on agreement made during Savings Verification 2009.

⁵⁴⁰ Based on Commercial "Other" Lighting coincidence factors from RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)". Agreement made during Savings Verification 2009.

Lifetimes

Residential: 20 years.

Commercial: 15 years.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Measure Cost

The incremental cost for this measure is \$32⁵⁴¹

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours Labor cost to replace any kind of lamp (C&I only): \$2.67 per lamp (8 minutes at \$20/hour) EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.50 per lamp Life of CFL lamp: \$,500 hours (RES), 10,000 hours (C&I) CFL ballast replacement cost: \$14 (RES), \$19 (C&I including labor) Life of CFL ballast: 24,959 hours (RES), 45,850 (C&I)

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see <u>EISA</u> <u>Adjustment Calculations.xls</u> for details)⁵⁴²:

Measure	Year Installed	Annual baseline replacement cost	Annual efficient replacement cost
Interior Fixture	2012	\$1.57	\$0.32
(RES)	2013	\$1.48	\$0.32
	2014	\$1.35	\$0.32
Interior Fixture (C&I)	2012	\$12.46	\$2.07
	2013	\$11.49	\$2.07
	2014	\$10.34	\$2.07

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

None

⁵⁴¹ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for interior fixture.

⁵⁴² Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (20 or 15 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Exterior Fluorescent Fixture

Measure Number: IV-E-6-i (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	12/31/14

Referenced Documents:

1) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993.

2) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

3) 2005 RLW memo following on from NMR, RLW Analytics "Impact Evaluation of the

Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"

4) 2012 EISA Adjustment Calculations.xls

Description

An existing lighting fixture with incandescent bulbs is replaced by an ENERGY STAR lighting fixture wired for exclusive use with pin-based compact fluorescent lamps in an exterior setting.

Algorithms

Demand	Savings ⁵⁴³

 ΔkW

 $= ((\Delta Watts) / 1000) * ISR$

Market	Year	Algorithm	ΔkW
Residential	2012	(94.7 / 1000) * 0.87	0.082
	2013	(84.3 / 1000) * 0.87	0.073
	2014	(71.5 / 1000) * 0.87	0.062
Commercial	2012	(94.7 / 1000) * 0.9	0.085
	2013	(84.3 / 1000) * 0.9	0.076
	2014	(71.5 / 1000) * 0.9	0.064

Energy Savings

ΔkWh

= ((Δ Watts) /1000) × HOURS × ISR

Market	Year	Algorithm	ΔkWh
Residential	2012	(94.7 / 1000) * 1642.5 * 0.87	135.3
	2013	(84.3 / 1000) * 1642.5 * 0.87	120.5
	2014	(71.5 / 1000) * 1642.5 * 0.87	102.2
Commercial	2012	(94.7 / 1000) * 3059 * 0.9	260.7
	2013	(84.3 / 1000) * 3059 * 0.9	232.1
	2014	(71.5 / 1000) * 3059 * 0.9	196.8

Δ Watts	= Watts _{BASE} $-$ Watts _{EE} ⁵⁴⁴
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
∆kWh	= gross customer annual kWh savings for the measure

⁵⁴³ Based on EVT analysis of Exterior Residential and Commercial Florescent Fixtures rebated through Efficient

Products Program ⁵⁴⁴ 2012 delta watts is equal to 2011 assumption. Subsequent years delta watts is reduced at the same rate as interior assumption which is based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011, to account for EISA impacts.

ISR	= In service rate or the percentage of units rebated that actually get used 545
HOURS	= average hours of use per year

Baseline Efficiencies – New or Replacement

The baseline condition is an exterior incandescent light fixture.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings
			Before Adjustment
Exterior Fixture	2012	0.66	2
(RES)	2013	0.77	1
	2014	0.88	1
Exterior Fixture	2012	0.66	2
(C&I)	2013	0.77	1
	2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR qualified exterior fluorescent fixture.

Operating Hours

Residential Applications: 1642.5 hours / year⁵⁴⁶. Commercial Applications: 3,059 hours / year⁵⁴⁷

Loadshape

Residential: Loadshape #2 - Residential Outdoor Lighting Commercial: Loadshape #13 - Commercial Outdoor Lighting, Source: Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category		Lighting Hardwired Fixture					
Measure Code			LFHC	EFIX			
Product Description		Compact fluorescent exterior fixture					
		2012 2013 2014			14		
Track Name	Track No.	Freerider Spillover		Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.60	1.0	0.5	1.0	0.4	1.0

Persistence

The persistence factor is assumed to be one.

⁵⁴⁵ ISR differs for residential and commercial applications. See table below for ISR at each application.

⁵⁴⁶ 2005 RLW memo following on from NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"

⁵⁴⁷ Commercial Usage rate based on 8.4 hours daily burn time consistent with load profile for commercial outdoor lighting in Vermont State Cost Effectiveness Screening tool.

Lifetimes

Residential: 20 years.

Commercial: 15 years.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Measure Cost

The incremental cost for this measure is \$17⁵⁴⁸

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours Labor cost to replace any kind of lamp (C&I only): \$2.67 per lamp (8 minutes at \$20/hour) EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.50 per lamp Life of CFL lamp: \$,500 hours (RES), 10,000 hours (C&I) CFL ballast replacement cost: \$14 (RES), \$19 (C&I including labor) Life of CFL ballast: 24,959 hours (RES), 45,850 (C&I)

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see 2012 EISA Adjustment Calculations.xls for details)⁵⁴⁹:

Measure	Year Installed	Annual baseline replacement cost	Annual efficient replacement cost
Exterior Fixture	2012	\$2.99	\$1.30
(RES)	2013	\$2.76	\$1.30
	2014	\$2.52	\$1.30
Exterior Fixture	2012	\$14.01	\$2.40
(C&I)	2013	\$12.70	\$2.40
	2014	\$11.35	\$2.40

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Fluorescent Fixture Hours of Use and In Use Rates by Customer Type

	Average	Average
	Annual Hours	In Service
	of Use	Rate
Residential	1642.5	0.87

⁵⁴⁸ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for exterior fixtures.
⁵⁴⁹ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (20 or 15 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Commercial	3,059	0.9

Solid State (LED) Recessed Downlight

Measure Number: IV-E-8-c (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 77
Effective date:	1/1/2011
End date:	TBD

Referenced Documents:

1) WasteHeatAdjustment.doc;

2) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993

Description

An LED Downlight is used in place of an incandescent downlight. The downlight must be tested by the DOE Caliper Testing Program or Independent 3rd party testing with results shown to meet the upcoming Energy Star Specification for Solid State Luminaires. This Specification will take effect September 31st, 2008, and can be downloaded from http://www.netl.doe.gov/ssl/. See Reference Table of Energy Star requirements for recessed downlights.

Algorithms

8 • • • •	
Demand Savings	
ΔkW	= ((Watts _{BASE} – Watts _{EE}) /1000) × ISR × WHF _d
∆kW(Residential)	$= ((65 - 12) / 1000) \times 0.95) \times 1.0 = 0.05035$
∆kW(Commercial)	= ((65 - 12) / 1000) × 0.95) × 1.082 = 0.054479
Energy Savings	
∆kWh	= ((Watts _{BASE} – Watts _{EE}) /1000) × HOURS × ISR × WHF _e
∆kWh (Residential)	$= ((65 - 12) / 1000) \times 1241 \times 0.95 \times 1.0 = 62.48$
∆kWh (Commercial)	$= ((65 - 12) / 1000) \times 2800 \times 0.95 \times 1.033 = 145.63$
Where:	
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW. 550
$Watts_{EE}$	= Energy efficient connected kW. ⁵⁵¹
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used 552
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1))^{553}$. The cooling savings are only added to the summer peak savings.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.033 (calculated as $1 + ((0.47*0.29*.75)/2.5))^{554}$.
HOURS	= average hours of use per year ⁵⁵⁵

⁵⁵⁰ Baseline wattage based on 65 Watt BR30 incandescent bulb.

⁵⁵² ISR differs for residential and commercial applications. See table below for ISR in each application.

WasteHeatAdjustment.doc for additional discussion.

⁵⁵⁵ Hours of usage differs for residential and commercial applications. See table below for HOURS at each application.

⁵⁵¹ Energy Efficient wattage based on 12 Watt LR6 Downlight from LLF Inc.

⁵⁵³ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁵⁵⁴ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $\begin{array}{ll} \Delta MMBTU_{WH} &= (\Delta kWh \ / \ WHF_e) \times 0.003413 \times AR \times HF \ / \ 0.75 \\ \Delta MMBTU_{WH} \ (Residential) &= (62.48 \ / \ 1.033) \times 0.003413 \times (1-0.25) \times 0.70 \times 0.0 \times 0.95 \ / \ 0.79 = 0.0 \\ \Delta MMBTU_{WH} \ (Commercial) = (145.63 \ / \ 1.033) \times 0.003413 \times (1-0.25) \times 0.70 \times 0.39 \times 0.95 \ / \ 0.79 = 0.11847 \\ \end{array}$

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure
	from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{556}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall. The assumed aspect ratio for residential buildings is 100%.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting ⁵⁵⁷
DFH	= Percent of lighting in heated spaces, assumed to be 95%
HEff	= Average heating system efficiency, assumed to be $79\%^{558}$

Oil heating is assumed typical for commercial.

Baseline Efficiencies – New or Replacement

The baseline condition is a 65 watt BR30 incandescent fixture installed in a screw-base socket.

High Efficiency

High Efficiency is a downlight that has been tested by the DOE Caliper Testing Program or Independent 3rd party testing with results shown to meet the upcoming Energy Star Specification for Solid State Luminaires. This Specification will take effect September 31st, 2008, and can be downloaded from http://www.netl.doe.gov/ssl/. See Reference Table of Energy Star requirements for recessed downlights.

Operating Hours

Residential: 1,241 hours / year Commercial: 2,800 hours / year⁵⁵⁹

Loadshape

Residential: Loadshape, #1 - Residential Indoor Lighting; Commercial: Loadshape; #101: Commercial EP Lighting⁵⁶⁰

 ⁵⁵⁶ Based on 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." See WasteHeatAdjustment.doc
 ⁵⁵⁷ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting.

⁵⁵⁸ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont. See WasteHeatAdjustment.doc.

⁵⁵⁹ Based on agreement made during Savings Verification 2009.

⁵⁶⁰ Based on Commercial "Other" Lighting coincidence factors from RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)". Agreement made during Savings Verification 2009.

Freeridership/Spillover Factors

Measure Category	LE	ED	
Measure Code	LFHR	DLED	
	Solid State Recessed		
Product Description	Down	nlight	
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	0.94	1.25

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use of the lumenaire. The Energy Star Specification for Solid State Recessed Downlights requires luminaires to maintain at least 70% initial light output for 25,000 hrs in a residential application and 35,000 hours in a commercial application. Based on these lifetimes, LED Recessed Downlights rebated through this program are expected to have a life of 20.1 years for residential applications (assumed average daily usage of 3.4 hours) and 12.5 years for commercial applications (assumed annual usage of 2800 hours).

Analysis period is 20 years for residential installations, 12.5 years for commercial installations.

Measure Cost

The incremental cost for this measure is \$44.35

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Hours of Use, In Use Rates, and Waste Heat Factors by Customer Type

	Average Annual Hours of Use	Average In Service Rate	WHF _d	WHF _e	AR	HF
Residential	1,241	0.95	1.0	1.0	1.0	0.0
Commercial	$2,800^{561}$	0.95	1.082	1.033	0.7	0.39

Component Costs and Lifetimes Used in Computing O&M Savings Residential

Component	Market	Baseline Measures	
r		Cost	Life ⁵⁶²
Lamp	Residential	\$4.67	1.13
	Commercial	\$4.67	0.71

Partial List of Energy Star Requirements for Solid State Recessed Downlights

Lumen Depreciation / Lifetime	LED shall deliver at least 70% of initial lumens for	
	the minimum number of hours specified below:	
	• >= 25,000 hrs Residential Indoor	
	• >= 35,000 hrs Commercial	

⁵⁶¹ Based on agreement made during Savings Verification 2009.

⁵⁶² Based on standard assumption of 2000 hours lamp life for baseline bulb 65 watt BR30 incandescent.

Minimum CRI	75	
Minimum Light Output	<= 4.5" Aperture: 345 lumens (initial)	
	> 4.5" Aperture: 575 lumens (initial)	
Zonal Lumen Density Requirement	Luminaire shall deliver a total of 75% lumens (initial)	
	within the 0-60 zone (bilaterally symmetrical)	
Minimum Luminaire Efficacy	35 lm/w	
Allowable CCTs	• 2700K, 3000K, and 3500K for residential	
	products	
	 No restrictions for commercial 	
Reduced Air Leakage	Recessed downlights intended for installation in	
	insulated ceilings shall be IC rated and be leak tested	
	per ASTM E283 to demonstrate no more than 2.0 cfm	
	at 75 Pascals pressure difference. The luminaire must	
	include a label certifying "sirtight" or similar	
	designation to show accordance with ASTM E283.	
Minimum Warranty	3 years	
• Eligible Products must meet the full requirements of the Energy Star specification. The complete		
Energy Star Specification for Solid State Luminaires can be obtained at www.netl.doe.gov		

Free CFL

Measure Number: IV-E-9-c (Efficient Products Program, Lighting End Use)

Version Date & Revision History:

Draft date:	Portfolio 76
Effective date:	01/01/12
End date:	12/31/14

Referenced Documents:

1) EKOS Porchlight Report- December 2006.pdf

2) Residential Lighting Markdown Impact Evaluation, Nexus Market Research, RLW Analytics, and GDS Associated, January 20, 2009

3) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

4) 2012 EISA Adjustment Calculations.xls

Description

An existing incandescent screw-in bulb is replaced with a lower wattage ENERGY STAR qualified compact fluorescent screw-in bulb that was received free of charge at a Efficiency Vermont event or as part of a targeted campaign, and is installed in a Residential fixture.

Algorithms

Demand Savings

 ΔkW

$=$ ((Δ Watts) /1000) × ISR		
Year	Algorithm	ΔkW
2012	(49.0 / 1000) * 0.5	0.0245
2013	(43.6 / 1000) * 0.5	0.0218
2014	(37.0 / 1000) * 0.5	0.0185

Energy Savings

= ((Δ Watts) /1000) × HOURS × ISR

Year	Algorithm	ΔkWh
2012	(49.0 / 1000) * 694 * 0.5	17.0
2013	(43.6 / 1000) * 694 * 0.5	15.1
2014	(37.0 / 1000) * 694 * 0.5	12.8

Where:

ΔkWh

Δ Watts	= Watts _{BASE} – Watts _{EE} ⁵⁶³
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units given out that actually get used 564
HOURS	= average hours of use per year

Waste Heat Adjustment

N/A

Heating Increased Usage

⁵⁶³ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁵⁶⁴ Efficiency Vermont will assume an In Service Rate for a Free CFL of 50%. An EKOS study of a free CFL campaign, 'Project Porchlight' in Ottawa, found an install rate of 70% of those who could recall receiving the bulb. A 50% ISR is considered a conservative assumption, especially when the bulbs will be accompanied by marketing material explaining the benefits. The state-wide CFL media campaign set to launch in January,2008 will also increase in-service rates by significantly raising awareness of the benefits of CFLs.

N/A

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent light bulb.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become Halogen bulbs (see percentages in O&M table below).

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details)

Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
2012	0.66	2
2013	0.77	1
2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR qualified compact fluorescent lamp.

Operating Hours

Operating hours will be assumed as 1.9 hours per day or 694 hours per year⁵⁶⁵.

Loadshape

Residential: Loadshape #1: Residential Indoor Lighting Source: Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category		Light Bul	bs/Lamps
Measure Code		LBLC	FFRE
		Free Co	ompact
		Fluorescent screw-	
Product Description		base	bulbs
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	1.0	1.0
RES Retrofit	6036RETR	1.0	1.0

Persistence

The persistence factor is assumed to be 90%.

Lifetimes

CFLs rebated through this program are assumed to have a rated life of 8,500 hours.

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). At 694 hours per year and including the 90% persistence factor this equates to 11 years. A provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the measure life will reduce each year and be equal to the number of years remaining to 2020; so for 2012 this will be 8 years, 2013 7 years.

⁵⁶⁵ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

Measure Cost⁵⁶⁶

The incremental cost for this measure is as follows

Year	Measure Cost
2012	\$1.90
2013	\$1.80
2014	\$1.50

Fossil Fuel Descriptions

N/A

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see 2012 <u>EISA Adjustment Calculations.xls</u>). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen
Replacement Cost	\$0.50	\$1.50
Component Life (hours)	1000	1000
Baseline % in 2012	67%	33%
Baseline % in 2013	33%	67%
Baseline % in 2014 onward	0%	100%

The calculation results in a levelized assumption of \$0.93 baseline replacement cost every 1 year for CFL installations in 2012, \$0.96 every year for installations in 2013, and \$0.97 for installations in 2014. This adjustment will be recalculated for subsequent years.

⁵⁶⁶ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

Specialty CFL

Measure Number: IV-E-10-c (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	TBD

Referenced Documents:

- 1. Residential Lighting Markdown Impact Evaluation, Nexus Market Research, January 20, 2009
- 2. Residential Lighting Measure Life Study, Nexus Market Research, June 4, 2008
- 3. WasteHeatAdjustment.doc
- 4. "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993
- 5. 2012 DeltaWatts MeasureCost
- 6. Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

Description

An existing incandescent bulb is replaced with a lower wattage ENERGY STAR qualified specialty compact fluorescent bulb. Specialty CFL bulbs are defined as lamps for general illumination that use fluorescent light emitting technology and an integrated electronic ballast with or without a standard Edison screw-base. They can be dimmable, designed for special applications, have special color enhancement properties or have screw-bases that are not standard Edison bases, and include A-lamps, candelabras, Glamps (globe), reflectors, torpedoes, dimmables, and 3-way bulbs.

Algorithms Demand Savings		
ΔkW	= ((Δ Watts) /1000) × ISR × WHF _d	
$\Delta kW(\text{Res.} <=15W)$	$= ((39.1) / 1000) \times 0.9 \times 1.0)$	= 0.0352
$\Delta kW(\text{Res.} > 15W)$	$= ((65.6) / 1000) \times 0.9 \times 1.0)$	= 0.0590
$\Delta kW(Comm. <=15W)$	= ((39.1) / 1000) × 0.9) × 1.082	= 0.0381
$\Delta kW(Comm. >15W)$	= ((65.6) / 1000) × 0.9) × 1.082	= 0.0639
Energy Savings		
ΔkWh	= ((Δ Watts) /1000) × HOURS × IS	$R \times WHF_{e}$
ΔkWh (Res. <=15W)	$= ((39.1) / 1000) \times 694 \times 0.9 \times 1.0$	= 24.43
ΔkWh (Res. >15W)	$= ((65.6) / 1000) \times 694 \times 0.9 \times 1.0$	= 40.95
ΔkWh (Comm. <=15W)	$= ((39.1) / 1000) \times 2,800 \times 0.9 \times 1$.033 = 101.85
ΔkWh (Comm. >15W)	$= ((65.6) / 1000) \times 2,800 \times 0.9 \times 10^{-10}$	1.033 = 170.82
Where:		
∆Watts	= Average delta watts between specialty CFL and incandescent Watts _{BASE} – Watts _{FE} ⁵⁶⁷	
ΔkW	= gross customer connected load kW savings for the measure	
Watts _{BASE}	= Baseline connected kW	
$Watts_{EE}$	= Energy efficient connected kW	
ΔkWh	= gross customer annual kWh savings for the measure	
ISR	= in service rate or the percentage of units rebated that actually get used = 0.9^{568}	

⁵⁶⁷ Assumed difference in wattage between installed CFL and the incandescent bulb it replaces. Based on EVT analysis of bulbs purchased through the Efficient Product program since 2009 and using an equivalent baseline based on the ENERGY STAR consumer guide. See 2012_DeltaWatts_MeasureCost for more information. ⁵⁶⁸ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1))^{569}$. The cooling savings are only added to the summer peak savings.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.033 (calculated as $1 + ((0.47*0.29*.75) / 2.5))^{570}$.
HOURS	= average hours of use per year ⁵⁷¹

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

$\Delta MMBTU_{WH}$	= $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$
$\Delta MMBTU_{WH}$ (Res<=15W)	$= (24.43 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$
Δ MMBTU _{WH} (Res.>15W)	$= (40.95 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$
Δ MMBTU _{WH} (Comm<=15W)	= (101.85 / 1.033) × 0.003413 × (1 – 0.25) × 0.70 × 0.39 / 0.75 =
0.0919	
Δ MMBTU _{WH} (Comm.>15W)	$= (170.82 / 1.033) \times 0.003413 \times (1 - 0.25) \times 0.70 \times 0.39 / 0.75 = 0.154$

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{572}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting ⁵⁷³
DFH HEff	 Percent of lighting in heated spaces, assumed to be 95% Average heating system efficiency, assumed to be 79%⁵⁷⁴

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent specialty light bulb.

High Efficiency

High efficiency is an ENERGY STAR qualified specialty compact fluorescent lamp.

WasteHeatAdjustment.doc for additional discussion.

⁵⁶⁹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁵⁷⁰ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and

⁵⁷¹ Hours of usage differs for residential and commercial applications. See table below for HOURS at each application. ⁵⁷² 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." ⁵⁷³ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting.

⁵⁷⁴ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont.

Operating Hours

Residential: 694 hours / year⁵⁷⁵ Commercial: 2,800 hours / year⁵⁷⁶

Loadshape

Residential: Loadshape #1: Residential Indoor Lighting Commercial: Loadshape #101: Commercial EP Lighting 577

Freeridership/Spillover Factors

Measure Category	Light Bulbs/Lamps						
Measure Code		LBLCFSPC					
Product Description		Compact Fluorescent – Specialty Bulb					
		20	12	20	13	20	14
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.80	1.0	0.8	1.0	0.6	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use for the lamp. Most CFLs have a rated lifetime of 10,000 hours. However, units that are turned on and off more frequently have shorter lifetimes, and those that stay on continuously for longer periods of time have longer lifetimes. CFLs rebated through this program for commercial applications are assumed to have a life of 10,000 hours (assumed annual use of 2800). That translates to 3.57 years for commercial applications. Nexus Market Research recently analyzed and report measure life for residential applications in the Residential Lighting Measure Life Study dated June 4, 2008. Measure life for residential markdown CFL's is 6.8⁵⁷⁸ yr. Analysis period is the same as the lifetime.

Measure Cost⁵⁷⁹

Incremental Cost (Watts <=15) = \$5.45 Incremental Cost (Watts >15) = \$4.55

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

⁵⁷⁶ Based on agreement made during Savings Verification 2009.

⁵⁷⁵ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

⁵⁷⁷ Based on Commercial "Other" Lighting coincidence factors from RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)". Agreement made during Savings Verification 2009. ⁵⁷⁸ Residential Lighting Measure Life Study, Nexus Market Research, June 4, 2008

⁵⁷⁹ EVT has applied the ratio of incremental cost difference between the two size classifications as was found by EVT when the original TRM was developed based on a review of available product, to the NEEP RLS, 2011 proposed incremental cost (which was a single value, not split in to size classifications) to give separate incremental costs. See 2012 DeltaWatts MeasureCost for more information.

nouis of ese, in ese nuces, and waste neur ractors by customer rype						
	Average Annual Hours of Use	Average In Service Rate	WHF _d	WHF _e	AR	HF
Residential	694	0.9^{580}	1.0	1.0	1.0	0.0
Commercial	2,800	0.9^{581}	1.082	1.033	0.7	0.39

Hours of Use, In Use Rates, and Waste Heat Factors by Customer Type

Component Costs and Lifetimes Used in Computing O&M Savings

Residential

	Baseline Measures			
Component	Cost	Residential Life ⁵⁸²	Commercial Life	
Lamp<=15W	\$2.71	1.44	0.36	
Lamp>15W	\$4.29	1.44	0.36	

 ⁵⁸⁰ 2011 TAG agreement
 ⁵⁸¹ 2005 TAG agreement
 ⁵⁸² Based on standard assumption of 1000 hours lamp life for baseline bulb.

Hard to Reach Standard CFL

Measure Number: IV-E-11-a (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/2012
End date:	12/31/2014

Referenced Documents:

1 Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011) 2) 2012 EISA Adjustment Calculations.xls

Description

This TRM describes the savings estimates for residential standard CFL's over the 3 year contract period 2012–2014 that are provided to those customers that have not been able to take advantage of the Retail EP program (Hard to Reach) for economic, cultural or age-related reasons. These bulbs will be provided through VT Foodbanks and other potential outlets serving disadvantaged populations. Note the only difference between this and the standard Efficient Product Residential Standard CFL measure is the freerider rate. An existing incandescent screw-in bulb is replaced with a lower wattage ENERGY STAR qualified standard compact fluorescent screw-in bulb. Standard bulb is defined as a medium screw base, one-way, non-dimmable, bare tube compact fluorescent lamp within a color temperature range of 2700-3000 K.

Algorithms Demand Savings

ΔkW

= $((\Delta Watts) / 1000) \times ISR$

	Year	Algorithm	ΔkW
ΔkW	2012	= (49.0 / 1000) x 0.77 x 1.0	0.0377
	2013	= (43.6 / 1000) x 0.77x 1.0	0.0336
	2014	= (37.0 / 1000) x 0.77 x 1.0	0.0285

Energy Savings

∆kWh

= ((Δ Watts) /1000) × HOURS × ISR × WHF_e

	Year	Algorithm	∆kWh
∆kWh	2012	= (49.0 / 1000) x 694 x 0.77 x 1.0	26.2
	2013	= (43.6 / 1000) x 694 x 0.77 x 1.0	23.3
	2014	= (37.0 / 1000) x 694 x 0.77 x 1.0	19.8

Δ Watts	= Watts _{BASE} $-$ Watts _{EE} ⁵⁸³
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
∆kWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used
	$= 0.77^{584}$
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
	lighting. For commercial lighting, the value is 1.082 (calculated as 1 +

⁵⁸³ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁵⁸⁴ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

	(0.47*0.67*.808) / 3.1)) ⁵⁸⁵ . The cooling savings are only added to the summer peak savings. = 1.0 for Residential
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.033 (calculated as $1 + ((0.47*0.29*.75) / 2.5))^{586}$.
	= 1.0 for Residential
HOURS	= average hours of use per year
	$= 694^{587}$

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $\Delta MMBTU_{WH}$ $= (\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$

∆MMBTU _{WH}	2009	$= (26.2 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$
	2010	$= (23.3 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$
	2011	$= (19.8 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{588}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting ⁵⁸⁹
DFH HEff	 Percent of lighting in heated spaces, assumed to be 95% Average heating system efficiency, assumed to be 79%⁵⁹⁰

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

The baseline condition is based on the "NEEP Residential Lighting Survey", 2011 and incorporates changes due to the Energy Independence and Security Act, 2007.

Baseline Adjustment

⁵⁸⁵ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁵⁸⁶ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

⁵⁸⁷ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁵⁸⁸ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." ⁵⁸⁹ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting.

⁵⁹⁰ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont.

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings
			Before Adjustment
Commercial EP Standard CEI	2012	0.66	2
Staliualu CI ⁺ L	2013	0.77	1
	2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR qualified compact fluorescent lamp.

Operating Hours

694 hours per year⁵⁹¹

Loadshape

Residential: Loadshape #1: Residential Indoor Lighting Source: Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps					
Measure Code			LBLCFBLH				
Product Description		Compact Fluorescent screw-base bulbs – Residential Hard to Reach					
		20	2012 2013		2013 2014		ł
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spill over
Efficient Products	6032EPEP	0.90	1.0	0.8	1.0	0.7	1.0

Note the freerider rate is the only difference between this and the standard Efficient Product Residential Standard CFL measure. We do not have evaluation data to base the freerider rate on but estimate a starting point of 10% freeriders (compared to 40% in retail), and increasing at the same rate as the EP measure over the three years.

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use for the lamp. Most CFL's have a *rated* lifetime of 10,000 hours. However, units that are turned on and off more frequently have shorter lives and those that stay on for longer periods of time have longer lives. CFLs rebated through this program are assumed to have a life of 8,500 hours. Based on an annual run hours of 694, the measure life is 8500/694 = 12.2 years. However a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

⁵⁹¹ Based on TAG 2011 agreement to use recommendation from RLS, 2011

Measure Cost⁵⁹²

The incremental cost for this measure is as follows

Year	Measure
	Cost
2012	\$1.90
2013	\$1.80
2014	\$1.50

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see CFL baseline savings shift.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen
Replacement Cost	\$0.50	\$1.50
Component Life (hours)	1000	1000
Baseline % in 2009-2011	100%	0%
Baseline % in 2012	67%	33%
Baseline % in 2013	33%	67%
Baseline % in 2014 onward	0%	100%

The calculation results in a levelized assumption of \$0.98 baseline replacement cost every 1 year for CFL installations in 2012, \$1.02 for installations in 2013 and \$1.04 for installations in 2014. This adjustment will be recalculated for subsequent years.

⁵⁹² Based on TAG 2011 agreement to use recommendation from RLS, 2011

Residential Standard CFL

Measure Number: IV-E-12-b (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/2012
End date:	12/31/2014

Referenced Documents:

Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)
 2012 EISA Adjustment Calculations.xls

Description

This TRM describes the savings estimates for residential standard CFL's over the 3 year contract period 2009 – 2011. An existing incandescent screw-in bulb is replaced with a lower wattage ENERGY STAR qualified standard compact fluorescent screw-in bulb. Standard bulb is defined as a medium screw base, one-way, non-dimmable, bare tube compact fluorescent lamp within a color temperature range of 2700-3000 K.

Algorithms

 ΔkW

Demand	Savings
Demanu	Savings

 $= ((\Delta Watts) / 1000) \times ISR$

	Year	Algorithm	ΔkW
∆kW	2012	= (49.0 / 1000) x 0.77 x 1.0	0.0377
	2013	= (43.6 / 1000) x 0.77x 1.0	0.0336
	2014	= (37.0 / 1000) x 0.77 x 1.0	0.0285

Energy Savings

ΔkWh

= ((Δ Watts) /1000) × HOURS × ISR × WHF_e

	Year	Algorithm	ΔkWh
∆kWh	2012	= (49.0 / 1000) x 694 x 0.77 x 1.0	26.2
	2013	= (43.6 / 1000) x 694 x 0.77 x 1.0	23.3
	2014	= (37.0 / 1000) x 694 x 0.77 x 1.0	19.8

∆Watts	= Watts _{BASE} – Watts _{EE} ⁵⁹³
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
$Watts_{EE}$	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used $= 0.77^{594}$
WHF _d	 Waste heat factor for demand to account for cooling savings from efficient lighting. = 1.0 for Residential
WHF _e	 Waste heat factor for energy to account for cooling savings from efficient lighting. = 1.0 for Residential
HOURS	= average hours of use per year

⁵⁹³ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁵⁹⁴ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

 $= 694^{595}$

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $\Delta MMBTU_{WH}$

 $= (\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$

∆MMBTU _{WH}	2009	$= (26.2 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$
	2010	$= (23.3 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$
	2011	$= (19.8 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{596}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting ⁵⁹⁷
DFH HEff	 Percent of lighting in heated spaces, assumed to be 95% Average heating system efficiency, assumed to be 79%⁵⁹⁸

Baseline Efficiencies – New or Replacement

The baseline condition is based on the "NEEP Residential Lighting Survey", 2011 and incorporates changes due to the Energy Independence and Security Act, 2007.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Commercial EP	2012	0.66	2

⁵⁹⁵ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

 ⁵⁹⁶ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."
 ⁵⁹⁷ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

 ⁵⁹⁷ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency Vermont does not calculate interactive effects for residential lighting.
 ⁵⁹⁸ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent

⁵⁹⁸ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont.

Standard CFL	2013	0.77	1
	2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR qualified compact fluorescent lamp.

Operating Hours

694 hours per year⁵⁹⁹

Loadshape

Residential: Loadshape #1: Residential Indoor Lighting Source: Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps					
Measure Code		LBLCFBLB					
Product Description	n	Compact Fluorescent screw-base bulbs - Residential			al		
		2012 2013		13	2014		
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.60	1.0	0.5	1.0	0.4	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use for the lamp. Most CFL's have a *rated* lifetime of 10,000 hours. However, units that are turned on and off more frequently have shorter lives and those that stay on for longer periods of time have longer lives. CFLs rebated through this program are assumed to have a life of 8,500 hours. Based on an annual run hours of 694, the measure life is 8500/694 = 12.2 years. However a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Measure Cost⁶⁰⁰

The incremental cost for this measure is as follows

Year	Measure Cost
2012	\$1.90
2013	\$1.80
2014	\$1.50

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

⁵⁹⁹ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁶⁰⁰ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see CFL baseline savings shift.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen
Replacement Cost	\$0.50	\$1.50
Component Life (hours)	1000	1000
Baseline % in 2009-2011	100%	0%
Baseline % in 2012	67%	33%
Baseline % in 2013	33%	67%
Baseline % in 2014 onward	0%	100%

The calculation results in a levelized assumption of \$0.98 baseline replacement cost every 1 year for CFL installations in 2012, \$1.02 for installations in 2013 and \$1.04 for installations in 2014. This adjustment will be recalculated for subsequent years.
ENERGY STAR Integrated Screw Based SSL (LED) Lamps

Measure Number: IV-E-13-d (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:Portfolio 84Effective date:1/1/2013End date:TBD

Referenced Documents:

- 1) LED ESTAR specs_NewCats.xls
- 2) 2013 EISA Adjustment Calculations.xls
- 3) IntegralLamps.pdf
- 4) 2013 LED Sales Review.xlsx

Description

An ENERGY STAR Integrated Screw Based SSL (LED) Lamp (specification effective August 2010) is purchased in place of an incandescent lamp. This measure is broken down in to Omnidirectional (e.g. A-Type lamps), Decorative (e.g. Globes and Torpedoes) and Directional (PAR Lamps, Reflectors, MR16). Further, the Omnidirectional are broken down in to <10W and >=10W and Directional Lamps in to <15W and >=15W categories to best reflect the delta wattage in each range. The ENERGY STAR specification can be viewed here: http://www.energystar.gov/ia/partners/manuf_res/downloads/IntegralLampsFINAL.pdf

Algorithms

Deman ∆kW	d Savings	= ((Watts _{BASE} – Watts _{EE}) /1000) × ISR × WHF _d
Energy ∆kWh	Savings	= ((Watts _{BASE} – Watts _{EE}) /1000) × ISR × HOURS × WHF _e
Where:		
	ΔkW	= gross customer connected load kW savings for the measure
	Watts _{BASE}	= Baseline connected kW.
	Watts _{EE}	= Energy efficient connected kW.
	∆kWh	= gross customer annual kWh savings for the measure
	ISR	= in service rate or the percentage of units rebated that actually get used
	WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
		lighting. For commercial lighting, the value is 1.082 (calculated as $1 + (0.47*0)$.
		$67^{*}.808) / 3.1)$ ⁶⁰¹ . The cooling savings are only added to the summer peak savings.
		The value for Residential lighting is assumed to be 1.0.
	WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.033 (calculated as $1 + ((0.47*0.29*.75) / 2.5))^{602}$.
		The value for Residential lighting is assumed to be 1.0.
	HOURS	= average hours of use per year

Values used in algorithm⁶⁰³ and results:

⁶⁰¹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁶⁰² Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

							20	13	20	14	20	20
		LED Wattage	Base 2013	Base 2014	Base 2020	LED	∆kW	∆kWh	∆kW	∆kWh	∆kW	∆kWh
	Omnidinational	<10W	39.4	28.8	11.8	8.4	0.0270	33.5	0.0177	22.0	0.0030	3.7
	Ommunectional	>=10W	59.9	43.2	18.1	12.1	0.0416	51.6	0.0271	33.6	0.0052	6.5
Residential	Decorative	All		21.9		3.6	0.0159	19.8	0.0159	19.8	0.0159	19.8
	Directional	<15W		44.3		9.7	0.0301	37.4	0.0301	37.4	0.0301	37.4
		>=15W		46.3		16.7	0.0258	32.0	0.0258	32.0	0.0258	32.0
	Omridingstionsl	<10W	39.5	28.8	11.8	8.4	0.0302	101.0	0.0198	66.2	0.0033	11.0
	Omnidirectional	>10W	59.9	43.2	18.1	12.1	0.0464	155.2	0.0302	101.0	0.0058	19.5
Commercial	Decorative	All		21.9		3.6	0.0178	59.4	0.0178	59.4	0.0178	59.4
	Divestional	<15W		44.3		9.7	0.0336	112.3	0.0336	112.3	0.0336	112.3
	Directional	>=15W		46.3		16.7	0.0288	96.1	0.0288	96.1	0.0288	96.1

	Residential	Commercial
ISR	0.870^{604}	0.898^{605}
Hours	1241	3500
WHFd	1	1.082
WHFe	1	1.033

 ⁶⁰³ See 2013 LED Sales Review.xls for details on how the baseline was determined based on a year's worth of LED sales data from a cross section of product brands and Vermont geography.
 ⁶⁰⁴ See SMARTLIGHT QA 2012.docx for LED in service rate.
 ⁶⁰⁵ Ibid

Baseline Efficiencies – New or Replacement

The baseline wattage is assumed to be an equivalent baseline bulb (standard or EISA qualified incandescent up until 2020 when it becomes a CFL) installed in a screw-base socket. See 2013 LED Sales Review.xls for details on how the baseline was determined based on a year's worth of LED sales data from a cross section of product brands and Vermont geography.

High Efficiency

The high efficiency wattage is assumed to be an ENERGY STAR qualified Integrated Screw Based SSL (LED) Lamp. See 2013 LED Sales Review.xls for details.

Baseline Adjustment

Federal legislation stemming from the Energy Independence and Security Act of 2007 began the phasing out of omnidirectional incandescent bulbs. From 2012 100W incandescents can no longer be manufactured, followed by restrictions on 75W in 2013 and 60W/40W in 2014. The baseline for this measure will become EISA compliant incandescent and halogen bulbs. Further in 2020, the baseline becomes a bulb with 45 Lumens per watt efficacy.

To account for these new standards, the savings for this measure will be reduced to account for the higher baselines starting in 2012 and 2020. The following table shows the calculated adjustments for each measure type. Note that while there are two baseline shifts during the lifetime of the LED lamp, Efficiency Vermont is only able to incorporate one adjustment factor. Therefore, both shifts are included in the calculation of a single adjustment factor (see 2013 <u>EISA</u> <u>Adjustment Calculations.xls</u> for details on how adjustment is calculated):

				Bulb Wattages Assumed in Calculation			Mid Measure Life Savings Adjustments					
		LED Wattage Range	LED Wattage	2013	2014	2020 EISA Compliant (45lu/W)	2013 Adjustment	After # of years	2014 Adjustment	After # of years	2015 Adjustment	After # of years
Residential	Omnidinastional	<10W	8.4	39.5	28.8	11.8	8.0%	5	16.7%	6	16.7%	5
	Omnidirectional	>=10W	12.1	59.9	43.2	18.1	10.0%	5	19.3%	6	19.3%	5
	Decorative	All	3.6	21.9			n/a n/a					
		<15W	9.7	44.3			n/a n/a					
	Directional	>=15W	16.7	46.3			n/a		n/a			
	Omnidinational	<10W	8.4	39.5	28.8	11.8	65.6%	1	100.0%	1	16.7%	5
	Ommulrectional	>=10W	12.1	59.9	43.2	18.1	64.0%	1	19.3%	6	19.3%	5
Commercial	Decorative	All	3.6		21.9			n/a				
	Directional	<15W	9.7		44.3		n/a		n/a			
	Directional	>=15W	16.7		46.3		n/a		n/a			

For example for Residential Omnidirectional bulbs <10W measures installed in 2013, the full savings (as calculated above in the Algorithm section) will be claimed for the first five years, and the adjusted savings (full * adjustment factor) will be claimed for the remainder of the measure life (note this adjustment factor applies to both electric and fuel savings).

This adjustment will be recalculated for subsequent years.

Heating Increased Usage

ΔΜΜΒ΄	TU _{WH}	= $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$
Where:		
	$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
	0.003413= Conv	ersion from kWh to MMBTU
	OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{606}$.
	AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall. The assumed aspect ratio for residential buildings is 100%.
	HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting ⁶⁰⁷
	DFH	= Percent of lighting in heated spaces, assumed to be 95%
	HEff	= Average heating system efficiency, assumed to be $79\%^{608}$

Oil heating is assumed typical for commercial buildings.

 $\Delta MMBTU_{WH} \text{ (Residential)} = (\Delta kWh / 1) \times 0.003413 \times 1.00 \times 0.00 \times 0.95 / 0.79 = 0.0$ $\Delta MMBTU_{WH} \text{ (Commercial)} = (\Delta kWh / 1.033) \times 0.003413 \times 0.75 \times 0.70 \times 0.39 \times 0.95 / 0.79$

		LED Wattage	AMMBTUWH		
			2013	2014-2019	2020
	Omnidimational	<10W	0.08	0.05	0.01
	Ommunectional	>=10W	0.13	0.08	0.02
Commercial	Decorative	All			
	Directional	<15W	0.09		
		>=15W	0.07		

Operating Hours

Residential: 1,241 hours / year⁶⁰⁹ Commercial: 3,500 hours / year⁶¹⁰

Loadshape

Residential: Loadshape #1: Residential Indoor Lighting Commercial: Loadshape #101: Commercial EP Lighting⁶¹¹ and Loadshape #15 (Commercial A/C) for cooling bonus energy savings.

⁶⁰⁶ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air."

 ⁶⁰⁷ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency Vermont does not calculate interactive effects for residential lighting.
 ⁶⁰⁸ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent

 ⁶⁰⁸ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont.
 ⁶⁰⁹ The hours of use for this measure are based on the assumption that these will be installed in the highest use locations

⁶⁰⁹ The hours of use for this measure are based on the assumption that these will be installed in the highest use locations due to their high cost. Therefore prior assumptions for CFLs, when that same assumption was true are used for these lamps. Residential hours of use are based on average daily hours of use of 3.4 from Xenergy, Process and Impact Evaluation of Joint Utilities Starlights Residential Lighting Program, prepared for Boston Edison, Commonwealth Electric, Eastern Utilities, and New England Power Service Company, July 23, 2000.

⁶¹⁰ Commercial hours of use based on standard hours of use for commercial indoor lighting from Vermont State Cost Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category	Light Bulbs/Lamps			
Measure Code	LBLLEDSC			
	LED – Integral			
Product Description		Screw Based Lamp		
Track Name	Track No.	Freerider	Spillover	
Efficient Products	6032EPEP	0.94	1.25	

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use of the luminaire. A year's worth of LED sales data was reviewed and the rated life averaged (see 2013 LED Sales Review.xls). The assumed measure life is 20,000 hours for Omnidirectional <10W, 25,000 for Omnidirectional >=10W, 20,000 for Decorative lamps and 28,000 for Directional <15W lamps and 44,000 for Directional >=15W lamps . Lamps rebated through this program are therefore expected to have the following lifetime, based on the rated life in hours divided by the assumed average hours of use:

		Residential ⁶¹²	Commercial
Omnidirectional	<10W	15	5.7
	>=10W	15	7.1
Decorative	All	15	5.7
Directional	<15W	15	8.0
	>=15W	15	12.6

Analysis period is equal to measure life.

Measure Cost

The efficient, baseline (incandescent, halogen and CFL) and incremental costs for these measures are provided below⁶¹³:

			Lamp	Costs	Incomposited Cost				
	_	Efficient		Baseline		incremental Cost			
	LED Wattage	LED	Incandescent	EISA 2012-2014 Compliant	EISA 2020 Compliant	Incandescent	EISA 2012-2014 Compliant	EISA 2020 Compliant	
Omridingstional	<10W	\$12.00	\$0.50	\$1.50	\$2.50	\$11.50	\$10.50	\$9.50	
Omnidirectional	>=10W	\$26.00	\$0.50	\$1.50	\$2.50	\$25.50	\$24.50	\$23.50	
Decorative	All	\$21.00	\$1.00	n/a	n/a	\$20.00	n/a	n/a	
Directional	<15W	\$41.00	\$5.00	n/a	n/a	\$36.00	n/a	n/a	
	>=15W	\$57.00	\$5.00	n/a	n/a	\$52.00	n/a	n/a	

⁶¹¹ Based on Commercial "Other" Lighting coincidence factors from RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)". Agreement made during Savings Verification 2009. ⁶¹² Note all lifetimes are capped at 15 years (although their rated life/hours is higher).

⁶¹³ All costs are based on review of a year's worth of LED sales data and the retail cost averaged (see 2013 LED Sales Review.xls)

Methodology for Computing O&M Savings

For Decorative and Directional bulbs, without a baseline shift, the following component costs and lifetimes will be used to calculate O&M savings:

		Baseline Measures	
	Lamp Type	Cost	Life ⁶¹⁴
	Decorative	\$1.00	0.8
Residential	Directional <15W	\$5.00	0.8
	Directional >=15W	\$5.00	0.8
	Decorative	\$1.00	0.29
Commercial	Directional <15W	\$5.00	0.29
	Directional >=15W	\$5.00	0.29

For Omni-directional bulbs, to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the LED is calculated (see 2013 EISA Adjustment <u>Calculations.xls</u>). The key assumptions used in this calculation are documented below:

	Incandescent	EISA 2012-2014 Compliant	EISA 2020 Compliant		
Replacement Cost	As presented above				
Component Life (hours)	1000	1000	8,000 (Res)		
			10,000 (C&I)		
Omnidirectional <10W	Until 2014	2014 - 2019	2020 on		
Omnidirectional >=10W	50% in 2013	50% in 2013,	2020 on		
		100% 2014 -			
		2019			

The calculation results in the following assumptions of equivalent annual baseline replacement cost⁶¹⁵:

			Annual baseline O&M assumption for bulbs installed in			
		LED Wattage	2013	2014	2015	
Decidential	Omnidirectional	<10W	\$1.21	\$1.24	\$1.16	
Kesidentiai		>=10W	\$1.19	\$1.17	\$1.01	
Commercial	Omnidirectional	<10W	\$4.88	\$5.56	\$4.98	
		>=10W	\$4.98	\$4.79	\$4.32	

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

⁶¹⁴ Assumes incandescent baseline lamp life of 1000 hours.
⁶¹⁵ See '2013 EISA Adjustment Calculations.xlsx' for details.

Hard to Reach Specialty CFL

Measure Number: IV-E-14-a (Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:Portfolio 80Effective date:1/1/2012End date:TBD

Referenced Documents:

- 1. Residential Lighting Markdown Impact Evaluation, Nexus Market Research, January 20, 2009
- 2. Residential Lighting Measure Life Study, Nexus Market Research, June 4, 2008
- 3. WasteHeatAdjustment.doc
- 4. "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993
- 5. 2012_DeltaWatts_MeasureCost
- 6. Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

Description

An existing incandescent bulb is replaced with a lower wattage ENERGY STAR qualified specialty compact fluorescent bulb. Specialty CFL bulbs are defined as lamps for general illumination that use fluorescent light emitting technology and an integrated electronic ballast with or without a standard Edison screw-base. They can be dimmable, designed for special applications, have special color enhancement properties or have screw-bases that are not standard Edison bases, and include A-lamps, candelabras, G-lamps (globe), reflectors, torpedoes, dimmables, and 3-way bulbs. This particular measure characterizes those bulbs that are provided to customers that have not been able to take advantage of the Retail EP program for economic, cultural or age-related reasons (so called 'Hard to Reach'). These bulbs will be provided through VT Foodbanks and other potential outlets serving disadvantaged populations. Note the only difference between this and the standard Efficient Product Residential Specialty CFL measure is the freerider rate.

Algorithms

0	
Demand Savings	
ΔkW	= ((Δ Watts) /1000) × ISR × WHF _d
$\Delta kW(\text{Res.} <=15W)$	$= ((39.1) / 1000) \times 0.7 \times 1.0) = 0.0274$
$\Delta kW(\text{Res.} > 15W)$	$= ((65.6) / 1000) \times 0.7 \times 1.0) = 0.0459$
Energy Savings	
ΔkWh	= ((Δ Watts) /1000) × HOURS × ISR × WHF _e
ΔkWh (Res. <=15W)	$= ((39.1) / 1000) \times 694 \times 0.7 \times 1.0 = 18.99$
ΔkWh (Res. >15W)	$= ((65.6) / 1000) \times 694 \times 0.7 \times 1.0 = 31.87$
Where:	
∆Watts	= Average delta watts between specialty CFL and incandescent $Watts_{BASE} - Watts_{EE}^{616}$
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
$Watts_{EE}$	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used = 0.7^{617}

⁶¹⁶ Assumed difference in wattage between installed CFL and the incandescent bulb it replaces. Based on EVT analysis of bulbs purchased through the Efficient Product program since 2009 and using an equivalent baseline based on the ENERGY STAR consumer guide. See 2012_DeltaWatts_MeasureCost for more information.

WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
	lighting.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient
	lighting
HOURS	= average hours of use per year ⁶¹⁸

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

0 0	
$\Delta MMBTU_{WH}$	$= (\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$
Δ MMBTU _{WH} (Res<=15W)	$= (24.43 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$
Δ MMBTU _{WH} (Res.>15W)	$= (40.95 / 1) \times 0.003413 \times (1 - 0.25) \times 1.00 \times 0.00 / 0.75 = 0.0$

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{619}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting 620
DFH	= Percent of lighting in heated spaces
HEff	= Average heating system efficiency

Oil heating is assumed typical for commercial buildings.

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent specialty light bulb.

High Efficiency

High efficiency is an ENERGY STAR qualified specialty compact fluorescent lamp.

Operating Hours

Residential: 694 hours / year⁶²¹

Loadshape

Residential: Loadshape #1: Residential Indoor Lighting

⁶¹⁷ Based on agreement with DPS to use half way point between general retail measure (0.9) and "free CFL"

assumption (0.5). ⁶¹⁸ Hours of usage differs for residential and commercial applications. See table below for HOURS at each application. ⁶¹⁹ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and ⁶¹⁹ 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and

institutional buildings have approximately 10 to 40% outside air." ⁶²⁰ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting. ⁶²¹ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

Freeridership/Spillover Factors

Measure Category Light Bulbs/Lamps							
Measure Code	LBLCFSPH						
Product Description	n	Hard to Reach Compact Fluorescent – Specialty Bulb			ulb		
		2012		2013		2014	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	1.0	1.0	1.0	1.0	1.0	1.0

We do not have evaluation data to base the freerider rate on but to be consistent with all other lighting measures targeting low income populations, a net to gross rate of 1.0 is assumed. Since these bulbs are not subject to EISA regulations, there is no reason to believe this will decrease over the years.

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use for the lamp. Most CFLs have a *rated* lifetime of 10,000 hours. However, units that are turned on and off more frequently have shorter lifetimes, and those that stay on continuously for longer periods of time have longer lifetimes. CFLs rebated through this program for commercial applications are assumed to have a life of 10,000 hours (assumed annual use of 2800). That translates to 3.57 years for commercial applications. Nexus Market Research recently analyzed and report measure life for residential applications in the Residential Lighting Measure Life Study dated June 4, 2008. Measure life for residential markdown CFL's is 6.8⁶²² yr. Analysis period is the same as the lifetime.

Measure Cost⁶²³

Incremental Cost (Watts ≤ 15) = \$5.45 Incremental Cost (Watts >15) = \$4.55

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Hours of Use, In Use Rates, and Waste Heat Factors by Customer Type

	Average Annual Hours	Average In Service	WHF _d	WHF _e	AR	HF
	of Use	Rate				
Residential	694	0.7^{624}	1.0	1.0	1.0	0.0

Component Costs and Lifetimes Used in Computing O&M Savings

Baseline Measures

⁶²² Residential Lighting Measure Life Study, Nexus Market Research, June 4, 2008

⁶²³ EVT has applied the ratio of incremental cost difference between the two size classifications as was found by EVT when the original TRM was developed based on a review of available product, to the NEEP RLS, 2011 proposed incremental cost (which was a single value, not split in to size classifications) to give separate incremental costs. See 2012_DeltaWatts_MeasureCost for more information.

 $^{^{624}}$ Based on agreement with DPS to use half way point between general retail measure (0.9) and "free CFL" assumption (0.5).

Component	Cost Residentia		Commercial
		Life ⁶²⁵	Life
Lamp<=15W	\$2.71	1.44	0.36
Lamp>15W	\$4.29	1.44	0.36

⁶²⁵ Based on standard assumption of 1000 hours lamp life for baseline bulb.

Solid State (LED) Fixtures

Measure Number: IV-E-15-a (Efficien

(Efficient Products Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 84
Effective date:	1/1/2014
End date:	TBD

Referenced Documents:

1) WasteHeatAdjustment.doc;

2) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993

3) ENERGY_STAR_Certified_Light_Fixtures.xls

4) 2013 EISA Adjustment Calculations'

5) NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"

Description

An ENERGY STAR qualifying LED Fixture is purchased in place of an incandescent fixture. This measure is broken in to three categories – Indoor Fixtures (including track lighting, wall-wash, sconces, ceiling and fan lights), Task and Under Cabinet Fixtures and Outdoor Fixtures (including flood light, hanging lights, security/path lights, outdoor sconces).

Algorithms

Demand Savings ∆kW

= ((Watts_{BASE} – Watts_{EE}) /1000) × ISR × WHF_d

Energy Savings

∆kWh

= ((Watts_{BASE} – Watts_{EE}) /1000) × HOURS × ISR × WHF_e

Where:

```
\Delta kW
Watts<sub>BASE</sub><sup>626</sup>
```

= gross customer connected load kW savings for the measure = Baseline connected kW.

Fixture Type	2013	2014	
	Watts _{BASE}	Watts _{BASE}	
Indoor Fixture	64.2	64.1	
Task/Under cabinet Fixture	39.9	29.0	
Outdoor Fixture	61.8	58.0	

Watts_{EE}⁶²⁷

= Energy efficient connected kW.

Fixture Type	Watts _{EE}
Indoor Fixture	22.8
Task/Under cabinet Fixture	8.0
Outdoor Fixture	17.2

ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used 628

⁶²⁶ Baseline wattages are determined by finding the average lumen equivalent baseline bulb (as defined by EISA

regulations) of LED fixtures available on the ENERGY STAR qualifying list as of 08/2013 (see ENERGY_STAR_Certified_Light_Fixtures.xls for more details).

⁶²⁷ Efficient wattages are determined by finding the average wattage of fixtures available on the ENERGY STAR qualifying list as of 08/2013.

Customer Type	ISR
Residential	0.95
Commercial	0.9

WHF _d	= Waste heat factor for demand to account for cooling savings from efficient
	lighting. For commercial lighting, the value is 1.082 (calculated as 1 +
	$(0.47*0.67*.808) / 3.1)^{629}$. The cooling savings are only added to the summer
	peak savings.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient

lighting. For commercial lighting, the value is 1.033 (calculated as 1 + $((0.47*0.29*.75)/2.5))^{630}$.

HOURS = average hours of use per year

Fixture Type	Average Annual Hours of Use			
	Residential	Commercial		
Indoor Fixture	$1,241^{631}$			
Task/ Under	730 ⁶³³			
cabinet Fixture		$2,800^{632}$		
Outdoor	1642.5^{634}			
Fixture				

Using the defaults above, the kW and kWh savings for each fixture type and customer class are provided below:

Fixture Type		Reside		Comn	nercial			
	2013		20	14	20	13	20	14
	∆kW	∆kWh	∆kW	∆kWh	∆kW	∆kWh	∆kW	∆kWh
Indoor Fixture	0.039	48.8	0.039	48.7	0.040	107.7	0.040	107.5
Task/ Under cabinet	0.030	22.1	0.020	14.6	0.031	82.9	0.020	54.5
Fixture								
Outdoor Fixture	0.042	69.6	0.039	63.7	0.040	112.5	0.037	102.8

Baseline Adjustment

Federal legislation stemming from the Energy Independence and Security Act of 2007 requires all generalpurpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs. From 2012, 100W incandescents could no longer be manufactured, 75W incandescent are restricted from 2013 followed by restrictions on 60W and 40W in 2014. The baseline for LED fixtures will therefore become bulbs

⁶²⁸ ISR is consistent with the CFL fixture measures.

⁶²⁹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.

⁶³⁰ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and WasteHeatAdjustment.doc for additional discussion.

⁶³¹ The hours of use for this measure are consistent with the ENERGY STAR Integrated Screw Based SSL Lamp TRM and are based on the assumption that these will be installed in the highest use locations due to their high cost. Therefore prior assumptions for CFLs, when that same assumption was true are used for these lamps. Residential hours of use are based on average daily hours of use of 3.4 from Xenergy, Process and Impact Evaluation of Joint Utilities Starlights Residential Lighting Program, prepared for Boston Edison, Commonwealth Electric, Eastern Utilities, and New England Power Service Company, July 23, 2000. ⁶³² Based on agreement made during Savings Verification 2009.

⁶³³ Estimated at 2 hours per day.

⁶³⁴ 2005 RLW memo following on from NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"

(improved incandescent or halogen, and CFL in 2020) that meet the new standard. To account for these new standards, the savings for this measure will be reduced to account for the higher baselines. The appropriate adjustments as a percentage of the base year savings for each Standard and Decorative Screw and Pin-based LED range are provided below (see '2013 EISA Adjustment Calculations' for details on calculation):

		Bu A	lb Watta ssumed	nges in							
		-	C	Calculation			Mid Mea	sure Life S	avings Ac	ljustments	
,		LED Wattage	2013	2014	2020	2013 Adjust- ment	After # of years	2014 Adjust- ment	After # of years	2015 Adjust- ment	After # of years
Residential	Indoor	22.8	64.2	64.1	36.7	33.7%	7	33.7%	6	33.7%	5
	Task / Undercabinet										
		8.0	39.9	29.0	9.1	11.0%	4	5.2%	6	5.2%	5
	Outdoor	17.2	61.8	58.0	28.6	28.0%	6	27.9%	6	27.9%	5
	Indoor	22.8	64.2	64.1	36.7	33.7%	7	33.7%	6	33.7%	5
Commercial	Task / Undercabinet	8.0	39.9	29.0	9.1	18.0%	4	5.2%	6	5.2%	5
	Outdoor	17.2	61.8	58.0	28.6	37.0%	5	27.9%	6	27.9%	5

Heating Increased Usage

 $\Delta MMBTU_{WH}$ = $(\Delta kWh / WHF_e) \times 0.003413 \times (1 - OA) \times AR \times HF \times DFH / HEff$

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{635}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall.
HF	 ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont⁶³⁶. Assumed to be 0.0 for residential lighting
DFH	= Percent of lighting in heated spaces. For prescriptive lighting, assumed to be 95%
HEff	 Average heating system efficiency. For prescriptive lighting, assumed to be 79% in existing buildings and 83 % in new Construction⁶³⁷.

Fixture Type	Commercial			
	2013 ДММВТU_{WH} 2014 ДММВТ			
Indoor Fixture	0.09	0.09		
Task/ Under cabinet	0.07	0.04		

^{635 2009} ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and ⁶³⁶ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. ⁶³⁷ See WasteHeatAdjustment.doc.

Fixture		
Outdoor Fixture	n/a	n/a

Oil heating is assumed typical for commercial.

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent fixture.

High Efficiency

High Efficiency is an ENERGY STAR qualified LED fixture.

Loadshape

Residential: Loadshape, #1 – Residential Indoor Lighting;

Commercial: Loadshape; #101: Commercial EP Lighting for demand and lighting energy savings and #15 (Commercial A/C) for cooling energy savings.

Freeridership/Spillover Factors

Measure Category	LED Fixture		
Measure Code	LFHL	EDIN,	
		LFHLE	EDOU,
		LFHLI	EDTU
Product Description	LED Indoor Fixture,		
	LED Outdoor Fixture,		
	LED Task/Undercabinet		
	Fixture		
Track Name Track No.		Freerider	Spillover
Efficient Products 6032EPEP		0.95	1.05

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use of the luminaire⁶³⁸.

	Fixture Type	Rated Life (hours) ⁶³⁹	Residential Life (years)	Commercial Life (years)	
Measure The	Indoor Fixture	45,000	15	15	Cost
	Task/Under cabinet Fixture	35,000	15	12.5	
	Outdoor Fixture	48,000	15	15	

incremental cost for this measure is provided in the table below⁶⁴⁰:

Fixture Type	Incremental
	Cost
Indoor Fixture	\$75
Task/Under cabinet Fixture	\$25
Outdoor Fixture	\$75

 ⁶³⁸ Lifetimes are capped at 15 years even when the rated life/hours of use are higher.
 ⁶³⁹ Average rated lives are determined by finding the average of fixtures available on the ENERGY STAR qualifying list as of 08/2013. ⁶⁴⁰ Based on the online pricing of the limited available products on the market as of 08/2013.

O&M Cost Adjustments

To account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the LED is calculated (see '2013 EISA Adjustment Calculations'). The key assumptions used in this calculation are documented below:

	Incandescent	EISA 2012-2014 Compliant	EISA 2020 Compliant
Replacement Cost	\$0.5	\$1.50	\$2.50
Component Life (hours)	1000	1000	8000 (Residential) 10,000 (Commercial)
Years	Until 2014	2014 - 2019	2020 on

The calculation results in the following assumptions of equivalent annual baseline replacement cost:

		Annual baseline O&M assumption			
		2013	2014	2015	
Residential	All	\$1.05	\$0.96	\$0.86	
	Indoor	\$2.52	\$2.51	\$2.23	
Commercial	Task / Under cabinet	\$2.85	\$2.83	\$2.48	
	Outdoor	\$2.33	\$2.32	\$2.05	

Water Descriptions

There are no water algorithms or default values for this measure.

Ceiling Fan End Use Ceiling Fan with ENERGY STAR Light Fixture

Measure Number: IV-F-1-d (Efficient Products Program, Ceiling Fan End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	TBD

Referenced Documents:

1) ceilingfans.xls;

2) Calwell and Horwitz (2001). "Ceiling Fans: Fulfilling the Energy Efficiency Promise". *Home Energy*. Jan/Feb. c) Caldwell and Horowitz. Unpublished memo circulated through CEE.
3) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)
4) 2012 EISA Adjustment Calculations.xls

Description

This measure described energy savings associated with the use of integrated or attachable ENERGY STAR lighting fixture to an interior residential ceiling fan. If equipped with a light kit, then either fitted with an ENERGY STAR rated fixture or included with ENERGY STAR bulbs equal to the number of light sockets, as well as have separate fan and light switching. Energy savings are claimed only for the kWh savings attributable to lighting.

Algorithms

Demand Savings

From lighting:

 $\Delta kW = (BaseWatts - EffWatts) / 1000)$

Year	Algorithm	ΔkW
2012	=((4*58) - 60)/1000))	0.172
2013	=((4*55) - 60)/1000))	0.16
2014	= ((4*48) - 60)/1000))	0.132

Energy Savings

From lighting: $\Delta kWh = (BaseWatts - EffWatts) / 1000) * HOURS$

Year	Algorithm	ΔkW
2012	= ((4*58) - 60)/1000)) * 694	119
2013	= ((4*55) - 60)/1000)) * 694	111
2014	= ((4*48) - 60)/1000)) * 694	91.6

Where:

Baseline Efficiencies – New or Replacement

The baseline condition for fans with light kits assumes four sockets fitted with 60 watt incandescent bulbs. Based on information from manufacturer data and the Horowitz/Calwell article in the Jan/Feb 2001 issue of

Home Energy magazine. Based on the NEEP Residential Lighting Survey, 2001 study, the impact of the EISA legislation makes the baseline 58W in 2012, 55W in 2013 and 48W in 2014.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Ceiling Fan with	2012	0.66	2
LINERUT STAR	2013	0.72	1
light lixture	2014	0.85	1

High Efficiency

Energy Star fans with light kits assumes 2-D or circline Energy Star lamp totaling 60 watts. Conditions are based on information from manufacturer data and the Horowitz/Calwell article in the Jan/Feb 2001 issue of Home Energy magazine.

Operating Hours

694 hours per year⁶⁴¹

Loadshape

Residential: Loadshape, #1 - Residential Indoor Lighting

Freeridership/Spillover Factors

Measure Category		Lighting Hardwired Fixture					
Measure Code		LFHCNFFX					
Product Description	n	Ceiling fan with compact fluorescent interior fixture			ire		
		2012 2013 2014		14			
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
Efficient Products	6032EPEP	0.60	1.0	0.5	1.0	0.4	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

20 years, equivalent to the EVT estimate for lifetime of interior fluorescent fixture.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Measure Cost

The incremental cost for this measure is $$50^{642}$.

⁶⁴¹ Based on TAG 2011 agreement to use recommendation from NEEP Residential Lighting Survey, 2011

⁶⁴² Estimate based on Horowitz and Calwell (unpublished memo).

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.50 per lamp Life of CFL lamp: \$,500 hours (RES)

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see <u>EISA</u> <u>Adjustment Calculations.xls</u> for details)⁶⁴³:

Measure	Year Installed	Annual baseline replacement cost	Annual efficient replacement cost
Ceiling Fan with ENERGY STAR	2012	\$8.03	\$2.11
light fixture	2013	\$8.05	\$2.11
6	2014	\$7.47	\$2.11

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁶⁴³ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (20 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Electronic Technology End Use Internal Power Supplies

Measure Number: IV-G-1-c (Efficient Products Program, Electronic Technology End Use)

Version Date & Revision History

Draft date:	Portfolio 56
Effective date:	01/01/09
End date:	TBD

Referenced Documents: 80+ and Energy Star Work Paper May07.pdf,

<*Internal Power Supply Load Profile.xls>*, <Internal Power Supplies Saving Calc.xls>, <80 Plus Datacenter Savings.xls>.

Description:

Power supplies convert high voltage ac to low voltage dc for use by the computer. Although sized to provide a maximum of 200–400 watts of dc output, conventional power supplies often require up to 300–650 watts of maximum ac input converting the rest to heat. They typically waste 30%–45% of all the electricity that passes through them, or about 125–150 kWh annually. Advanced new power supply designs offer more than 80% efficiency across a wide range of load conditions and often need no cooling fan.

Algorithms

The following ΔkW and ΔkWh is per computer.

Demand Savings

80 PLUS DESKTOP:

ΔkW (Residential) Desktop	$= (Watts_{BASE} - Watts_{EE})/1000$
ΔkW (Residential) Desktop	= (116-93)/1000 = 0.023
ΔkW (Commercial) Desktop	= $(Watts_{BASE}-Watts_{EE})/1000$
ΔkW (Commercial) Desktop	= $(74-58)/1000 = 0.016$

ENERGY STAR DESKTOP:

Average Demand Savings over all on hours based on 80PLUS savings during all on hours and increased idle savings during idle hours⁶⁴⁴.

 ΔkW (Residential) Desktop = 0.0376

 ΔkW (Commercial) Desktop = 0.0284

DESKTOP DERIVED SERVER:

∆kW Server	= (Watts _{BASE} -Watts _{EE})/1000
∆kW Server	= (172 - 140.0)/1000 = 0.032

DATACENTER SERVER:⁶⁴⁵

ΔkW Server	= $(Watts_{BASE} - Watts_{EE})/1000$
∆kW Server	= (664 - 604)/1000 = 0.060

⁶⁴⁴ See <Internal Power Supplies Saving Calc.xls>. Idle hours are assumed to be 3,000 hours for residential applications and 4,000 hours for commercial applications.

⁶⁴⁵ See <80 Plus Datacenter Savings.xls>. Assumes mid-range performance for business workload for middle grade (Silver) efficiency. This basis may be revised based on program data from 2009.

Energy Savings	
∆kWh	$= \Delta kW \times HOURS$

80 PLUS DESKTOP:

∆kWh (Residential)	$= (0.023 \times 3,506) = 80.6$
∆kWh (Commercial)	$= (0.016 \times 5,523) = 88.4$

ENERGY STAR DESKTOP:

∆kWh (Residential)	$= (0.0376 \times 3,506) = 131.9$
∆kWh (Commercial)	$= (0.0284 \times 5,523) = 156.8$

DESKTOP DERIVED SERVER:

ΔkWh (Commercial)	$= (0.032 \times 8,760) = 280.3$
---------------------------	----------------------------------

DATACENTER SERVER:

ΔkWh (Commercial)	$=(0.060 \times 8,760) = 525.6$
---------------------------	---------------------------------

Where:

ΔkW	= gross customer connected load kW savings for the measure
Δ Watts	= Watts _{BASE} $-$ Watts _{EE}
Watts _{BASE}	= Baseline connected Watts
Watts _{EE}	= Energy efficient connected Watts
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= average hours of use per year

Baseline Efficiencies – New or Replacement

Baseline is Intel 2004 required efficiency levels for internal power supplies.

High Efficiency

Efficiency is the 80 Plus internal power supply (converting AC power to DC power at 80% efficiency or greater, and a power factor correction of 0.9 or higher), or the ENERGY STAR Tier 1 Version 4.0 specifications (as 80 PLUS with additional idle state power requirements – see reference table).

Operating Hours⁶⁴⁶

Residential: 3,506 hours / year Commercial: 5,523 hours / year Server: 8,760 hours/year

Loadshape⁶⁴⁷

Desktop and Datacenter Server: Load Shape #25: Flat (8,760 hours) Internal Power Supply, Commercial Desktop: Load Shape #74 Internal Power Supply, Residential Desktop: Load Shape #75

Freeridership/Spillover Factors

Measure Category	Electronic Technology	
Measure Code	EQPCMPTR	

646 From 80 PLUS and ENERGY STAR Program Work Paper,

⁶⁴⁷ See < Internal Power Supply Load Profile.xls>

Product Description		Internal Power Supplies	
Track Name	Track No.	Freerider Spillover	
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Prescriptive	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	1	1.1
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Measure Life

Measure life is based on an estimated PC life of 4 years. Measure life is based on an estimated server life of 4 years.

Measure Cost

The incremental cost for the 80 Plus desktop PC power supply is \$5. The incremental cost for the ENERGY STAR desktop PC power supply is \$8. The incremental cost for the efficient desktop-derived server power supply is \$15. The incremental cost for the efficient datacenter server power supply is \$70.⁶⁴⁸

Incentive Level

The incentive level for the 80 Plus desktop PC power supply is \$5. The incentive level for the ENERGY STAR desktop PC power supply is \$8. The incentive level for the efficient desktop-derived server power supply is \$10. The incentive level for the efficient datacenter server power supply is \$70.

O&M Cost Adjustments \$0

Fossil Fuel Descriptions n/a

Water Descriptions n/a

⁶⁴⁸ See <80 Plus Datacenter Savings.xls>. This cost is based upon redundant power supplies for the mid-range Silver performance assumed for savings calculations.

Reference Table

Category	Tier 1 Requirement		
Standby (Off Mode)	≤ 2.0 W		
Sleep Mode	≤ 4.0 W		
Idle State			
Category A (single-core, single processor desktop with < 1GB	≤ 50.0 W		
memory)			
Category B (multiple-core or multiple processor desktop with	≤ 65.0 W		
> 1GB memory, < 128MB dedicated video memory)			
(Category C not included in EVT program)			

ENERGY STAR Tier 1 Version 4.0 Idle State Power Requirements

Ultra Efficient LCD Monitors

Measure Number: IV-G-2-a (Efficient Products Program, Electronic Technology End Use)

Version Date & Revision History

Draft date:Portfolio 55Effective date:1/01/09End date:TBD

Referenced Documents: Submission to the California Energy Commission by PGE, Docket 07-AAER-3; Work Paper High Efficiency LCD Computer Monitor Program For the Mass Market Channel; Energy Star Program Requirements for Computer Monitors (Version 4.1); Internal Power Supply Load Profile.xls

Description:

With rapid advancements in LCD (Liquid Crystal Display) technology, LCD monitors are quickly replacing older CRT technologies in both residential and commercial applications. This program will provide an incentive with the purchase of a LCD monitor that meets or exceeds the Energy Star Tier 2 specification by 25% in place of one of a less efficient monitor available in the market. Initially, this will be an upstream incentive directed towards manufacturer business to business transactions, but may move towards a mid-stream approach in the future to influence retailers to stock, promote, and sell higher efficiency monitors.

Algorithms

The following ΔkW and ΔkWh are per monitor.

Demand Savings

Demand savings are a weighted representation of monitors in historical Energy Star monitor lists (2005 to 2008a) and from 2006 Energy Star market share. Additionally, the savings are based on active mode values for both the baseline and energy efficient monitors.⁶⁴⁹

∆kW LCD Monitor	= (Watts _{BASE} – Watts _{EE}) / 1000
	= (40.2 - 25.9) / 1000
	$= 0.0143 \text{ kW}_{\text{Active}}$

Energy Savings

Average Energy Savings over all hours based on efficiency savings during active, standby and idle operational modes.⁶⁵⁰

$\Delta kWh_{\it Residential}$	$= \Delta k W h_{Active} + \Delta k W h_{Sleep} + \Delta k W h_{Off}$ = 26.7 + 0.6 + 2.8 = 30.0 kWh
ΔkWh _{Commercial}	$= \Delta k W h_{Active} + \Delta k W h_{Sleep} + \Delta k W h_{Off}$ = 46.9 + 2.8 + 0.6 = 50.2 kWh
Where:	
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected Watts as a weighted average of non-Energy Star and Energy Star (Below the + 25% threshold) LCD monitors

⁶⁴⁹ Submission to the California Energy Commission by PGE, *Docket 07-AAER-3* pp. 17,18. (http://www.energy.ca.gov/appliances/2008rulemaking/documents/2008-02-

⁰¹_documents/templates/PG&E_Computer_Monitors_and_other_Video_Displays_Template.pdf)

⁶⁵⁰ Ibid p.18

$Watts_{EE}$	= Connected watts of high efficiency LCD monitors exceeding Energy Star Tier 2 by 25%
∆kWh	= gross customer annual kWh savings for the measure
ΔkWh_{Active}	= Average savings over baseline for the high efficiency LCD monitor in its active state
ΔkWh_{Sleep}	= Average savings over baseline for the high efficiency LCD monitor in its sleep state
ΔkWh_{Off}	= Average savings over baseline for the high efficiency LCD monitor in its off (Standby) state
HOURS	= average hours of use per year

Baseline Efficiencies – New or Replacement

Baseline is a weighted average based upon non-Energy Star LCD and Energy Star forecasted shipment data for 2007-2008.

High Efficiency

High efficiency is an LCD Monitor exceeding the Energy Star Tier 2 requirements by 25%.⁶⁵¹

Operating Hours

Operating hours vary according to usage patterns for both residential and commercial LCD monitors.⁶⁵²

= 1865 Hrs Annual Hours_{Active - Res}

Annual Hours_{Active - Com} = 3278 Hrs

Loadshape⁶⁵³

Internal Power Supply, Commercial Desktop: Load Shape #74 Internal Power Supply, Residential Desktop: Load Shape #75

Freeridership/Spillover Factors

Measure Category		Electronic Technology	
Measure Code	ode EQPCMPTR		MPTR
Product Description		Ultra Efficient LCD Monitors	
Track Name	Track No.	Freerider Spillover	
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Prescriptive	6013FRMP	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
Efficient Products	6032EPEP	0.7^{654}	1
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a

⁶⁵¹ ENERGY STAR Program Requirements for Computer Monitors (Version 4.1)

 ⁶⁵² CEC Docket 07-AAER-3, op. cit., p. 7
 ⁶⁵³ Assumed load profile from 80 Plus computer program < Internal Power Supply Load Profile.xls>
 ⁶⁵⁴ Work Paper: High Efficiency LCD Computer Monitor Program For the Mass Market Channel, p. 3

RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015 CC	n/a	n/a
EDirect	6021 DIRI	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Measure Life

Measure life is based on an estimated monitor life of 4 years.

Measure Cost

The incremental cost for the Ultra Efficient LCD Monitor is $$1.80^{655}$.

Incentive Level

The incentive level for the Ultra Efficient LCD Monitor is \$6.

O&M Cost Adjustments

\$0

Fossil Fuel Descriptions n/a

Water Descriptions n/a

Reference Table

Ultra Efficient LCD Monitor Power Requirements⁶⁵⁶ Category Standby (Off Mode) Sleep Mode Active State < 1 Megapixel > 1 Megapixel

ES Tier 2 + 25% Requirement ≤ 1.0 W ≤ 2.0 W

> ≤ 17.0 W ≤ 21W * # of Megapixels

⁶⁵⁵ Work Paper, op. cit., p. 3. Weighted average incremental cost.

⁶⁵⁶ Energy Star, op. cit.,

Efficient Televisions

Measure Number: IV-G-3-b (Efficient Products Program, Electronic Technology End Use)

Version Date & Revision History

Draft date:	Portfolio 82
Effective date:	4/1/2013
End date:	TBD

Referenced Documents:

- 1. Savings Calculations for ES6_0_CEE_Electronics_Center_August_Monthly_Report.xls;
- 2. Efficient Televisions Measure Assumptions 01042013.xls
- 3. ENERGY STAR Program Requirements Product Specification for Televisions: Eligibility Criteria Version 6_0.pdf
- 4. ENERGY STAR Televisions Final Most Efficient 2013 Recognition Criteria.pdf

Description:

This program is designed to provide a midstream incentive to retailers to stock, promote, and sell televisions which meet or exceed ENERGY STAR 6.0, 20% higher than ENERGY STAR 6.0 and the 2013 ENERGY STAR Most Efficient specification.

Algorithms

The following ΔkW and ΔkWh is per television.

Demand Savings⁶⁵⁷

ΔkW	= (Watts _{BASE} -Watts _{EE}) /1000
ΔkW_{ES} (10-35")	= (47.5 - 28.1) / 1000 = 0.0194
ΔkW_{ES} (36-50")	= (85.3 - 50.5) /1000 = 0.0348
ΔkW_{ES} (>50'')	= (98.7 - 67.3) /1000 = 0.0314
ΔkW _{ES + 20%} (10-35'')	= (47.5 - 28.2) /1000 = 0.0192
$\Delta kW_{ES+20\%}$ (36-50'')	= (85.3 - 47.2) /1000 = 0.0381
$\Delta kW_{ES + 20\%}$ (>50'')	= (98.7 - 62.9) /1000 = 0.0358
ΔkW _{ME2013} (10-35'')	= (47.5 - 27.9) /1000 = 0.0195
ΔkW _{ME2013} (36-50'')	=(85.3-41.4)/1000=0.0439
ΔkW_{ME2013} (>50'')	= (98.7 – 55.3) /1000 = 0.0434
Energy Savings 658,659	
ΔkWh	$= \Delta kW \times HOURS_{Active}$
ΔkWh_{ES} (10-35'')	$= (0.0194 \times 2009) = 38.9 \text{ kWh}$
ΔkWh_{ES} (36-50'')	$= (0.0348 \times 2009) = 69.9 \text{ kWh}$
ΔkWh_{ES} (>50")	$= (0.0314 \times 2009) = 63.0 \text{ kWh}$
$\Delta kWh_{ES+20\%}$ (10-35'')	$= (0.0192 \times 2009) = 38.6 \text{ kWh}$
$\Delta kWh_{ES+20\%}$ (36-50'')	= (0.0381 × 2009) = 76.5 kWh

 $[\]Delta kWh_{ES+20\%}$ (>50'') = (0.0358 × 2009) = 71.9 kWh

⁶⁵⁷ Savings Calculations for ES 6_0_CEE_Electronics_Center_August_Monthly_Report.xls

⁶⁵⁸ Savings Calculations for ES 6_0_CEE_Electronics_Center_August_Monthly_Report.xls

 $^{^{659}}$ Standby energy savings not included due to high penetration of televisions in the market qualified under previous ENERGY STAR specifications requiring < 1 Watt in standby mode.

ΔkWh_{ME2013} (10-35'')	$= (0.0195 \times 2009) = 39.2 \text{ kWh}$
ΔkWh _{ME2013} (36-50'')	$= (0.0439 \times 2009) = 88.2 \text{ kWh}$
ΔkWh _{ME2013} (>50'')	$= (0.0434 \times 2009) = 87.0 \text{ kWh}$

Where:

ΔkW	= gross customer connected load kW savings (active) for the measure
Δ Watts	= Watts _{BASE} – Watts _{EE}
Watts _{BASE}	= Baseline connected Watts (active)
Watts _{EE}	= Energy efficient connected Watts (active)
ΔkWh	= gross customer annual kWh savings in Active Mode
HOURS _{Active}	= average hours of use per year in Active Mode

Baseline Efficiency⁶⁶⁰

Baseline is the August 2012 weighted average for all television technologies below ENERGY STAR 6.0 specification based on the CEE Consumer Electronics Program Center – Monthly Television Data Report provided by NPD.

High Efficiency⁶⁶¹

The High Efficiency Television is based on a weighted average for all products meeting ENERGY STAR 6.0 specification, 20% higher than ENERGY STAR 6.0 and the 2013 ENERGY STAR Most Efficient specification. The market for televisions is evolving fast, and Efficiency Vermont will revisit its program requirements annually as new efficient specifications and technologies emerge.

Operating Hours⁶⁶²

Active Mode: 2,009 hours / year

Loadshape⁶⁶³

Loadshape #94, Residential Efficient Televisions Television: Custom Load Shape based on 5 hrs/day in active mode and 19 hours in standby mode.

		Electronic	
Measure Category		Technology	
Measure Code		EQPTLVSN	
Product Description		Efficient Television	
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	0.9	1.1

The August 2012 CEE Monthly Report on Televisions shows a 29% market penetration of ENERGY STAR 6.0 televisions, 20% for ENERGY STAR 6.0 + 20% and 9% products in the market for Most Efficient 2013. This market penetration reflects the ongoing impact of efficiency program midstream promotions on retailer promotion and future buying patterns for high efficiency televisions.

Persistence

The persistence factor is assumed to be one.

⁶⁶⁰ Savings Calculations for ES 6_0_CEE_Electronics_Center_August_Monthly_Report.xls

⁶⁶¹ Savings Calculations for ES 6_0_CEE_Electronics_Center_August_Monthly_Report.xls

US EPA, 'ENERGY STAR Program Requirements Product Specification for Televisions: Eligibility Criteria Version 6 0'

US EPA, 'ENERGY STAR Televisions Final Most Efficient 2013 Recognition Criteria.pdf'

⁶⁶² Television Usage Analysis: Energy Efficiency Program For Consumer Products.pdf, March 2012

⁶⁶³ 'Efficient Televisions Measure Assumptions 01042013.xls

Lifetimes⁶⁶⁴ Measure life is 6 years.

An LCD may have a life of up to 60,000 hours which is over 30 years at the assumed viewing rates. However, the replacement cycle on new televisions is about 6 years. Plasma televisions do not have as long a lifetime as LCDs, but do have a similar replacement cycle.

Measure Cost⁶⁶⁵ \$0

Based on anecdotal information provided by manufacturers during development of the V3.0 TV specification, qualified TVs won't have any differential in price when compared to non-qualified TVs due to efficiency improvements alone. Rather, price differentials will occur due to additional features/functionality that as a side-benefit, may lead to efficiency improvements, e.g., LED backlighting, etc. Price differentials will also occur between technologies, e.g., a similarly sized LCD will likely cost more than a plasma, irrespective of which model is ENERGY STAR qualified. However, models that utilize the same screen technology and incorporate similar features should not differ in price if one is ENERGY STAR qualified and the other is non-qualified.

O&M Cost Adjustments \$0

Fossil Fuel Descriptions n/a

Water Descriptions n/a

 ⁶⁶⁴ Appliance Magazine, 2006, 29th Annual Portrait of the US Appliance Industry.
 ⁶⁶⁵ Mehernaz Polad, ICF International. Email from Robin Clark (ICF International) on April 10, 2008. This incremental cost correspondence was verified by Ecova on a conference call on 9/25/2012.

Controlled Power Strip

Measure Number: IV-G-4-a (Efficient Products, Electronic Technology End Use)

Version Date & Revision History

Draft:	Portfolio # 56
Effective date:	7/1/2009
End date:	TBD

Referenced Documents:

- 1. ECOS Consulting, Preliminary Findings from Emerging Technology Scoping Study on Smart Plug Strips
- 2. BC Hydro report: Smart Strip electrical savings and usability, October 2008;
- 3. Loadshape_smart_revB.xls

Description

Controlled Power Strips (Smart Strips) are multi-plug power strips with the ability to automatically disconnect specific loads that are plugged into it depending upon the power draw of a control load, also plugged into the strip. Power is disconnected from the switched (controlled) outlets when the control load power draw is reduced below a certain adjustable threshold, thus turning off the appliances plugged into the switched outlets. By disconnecting, the standby load of the controlled devices, the overall load of a centralized group of equipment (ie. Entertainment centers and home office) can be reduced. Unswitched (uncontrolled) outlets are also provided that are not affected by the control device and so are always providing power to any device plugged into it.

Note: EVT and the VT DPS are reviewing more recent savings protocols from similar programs in other jurisdictions and are not in agreement on the savings assumptions for this measure.

Algorithms

Demand Savings	
ΔkW (Residential entertainment center)	= (ΔkWh/Hours) = (79/6,935) = 0.011 kW
∆kW (Residential office)	= (ΔkWh/Hours) = (38.4/5254) = 0.007 kW
Energy Savings ^{666,667}	
ΔK W II	$= \Delta K W \times \Pi O U K S$

ΔkWh	$= \Delta kW \times HO$
ΔkWh (Residential entertainment center)	= 79 kWh
ΔkWh (Residential office)	= 38.4 kWh

Where:

ΔkW	= gross customer connected load kW savings for the measure (kW)
ΔkWh	= gross customer annual kWh savings for the measure (kWh)
Watts _{BASE}	= Baseline connected Watts
Watts _{EE}	= Energy efficient connected Watts
HOURS	= average hours of use per year in efficient (controlled off) mode

⁶⁶⁶ Customer input on coupons will provide a basis for end use type.

⁶⁶⁷ Savings estimates for residential applications were obtained from Preliminary Findings from Emerging Technology Scoping Study on Smart Plug Strips.

Baseline Efficiency

Baseline assumes a mix of typical home office equipment (computer and peripherals), or residential entertainment center equipment (TV, DVD player, set top box, etc), each with uncontrolled standby load.

High Efficiency

The efficient condition assumes peripherals are plugged into controlled Smart Strip outlets yielding a reduction in standby load. No savings are associated with the control load, or loads plugged into the uncontrolled outlets.

Operating Hours^{668, 669}

Operating hours are defined as those hours during which the controlled standby loads are turned off by the Smart Strip. Residential Entertainment Center: 6935 hours Residential Office: 5254 hours

Loadshapes⁶⁷⁰

Loadshape # 96 : Standby Losses - Entertainment Center Loadshape # 97 : Standby Losses - Home Office

Freeridership/Spillover Factors

Measure Category		Electronic Technology		
		EQPPWREC,		
Measure Code		EQPPW	/RHO,	
Product Description		Controlled I	Controlled Power Strip	
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
Pres Equip Rpl	6013PRES	1.0	1.0	
C&I Retro	6012CNIR	n/a	n/a	
MF Mkt Retro	6012MFMR	n/a	n/a	
Efficient Products	6032EPEP	1.0	1.0	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	

Persistence

The persistence factor is assumed to be 1.

⁶⁶⁸ Computer off hours are consistent with assumptions made in the Internal Power Supply measure characterization for desktop computers, using 80 PLUS and ENERGY STAR Program Work Paper. Distribution of hours are an EVT estimate based on assumptions about percentage of units on through a weekday and weekend (see loadshape_smart.xls).

 $^{^{669}}$ Typical on hours for a television is 5hrs per day, therefore off hours are (8760-(5*365) = 6935hours.

Source: US EPA , 'FinalV3.0_TV Program Requirements.pdf' ⁶⁷⁰ See Loadshape_smart_revB.xls

Lifetimes The expected lifetime of the measure is 4 years⁶⁷¹.

Measure Cost The installation cost of the measure is $$15^{672}$.

Incentive Level The proposed Efficiency Vermont incentive amount is \$5

O&M Cost Adjustments There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions There are no fossil fuel algorithms or default values for this measure.

Water Descriptions There are no water algorithms or default values for this measure.

Reference Tables

 ⁶⁷¹ BC Hydro report: Smart Strip electrical savings and usability, October 2008 (unit can only take one surge, then needs to be replaced)
 ⁶⁷² Incremental cost over standard power strip with surge protection based on *Preliminary Findings from Emerging*

^{6/2} Incremental cost over standard power strip with surge protection based on *Preliminary Findings from Emerging Technology Scoping Study on Smart Plug Strips* with average market price of \$35 for controlled power strip and \$20 for baseline plug strip with surge protection

Motors End Use Efficient Pool Pumps

Measure Number: IV-H-2-b (Efficient Products Program, Motors End Use)

Version Date & Revision History

Draft date:	Portfolio 82
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. CEE Efficient Residential Swimming Pool Initiative; http://www.ceeforum.org/system/files/private/4114/cee_res_swimmingpoolinitiative_07dec2012_pdf_ 12958.pdf
- 2. CEE Draft Pool Pump Energy Savings Calculator; http://www.ceeforum.org/content/cee-draft-poolpump-energy-savings-calculator

Description

A residential pool with a single speed pool pump motor can be replaced or retrofitted with a more efficient ENERGY STAR two-speed or variable speed model of equivalent or lesser horsepower. Measure assumes that both the baseline and the efficient motor have a timer.

Algorithms

Energy Savings⁶⁷³

oSpeed	$= ((Hrs/Day_{Base} * GPM_{Base} * 60)/EF_{Base})) - (((Hrs/Day_{TwoSpeedHigh} * GPM_{TwoSpeedHigh} * 60)/EF_{TwoSpeedHigh})) + ((Hrs/Day_{TwoSpeedLow} * GPM_{TwoSpeedLow} * 60)/EF_{TwoSpeedLow}))) / 1000 * Days$		
iableSpeed	= ((Hrs. 60)/EF _V ((Hrs/Da		
ΔkWh_{Two}	Speed	= gross customer annual kWh savings for the two speed measure	
∆kWh _{Var}	iableSpeed	= gross customer annual kWh savings for the variable speed measure	
Hrs/Day ₁	Base	= Run hours of single speed pump	
		= 12	
GPM _{Base}		= Gallons per minute flow of single speed pump = 62^{674}	
EF _{Base}		= Energy Factor of baseline single speed pump (gal/Wh)	
		= 2.0	
Hrs/Day	ГwoSpeedHi	= Run hours of two speed pump at high speed = 2	
GPM _{Two} s	SpeedHigh	= Gallons per minute flow of two speed pump at high speed = 62^{675}	
EF _{TwoSpee}	edHigh	= Energy Factor of two speed pump at High Speed (gal/Wh) = 2.0	
	ΔkWh _{Tw} ΔkWh _{Tw} ΔkWh _{Var} Hrs/Day GPM _{Base} EF _{Base} Hrs/Day GPM _{Two} EF _{TwoSpee}	$\Delta speed$ = ((Hrs/ $60)/EF_{Tv}$ Days ableSpeed = ((Hrs/ $60)/EF_{V}$ ((Hrs/Da)) $\Delta kWh_{TwoSpeed}$ $\Delta kWh_{VariableSpeed}$ Hrs/Day_{Base} EF_{Base} $Hrs/Day_{TwoSpeedHigh}$ $EF_{TwoSpeedHigh}$	

⁶⁷³ The methodology and all assumptions are taken from the CEE Pool Pump Energy Savings Calculator unless otherwise noted; http://www.ceeforum.org/content/cee-draft-pool-pump-energy-savings-calculator. See "cee_resapp_poolpumpsavingscalc_07dec2012_EVT.xlsx" for complete calculation. ⁶⁷⁴ Average GPM from single speed 1HP motors in CEC database. ⁶⁷⁵ Average GPM from 1HP two speed motors at high speed in CEC database.

	Hrs/Day	TwoSpeedLo	$_{\rm w}$ = Run hours of two speed pump at low speed
	GPM _{Two}	SpeedLow	= 8 = Gallons per minute flow of two speed pump at low speed = 33 2^{676}
	$\mathrm{EF}_{\mathrm{TwoSpe}}$	eedLow	= Energy Factor of two speed pump at Low Speed (gal/Wh) = 5.0
	Hrs/Day	VarSpeedHig	h = Run hours of variable speed pump at high speed
	GPM _{Var} S	SpeedHigh	= 1 = Gallons per minute flow of variable speed pump at high speed = 50^{677}
	EF _{VarSpee}	edHigh	= Energy Factor of variable speed pump at High Speed (gal/Wh) = 3.0
	Hrs/Day	VarSpeedLov	v = Run hours of variable speed pump at low speed
	GPM _{Var}	SpeedLow	 = 1 = Gallons per minute flow of variable speed pump at low speed = 33⁶⁷⁸
$EF_{VariableSpeedLow}$		eSpeedLow	= Energy Factor of two speed pump at Low Speed (gal/Wh) = 5.0
	Hrs/Day _{VarSpeedLow}		= Run hours of variable speed pump at lower speed = 12
$GPM_{VarSpeedLower}$		SpeedLower	= Gallons per minute flow of variable speed pump at lower speed = 20^{679}
$EF_{VariableSpeedLower}$		eSpeedLower	= Energy Factor of two speed pump at Lower Speed (gal/Wh) = 12.0
	Days		= Number of days swimming pool is operational = 107^{680}
ΔkWh_{Tw}	voSpeed	= ((12 * = 1649 l	62 * 60)/ 2.0) – (((2 * 62 * 60)/2.0 + ((8 * 33.2 * 60)/5.0))) / 1000 * 107 «Wh
kWh _{Varia}	ıbleSpeed	= ((12 * 60)/12.0 = 21111	62 * 60)/ 2.0) – (((1 * 50 * 60)/3.0) + ((1 * 33 * 60)/5.0)) + ((12 * 20 *))) / 1,000 * 107 KWh
Demano	d Savings	s ⁶⁸¹	
$\Delta k W_{Two}$	Speed	= kWh/c	lay_{Base} / Hrs/day_{Base} – $kWh/day_{TwoSpeed}$ / $Hrs/day_{TwoSpeed}$
ΔkW_{Varia}	ableSpeed	= kWh/c	$lay_{Base} \ / \ Hrs/day_{Base} \ - kWh/day_{VariableSpeed} \ / \ Hrs/day \ _{VariableSpeed} \ / \ Hrs/day \ _{VariableSpeed}$
Where:			
	$\Delta k W_{ m TwoSpeed} \ \Delta k W_{ m VariableSpeed} \ k W h/day_{ m Base}$		 = gross customer annual kW savings for the two speed measure = gross customer annual kW savings for the variable speed measure = Daily energy consumption of baseline pump(calculated using algorithm and variables above) = 22.3 kWh
	Hrs/dayı kWh/da	Base YTwoSpeed	= 12 hours = Daily energy consumption of two speed pump(calculated using algorithm and variables above)

 ⁶⁷⁶ Average GPM from 1HP two speed motors at low speed in CEC database.
 ⁶⁷⁷ Average GPM from 1HP variable speed motors at high speed in CEC database.
 ⁶⁷⁸ Average GPM from 1HP variable speed motors at low speed in CEC database.
 ⁶⁷⁹ Average GPM from 1HP variable speed motors at lower speed in CEC database.
 ⁶⁸⁰ Assumes pool operational between June 1st and September 15th.
 ⁶⁸¹ The set of the second at lower speed from the CEE Pool Pump.

⁶⁸¹ The methodology and all assumptions are taken from the CEE Pool Pump Energy Savings Calculator unless otherwise noted; http://www.ceeforum.org/content/cee-draft-pool-pump-energy-savings-calculator. See "cee_resapp_poolpumpsavingscalc_07dec2012_EVT.xlsx" for complete calculation.

	= 6.9 kWh
Hrs/day TwoSpeed	= 10 hours
kWh/day _{VariableSpe}	ed = Daily energy consumption of variable speed pump(calculated using
- · · · · · · · · · · · · · · · · · · ·	algorithm and variables above)
	= 2.6 kWh
Hrs/day VariableSpee	_d = 14 hours
$\Delta k W_{TwoSpeed}$	= 22.3/12 - 6.9/10 = 1.17kW
$\Delta k W_{VariableSpeed}$	= 22.3/12 - 2.6/12 = 1.64 kW

Baseline Efficiencies – New or Replacement

Baseline efficiency is a single speed pool pump with a timer.

High Efficiency

The high efficiency level is an ENERGY STAR⁶⁸² two-speed or variable speed pool pump with a timer.

Loadshape

Loadshape #100, Residential Efficient Pool Pump

Freeridership/Spillover Factors

Measure Category	Motors		
Measure Code	MTRPLPMP		
Product Description	Efficient Pool Pump		
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	1.0	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

The life of the equipment is 10 years^{683} .

Measure Cost

The incremental cost for this measure is \$100 for two speed pool pumps and \$846 for variable speed pool pumps⁶⁸⁴.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁶⁸² See <u>http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=PP</u>.

⁶⁸³ The CEE Efficient Residential Swimming Pool Initiative, p18, indicates that the average motor life for pools in use year round is 5-7 years. For pools in use for under a third of a year, you would expect the lifetime to be higher so 10 years is selected as an assumption. ⁶⁸⁴ CEE Efficient Residential Swimming Pool Initiative, p34;

http://www.ceeforum.org/system/files/private/4114/cee res swimmingpoolinitiative 07dec2012 pdf 1295 8.pdf

DHW End-Use ENERGY STAR Heat Pump Water Heater

Measure Number: IV-I-1-a (Efficient Products Program, DHW End-Use)

Version Date & Revision History

Draft date:7/9/2014Effective date:1/1/2014End date:TBD

Referenced Documents:

NMR Group, Inc. "Vermont Single-Family Existing Homes Onsite Report FINAL." 2013.

Steven Winter Associates. "Heat Pump Water Heaters Evaluation of Field Installed Performance." Norwalk, CT, 2012.

U.S. Department of Energy. "Residential Heating Products Final Rule Technical Support Document." 2010.

U.S. Environmental Protection Agency. n.d. http://www.epa.gov/burnwise/woodstoves.html (accessed March 7, 2014).

Analysis Documents:

1) HPWH_TRM_Analysis.xlsx

Description

This measure claims savings for the installation of an ENERGY STAR heat pump water heater (HPWH) in place of a baseline water heater in a residential application. The measure is characterized for both market opportunity and retrofit applications. Savings are presented dependent on the existing water heater fuel type and HPWH storage volume. HPWH efficiency has been reduced to account for differences in field performance versus rated efficiency due to ambient conditions, hot water demand, and other factors, and a heating penalty is assessed to account for the impact of the heat pump water heater on the home's heating load.

Homes with existing natural gas water heaters are not eligible for savings under this measure.

Baseline Efficiency

The baseline condition is assumed to be a new water heater that uses the same fuel as the home's existing water heater with efficiency equal to the average energy factor of water heaters in existing Vermont homes for the corresponding fuel type.

High Efficiency

To qualify for this measure the installed equipment must be an ENERGY STAR heat pump water heater.

Algorithms

Energy Savings

For cases where this measure is installed in a home with an existing electric resistance water heater or in a new construction project, electric savings account for the improvement in performance of a HPWH over a baseline electric resistance water heater. For homes with existing fossil fuel water heaters, the installation of a HPWH results in an electric penalty equal to the annual electricity use of the water heater to represent the added electric load. In both caseas a penalty is taken to account for the heating load placed on a home's heating system by the HPWH, apportioned based on the percentage of homes in Vermont with electric heat.

For prescriptive purposes, savings and penalties will be assigned using deemed values, outlined in Table 4.

 $\Delta kWh = \Delta EF_{Elec} * Q_{DHW} * (1 - PF_ElecHeat)$

Where:
$\Delta EF_{Elec} = (1/EF_{ElecBASE} - 1/EF_{HPWH})$ for homes with existing electric water heaters and new homes = $-1/EF_{HPWH}$ for homes with existing fossil fuel fired water heaters

Where:

$\mathrm{EF}_{\mathrm{ElecBASE}}$	= Energy Factor (efficiency) of baseline electric water heater = 0.91^{685}
EF _{HPWH}	 = Energy Factor of heat pump water heater – prescriptive value based on rated EF and a de-rating factor to account for periods where the HPWH uses its electric resistance element to heat water in response to lower space temperature or increased hot water demand = Rated EF (prescriptive value from Table 4) * De-rating Factor
	Table 1 – De-rating Factors ⁶⁸⁶ Table Volume De rating Factors

Tank Volume	De-rating Factor
< 60 gallons	26%
\geq 60 gallons	10%

 Q_{DHW} = Heat delivered to water in HPWH tank annually = 2,618 kWh⁶⁸⁷

PF_ElecHeat = Heating penalty factor from conversion of electric heat in home to water heat = WHHF * % HeatSource / COP * ExistDHWElec

Where:

WHHF	= Portion of reduced waste heat that results in increased heating
	$= 0.558^{688}$
%Heat Source ⁶⁸⁹	= portion of homes with electric space heat
	= 5%
COP _{HEAT}	= Coefficient of Performance of electric space heating system
	$=1.5^{690}$
ExistDHWElec ⁶⁹	= 1 if the home has an existing electric water heater
	= -1 if the home has an existing fossil fuel fired water heater

Demand Savings

The reduction (or increase) in electric demand due to the installation of a HPWH is derived below based on prescriptive energy savings found in **Table 4**.

 $\Delta kW = \Delta kWh / Hours$

Where:

Hours = Full load hours of water heater

⁶⁸⁵ Average efficiency of electric water heaters from VT SF Existing Homes Onsite Report Table 6-9 (NMR Group, Inc. 2013)
⁶⁸⁶ Based on a 2012 field study conducted by Steven Winter Associates in Massachusetts and Rhode Island, which found field measured COP for HPWHs fell 26% below rated COP for 50 gallons units, 10% below rated COP for 60 gallon units, and 11% below rated COP for 80 gallon units (Steven Winter Associates 2012).

⁶⁸⁷ Average annual DHW heat input for Vermont homes, derived from metered data for homes on CVPS Rate 3: Off-Peak Water Heating rate. See Q_{DHW} in HPWH_TRM_Analysis.xlsx

 ⁶⁸⁸ Based on bin analysis of annual heating hours for Burlington, VT using TMY3 data: 4885 / 8760 = 55.8%. See Heating Penalty in HPWH_TRM_Analysis.xlsx
 ⁶⁸⁹ Split of primary heating fuels from the VT SF Existing Homes Onsite Report Table 5-1 after removing homes with natural gas

 ⁶⁹⁹ Split of primary heating fuels from the VT SF Existing Homes Onsite Report Table 5-1 after removing homes with natural gas space heat (NMR Group, Inc. 2013).
 ⁶⁹⁰ The COP used here is an assumption based upon a 50/50 split between resistance COP 1.0 and average Heat Pump effective

⁶⁹⁰ The COP used here is an assumption based upon a 50/50 split between resistance COP 1.0 and average Heat Pump effective COP of 2.0.

⁶⁹¹This factor ensures proper accounting of the heating penalty dependent on the fuel type of the home's existing water heater.

$$=2533^{692}$$

Operating Hours

2533 full load hours per year⁶⁹³

Loadshape

Loadshape #8 Residential DHW Fuel Switch

Table 2 – Freeridership/Spillover Factors							
Measure Category	Water Heating						
Product Description	Heat Pump Water Heater						
Measure Code	НЖЕНЖНТР						
Track Name	Track No.	Freerider	Spillover				
Efficient Products	6032EPEP	1.0	1.1				

Persistence

The persistence factor is assumed to be one.

Lifetimes

The expected measure life is assumed to be 13 years⁶⁹⁴. For retrofit measures, it is assumed that the existing water heating equipment has five years of remaining life and would be replaced with baseline equipment with the associated installed cost at end of life. Analysis period is the same as the lifetime.

Measure Cost

For measures installed in a market opportunity situation, the measure cost is the incremental cost for the installation of a HPWH versus baseline equipment based on the existing water heater fuel type. For retrofit measures, the measure cost is the full cost for the installation of a HPWH.⁶⁹⁵

Installation	HPWH EF	Baseline EF	HPWH Installed Cost	Baseline Installed Cost	Incremental Cost
Existing electric DHW	< 2.35	0.91	\$1,575	\$602	\$973
Existing electric DHW	<u>></u> 2.35	0.91	\$1,703	\$602	\$1,101
Existing propane DHW	< 2.35	0.59	\$1,575	\$1,079	\$496
Existing propane DHW	<u>></u> 2.35	0.59	\$1,703	\$1,079	\$624
Existing fuel oil DHW	< 2.35	0.51	\$1,575	\$1,974	\$(399)
Existing fuel oil fired	<u>></u> 2.35	0.51	\$1,703	\$1,974	\$(271)

Table 3 – Measure Costs

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

For homes with existing fossil fuel water heaters, fuel switching results in fuel savings equal to the annual fuel use that would have resulted if a baseline fossil fuel fired water heater had been installed in the home. For upstream measures where fossil fuel type may be unknown, savings are apportioned based on the breakdown of water heating fuels in Vermont homes, excluding natural gas. A fossil fuel penalty is taken to account for the heating load placed

⁶⁹² Full load hours assumption based on Efficiency Vermont analysis of Itron eShapes.

⁶⁹³ Ibid.

⁶⁹⁴ Residential Heating Products Final Rule Technical Support Document, Page 8-52, this is the accepted lifetime for standard efficiency electric and gas storage water heaters. Manufacturer warranty and ENERGY STAR criteria for 10-year warranties for heat pump water heaters support assuming baseline lifetime for this measure (U.S. Department of Energy 2010).

⁶⁹⁵ Residential Heating Products Final Rule Technical Support Document pages 8-27 to 8-28 (U.S. Department of Energy 2010)

on a home's heating system by the HPWH. For prescriptive purposes, this increased heating usage is allocated by fuel type based on the breakdown of primary heating fuel types in Vermont homes, excluding natural gas.

Savings and penalties will be assigned using deemed values, outlined in Table 4.

ΔMMBtu	=(SF)	FF	DHW –	PF	FF	Heating)	
	· · -						

Where:

SF_FF_DHW = Savings from fuel switching, accounts for replacement of baseline fossil fuel fired water better by HPWH						
	$= 1/EF_{\rm F}$	_{FBASE} * Q _{DHW} * ExistDHWFF * %DHWFuel				
Where:						
	EF_{FFBase}	= Energy Factor (efficiency) of baseline fossil fuel water heater				
		= 0.62 for propane water heaters ⁶⁹⁶				
		= 0.65 for fuel oil water heaters ⁶⁹⁷				
		= 0.64 for fossil fuel water heaters with unknown fuel type ⁶⁹⁸				
	Q_{DHW}	= Heat delivered to water in HPWH tank annually				
		= 8.93 MMBtu ⁶⁹⁹				
	ExistDHWFF	= 1 if the home has an existing fossil fuel fired water heater				
		= 0 if the home has an existing electric water heater				
	%DHWFuel ⁷⁰⁰	= 1 if the existing water heater fuel type is known, all savings attributed to that				
		fuel type				
		=76% for fuel oil, if fuel type is unknown				
		=24% for propage if fuel type is unknown				
PF FF	Heating = Heating	ng penalty factor from conversion of noneletric heat in home to water heat				
	$= \Lambda EF_{r}$	$r_{\text{Elec}} * O_{\text{Duw}} * \text{WHHF} * \% \text{HeatSource} / \text{nHeat} * \text{ExistDHWElec}^{701}$				
Where:						
	%HeatSource ⁷⁰²	= 61% for fuel oil				
	,0110000000000	= 17% for propage				
		-17% for Wood/Other				
	nHeat ⁷⁰³	= 84.2% for fuel oil				
	Illicat	- 97.4% for propaga				
		= 65% for Wood/Other				

Water Descriptions

N/A

⁶⁹⁶ Average efficiency of electric water heaters from VT SF Existing Homes Onsite Report Table 6-7 (NMR Group, Inc. 2013) ⁶⁹⁷ Ibid.

⁶⁹⁸ Weighted average efficiency of propane and fuel oil water heaters from VT SF Existing Homes Onsite Report Tables 6-2 and 6-7 (NMR Group, Inc. 2013), excludes natural gas water heaters

⁶⁹⁹ Average annual DHW heat input for Vermont homes, derived from metered data for homes on CVPS Rate 3: Off-Peak Water Heating rate. See Q_{DHW} in HPWH_TRM_Analysis.xlsx

⁷⁰⁰ This factor apportions fuel savings for homes with unknown fuel types, a prescreening is conducted to exclude homes with

existing natural gas water heaters. ⁷⁰¹This factor ensures proper accounting of the heating penalty dependent on the fuel type of the home's existing water heater. ⁷⁰² Split of primary heating fuels from the VT SF Existing Homes Onsite Report Table 5-1 after removing homes with natural gas space heat. (NMR Group, Inc. 2013). ⁷⁰³ Weighted efficiencies based on VT SF Existing Homes Onsite Report Table 5-8 and 5-9. (NMR Group, Inc. 2013). Efficiency

for homes using wood or pellet stoves based on review of EPA-Certified wood stoves (U.S. Environmental Protection Agency n.d.)

Prescriptive Savings

For prescriptive purposes this measure has been binned based on HPWH energy factor and existing water heater fuel type as follows:

Existing DHW Fuel		Electric			Fuel Oil			Propane		Ur	ıknown Fossil F	uel
Storage Volume						< 60	gallons					
Rated EF	EF<2.35	2.35 <ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<>	2.7 <ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<>	EF<2.35	2.35 <ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<>	2.7 <ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<>	EF<2.35	2.35 <ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<>	2.7 <ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<>	EF<2.35	2.35 <ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<>	2.7 <ef< td=""></ef<>
Average EF	2.31	2.41	2.75	2.31	2.41	2.75	2.31	2.41	2.75	2.31	2.41	2.75
∆kWh	1321	1384	1561	-1559	-1495	-1311	-1559	-1495	-1311	-1559	-1495	-1311
ΔkW	0.52	0.55	0.62	-0.62	-0.59	-0.52	-0.62	-0.59	-0.52	-0.62	-0.59	-0.52
∆MMBtu Fuel Oil	-1.86	-1.94	-2.19	12.30	12.39	12.63	-2.11	-2.02	-1.77	8.33	8.42	8.67
∆MMBtu Propane	-0.50	-0.52	-0.59	-0.57	-0.54	-0.48	13.18	13.20	13.27	2.73	2.76	2.82
∆MMBtu Wood	-0.67	-0.70	-0.79	-0.76	-0.73	-0.64	-0.76	-0.73	-0.64	-0.76	-0.73	-0.64
Measure life (yrs)	13	13	13	13	13	13	13	13	13	13	13	13
Incremental cost (\$)	973	1101	1101	404	532	532	-570	-442	-442	-403	-275	-275
Retrofit cost (\$)	1575	1703	1703	1575	1703	1703	1575	1703	1703	1575	1703	1703
Retrofit remaining life (yrs)	5	5	5	5	5	5	5	5	5	5	5	5
Retrofit Baseline Cost (\$)	602	602	602	1171	1171	1171	2145	2145	2145	1978	1978	1978
Item Code	EPHPWH1	EPHPWH2	EPHPWH3	EPHPWH4	EPHPWH5	EPHPWH6	EPHPWH7	EPHPWH8	EPHPWH9	EPHPWH10	EPHPWH11	EPHPWH12
Retrofit Item Code	EPHPWH25	EPHPWH26	EPHPWH27	EPHPWH28	EPHPWH29	EPHPWH30	EPHPWH31	EPHPWH32	EPHPWH33	EPHPWH34	EPHPWH35	EPHPWH36

Table 4 – Prescriptive Savings Values⁷⁰⁴

⁷⁰⁴ See HPWH_TRM_Analysis.xlsx for derivation of savings. Prescriptive EF for each bin based on average EF of ENERGY STAR certified water heaters for each EF range.

Existing DHW Fuel		Electric			Fuel Oil			Propane		Ur	ıknown Fossil F	uel
Storage Volume		\geq 60 gallons										
Rated EF	EF<2.35	2.35 <ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<>	2.7 <ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<>	EF<2.35	2.35 <ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<>	2.7 <ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<></td></ef<>	EF<2.35	2.35 <ef<2.7< td=""><td>2.7<ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<></td></ef<2.7<>	2.7 <ef< td=""><td>EF<2.35</td><td>2.35<ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<></td></ef<>	EF<2.35	2.35 <ef<2.7< td=""><td>2.7<ef< td=""></ef<></td></ef<2.7<>	2.7 <ef< td=""></ef<>
Average EF	2.31	2.41	2.75	2.31	2.41	2.75	2.31	2.41	2.75	2.31	2.41	2.75
ΔkWh	1589	1640	1786	-1282	-1229	-1078	-1282	-1229	-1078	-1282	-1229	-1078
ΔkW	0.63	0.65	0.70	-0.51	-0.48	-0.42	-0.50	-0.48	-0.42	-0.50	-0.48	-0.42
∆MMBtu Fuel Oil	-2.23	-2.30	-2.51	12.67	12.75	12.95	-1.74	-1.66	-1.46	8.71	8.78	8.99
∆MMBtu Propane	-0.60	-0.62	-0.67	-0.47	-0.45	-0.39	13.28	13.30	13.35	2.83	2.85	2.91
∆MMBtu Wood	-0.81	-0.83	-0.91	-0.63	-0.60	-0.53	-0.63	-0.60	-0.53	-0.63	-0.60	-0.53
Measure life (yrs)	13	13	13	13	13	13	13	13	13	13	13	13
Incremental cost (\$)	973	1101	1101	404	532	532	-570	-442	-442	-403	-275	-275
Retrofit cost (\$)	1575	1703	1703	1575	1703	1703	1575	1703	1703	1575	1703	1703
Retrofit remaining life (yrs)	5	5	5	5	5	5	5	5	5	5	5	5
Retrofit Baseline Cost (\$)	602	602	602	1171	1171	1171	2145	2145	2145	1978	1978	1978
Market Opp. Item Code	EPHPWH13	EPHPWH14	EPHPWH15	EPHPWH16	EPHPWH17	EPHPWH18	EPHPWH19	EPHPWH20	EPHPWH21	EPHPWH22	EPHPWH23	EPHPWH24
Retrofit Item Code	EPHPWH37	EPHPWH38	EPHPWH39	EPHPWH40	EPHPWH41	EPHPWH42	EPHPWH43	EPHPWH44	EPHPWH45	EPHPWH46	EPHPWH47	EPHPWH48

Low Income Single-Family Program

Hot Water End Use Tank Wrap

Measure Number: V-A-1-e (Low Income Single Family Program, Hot Water End Use)

Version Date & Revision History

Draft date:	Portfolio 81
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM)
- 2. NREL, National Residential Efficiency Measures Database
- 3. Efficiency Vermont Program Documentation
- 4. DOE, "Residential Heating Products Final Rule Technical Support Document"

Description

Insulation "blanket" is wrapped around the outside of an existing electric hot water tank to reduce stand-by losses.

Algorithms

Energy Savings

For electric DHW systems only: $\Delta kWh = ((U_{hase}A_{hase} - U_{insul}A_{insul}) * \Delta T * Hours) / (3412 * \eta DHW)$ Where: ∆kWh = gross customer annual kWh savings for the measure U_{base} = Overall heat transfer coefficient prior to adding tank wrap ($Btu/Hr-F-ft^2$) $= 1/12^{705}$ U_{insul} = Overall heat transfer coefficient after addition of tank wrap $(Btu/Hr-F-ft^2)$ $= 1/22^{706}$ = Surface area of storage tank prior to adding tank wrap (square feet) Abase $= 23.18^{707}$ = Surface area of storage tank after addition of tank wrap (square feet) $A_{insul} \\$ $= 25.31^{-708}$ ΔT = Average temperature difference between tank water and outside air temperature (°F) $= 55^{\circ}F^{709}$ Hours = Number of hours in a year (since savings are assumed to be constant over year). = 8760= Conversion from BTU to kWh 3412 = Recovery efficiency of electric hot water heater nDHW $= 0.98^{710}$

⁷⁰⁵ Conservative baseline assumption

⁷⁰⁶ Efficiency Vermont program documentation specifies R-10 tank wrap

⁷⁰⁷ Assumptions from PA TRM. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.

⁷⁰⁸ Ibid.

⁷⁰⁹ Assumes 120°F water in the hot water tank and average temperature of basement of 65°F.

⁷¹⁰ NREL, National Residential Efficiency Measures Database,

For the prescriptive assumption, 40 gallons is selected as an average tank⁷¹¹, and the savings are derived from adding R-10 to an R-12 tank. The prescriptive savings are therefore:

 $\Delta kWh = ((23.18/12 - 25.31/22) * 55 * 8760) / (3412 * 0.98)$

= 113 kWh

 $= \Delta kWh / 8766$

Demand Savings

Where:

ΔkW	= gross customer connected load kW savings for the measure
ΔkWh	= kWh savings from tank wrap installation, calcualted below
8760	= Number of hours in a year (savings are from reduced standby loss and are

therefore assumed to be constant over the year).

For the prescriptive assumption, the assumed savings is:

 $\Delta kW = 113 / 8760$

ΔkW

= 0.0128 kW

Baseline Efficiencies – New or Replacement

The baseline condition is a hot water tank that is not already well insulated. Newer, rigid, foam insulated tanks are considered to be effectively insulated while older tanks with fiberglass insulation that gives to gentle pressure are not.

High Efficiency

High efficiency is a hot water tank with a tank wrap of R-10.

Operating Hours

8766, savings are from reduced standby loss and are therefore assumed to be constant over the year.

Loadshape

Loadshape #25, Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Hot Water			
Measure Code		HWEINSUL			
Product Description		Insulate hot water tank			
Track Name	Track No.	Freerider	Spillover		
LISF Retrofit	6034LISF	1.0	1.0		

Persistence

The persistence factor is assumed to be one.

Lifetimes

6 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Incremental Cost

\$35 average retrofit cost⁷¹²

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40 711 DOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch3.pdf 712 Based on EVT online product review.

O&M Cost Adjustments There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions n/a

Pipe Wrap

Measure Number: V-A-2-f (Low Income Single Family Program, Hot Water End Use)

Version Date & Revision History

Draft date:	Portfolio 81
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. Navigant Consulting Inc., April 2009; "Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets"
- 2. Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007
- 3. DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com)
- 4. NREL, National Residential Efficiency Measures Database

Description

Insulation is added to both the hot and cold pipes from the hot water tank to the first elbow. This is the most cost effective section to insulate since the water pipes act as an extension of the hot water tank up to the first elbow which acts as a heat trap. Insulating this length therefore helps reduce standby losses.

Algorithms

Energy Savings

For electric DHW systems:

$$\Delta kWh = ((C_{exist} / R_{exist} - C_{new} / R_{new}) * L * \Delta T * 8,760) / \eta DHW / 3412$$

Where:

R _{exist}	= Pipe heat loss coefficient of uninsulated pipe (existing) [(hr-°F-ft)/Btu] = 1.0^{713}
C _{exist}	= Circumference of pipe before insulation added (ft) (Diameter (in) * $\pi/12$): (0.5" pipe = 0.131ft, 0.75" pipe = 0.196ft) Assuming $\frac{1}{2}$ " pipe
R _{new}	= 0.131 = Pipe heat loss coefficient of insulated pipe (new) [(hr-°F-ft)/Btu] = Actual (1.0 + R value of insulation)
$= 3.4C_{new}$	Assuming R-2.4 (3/8" foam) insulation is added = Circumference of pipe after insulation added (ft) (Diameter (in) * $\pi/12$): Assuming $\frac{1}{2}$ " pipe and 3/8" foam ((0.5 + 3/8 + 3/8) * $\pi/12$) = 0.327
L	=Length of pipe from water heating source covered by pipe wrap (ft) Assuming 3 feet of both the hot and cold pipes = 6
С	= Circumference of pipe (ft) (Diameter (in) * $\pi/12$): (0.5" pipe = 0.131ft, 0.75" pipe = 0.196ft) Assuming $\frac{1}{2}$ " pipe
ΔΤ	= 0.131 = Average temperature difference between supplied water and outside air temperature (°F) = $55^{\circ}F^{714}$

⁷¹³ Navigant Consulting Inc., April 2009; "Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets", p77.

8,760	= Hours per year
ηDHW	= Recovery efficiency of electric water heater
	$= 0.98^{715}$
3412	= Conversion from Btu to kWh

Assuming defaults provided above:

 $\Delta kWh = (((0.131 / 1) - (0.327 / 3.4)) * 6 * 55 * 8,760) / 0.98 / 3412$

= 30.0 kWh

Demand Savings

 $\Delta kW = \Delta kWh / 8760 * CF$

Where:

= gross customer connected load kW savings for the measure
= kWh savings from tank wrap installation, calcualted below
= Number of hours in a year (savings are from reduced standby loss and are
therefore assumed to be constant over the year).

Assuming defaults provided above:

ΔkW = 30.0 / 8760 = 0.0034 kW

Baseline Efficiencies – New or Replacement

The baseline condition is a hot water system without pipe wrap.

High Efficiency

High efficiency is a hot water system with insulation on the hot and cold water pipes up to the first elbow.

Loadshape

Loadshape #25, Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Hot Water End Use	
Measure Code		HWEI	PIPES
Product Description		Insulating Water Pipes	
Track Name	Track No.	Freerider	Spillover
LISF Retrofit 6034LISF		1.0	1.0

Persistence

The persistence factor is assumed to be one.

Lifetime

15 years⁷¹⁶. Analysis period is the same as the lifetime.

 $^{^{714}}$ Assumes 120°F water leaving the hot water tank and average temperature of basement of 65°F. ⁷¹⁵ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40 ⁷¹⁶ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Incremental Cost

The measure cost is assumed to be 3 per linear foot⁷¹⁷, or 18 for a 6 foot length, including installation labor

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions

For fossil fuel DHW systems:

$$\Delta MMbtu = ((C_{exist} / R_{exist}) - (C_{new} / R_{new})) * L * \Delta T * 8,760) / \eta DHW / 1,000,000$$

Where:

ηDHW	= Recovery efficiency of fossil fuel water heater
	$= 0.76^{718}$
1,000,000	= Conversion from Btu to MMBtu

Other variables as defined above

 $\Delta MMbtu = ((0.131 / 1) - (0.327 / 3.4)) * 6 * 55 * 8,760) / 0.76 / 1,000,000$

= 0.132 MMBtu

⁷¹⁷ Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com) ⁷¹⁸ NREL, National Residential Efficiency Measures Database, http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

Tank Temperature Turn-down

Measure Number: V-A-3-f (Low Income Single Family Program, Hot Water End Use)

Version Date & Revision History

Draft date: Portfolio 81 Effective date: 1/1/2013 End date: TBD

Referenced Documents:

- 1. Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM).
- 2. NREL, National Residential Efficiency Measures Database
- 3. DOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch3.p df

Description

The domestic hot water tank thermostat is lowered to reduce standby losses.

Algorithms

Energy Savings

For electric DHW systems:

= (($U_{\text{hase}}A_{\text{hase}}$) * ΔT * Hours) / (3412 * η DHW) ΔkWh

Where:

	∆kWh Uhasa	= Gross customer annual kWh savings for the measure = Overall heat transfer coefficient (Btu/Hr-F-ft ²)
	- base	$= 1/20^{719}$
	A _{base}	= Surface area of storage tank (square feet) = 23.18^{720}
	ΔT	= Temperature difference between before and after turn down = $15^{\circ}F^{721}$
	Hours	= Number of hours in a year (savings are assumed to be constant over year) = 8760
	3412	= Conversion from BTU to kWh
	ηDHW	= Recovery efficiency of electric water heater = 0.98^{722}
∆kWh		= ((1/20 * 23.18) * 15 * 8760) / (3412 * 0.98)
		= 45.5 kWh

⁷¹⁹ Assumes an existing well insulated tank, or that tank wrap is added at that same time as the turn-down. Assumptions from Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM). ⁷²⁰ Area includes tank sides and top, for a 40 gallon tank. Assumptions from Pennsylvania Public Utility Commission

Technical Reference Manual (PA TRM). Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and

top to account for typical wrap coverage. ⁷²¹ Assumes 135°F tank turned down to 120°F.

⁷²² NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

Demand Savings

ΔkW		$= \Delta kWh / 8760$
Where:	A 1-XX7	
	ΔKW AkWh	= Gross customer connected load KW savings for the measure = kWh savings, calculated above
	8766	= Number of hours in a year (savings are from reduced standby loss and are therefore assumed to be constant over the year).
ΔkW		= 45.5 / 8760
		= 0.00519 kW

Baseline Efficiencies – New or Replacement

The baseline condition is a hot water tank with a thermostat setting that is higher than 125°F, typically 130°F or higher.

High Efficiency

High efficiency is a hot water tank with the thermostat set at 120°F or less.

Operating Hours

8766, savings are from reduced standby loss and are therefore assumed to be constant over the year.

Loadshape

Loadshape #25, Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Hot Water End Use	
Measure Code		HWETEMPS	
		Hot Water 7	Cemperature
Product Description		Set b	back
Track Name	Track No.	Freerider	Spillover
LISF Retrofit	6034LISF	1.0	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

2 years. Analysis period is the same as the lifetime.

Incremental Cost

\$5 for contractor time.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions

For fossil fuel DHW systems:

ΔMMBtu	$= ((U_{base}A_{base}) * \Delta T *$	[*] Hours) / (1,000,000 [*]	* ηDHW)
--------	--------------------------------------	---	---------

Where:

ΔMMBtu	= Gross customer annual MMBtu savings for the measure
U _{base}	= Overall heat transfer coefficient (Btu/Hr-F-ft ²)

	$= 1/20^{723}$
A _{base}	= Surface area of storage tank (square feet) ⁷²⁴
	= 23.18
ΔT	$= 15^{\circ} F^{725}$
Hours	= Number of hours in a year (savings are assumed to be constant over year) = 8760
1,000,000	= Conversion from BTU to MMBtu
ηDHW	= Recovery efficiency of fossil fuel water heater = 0.76^{726}
ΔMMBtu	= ((1/20 * 23.18) * 15 * 8760) / (1,000,000 * 0.76)

= 0.20 MMBtu

⁷²³ Assumes an existing well insulated tank, or that tank wrap is added at that same time as the turn-down.

Assumptions from Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM). ⁷²⁴ Area includes tank sides and top to account for typical wrap coverage, for a 40 gallon tank. Number from Tank Wrap measure and PA TRM. ⁷²⁵ Assumes 135°F tank turned down to 120°F. ⁷²⁶ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>

Low Flow Shower Head

Measure Number: V-A-4-e

(Low Income Single Family Program, Hot Water End Use)

Version Date & Revision History

Draft date:	Portfolio
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. Energy Policy Act of 1992
- 2. 2010 Census
- 3. NREL, National Residential Efficiency Measures Database
- 4. AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx
- 5. CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.
- 6. Pacific Northwest Laboratory; "Energy Savings from Energy-Efficient Showerheads: REMP Case Study Results, Proposed Evaluation Algorithm, and Program Design Implications" http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=80456EF00AAB94DB204E848BAE65F199 ?purl=/10185385-CEkZMk/native/
- 7. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market penetration study 0.pdf
- 8. SBW Consulting, Evaluation for the Bonneville Power Authority, 1994. http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm
- 9. Champlain Water District, 2010 Water Quality Report, http://www.cwdh2o.org/vertical/Sites/%7B0A660058-838C-4456-B2E9-CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf

Description

An existing shower head with a high flow rate is replaced with new unit that has a low flow rate. This is a retrofit measure.

Algorithms

Energy Savings

If electric domestic water heater:

ΔkWh^{727}		$= (((GPM_{base} \times min/person/day_{base} - GPM_{efficient} \times min/person/day_{efficient}) \times \#$ people × days/year) / SH/home) × 8.3 × (TEMP_{sh} - TEMP_{in}) / DHW Recovery Efficiency / 3412 × ISR
	GPM _{base}	= Gallons Per Minute of baseline shower head = 2.02^{728}
	GPM _{efficient}	= Gallons Per Minute of low flow shower head = 1.5^{729}
	min/person/day _{ba}	$_{se}$ = Average minutes in the shower per person per day with baseline showerhead = 4.7 730

⁷²⁷ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all shower head installations. ⁷²⁸ Median from AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-

end-uses-of-water-study-1999.aspx ⁷²⁹ EVT program documentation as of November 2012

⁷³⁰ Based on 7.8 minutes per shower and 0.6 showers per person per day (7.8 \times 0.6 = 4.7 minutes per person per day); CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.

min/person/day_{efficient} = Average minutes in the shower per person per day with low flow showerhead

		$=4.7^{751}$
#	ŧ people	= Average number of people per household = 2.34^{732}
ċ	lays/y	= Days shower used per year
		= 365
S	SH/home	= Average number of showers in the home = 1.7^{733}
8	3.3	= Constant to convert gallons to lbs
7	TEMP _{sh}	= Assumed temperature of water used by shower head = $101F^{734}$
1	TEMP _{in}	= Assumed temperature of water entering house = 54 F^{735}
Ι	OHW Recovery I	Efficiency = Recovery efficiency of electric water heater = 0.98^{736}
3	3412	= Constant to converts BTU to kWh
Ι	SR	= In Service Rate = 0.95^{737}
	$\Delta kWh = 0.95$	[((2.02 × 4.7 – 1.5 × 4.7) × 2.34 × 365) / 1.7] × 8.3 × (101-54) / 0.98 / 3412 ×
		= 136 kWh
Demand ∆kW	Savings	$= \Delta kWh / hours$
Where:		
H	Hours	 Operating hours from Residential DHW Conservation Loadshape⁷³⁸ = 3427
	ΔkW	= 136 kWh / 3427 = 0.0395 kW

Baseline Efficiencies – New or Replacement

The baseline condition is an existing shower head with a high flow.

⁷³³ Estimate based on review of a number of studies:

- Pacific Northwest Laboratory; "Energy Savings from Energy-Efficient Showerheads: REMP Case Study a. Results, Proposed Evaluation Algorithm, and Program Design Implications" http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=80456EF00AAB94DB204E848BAE65F199?purl=/101 85385-CEkZMk/native/
- b. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf

⁷³¹ Ibid.

⁷³² Average people per household in Vermont single family buildings, 2010 Census

AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-endc. uses-of-water-study-1999.aspx

⁷³⁴ CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013. ⁷³⁵ Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h2o.org/vertical/Sites/%7B0A660058-</u>

⁸³⁸C-4456-B2E9-CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf ⁷³⁶ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

Navigant, 2013, Draft Evaluation of Multi-Family Home Energy Savings Program for ComEd PY4 and Nicor Gas PY1

⁷³⁸ Based on Itron eShapes (8760 data) and adjusted for diversity within the hour

High Efficiency

High efficiency is a low flow shower head.

Loadshape

For DHW systems not on Utility Controlled DHW program (Default): Loadshape #8, Residential DHW Conservation

For DHW systems on Utility Controlled DHW program: Loadshape #54, Controlled DHW Conservation

Freeridership/Spillover Factors

Measure Category		Hot Water	
Measure Code HWESHOWR		۲.	
		Low Flow	
Product Description Shower Head			
Track Name	Track No.	Freerider	Spillover
LISF Retrofit	6034LISF	1.0	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

9 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for low-flow shower heads is presumed to be zero for new construction or major rehab projects, and \$15 for retrofit applications.739

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions⁷⁴⁰

If fossil fuel water heating: = $((\Delta kWh \times \eta WH_{electric}) / \eta WH_{combustion}) \times 0.003412$ ΔMMBtu

Where:

= Recovery efficiency of electric water heater $\eta WH_{electric}$ $= 0.98^{741}$ = Recovery efficiency of fossil fuel water heater $\eta WH_{combustion}$ $= 0.76^{742}$

Other factors as defined above

 Δ MMBtu = ((136 × 0.98) / 0.76) × 0.003412

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40 742 NREL, National Residential Efficiency Measures Database,

⁷³⁹ Includes showerhead cost of \$2.5 for a regular, \$2.97 for chrome and \$7.26 for handheld, plus labor installation

costs. ⁷⁴⁰ Fossil fuel savings based on efficiency factors of .62 for oil, natural gas, and liquid propane high efficiency stand alone DHW heaters as approved by the VT- DPS and used by Efficiency Vermont. Efficiency factor of .88 is used for electric DHW heater. ⁷⁴¹ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

= 0.60 MMBtu

Water Descriptions

 $\Delta CCF = ((GPM_{base} \times min/person/day_{base} - GPM_{efficient} \times min/person/day_{efficient}) \times \# people \times days/year) / (SH/home \times 748)$

Where:

ΔCCF	= customer water savings in hundreds of cubic feet for the measure
748	= Conversion from gallons to CCF

Other factors are as defined above

 $\Delta \text{CCF} = ((2.02 \times 4.7 - 1.5 \times 4.7) \times 2.34 \times 365) / (1.7 \times 748)$

= 1.64 CCF

Low Flow Faucet Aerator

Measure Number: V-A-5-e (Low Income Single Family Program, Hot Water End Use)

Version Date & Revision History

Draft date:	Portfolio 81
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- DOE, "Energy and Water Conservation Standards," Federal Register Vol. 63, No. 52, March 18, 1998, 13307
- 2. AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx
- 3. Ontario Energy Board, "Measures and Assumptions for Demand Side Management Planning."
- 4. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf
- 5. CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.
- Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h2o.org/vertical/Sites/%7B0A660058-838C-4456-B2E9-</u> CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf
- NREL, National Residential Efficiency Measures Database, http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40
- 8. 2010 Census

Description

An existing faucet aerator with a high flow rate is replaced with new unit that has a low flow rate. This is a retrofit measure.

Algorithms

Energy Savings

If electric domestic water heater:

 ΔkWh^{743}

 $= (((GPM_{base} - GPM_{efficient}) / GPM_{base} \times \# people \times gpcd \times days/year \times DR) / (F/home)) \times 8.3 \times (TEMP_{fr} - TEMP_{in}) / DHW Recovery Efficiency / 3412$

Where:

GPM _{base}	= Gallons Per Minute of baseline faucet
	$= 2.2^{744}$
GPM _{efficient}	= Gallons Per Minute of low flow faucet
	= 1.5 or
	= 1.0
# people	= Average number of people per household
	$= 2.34^{-745}$
gpcd	= Average gallons per person per day using faucets
	$=10.9^{-746}$

⁷⁴³ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all faucet aerator installations.

 ⁷⁴⁴ In 1998, the Department of Energy adopted a maximum flow rate standard of 2.2 GPM at 60 psi for all faucets:
 DOE, "Energy and Water Conservation Standards," Federal Register Vol. 63, No. 52, March 18, 1998, 13307
 ⁷⁴⁵ Average people per household in Vermont single family buildings, 2010 Census

⁷⁴⁶ AWWA, Residential End Uses of Water, 1999, <u>http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx</u>

	days/y	= Days faucet used per year
	DR	= 505 = Percentage of water flowing down drain (if water is collected in a sink, a faucet aerator will not result in any saved water) = 50% ⁷⁴⁷
	F/home	= Average number of faucets in the home = 3.5^{748}
	8.3	= Constant to convert gallons to lbs
	TEMP _{ft}	= Assumed temperature of water used by faucet = 88 F^{749}
	TEMP _{in}	= Assumed temperature of water entering house = 54 F^{750}
	DHW Recovery	Efficiency = Recovery efficiency of electric water heater = 0.98^{751}
	3412	= Constant to converts BTU to kWh
	Aerator at 1.5 gp ΔkWh =	$= ((2.2 - 1.5) / 2.2 \times 2.34 \times 10.9 \times 365 \times 0.5) / 3.5 \times 8.3 \times (88 - 54) / 0.98 / 3412$
		= 35.7 kWh
	Aerator at 1.0 gp ΔkWh	om = ((2.2 - 1.0) / 2.2 × 2.34 × 10.9 × 365 × 0.5) / 3.5 × 8.3 × (88 - 54) / 0.98 / 3412
		= 61.2 kWh
Deman o ∆kW	d Savings	$= \Delta kWh / hours$
Where:	Hours	 = Operating hours from Residential DHW Conservation Loadshape⁷⁵² = 3427
	Aerator at 1.5 gp	m
	ΔkW	= 35.7 kWh / 3427 = 0.0104 kW
	Aerator at 1.0 gp	m
	ΔkW	= 61.2 kWh / 3427 = 0.0179 kW
Baseline The base	e Efficiencies – N eline condition is	New or Replacement an existing faucet aerator using 2.2 gpm.

⁷⁴⁷ Estimate consistent with Ontario Energy Board, "Measures and Assumptions for Demand Side Management Planning." ⁷⁴⁸ Estimate based on East Bay Municipal Utility District; "Water Conservation Market Penetration Study"

http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf ⁷⁴⁹ Weighted average of kitchen (93F) and bathroom (86F) faucet use temperatures, CADMUS and Opinion Dynamics,

 ⁷⁵⁰ Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h2o.org/vertical/Sites/%7B0A660058-838C-4456-B2E9-CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf</u>
 ⁷⁵¹ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40 ⁷⁵² Based on Itron eShapes (8760 data) and adjusted for diversity within the hour

High Efficiency

High efficiency is a low flow aerator, 1.5 or 1.0 gpm.

Loadshape

For DHW systems not on Utility Controlled DHW program (Default): Loadshape #8, Residential DHW Conservation

For DHW systems on Utility Controlled DHW program: Loadshape #54, Controlled DHW Conservation

Freeridership/Spillover Factors

Measure Category		Hot Water	
Measure Code		HWEFAUCT	
Product Description		Low Flow Faucet Aerator	
Track Name	Track No.	Freerider Spillover	
LISF Retrofit	6034LISF	1.0 1.0	

Persistence

The persistence factor is assumed to be one.

Lifetimes

The expected lifetime of the measure is 9 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for low-flow faucet aerators is presumed to be zero for new construction or major rehab projects, and \$10 for retrofit applications.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions⁷⁵³

If fossil fuel water heating: ΔMMBtu

= $((\Delta kWh \times \eta WH_{electric}) / \eta WH_{combustion}) \times 0.003412$

Where:

 $\eta WH_{electric}$ = Recovery efficiency of electric water heater = 0.98⁷⁵⁴ $\eta WH_{combustion}$ = Recovery efficiency of fossil fuel water heater $= 0.76^{755}$ Other factors as defined above

Aerator at 1.5 gpm Δ MMBtu = ((35.7 × 0.98) / 0.76) × 0.003412

= 0.157 MMBtu

Aerator at 1.0 gpm

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40⁷⁵⁵ NREL, National Residential Efficiency Measures Database,

⁷⁵³ Fossil fuel savings based on efficiency factors of .62 for oil, natural gas, and liquid propane high efficiency standalone DHW heaters as approved by the VT- DPS and used by Efficiency Vermont. Efficiency factor of .88 is used for electric DHW heater. ⁷⁵⁴ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

 Δ MMBtu = ((61.2 × 0.98) / 0.76) × 0.003412

= 0.269 MMBtu

Water Descriptions

 $\Delta CCF = ((GPM_{base} - GPM_{efficient}) / GPM_{base} \times \# people \times gpcd \times days/year \times DR) / (F/home \times 748)$

Where:

ΔCCF	= customer water savings in hundreds of cubic feet for the measure
748	= Conversion from gallons to CCF

Other factors are as defined above

Aerator at 1.5 gpm $\Delta CCF = ((2.2 - 1.5) / 2.2 \times 2.34 \times 10.9 \times 365 \times 0.5) / (3.5 \times 748)$

= 0.566 CCF

Aerator at 1.0 gpm

 $\Delta CCF = ((2.2 - 1.0) / 2.2 \times 2.34 \times 10.9 \times 365 \times 0.5) / (3.5 \times 748)$

= 0.970 CCF

Lighting End Use Standard CFL Direct Install

Measure Number: V-C-5-c (Low Income Single-Family Program, Lighting End Use)

Version Date & Revision History:

Draft date:	Portfolio 76
Effective date:	1/1/2012
End date:	12/31/2014

Referenced Documents:

1. DI Cost Query.xls, Direct Install Prescriptive Lighting TAG.doc

2. Residential Lighting Markdown Impact Evaluation, Nexus Market Research, RLW Analytics, and GDS Associated, January 20, 2009

- 3. Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)
- 4. 2012 EISA Adjustment Calculations.xls

Description

A compact fluorescent lamp replaces an incandescent bulb in an interior lighting fixture in a low income single-family homes direct install application.

Algorithms

Demand Savings

ΔkW

 $= ((\Delta Watts) / 1000) * ISR$

Year	Algorithm	ΔkW
2012	= (49.0 / 1000) * 0.8	0.0392
2013	= (43.6 / 1000) * 0.8	0.0349
2014	= (37.0 / 1000) * 0.8	0.0296

Energy Savings

ΔkWh

= ((Δ Watts) /1000) * ISR * HOURS

Year	Algorithm	∆kWh
2012	= (49.0 / 1000) * 0.8 * 694	27.2
2013	= (43.6 / 1000) * 0.8 * 694	24.2
2014	= (37.0 / 1000) * 0.8 * 694	20.5

Where:

ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
$Watts_{EE}$	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used = 0.8^{756}
HOURS	= average hours of use per year = 694^{757}

 ⁷⁵⁶ 0.8 ISR based on TAG 2009 agreement.
 ⁷⁵⁷ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

Baseline Efficiencies – New or Replacement

The baseline is an incandescent bulb.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become Halogen bulbs (see percentages in O&M table below).

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012.

The appropriate adjustments are provided below (see <u>CFL baseline savings shift.xls</u> for details on how adjustment is calculated):

Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
2012	0.66	2
2013	0.77	1
2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR compact fluorescent bulb. Delta watts based on NEEP Residential Lighting Survey, 2011.

Operating Hours

Operating hours will be assumed as 1.9 hours per day or 694 hours per year⁷⁵⁸.

Loadshape

If Indoor, Loadshape #1 - Residential Indoor Lighting If Outdoor, Loadshape #2 - Residential Outdoor Lighting

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps	
Measure Code		LBLCFBLB	
		Compact	
		Fluorescent Screw-	
Product Description		base bulb	
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	1	1
LIMF NC	6018LINC	1	1
LIMF Rehab	6018LIRH	1	1

⁷⁵⁸ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

MF Mkt NC	6019MFNC	1	1
MF Mkt Retro	6020MFMR	0.9	1.05
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	1	1
RES Retrofit	6036RETR	0.9	1
RNC VESH	6038VESH	1	1
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). At 694 hours per year and including the 90% persistence factor this equates to 11 years. A provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the measure life will reduce each year and be equal to the number of years remaining to 2020; so for 2012 this will be 8 years, 2013 7 years.

Analysis period is the same as the lifetime.

Measure Cost⁷⁵⁹

The average installed cost is assumed to be $6.09 (2.50 \text{ for the bulb and } 3.59 \text{ for labor})^{760}$.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see 2012 EISA Adjustments.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen	CFL
Replacement Cost	\$0.50	\$1.50	\$2.50
Component Life (hours)	1000	1000	8500

⁷⁵⁹ 2009 cost represents full, installed cost and is computed with a weighted average of all direct install interior CFLs installed under the Efficiency Vermont Existing Homes and Low Income Program between 1/1/2006 and 12/1/2007. 2010 and 2011 costs decline at same rate as the assumption for CFL bulbs.

⁷⁶⁰ \$2.50 for CFL is based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011. Labor rate consistent with other measures.

Baseline % in 2009-2011	100%	0%	0%
Baseline % in 2012	67%	33%	0%
Baseline % in 2013	33%	67%	0%
Baseline % in 2014 onward	0%	100%	0%
Baseline % in 2020 onward	0%	0%	100%

The calculation results in a levelized assumption of \$0.93 baseline replacement cost every 1 year for CFL installations in 2012, \$0.96 every year for installations in 2013, and \$0.98 for installations in 2014. This adjustment will be recalculated for subsequent years.

Specialty CFL Direct Install

Measure Number: V-C-7-a (Low Income Single-Family Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 75
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1. 2009 to 2011 bulbs installed.xlsx
- 2. Xenergy, 1998; "Process and Impact Evaluation of Joint Utilities Starlights Residential Lighting Program".

Description

An existing incandescent bulb is replaced with a lower wattage ENERGY STAR qualified specialty compact fluorescent bulb through a Direct Install program. Specialty CFL bulbs are defined as lamps for general illumination that use fluorescent light emitting technology and an integrated electronic ballast with or without a standard Edison screw-base. They can be dimmable, designed for special applications, have special color enhancement properties or have screw-bases that are not standard Edison bases, and include A-lamps, candelabras, G-lamps (globe), reflectors, torpedoes, dimmables, and 3-way bulbs. This TRM should be used for both interior and exterior installations, the only difference being the loadshape. Note specialty bulbs are currently exempt from EISA regulations.

Algorithms

Demand Savings

ΔkW	$=$ ((Δ Watts) /1000) \times ISR
$\Delta kW(\text{Res.} <=15W)$	$= ((43.9) / 1000) \times 0.8 = 0.0351$
$\Delta kW(\text{Res.} > 15W)$	$= ((62.6) / 1000) \times 0.8 = 0.0501$

Energy Savings

$= \Delta kW \times HOURS$
$=(0.0351 \times 694) = 24.4$
$=(0.0501 \times 694) = 34.8$

Where:

∆kW ∆Watts	 = gross customer connected load kW savings for the measure = Average delta watts between specialty CFL and incandescent Watts_{BASE} - Watts_E⁷⁶¹
ISR	= in service rate or the percentage of units rebated that actually get used 762
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= average hours of use per year

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent specialty light bulb.

High Efficiency

High efficiency is an ENERGY STAR qualified specialty compact fluorescent lamp.

⁷⁶¹ The delta watts is calculated by finding the weighted average wattage of specialty bulbs installed in Existing Homes, Low Income and RNC from 01/2009-04/2011. The equivalent incandescent wattage was used to calculate delta watts. See 2009 to 2011 bulbs installed.xlsx ⁷⁶² ISR is assumed to be equal to standard CFL Direct Install measure, and is based on a 2009 TAG agreement.

Operating Hours

Assumed to be 1.9 hours a day or 694 hours per year ⁷⁶³.

Loadshape

Loadshape #1: Residential Indoor Lighting Loadshape #2: Residential Outdoor Lighting

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps		
Measure Code		LBLCFSPD		
		Compact Fluorescent		
		 Specialty Bulb 		
Product Description	l	Direct	Direct Install	
Track Name	Track No.	Freerider	Spillover	
LIMF Retrofit	6017RETR	1	1	
LIMF NC	6018LINC	1	1	
LIMF Rehab	6018LIRH	1	1	
MF Mkt NC 6019MFNC		1	1	
MF Mkt Retro	6020MFMR	1	1	
LISF Retrofit	6034LISF	1	1	
RES Retrofit	6036RETR	0.9	1	
RNC VESH	6038VESH	1	1	

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). The measure life, including the 90% persistence factor is therefore assumed to be 8500/694 * 0.9 = 11 years. Analysis period is the same as the lifetime.

Measure Cost⁷⁶⁴

Cost (Watts <=15)	= \$8.16 + \$3.59 (labor)	= \$11.75
Cost (Watts >15)	= \$8.84 + \$3.59 (labor)	= \$12.43

Incentive Level

The incentive level is equal to the measure cost (these bulbs are free to the customer).

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Water Descriptions

There are no water algorithms or default values for this measure.

⁷⁶³ Hours of use are based on TAG 2011 agreement to use the NEEP Residential Lighting Survey, 2011 proposed

values. ⁷⁶⁴ Incremental cost of bulb is consistent with the assumptions from the NEEP Residential Lighting Survey, 2011. This evaluation did not provide the <=15W and >15W categories and so the costs from EVT's analysis of incremental costs are adjusted such that the average matches the values from the NEEP study. Labor cost is consistent with the standard bulb direct install measures.

Reference Tables Component Costs and Lifetimes Used in Computing O&M Savings

Residential

	Baseline Measures	
Component	Cost ⁷⁶⁵	Life ⁷⁶⁶
Lamp<=15W	\$2.71	1.4
Lamp>15W	\$4.29	1.4

⁷⁶⁵ Baseline cost is consistent with the assumptions from the NEEP Residential Lighting Survey, 2011. This evaluation did not provide the <=15W and >15W categories and so the costs from EVT's analysis of baseline costs are adjusted such that the average matches the values from the NEEP study ⁷⁶⁶ Based on the assumption that the incandescent bulb rated life is 1000 hours. 1000/694 = 1.4years.

Refrigeration End Use Refrigerator Early Replacement

Measure Number: V-E-1-d (Low Income Single Family, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1) 2012 Refrigerator Retrofit Savings.xls
- 2) <u>http://www.energystar.gov/ia/partners/product_specs/program_reqs/refrig_prog_req.pdf</u>
- 3) <u>http://www1.eere.energy.gov/buildings/appliance_standards/downloads/nia_refrig-frzr_final.zip</u>
- 4) http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrigerator_report_1.pdf
- 5) <u>http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf</u>
- 6) Refrigerator kW Calculations.xls

Description

This is an early replacement measure of an existing pre-2001 inefficient refrigerator with a new refrigerator exceeding minimum qualifying efficiency standards established as ENERGY STAR or optionally CEE Tier 2 or CEE Tier 3. Savings are calculated between the average energy usage of an existing unit and that of a higher efficiency unit for the remaining life of the existing unit, plus the savings between an average baseline unit and that of a higher efficiency unit for the remaining life of the existing unit, plus the savings between an average baseline unit and that of a higher efficiency unit for the remainder of the measure life. Prior to 2012, eligibility was restricted to pre-1993 refrigerators. Efficiency Vermont has decided to expand eligibility to the next refrigerator standard change (2001). The estimated decrease in consumption of a post-1993 / pre-2001 unit over a pre-1993 unit is 35%. EVT has assumed that 30% of the future replacements will fall in to the 1993-2001 category⁷⁶⁷ and have adjusted the savings accordingly (see '2012 Refrigerator Retrofit Savings.xls' for more details). We will review this assumption after a year and adjust as necessary.

Algorithms

Energy Savings ⁷⁶⁸	
ΔkWh – Energy Star for remaining life of existing unit (3 years)	= 592 kWh
$\Delta kWh - CEE$ Tier 2 for remaining life of existing unit (3 years)	= 620 kWh
$\Delta kWh - CEE$ Tier 3 for remaining life of existing unit (3 years)	= 647 kWh
ΔkWh – Energy Star for remaining measure life (9 years)	= 113 kWh
$\Delta kWh - CEE$ Tier 2 for remaining measure life (9 years)	= 141 kWh
$\Delta kWh - CEE$ Tier 3 for remaining measure life (9 years)	= 169 kWh
Demand Savings	
$\Delta kW = \Delta kWh/Hours$	
ΔkW – Energy Star for remaining life of existing unit (3 years)	= 592/8477 = 0.070 kW
$\Delta kW - CEE$ Tier 2 for remaining life of existing unit (3 years)	= 620/8477 = 0.073 kW
ΔkW – CEE Tier 3 for remaining life of existing unit (3 years)	= 647/8477 = 0.076 kW
ΔkW – Energy Star for remaining measure life (9 years)	= 113/8477 = 0.013 kW
$\Delta kW - CEE$ Tier 2 for remaining measure life (9 years)	= 141/8477 = 0.017 kW

⁷⁶⁷ Based upon conversations with the weatherization agencies.

⁷⁶⁸ Based on analysis of 2008-2009 rebated units, see 2012 Refrigerator Retrofit Savings.xls. The estimate of the consumption of 1993-2001 units is based upon Figure 3.2.3 from

http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf). Based upon conversations with the weatherization agencies the weighted average assumes 30% of future replacements will fall in this category.

Where:

 $\Delta kWh = \text{gross customer annual kWh savings for the measure}$ HOURS = Equivalent Full Load Hours = 8477⁷⁶⁹ $\Delta kW = \text{gross customer connected load kW savings for the measure}$

Baseline Efficiencies – New or Replacement

The existing pre-2001 refrigerator baseline efficiency is estimated according to a combination of Association of Home Appliance Manufacturers (AHAM) estimated usage data and actual meter measurements from replacements installed thru EVT from 2006-2008⁷⁷⁰. For the purpose of this measure it is assumed that the remaining life of the existing refrigerator is 3 years. For the remaining 14 years of the new refrigerator, the 2001 federal minimum standard is set as the baseline efficiency. See 2012 Refrigerator Retrofit Savings.xls for more details.

High Efficiency

High efficiency is defined as any model meeting or exceeding 2007 Energy Star standard – currently set to 20% over the 2001 federal minimum standard or optionally 25% or 30% to meet CEE Tier 2 or Tier 3. EVT's energy savings estimates are based on the weighted average test measurements for qualifying models based on the models rebated during 2006-2008.

Loadshape

Loadshape #4, Residential Refrigerator

Measure Category		Refrig	geration
		RFRESRER	, RFRT2RER,
Measure Code		RFR	T3RER
Product Description		Energy Star Refrigerator	
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a

Freeridership/Spillover Factors

⁷⁶⁹ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

⁷⁷⁰ Note that in 2009 this measure became prescriptive and so individual unit consumption values were no longer tracked.

C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes 12 Years⁷⁷¹

Analysis period is the same as the lifetime.

Measure Cost

The initial measure cost for an Energy Star refrigerator is \$740 and Tier 2 is \$850 and Tier 3 is \$930. The avoided replacement cost (after 3 years) of a baseline refrigerator is \$700.772

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

N/A

⁷⁷¹ From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-

<u>f5e6</u> ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷² Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷³ Measure costs are based on review of data from the Northeast Regional ENERGY STAR Consumer Products ⁷⁷⁴ Measure costs are based on review of data from the Northeast Regional ENERGY STAR Constructs ⁷⁷⁵ Measure costs are based on review of data from the Northeast Regional ENERGY STAR Costs are bare based on the Northeast Regional Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xls for data. ESTAR incremental cost reduced to \$40 based on ENERGY STAR Calculator;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678- $\frac{1566}{772}$ Based upon conversations with the weatherization agencies.

Freezer Early Replacement

Measure Number: Measure Number: V-E-2-b (Low Income Single Family, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

2012 Freezer Retrofit Savings.xls;
 2009 VT Appliance Data_TRMCostAnalysis.xls
 3) Refrigerator kW Calculations.xls

Description

This is an early replacement measure of an existing pre-2001 inefficient freezer with a new freezer exceeding minimum qualifying efficiency standards established as ENERGY STAR. Savings are calculated between the average energy usage of an existing unit and that of a higher efficiency unit for the remaining life of the existing unit, plus the savings between an average baseline unit and that of a higher efficiency unit for the remaining life.

Prior to 2012, eligibility was restricted to pre-1993 refrigerators. Efficiency Vermont has decided to expand eligibility to the next freezer standard change (2001). The estimated decrease in consumption of a post-1993 / pre-2001 unit over a pre-1993 unit is 25%. EVT has assumed that 30% of the future replacements will fall in to the 1993-2001 category⁷⁷³ and have adjusted the savings accordingly (see '2012 Freezer Retrofit Savings.xls' for more details). We will review this assumption after a year and adjust as necessary.

Algorithms

Energy Savings ΔkWh – ENERGY STAR for remaining life of existing unit (3 years) ΔkWh – ENERGY STAR for remaining measure life (9 years)	= 269 kWh = 52.5 kWh
Demand Savings $\Delta kW = \Delta kWh/Hours$	
ΔkW – ENERGY STAR for remaining life of existing unit (3 years) ΔkW – ENERGY STAR for remaining measure life (9 years)	= 269/8477 = 0.032 kW = 52.5/8477 = 0.006 kW
Where:	

 $\Delta kWh = \text{gross customer annual kWh savings for the measure}$ HOURS = Equivalent Full Load Hours = 8477⁷⁷⁴

 ΔkW = gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

⁷⁷³ Based upon conversations with the weatherization agencies.

⁷⁷⁴ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

The existing pre-2001 freezer baseline efficiency is estimated by calculating the estimated kWh for an equivalent unit at the Federal Standard prior in 1990 and 1993 for all units incentivized through the Efficient Product program in 2009-2010⁷⁷⁵. For the purpose of this measure it is assumed that the remaining life of the existing freezer is 3 years. For the remaining 14 years of the new freezer, the 2001 Federal minimum standard is set as the baseline efficiency. See Freezer Retrofit Savings.xls for more details.

High Efficiency

High efficiency is defined as any model meeting or exceeding 2007 ENERGY STAR standard – currently set to 10% over the 2001 Federal minimum standard .

Loadshape

Loadshape #4, Residential Refrigerator

Measure Category		Refrigeration	
Measure Code		RFRESFZR	
		Energy Star Freezer Early	
Product Description		Repla	cement
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
MF Mkt Retro	6020MFMR	0.9	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.

⁷⁷⁵ Note that in 2010 this measure became prescriptive and so individual unit consumption values were no longer tracked.

Lifetimes

12 Years⁷⁷⁶ Analysis period is the same as the lifetime.

Measure Cost

The full cost for an ENERGY STAR unit is \$500. The cost of a baseline replacement freezer is \$465.777

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

N/A

⁷⁷⁶ From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-f5e6

 <u>f5e6</u>
 ⁷⁷⁷ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data.

Refrigerator Early Removal

Measure Number: V-E-3-a (Low Income Single Family, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. ADM Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program;
- 2. KEMA Residential Refrigerator Recycling Ninth Year Retention Study;
- 3. Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"
- 4. The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010
- 5. Appliance Recycling data2008-2012_V2.xls
- 6. Refrigerator kW Calculations.xls

Description

This is an early retirement measure for the removal of an existing inefficient secondary refrigerator from service observed during a site visit by a weatherization agency, Home Performance contractor or Efficiency Vermont staff member. The contractor has signed an agreement that the unit will be rendered permanently inoperable and properly recycled or disposed of. The program will target refrigerators with an age greater than 10 years, although data from the Efficient Product program suggests the average age of retired units is over 30 years. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Algorithms

Energy Savings

 $\Delta kWh = UEC * PartUse * LI_{size factor}$ = 956 * 0.779 * 0.84 = 626 kWh

Demand Savings

 $\Delta kW = \Delta kWh/Hours$ = 626/8477= 0.074 kW

Where:

∆kWh	= gross customer annual kWh savings for the measure
UEC	= Unit Energy Consumption
	$=956 \text{kWh}^{778}$
PartUse	= adjustment factor for weighted partial use of appliance
	$= 0.779^{779}$

⁷⁷⁸ Unit Energy Consumption is based upon review of the data collected by Jaco from units retired in the program from 2009-2012. To estimate the consumption of the retired units EVT used a regression equation with multiple attributes from a recent Illinois evaluation (Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"). For information see "Appliance Recycling data2008-2012_V2.xls".
LI _{size factor}	= Factor applied to the savings derived from Efficient Products Program to
	account for smaller units being installed in Low Income households.
	$= 0.84^{780}$
HOURS	= Equivalent Full Load Hours
	$= 8477^{781}$
ΔkW	= gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

The existing refrigerator baseline consumption is based upon data collected by Jaco from units retired in the Efficient Products program from 2009-2012 and adjusted for part use consumption.

High Efficiency

N/A

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrig	geration
Measure Code		RFRF	RERPS
		Low Income	e Refrigerator
Product Description		Early Re	etirement
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	1.0	1.0
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

⁷⁷⁹ Based on analysis of Jaco data. Participants were asked how much the refrigerator was run through the year. The data was weighted assuming the response "All months" equaled 12 months, "Summer" or "Winter" equaled 3 months and "Spring/Fall" equaled 6 months.
 ⁷⁸⁰ Size Factor is calculated by comparing the average Low Income retrofitted energy savings per unit (592kwh for

⁷⁸⁰ Size Factor is calculated by comparing the average Low Income retrofitted energy savings per unit (592kwh for ENERGY STAR and 620 for CEE T2) to the average single family residential retrofitted energy savings (709kWh for ENERGY STAR and 737 for CEE T2) indicating a 84% savings factor..

⁷⁸¹ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

Lifetimes 8 years ⁷⁸² Analysis period is the same as the lifetime.

Measure Cost

The cost of pickup and recycling of the refrigerator is \$50 based upon agreement with contractors or vendors who will collect secondary units when replacing the primary unit. Contractors have signed an agreement that the units will be recycled and not placed on the secondary market.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel savings for this measure.

Water Descriptions

There are no water savings for this measure.

⁷⁸² KEMA "Residential refrigerator recycling ninth year retention study", 2004

Freezer Early Removal

Measure Number: V-E-4-a (Low Income Single Family, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. ADM Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program;
- 2. KEMA Residential Refrigerator Recycling Ninth Year Retention Study;
- 3. Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"
- 4. The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010
- 5. Appliance Recycling data2008-2012_v2.xls
- 6. Refrigerator kW Calculations.xls

Description

This is an early retirement measure for the removal of an existing inefficient freezer from service observed during a site visit by a weatherization agency, Home Performance contractor or Efficiency Vermont staff member. The contractor has signed an agreement that the unit will be rendered permanently inoperable and properly recycled or disposed of. The program will target freezers with an age greater than 10 years, although data from the Efficient Product program suggests the average age of retired units is over 30 years. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Algorithms

Energy Savings		
∆kWh	= UEC * PartUse	
	= 1231 * 0.777	
	= 956 kWh	

Demand Savings

ΔkW	$= \Delta kWh/Hours$
	= 956 /8477
	= 0.113 kW

Where:

ΔkWh	= gross customer annual kWh savings for the measure
UEC	= Unit Energy Consumption
	$= 1231 \text{ kWh}^{783}$
PartUse	= adjustment factor for weighted partial use of appliance = 0.777^{784}
HOURS	= Equivalent Full Load Hours = 8477 ⁷⁸⁵

⁷⁸³ Unit Energy Consumption is based upon review of the data collected by Jaco from units retired in the program from 2009-2012. To estimate the consumption of the retired units EVT used a regression equation with multiple attributes from a recent Illinois evaluation (Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"). For information see "Appliance Recycling data2008-2012_V2.xls".
⁷⁸⁴ Based on analysis of Jaco data. Participants were asked how much the freezer was run through the year. The data

¹⁶⁴ Based on analysis of Jaco data. Participants were asked how much the freezer was run through the year. The data was weighted assuming the response "All months" equaled 12 months, "Summer" or "Winter" equaled 3 months and "Spring/Fall" equaled 6 months.

 ΔkW = gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

The existing freezer baseline consumption is based upon data collected by Jaco from units retired in the Efficient Products program from 2009-2012 and adjusted for part use consumption.

High Efficiency

N/A

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrig	geration
Measure Code		RFRI	FERPS
Product Description		Freezer Earl	ly Retirement
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	1.0	1.0
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

8 years ⁷⁸⁶ Analysis period is the same as the lifetime.

Measure Cost

The cost of pickup and recycling of the refrigerator is \$50 based upon agreement with contractors or vendors who will collect secondary units when replacing the primary unit. Contractors have signed an agreement that the units will be recycled and not placed on the secondary market.

⁷⁸⁵ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

⁷⁸⁶ KEMA "Residential refrigerator recycling ninth year retention study", 2004

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions There are no fossil fuel savings for this measure.

Water Descriptions There are no water savings for this measure.

Clothes Washing End Use Clothes Washer Retrofit

Measure Number: V-F-1-c (Low Income Single Family, Clothes Washing End Use)

Version Date & Revision History

Draft date: Portfolio 81 Effective date: 1/1/2013 End date: TBD

Referenced Documents:

- 1) LISF 2013 Clothes Washer Retrofit Savings.xls
- 2) http://www.eia.gov/consumption/residential/data/2009/
- 3) <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/clothes_washers_support_stakeholder_negotiations.html</u>

Description

This is an early retrofit measure of an existing inefficient clothes washer with a new clothes washer exceeding minimum qualifying efficiency standards established as ENERGY STAR, CEE Tier 2 or CEE Tier 3, Most Efficient or Top Ten (as defined below). Savings are calculated between the average energy usage of an existing unit and that of an efficient new unit for the remaining life of the existing unit, plus the savings between an average baseline unit and that of a efficient unit for the remainder of the measure life. Qualification criteria for this measure are customers with a clothes washer that is over eight years old and pre-2004, has Electric DHW and an Electric Dryer.

Algorithms

Energy Savings⁷⁸⁷

Efficiency Level	ΔkWh for remaining life of	∆kWh for remaining
	existing unit (first 3 years)	measure life (Next 11 years)
ENERGY STAR	336	162
CEE TIER 2	534	277
CEE TIER 3	587	348
ENERGY STAR Most Efficient	695	446
(as of 1/1/2013)		
Top Ten	746	484

Demand Savings

 $\Delta kW = \Delta kWh/Hours$

∆kWh ∆kW

Hours

Where:

= gross customer annual kWh savings for the measure

= gross customer connected load kW savings for the measure

= Operating hours of clothes washer unit

^{= 322}

Efficiency Level	ΔkW for remaining life of existing unit (first 3 years)	ΔkW for remaining measure life (Next 11 years)
ENERGY STAR	1.05	0.50
CEE TIER 2	1.66	0.86
CEE TIER 3	1.82	1.08

⁷⁸⁷ The calculations are based on analysis of previous year's rebated units through Efficient Products (see Efficient Product measure for write up of savings methodology).,See LISF 2013 Clothes Washer Retrofit Savings.xls

ENERGY STAR Most Efficient (as of 1/1/2013)	2.16	1.38
Top Ten	2.32	1.50

Baseline Efficiencies – New or Replacement

The baseline efficiency is determined according to the modified energy factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. For the purpose of this measure it is assumed that the remaining life of the existing clothes washer is 3 years (i.e. it is 11 years in to its 14 year life). The federal baseline for clothes washers prior to 2004 was 0.817 MEF⁷⁸⁸, and the average value of units tested in a 2001 DOE market assessment was 1.164.. For the remaining 11 years of the new clothes washer, the current federal baseline MEF of 1.26 is inflated by 20% to 1.51 to account for a transforming market. See LISF 2013 Clothes Washer Retrofit Savings.xls for more details.

High Efficiency

High efficiency is defined as any model meeting or exceeding ENERGY STAR, CEE Tier 2 or Tier 3 standards as of 1/1/2011, ENERGY STAR Most Efficient of Top Ten as defined in table below.

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR	>= 2.0	<= 6.0
CEE TIER 2	>= 2.20	<= 4.5
CEE TIER 3	>= 2.40	<= 4.0
ENERGY STAR Most Efficient	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <= 2.5 ft3)
(as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)
Top Ten Defined as the ten most efficient units available.		nits available.

Energy and water savings estimates are based on the weighted average MEF factor for qualifying models based on the models rebated during the previous calendar year, except Top Ten which is based upon averaging the units provided on the website (<u>http://www.toptenusa.org/Top-Ten-Clothes-Washers</u>) as of September 2012.

Qualification criteria for this measure are customers with Electric DHW and Electric Dryers.

Operating Cycles

322 clothes washer cycles / year ⁷⁸⁹

Operating Hours

322 operating hours / year 790

Loadshape

Loadshape #9, Residential Clothes Washing

Freeridership/Spillover Factors

Measure Category	Cooking and Laundry
	CKLESWER, CKLT2WER,
	CKLT3WER, CKLMEWER,
Measure Code	CKLTTWER
Product Description	Energy Star Clothes Washer

⁷⁸⁸ http://www.cee1.org/resid/seha/rwsh/press-rel.php3

⁷⁸⁹ Weighted average of 322 clothes washer cycles per year. 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section: <u>http://www.eia.gov/consumption/residential/data/2009/</u>

⁷⁹⁰ Based on assumption of average one hour per cycle.

Track Name	Track No.	Freerider	Spillover
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years.⁷⁹¹ Analysis period is the same as the lifetime.

Measure Cost

The full measure cost assumption is provided below:

Efficiency Level	Full Measure Cost
ENERGY STAR	\$825
CEE Tier 2	\$850
CEE Tier 3	\$950
ENERGY STAR Most Efficient	\$1100
Top Ten	\$1110

The deferred (for 3 years) baseline replacement clothes washer cost is assumed to be \$600.792

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

Since only customers with electric DWH and dryers are eligible for this measure, there are no fossil fuel impacts.

Water Descriptions

 ΔCCF = customer water savings in hundreds of cubic feet for the measure

The water savings for each efficiency level are presented below:

			∆Water	
		(CCF per year)		
		Remaining	Remaining	Weighted
Efficiency Level	WF	life of	measure	average for

⁷⁹¹ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm.

⁷⁹² Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm</u>. See 2013 MF In unit Clothes Washer Savings_Retrofit.xls' for details.

		existing unit (first 3 years)	life (Next 11 years)	use in screening ⁷⁹³
Existing unit	12.87 ⁷⁹⁴	n/a	n/a	
Federal Standard	7.93	n/a	n/a	
ENERGY STAR	5.41	8.8	3.0	4.2
CEE Tier 2	3.61	16.1	7.5	9.4
CEE Tier 3	3.51	15.1	7.1	8.8
ENERGY STAR Most Efficient	2.90	16.8	8.5	10.3
Top Ten	3.54	16.5	7.8	9.6

⁷⁹³ Efficiency Vermont's screening tool does not allow for mid-life savings adjustments for water, thus a single value is required. ⁷⁹⁴ US DOE, Life Cycle Cost Model, spreadsheet dated December 1999

⁽http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadsheet.xls) , indicates 38.61 gallons of water per cycle. Assume average size of 3 cu ft gives 12.87 WF assumption. http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadsheet.xls

Ventilation End Use Residential Fan—Quiet, Exhaust-Only Continuous Ventilation

Measure Number: V-G-1-a (Low Income Single Family, Ventilation End Use)

Version Date & Revision History

Draft date: Portfolio 73 Effective date: 1/1/2011 End date: TBD

Referenced Documents:

- 1. Residential Vent Fan Assessment.xls
- 2. GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures"
- 3. ASHRAE 62.2 Section 4.1 Whole House Ventilation

Description

This market opportunity is defined by the need for continuous mechanical ventilation due to reduced airinfiltration from a tighter building shell. In retrofit projects, existing fans may be too loud, or insufficient in other ways, to be operated as required for proper ventilation. This measure assumes a fan capacity of 50 CFM rated at less than 2.0 sones at 0.1 inches of water column static pressure. This measure may be applied to larger capacity, up to 130 CFM, efficient fans with bi-level controls because the savings and incremental costs are very similar. All eligible installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2.

Algorithms

Demand Savings

 $\Delta kW = CFM * (1/Fan_{Efficiency, Baseline} - 1/Fan_{Efficiency, Effcient})/1000$ = 50 * (1/3.1 - 1/8.3)/1000 = 0.01 kW

Where:

CFM =	Nominal Capacity of the exhaust fan, 50 CFM ⁷⁹⁵
Fan _{Efficiency, Baseline} =	Average efficacy for baseline fan, 3.1 CFM/Watt ⁷⁹⁶
Fan Efficiency, Effcient =	Average efficacy for efficient fan, 8.3 CFM/Watt ⁷⁹⁷

Energy Savings

∆kWh	=	Hours * ∆kW
	=	8760 * 0.01
	=	87.6 kWh

Where:

ΔkW	= connected load kW savings per qualified ventilation fan and controls
Hours	= assumed annual run hours, 8760 for continuous ventilation.

Baseline Efficiencies – New or Replacement

New standard efficiency (average CFM/Watt of 3.1^{798}) exhaust-only ventilation fan, quiet (< 2.0 sones⁷⁹⁹) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2⁸⁰⁰

⁷⁹⁹ Rated fan sound level at a static pressure of 0.1 inches of water column.

⁷⁹⁵ 50CFM is the closest available fan size to ASHRAE 62.2 Section 4.1 Whole House Ventilation rates based upon typical square footage and bedrooms.

 ⁷⁹⁶ Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM. Based on fan information gathered and referenced in the spreadsheet, "Residential Vent Fan Assessment.xls"
 ⁷⁹⁷ Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for

⁷⁹⁷ Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM. Based on fan information gathered and referenced in the spreadsheet, "Residential Vent Fan Assessment.xls" ⁷⁹⁸ Average of efficacies at static pressures of 0.1 and 0.25 inches of water column.

High Efficiency

New efficient (average CFM/watt of 8.3) exhaust-only ventilation fan, quiet (< 2.0 sones) Continuous operation in accordance with recommended ventilation rate indicated by ASHRAE 62.2^{801}

Operating Hours

Continuous, 8760.

Loadshape

Loadshape # 25: Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Ventilation	
Measure Code		VNTXCEIL,	
Product Description		Exhaust fan, ceiling,	
Track Name	Track No.	Freerider Spillover	
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	0.95	1.1
MF Mkt NC	6019MFNC	0.9	1.0
MF Mkt Retro	6020MFMR	1.0	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	1.0	1.0
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0
RNC VESH	6038VESH	0.95	1.1
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetime

 ⁸⁰⁰ On/off cycling controls may be required of baseline fans larger than 50CFM.
 ⁸⁰¹ Bi-level controls may be used by efficient fans larger than 50 CFM

19 years⁸⁰² Analysis period is the same as the lifetime.

Incremental Cost per Unit

Incremental cost per installed fan is \$43.50 for quiet, efficient fans.⁸⁰³

Reference Tables

None

⁸⁰² Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans. ⁸⁰³ See the Fan Info worksheet of the spreadsheet "Residential Vent Fan Assessment.xls"

Residential New Construction Program

Refrigeration End Use ENERGY STAR Refrigerator

Measure Number: VI-B-1-i (Residential New Construction Program, Refrigeration End Use)

Version Date & Revision History

Draft date: Portfolio 81 Effective date: 1/1/2013 End date: TBD

Referenced Documents:

1) 2013 RF Savings Analysis.xls; 2) 2009 VT Appliance Data w doc_CostAnalysisTRM 3) Refrigerator kW Calculations.xls

Description

An Energy Star, CEE Tier 2 or Tier 3 qualifying refrigerator is installed in place of a refrigerator of baseline efficiency.

Algorithms

Energy Savings⁸⁰⁴

ENERGY STAR:

∆kWh	= kWh _{base} - kWh _{ES}
	= 600.4 - 480.3
	= 120.1
	- 120.1

CEE Tier 2:

ΔkWh	$= kWh_{base} - kWh_{CT2}$
ΔkWh	= 600.4 - 450.3
	= 150.1

CEE Tier 3:

ΔkWh_{CT3}	$= kWh_{base} - kWh_{CT3}$
ΔkWh_{CT3}	= 600.4 - 420.3
	= 180.1

Demand Savings⁸⁰⁵

ΔkW_{ES}	$= \Delta kWh_{ES} / Hours$
ΔkW	= 120.1 / 8477
	= 0.014

CEE Tier 2:

ΔkW	$= \Delta kWh_{CT2} / Hours$
ΔkW	= 150.1 / 8477
	= 0.018

CEE Tier 3:

 ⁸⁰⁴ Based on analysis of previous year's rebated units, see 2013 RF Savings Analysis.xls.
 ⁸⁰⁵ Based on analysis of previous year's rebated units, see 2013 RF Savings Analysis.xls.

ΔkW_{CT3}	$= \Delta kWh_{CT3} / Hours$
ΔkW_{CT3}	= 180.1 / 8477
	=0.021

Where:

ΔkW	= gross customer connected load kW savings for the measure
kWh _{base}	= Baseline unit consumption
kWh _{ES}	= Energy-Star unit consumption
kWh _{CT2}	= CEE Tier 2 unit consumption
kWh _{CT3}	= CEE Tier 3 unit consumption
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= Equivalent Full Load Hours
	$= 84\overline{77}^{806}$

Baseline Efficiencies – New or Replacement

Baseline efficiency is a refrigerator meeting the minimum Federal efficiency standard for refrigerator efficiency.

High Efficiency

The high efficiency level is a refrigerator meeting ENERGY STAR, CEE Tier 2 or CEE Tier 3 specifications for energy efficiency as of April 28th, 2008 (20%, 25% or 30% above Federal Standard respectively),

Loadshape

Loadshape #4, Residential Refrigeration, Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category		Refrigeration	
Measure Codes		RFRESRRP. RFRESRT2, RFRESRT3	
Product Description		Energy Star refrigerator, CEE Tier 2, CEE Tier 3	
Track Name	Track No.	Freerider	Spillover
RNC VESH 6038VESH		1	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

12 Years⁸⁰⁷

Measure Cost

The assumed incremental cost to the ENERGY STAR level is \$40⁸⁰⁸, to CEE Tier 2 level is \$150 and to CEE Tier 3 is \$230⁸⁰⁹.

⁸⁰⁷ From ENERGY STAR calculator:

⁸⁰⁶ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678f5e6

 <u>f5e6</u>

 ⁸⁰⁸ From ENERGY STAR Calculator; based on Appliance Magazine, Market Research Report, January 2011;

 <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-f5e6</u>

 <u>f5e6</u>

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁸⁰⁹ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data.

Lighting End Use Standard CFL Direct Install

Measure Number: VI-C-7-f (Residential New Construction Program, Lighting End Use)

Version Date & Revision History:

Draft date:	Portfolio 76
Effective date:	01/01/12
End date:	12/31/14

Referenced Documents:

- 1. DI Cost Query.xls, Direct Install Prescriptive Lighting TAG.doc
- 2. Residential Lighting Markdown Impact Evaluation, Nexus Market Research, RLW Analytics, and GDS Associated, January 20, 2009
- 3. Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)
- 4. 2012 EISA Adjustment Calculations.xls

Description

A compact fluorescent lamp replaces an incandescent bulb in an interior lighting fixture in a low income single-family homes direct install application.

Algorithms

Demand Savings

 ΔkW

 $= ((\Delta Watts) / 1000)* ISR$

Year	Algorithm	ΔkW
2012	= (49.0 / 1000) * 0.8	0.0392
2013	= (43.6 / 1000) * 0.8	0.0349
2014	= (37.0 / 1000) * 0.8	0.0296

Energy Savings

∆kWh

= ((Δ Watts) /1000) * ISR * HOURS

Year	Algorithm	ΔkWh
2012	= (49.0 / 1000) * 0.8 * 694	27.2
2013	= (43.6 / 1000) * 0.8 * 694	24.2
2014	= (37.0 / 1000) * 0.8 * 694	20.5

Where:

ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
$Watts_{EE}$	= Energy efficient connected kW
∆kWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used = 0.8^{810}
HOURS	= average hours of use per year = 694^{811}

Baseline Efficiencies – New or Replacement

The baseline is an incandescent bulb.

⁸¹⁰ 0.8 ISR based on TAG 2009 agreement.

⁸¹¹ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become Halogen bulbs (see percentages in O&M table below).

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012.

The appropriate adjustments are provided below (see <u>CFL baseline savings shift.xls</u> for details on how adjustment is calculated):

Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
2012	0.66	2
2013	0.77	1
2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR compact fluorescent bulb. Delta watts based on NEEP Residential Lighting Survey, 2011.

Operating Hours

Operating hours will be assumed as 1.9 hours per day or 694 hours per year⁸¹².

Loadshape

If Indoor, Loadshape #1 - Residential Indoor Lighting If Outdoor, Loadshape #2 - Residential Outdoor Lighting

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps	
Measure Code		LBLCFBLB	
		Compact	
		Fluorescent Screw-	
Product Description		base	bulb
Track Name	Track No.	Freerider	Spillover
LIMF Retrofit	6017RETR	1	1
LIMF NC	6018LINC	1	1
LIMF Rehab	6018LIRH	1	1
MF Mkt NC	6019MFNC	1	1
MF Mkt Retro	6020MFMR	0.9	1.05
LISF Retrofit	6034LISF	1	1
RES Retrofit	6036RETR	0.9	1
RNC VESH	6038VESH	1	1

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). At 694 hours per year and including the 90% persistence factor this equates to 11 years. A provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria

⁸¹² Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the measure life will reduce each year and be equal to the number of years remaining to 2020; so for 2012 this will be 8 years, 2013 7 years.

Analysis period is the same as the lifetime.

Measure Cost⁸¹³

The average installed cost is assumed to be \$6.09 (\$2.50 for the bulb and \$3.59 for labor)⁸¹⁴.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see 2012 EISA Adjustments.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen	CFL
Replacement Cost	\$0.50	\$1.50	\$2.50
Component Life (hours)	1000	1000	8500
Baseline % in 2009-2011	100%	0%	0%
Baseline % in 2012	67%	33%	0%
Baseline % in 2013	33%	67%	0%
Baseline % in 2014 onward	0%	100%	0%
Baseline % in 2020 onward	0%	0%	100%

The calculation results in a levelized assumption of \$0.93 baseline replacement cost every 1 year for CFL installations in 2012, \$0.96 every year for installations in 2013, and \$0.98 for installations in 2014. This adjustment will be recalculated for subsequent years.

⁸¹³ 2009 cost represents full, installed cost and is computed with a weighted average of all direct install interior CFLs installed under the Efficiency Vermont Existing Homes and Low Income Program between 1/1/2006 and 12/1/2007. 2010 and 2011 costs decline at same rate as the assumption for CFL bulbs.

⁸¹⁴ \$2.50 for CFL is based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011. Labor rate consistent with other measures.

Specialty CFL Direct Install

Measure Number: VI-C-16-a (Residential New Construction Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 75
Effective date:	1/1/2012
End date:	TBD

Referenced Documents:

- 1. 2009 to 2011 bulbs installed.xlsx
- 2. Xenergy, 1998; "Process and Impact Evaluation of Joint Utilities Starlights Residential Lighting Program".

Description

An existing incandescent bulb is replaced with a lower wattage ENERGY STAR qualified specialty compact fluorescent bulb through a Direct Install program. Specialty CFL bulbs are defined as lamps for general illumination that use fluorescent light emitting technology and an integrated electronic ballast with or without a standard Edison screw-base. They can be dimmable, designed for special applications, have special color enhancement properties or have screw-bases that are not standard Edison bases, and include A-lamps, candelabras, G-lamps (globe), reflectors, torpedoes, dimmables, and 3-way bulbs. This TRM should be used for both interior and exterior installations, the only difference being the loadshape. Note specialty bulbs are currently exempt from EISA regulations.

Algorithms

Demand Savings

ΔkW	= ((Δ Watts) /1000) × ISR
$\Delta kW(\text{Res.} <=15W)$	$= ((43.9) / 1000) \times 0.8 = 0.0351$
$\Delta kW(\text{Res.} > 15W)$	$= ((62.6) / 1000) \times 0.8 = 0.0501$

Energy Savings

ΔkWh	$= \Delta kW \times HOURS$
ΔkWh (Res. <=15W)	$=(0.0351 \times 694) = 24.4$
ΔkWh (Res. >15W)	$=(0.0501 \times 694) = 34.8$

Where:

∆kW ∆Watts	 = gross customer connected load kW savings for the measure = Average delta watts between specialty CFL and incandescent Watts_{BASE} - Watts_E⁸¹⁵
ISR	= in service rate or the percentage of units rebated that actually get used 816
∆kWh	= gross customer annual kWh savings for the measure
HOURS	= average hours of use per year

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent specialty light bulb.

High Efficiency

High efficiency is an ENERGY STAR qualified specialty compact fluorescent lamp.

⁸¹⁵ The delta watts is calculated by finding the weighted average wattage of specialty bulbs installed in Existing Homes, Low Income and RNC from 01/2009-04/2011. The equivalent incandescent wattage was used to calculate delta watts. See 2009 to 2011 bulbs installed.xlsx ⁸¹⁶ ISR is assumed to be equal to standard CFL Direct Install measure, and is based on a 2009 TAG agreement.

Operating Hours

Assumed to be 1.9 hours a day or 694 hours per year⁸¹⁷.

Loadshape

Loadshape #1: Residential Indoor Lighting Loadshape #2: Residential Outdoor Lighting

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps	
Measure Code		LBLCFSPD	
		Compact Fluorescent	
		 Specialty Bulb 	
Product Description	1	Direct	Install
Track Name	Track Name Track No.		Spillover
LIMF Retrofit	6017RETR	1	1
LIMF NC	6018LINC	1	1
LIMF Rehab	6018LIRH	1	1
MF Mkt NC 6019MFNC		1	1
MF Mkt Retro	6020MFMR	1	1
LISF Retrofit	6034LISF	1	1
RES Retrofit	6036RETR	0.9	1
RNC VESH	6038VESH	1	1

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). The measure life, including the 90% persistence factor is therefore assumed to be 8500/694 * 0.9 = 11 years. Analysis period is the same as the lifetime.

Measure Cost⁸¹⁸

Cost (Watts <=15)	= \$8.16 + \$3.59 (labor)	= \$11.75
Cost (Watts >15)	= \$8.84 + \$3.59 (labor)	= \$12.43

Incentive Level

The incentive level is equal to the measure cost (these bulbs are free to the customer).

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Water Descriptions

There are no water algorithms or default values for this measure.

⁸¹⁷ Hours of use are based on TAG 2011 agreement to use the NEEP Residential Lighting Survey, 2011 proposed

values. ⁸¹⁸ Incremental cost of bulb is consistent with the assumptions from the NEEP Residential Lighting Survey, 2011. This evaluation did not provide the <=15W and >15W categories and so the costs from EVT's analysis of incremental costs are adjusted such that the average matches the values from the NEEP study. Labor cost is consistent with the standard bulb direct install measures.

Reference Tables Component Costs and Lifetimes Used in Computing O&M Savings

Residential

	Baseline Measures		
Component	Cost ⁸¹⁹	Life ⁸²⁰	
Lamp<=15W	\$2.71	1.4	
Lamp>15W	\$4.29	1.4	

⁸¹⁹ Baseline cost is consistent with the assumptions from the NEEP Residential Lighting Survey, 2011. This evaluation did not provide the <=15W and >15W categories and so the costs from EVT's analysis of baseline costs are adjusted such that the average matches the values from the NEEP study ⁸²⁰ Based on the assumption that the incandescent bulb rated life is 1000 hours. 1000/694 = 1.4 years.

Solid State (LED) Recessed Downlight

Measure Number: VI-C-15-a (Residential New Construction Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio No. 52
Effective date:	01/01/08
End date:	TBD

Referenced Documents: 1) 2005 lighting wattage EPP.xls

Description

An LED Downlight is used in place of an incandescent downlight. The downlight must be tested by the DOE Caliper Testing Program or Independent 3rd party testing with results shown to meet the upcoming Energy Star Specification for Solid State Luminaires. This Specification will take effect September 31st, 2008, and can be downloaded from <u>www.netl.doe.gov</u>. See Reference Table of Energy Star requirements for recessed downlights.

Algorithms

Demand Savings⁸²¹ ΔkW ΔkW	= ((Watts _{BASE} – Watts _{EE}) /1000) × ISR = ((65 - 12) / 1000) × 0.73) = 0.0387
Energy Savings	
ΔkWh	$= \Delta kW \times HOURS$
ΔkWh	$=(0.0387 \times 1241) = 48.0$
Where:	
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW. ⁸²²
Watts _{EE}	= Energy efficient connected kW. ^{823}
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used ⁸²⁴
HOURS	= average hours of use per year ^{825}

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Baseline Efficiencies – New or Replacement

The baseline condition is a 65 watt BR30 incandescent fixture installed in a screw-base socket.

High Efficiency

High Efficiency is a downlight that has been tested by the DOE Caliper Testing Program or Independent 3rd party testing with results shown to meet the upcoming Energy Star Specification for Solid State Luminaires. This Specification will take effect September 31st, 2008, and can be downloaded from www.netl.doe.gov. See Reference Table of Energy Star requirements for recessed downlights.

⁸²¹ Assumed difference in wattage between installed CFL and the incandescent bulb it replaces. Based on EVT analysis of CFLs rebated through Efficient Products Program. ⁸²² Baseline wattage based on 65 Watt BR30 incandescent bulb.

⁸²³ Energy Efficient wattage based on 12 Watt LR6 Downlight from LLF Inc.

⁸²⁴ ISR differs for residential and commercial applications. See table below for ISR in each application.

⁸²⁵ Hours of usage differs for residential and commercial applications. See table below for HOURS at each application.

Operating Hours

Residential: 1,241 hours / year

Loadshape

Residential: Loadshape #1: Residential Indoor Lighting Source: Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category	LED		
Measure Code		LFHRDLED	
		Solid State Recessed	
Product Description		Downlight	
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	0.94	1.25

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use of the lumenaire. The Energy Star Specification for Solid State Recessed Downlights requires luminaires to maintain at least 70% initial light output for 25,000 hrs in a residential application and 35,000 hours in a commercial application. Based on these lifetimes, LED Recessed Downlights rebated through this program are expected to have a life of 20.1 years for residential applications (assumed average daily usage of 3.4 hours) and 10.0 years for commercial applications (assumed daily usage of 9.6 hours).

Analysis period is 20 years for residential installations, 10 years for commercial installations.

Measure Cost

The incremental cost for this measure is \$80

Incentive Level

The incentive level for this measure is \$40

O&M Cost Adjustments

	Annual O&M Savings ⁸²⁶
Residential	\$2.64

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Hours of Use, In Use Rates, and Waste Heat Factors by Customer Type

	Average Annual Hours of Use	Average In Service Rate	WHF _d	WHF _e	AR	HF
Residential	1,241	0.73	1.0	1.0	1.0	0.0

⁸²⁶ From VT State screening tool

Component Costs and Lifetimes Used in Computing O&M Savings Residential

	Efficient Measures		Baseline Measures	
Component	Cost	Life ⁸²⁷	Cost	Life
Lamp	0	20	\$3.17	1.2

Commercial

	Efficient Measures		Baseline Measures	
Component	Cost	Life ⁸²⁸	Cost	Life
Lamp	0	10	\$3.17	0.40

Partial List of Energy Star Requirements for Solid State Recessed Downlights

Lumen Depreciation / Lifetime	LED shall deliver at least 70% of initial lumens for
L	the minimum number of hours specified below:
	• >= 25,000 hrs Residential Indoor
	• >= 35,000 hrs Commercial
Minimum CRI	75
Minimum Light Output	<= 4.5" Aperture: 345 lumens (initial)
	> 4.5" Aperture: 575 lumens (initial)
Zonal Lumen Density Requirement	Luminaire shall deliver a total of 75% lumens
	(initial) within the 0-60 zone (bilaterally
	symmetrical)
Minimum Luminaire Efficacy	35 lm/w
Allowable CCTs	• 2700K, 3000K, and 3500K for residential
	products
	 No restrictions for commercial
Reduced Air Leakage	Recessed downlights intended for installation in
	insulated ceilings shall be IC rated and be leak
	tested per ASTM E283 to demonstrate no more than
	2.0 cfm at 75 Pascals pressure difference. The
	luminaire must include a label certifying "sirtight"
	or similar designation to show accordance with
	ASTM E283.
Minimum Warranty	3 years

Eligible Products must meet the full requirements of the Energy Star specification. The complete ٠ Energy Star Specification for Solid State Luminaires can be obtained at www.netl.doe.gov

 ⁸²⁷ Life of components based on use patterns of specific application.
 ⁸²⁸ Life of components based on use patterns of specific application.

Interior Recessed Fluorescent Fixture

Measure Number: VI-C-11-c (Residential New Construction Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	12/31/2012

Referenced Documents:

1) RNC Lighting Fixture Reference 2012.xlsx

2) 2012 EISA Adjustment Calculations.xls

3)) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

4) NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"

Description

An ENERGY STAR qualified interior recessed lighting fixture wired for exclusive use with pin-based compact fluorescent lamps or other interior recessed lighting fixture with ENERGY STAR qualified screwbased compact fluorescent lamps replaces an interior recessed lighting fixture with incandescent lamp(s) in a residential new construction application

Algorithms⁸²⁹

Demano	1 Savings	
ΔkW	0	= ((Watts _{BASE} – Watts _{EE}) /1000) * ISR* SA_{code}
ΔkW	2012 2013 2014	= ((72.0 - 21.9 / 1000) * 1.0 * 0.70) = 0.0351 = ((64.0 - 21.9 / 1000) * 1.0 * 0.65) = 0.0274 = ((57.0 - 21.9 / 1000) * 1.0 * 0.60) = 0.0211
Energy ∆kWh	Savings	= ((Watts _{BASE} – Watts _{EE}) /1000) * HOURS * ISR * SA _{code}
∆kWh	2012 2013 2014	= ((72.0 - 21.9 / 1000) * 912 * 1.0 * 0.70) = 32.0 = ((64.0 - 21.9 / 1000) * 912 * 1.0 * 0.65) = 25.0 = ((57.0 - 21.9 / 1000) * 912 * 1.0 * 0.60) = 19.2
Where:	ΔkW Watts _{BA} Watts _{EE} ΔkWh ISR	 = gross customer connected load kW savings for the measure = Baseline connected kW = Energy efficient connected kW = gross customer annual kWh savings for the measure = in service rate or the percentage of units rebated that actually get

= in service rate or the percentage of units rebated that actually get used

HOURS = average hours of use per year

 SA_{code} = Savings adjustment to account for code required efficient lighting

Year	SAcode
2012	30%
2013	35%
2014	40%

⁸²⁹ Baseline and efficient wattages derived from EVT fixture data installed in new residential homes between 2003 and 2007. After 2007 EVT stopped collecting detailed fixture data. Baseline wattages have been adjusted for years 2012, 2013 and 2014 based on new federal regulations (EISA) for incandescent bulbs (see reference docs).

Savings Adjustment

The 2011 RBES requires a minimum of 50% of lamps in permanently installed fixtures to be high efficacy lamps. The savings for these efficient lamps needs to be subtracted from the total lighting savings calculated for each home. In 2012, the savings adjustment for code required efficient lighting shall be based on the assumption that 30% of installed lighting is efficient due to code (the 2008 NMR baseline study reported 22% efficient lighting in new non-ENERGY STAR qualified homes). This accounts for the time lag in market transformation, and for the fact that the residential building energy code is not currently consistently enforced. This will increase by 5% each year and may be updated when new baseline study results are known.

Baseline Efficiencies – New or Replacement

An interior recessed lighting fixture with incandescent lamp(s).

Baseline Mid-Life Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Interior Recessed	2012	0.61	2
Thuorescent Fixture	2013	0.76	1
	2014	0.88	1

High Efficiency

An ENERGY STAR qualified interior recessed lighting fixture wired for exclusive use with pin-based compact fluorescent lamps or other interior recessed lighting fixture with ENERGY STAR qualified screwbased compact fluorescent lamps.

Operating Hours

912 hours / year $(2.5 \text{ hrs per day})^{830}$

Loadshape

Residential Indoor Lighting, #1 Source: Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spill	over Factors						
Measure Category		Residential Lighting Hardwired Fixture					
Measure Code		LFHCNREC					
Product Description		Compact fluorescent interior recessed fixture					
		2012 2013 2014		14			
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
RNC VESH	6038VESH	0.60	1.0	0.5	1.0	0.4	1.0

⁸³⁰ Based upon 2005 results from RLW Metering study (2005 RLW memo following on from "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs")

Persistence

The persistence factor is assumed to be one.

Lifetimes

20 years⁸³¹.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Measure Cost

The incremental cost for this measure is \$32⁸³²

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.50 per lamp Life of CFL lamp: 8,500 hours (RES), CFL ballast replacement cost: n/a

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see 2012 EISA Adjustment Calculations.xls for details)⁸³³:

Measure	Year Installed	Annual baseline replacement cost	Annual efficient replacement cost
Interior Recessed	2012	\$1.95	\$0.63
Fluorescent Fixture	2013	\$2.10	\$0.71
	2014	\$2.29	\$0.81

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁸³¹ "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures", GDS Associates, June 2007 (http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf).

⁸³² ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input

⁸³³ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (20 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Interior Surface Fluorescent Fixture

Measure Number: VI-C-10-c (Residential New Construction Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 76
Effective date:	1/1/12
End date:	12/31/2014

Referenced Documents:

1) RNC Lighting Fixture Reference 2012.xlsx

2) 2012 EISA Adjustment Calculations.xls

3) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

4) NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"

Description

An ENERGY STAR qualified interior surface lighting fixture wired for exclusive use with pin-based compact fluorescent lamps or other interior surface lighting fixture with ENERGY STAR qualified screw-based compact fluorescent lamps replaces an interior surface lighting fixture with incandescent lamp(s) in a residential new construction application. This category includes surface ceiling and surface wall fixtures.

Algorithms⁸³⁴

Demand Savings

∆kW		= ((Watts _{BASE} – Watts _{EE}) /1000) * ISR * SA _{code}
ΔkW	2012 2013	= ((116.0 - 27.8 / 1000) * 1.0 *0.70) = 0.0617 = ((110.0- 27.8 / 1000) * 1.0 *0.65) = 0.0534
	2014	= ((96 - 27.8 / 1000) * 1.0 * 0.60) = 0.0409

Energy Savings

∆kWh		= ((Watts _{BASE} – Watts _{EE}) /1000) * HOURS * ISR * SA _{code}
∆kWh	2012 2013 2014	= ((116.0 - 27.8 / 1000) * 912 * 1.0 *0.70) = 56.3 = ((110.0 - 27.8 / 1000) * 912 * 1.0 *0.65) = 48.7 = ((96 - 27.8 / 1000) * 912 * 1.0 *0.60) = 37.3

Where:

ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
∆kWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used
HOURS	= average hours of use per year
SA _{code}	= Savings adjustment to account for code required efficient lighting.

Year	SAcode
2012	30%
2013	35%
2014	40%

⁸³⁴ Baseline and efficient wattages derived from EVT fixture data installed in new residential homes between 2003 and 2007. After 2007 EVT stopped collecting detailed fixture data. Baseline wattages have been adjusted for years 2012, 2013 and 2014 based on new federal regulations (EISA) for incandescent bulbs (see reference docs).

Savings Adjustment

The 2011 RBES requires a minimum of 50% of lamps in permanently installed fixtures to be high efficacy lamps. The savings for these efficient lamps needs to be subtracted from the total lighting savings calculated for each home. In 2012, the savings adjustment for code required efficient lighting shall be based on the assumption that 30% of installed lighting is efficient due to code (the 2008 NMR baseline study reported 22% efficient lighting in new non-ENERGY STAR qualified homes). This accounts for the time lag in market transformation, and for the fact that the residential building energy code is not currently consistently enforced. This will increase by 5% each year and may be updated when new baseline study results are known.

Baseline Efficiencies – New or Replacement

The baseline condition is an interior surface lighting fixture with incandescent lamp(s).

Baseline Mid-Life Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings
			Before Adjustment
Interior Surface	2012	0.67	2
Fluorescent Fixture	2013	0.73	1
	2014	0.85	1

High Efficiency

An ENERGY STAR qualified interior surface lighting fixture wired for exclusive use with pin-based compact fluorescent lamps or other interior surface lighting fixture with ENERGY STAR qualified screw-based compact fluorescent lamps.

Operating Hours

912 hours / year $(2.5 \text{ hrs per day})^{835}$

Loadshape

Residential Indoor Lighting, #1 Source: Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category		Residential Lighting Hardwired Fixture					
Measure Code		LFHCNSUR					
Product Description	n	Compact fluorescent interior surface fixture					
		20	12	2013 2014			14
Track Name	Track No.	Freerider Spillover		Freerider	Spillover	Freerider	Spillover
RNC VESH	6038VESH	0.60	1.0	0.5	1.0	0.4	1.0

⁸³⁵ Based upon 2005 results from RLW Metering study (2005 RLW memo following on from "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs")

Persistence

The persistence factor is assumed to be one.

Lifetimes

20 years⁸³⁶.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Measure Cost

The incremental cost for this measure is \$32⁸³⁷

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.50 per lamp Life of CFL lamp: 8,500 hours (RES), CFL ballast replacement cost: n/a

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see 2012 EISA Adjustment Calculations.xls for details)⁸³⁸:

Measure	Year Installed	Annual baseline	Annual efficient
		replacement cost	replacement cost
Interior Surface	2012	\$2.95	\$0.63
Fluorescent Fixture	2013	\$3.30	\$0.71
	2014	\$3.46	\$0.81

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

 ⁸³⁶ "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures", GDS Associates,
 June 2007 (http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf).
 ⁸³⁷ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for interior fixture.

⁸³⁸ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (20 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Exterior Fluorescent Fixture

Measure Number: VI-C-3-g (Residential New Construction, Lighting End Use)

Version Date & Revision History Draft date: Portfolio 76

Effective date:	1/1/12
End date:	12/31/14

Referenced Documents:

 RNC Lighting Fixture Reference 2012.xlsx
 NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"
 2012 EISA Adjustment Calculations.xls
 Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

Description

An ENERGY STAR qualified exterior lighting fixture wired for exclusive use with pin-based compact fluorescent lamp(s) or other exterior lighting fixture with ENERGY STAR qualified screw-based compact fluorescent lamps replaces an exterior lighting fixture with incandescent lamp(s) in a residential new construction application. This measure characterization applies to exterior fluorescent fixtures in the following exterior locations: post lamp, recessed ceiling, surface ceiling, and surface wall.

Algorithms⁸³⁹

Demand Savings

∆kW		= ((Watts _{BASE} – Watts _{EE}) /1000) * ISR * SA _{code}
ΔkW	2012	= ((72.0 - 21.7 / 1000) * 1.0 * 0.70) = 0.0352 = ((64.0 - 21.7 / 1000) * 1.0 * 0.65) = 0.0275
	2013	= ((64.0 - 21.7 / 1000) + 1.0 + 0.03) = 0.0273 $= ((57.0 - 21.7 / 1000) + 1.0 + 0.60) = 0.0212$

∆kWh		= ((Watts _{BASE} – Watts _{EE}) /1000) * HOURS * ISR * SA _{code}
ΔkWh	2012 2013	=((72.0 - 21.7 / 1000) * 1,642.5 * 1.0 *0.70) = 57.8 = ((64.0 - 21.7 / 1000) * 1,642.5 * 1.0 *0.65) = 45.2
	2014	= ((57.0 - 21.7 / 1000) * 1,642.5 * 1.0 *0.60) = 34.8

Where:

ΔkW	= gross customer connected load kW savings for the measure				
Watts _{BASE}	= Baseline connected kW				
Watts _{EE}	= Energy efficient connected kW				
ΔkWh	= gross customer annual kWh savings for the measure				
ISR	= in service rate or the percentage of units rebated that actually get used				
HOURS	= average hours of use per year				
SA_{code}	= Savings adjustment to account for code required efficient lighting.				
	Year SAcode				

⁸³⁹ Baseline and efficient wattages derived from EVT fixture data installed in new residential homes between 2003 and 2007. After 2007 EVT stopped collecting detailed fixture data. Baseline wattages have been adjusted for years 2012, 2013 and 2014 based on federal regulations (EISA) for incandescent bulbs consistent with bulb wattages proposed by NEEP RLS, 2011 (see reference docs).

1	2012	30%
	2013	35%
	2014	40%

Savings Adjustment

The 2011 RBES requires a minimum of 50% of lamps in permanently installed fixtures to be high efficacy lamps. The savings for these efficient lamps needs to be subtracted from the total lighting savings calculated for each home. In 2012, the savings adjustment for code required efficient lighting shall be based on the assumption that 30% of installed lighting is efficient due to code (the 2008 NMR baseline study reported 22% efficient lighting in new non-ENERGY STAR qualified homes). This accounts for the time lag in market transformation, and for the fact that the residential building energy code is not currently consistently enforced. This will increase by 5% each year and may be updated when new baseline study results are known.

Baseline Efficiencies – New or Replacement

An exterior lighting fixture with incandescent lamp(s).

Baseline Mid-Life Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Exterior Fluorescent	2012	0.61	2
Fixture	2013	0.76	1
	2014	0.89	1

High Efficiency

An ENERGY STAR qualified exterior lighting fixture wired for exclusive use with pin-based fluorescent lamp(s) or other exterior lighting fixture with ENERGY STAR qualified screw-based compact fluorescent lamps.

Operating Hours

1,642.5 hours / year⁸⁴⁰

Loadshape

Residential Outdoor Lighting, #2. Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category		Residential Lighting Hardwired Fixture					
Measure Code		LFHCEFIX					
Product Description	n	Exterior Fluorescent Fixture					
		20	12	2013			14
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
RNC VESH	6038VESH	0.60	1.0	0.5	1.0	0.4	1.0

⁸⁴⁰ NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime for a fluorescent fixture is 15 years⁸⁴¹.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years.

Measure Cost

The average installed cost is \$17⁸⁴²

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb

Life of incandescent bulb: 1000 hours EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours CFL lamp cost: \$2.50 per lamp Life of CFL lamp: 8,500 hours (RES), CFL ballast replacement cost: \$14 (RES) Life of CFL ballast: 24,959 hours (RES)

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see 2012 EISA Adjustment Calculations.xls for details)⁸⁴³:

Measure	Year Installed	Annual baseline	Annual efficient		
		replacement cost	replacement cost		
Exterior Fixture	2012	\$2.67	\$0.56		
(RES)	2013	\$2.85	\$0.63		
	2014	\$2.97	\$0.73		

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁸⁴² ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for exterior fixtures.

⁸⁴³ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (20 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

⁸⁴¹ "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures", GDS Associates, June 2007 (http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf).

Generic Linear Fluorescent Tube Fixture

Measure Number: VI-C-9-e (Residential New Construction Program, Lighting End Use)

Version Date & Revision History

Draft Date:	Portfolio 76
Effective:	1/1/12
End:	12/31/2014

Referenced Documents:

1) RNC Lighting Fixture Reference 2012.xlsx

2) 2012 EISA Adjustment Calculations.xls

3) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

4) NMR, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs"

Description

Generic linear fluorescent tube fixture(s) replaces an interior lighting fixture in a residential new construction application. This category includes surface ceiling and surface wall fixtures using a linear fluorescent tube.

Algorithms⁸⁴⁴

Deman	id Saving	<u>5</u> S
∆kW		= ((Watts _{BASE} – Watts _{EE}) /1000)* ISR * SA _{code}
ΔkW	2012 2013 2014	= ((247.5 - 58.0 / 1000) * 1.0 * 0.70) = 0.133 = ((220.0 - 58.0 / 1000) * 1.0 * 0.65) = 0.105 = ((209.0 - 58.0 / 1000) * 1.0 * 0.60) = 0.091

Energy Savings A 1-XX/1-

∆kWh	Savings	= ((Watts _{BASE} – Watts _{EE}) /1000) * HOURS * ISR * SA _{code}
∆kWh	2012 2013	= ((247.5 - 58.0 / 1000) * 912 * 1.0 * 0.70) = 121.0 = ((220.0 - 58.0 / 1000) * 912 * 1.0 * 0.65) = 96.0
	2014	=((209.0-58.0/1000)*912*1.0*0.60)=82.6

Where:

ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used
HOURS	= average hours of use per year
SA _{code}	= Savings adjustment to account for code required efficient lighting

Year	SAcode
2012	30%
2013	35%
2014	40%

⁸⁴⁴ Baseline and efficient wattages derived from EVT fixture data installed in new residential homes between 2003 and 2007. After 2007 EVT stopped collecting detailed fixture data. Baseline wattages have been adjusted for years 2012, 2013 and 2014 based on new federal regulations (EISA) for incandescent bulbs (see reference docs).

Savings Adjustment

The 2011 RBES requires a minimum of 50% of lamps in permanently installed fixtures to be high efficacy lamps. The savings for these efficient lamps needs to be subtracted from the total lighting savings calculated for each home. In 2012, the savings adjustment for code required efficient lighting shall be based on the assumption that 30% of installed lighting is efficient due to code (the 2008 NMR baseline study reported 22% efficient lighting in new non-ENERGY STAR qualified homes). This accounts for the time lag in market transformation, and for the fact that the residential building energy code is not currently consistently enforced. This will increase by 5% each year and may be updated when new baseline study results are known.

Baseline Efficiencies – New or Replacement

The baseline is an interior incandescent lighting fixture.

Baseline Mid-Life Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become EISA qualified incandescent or Halogen bulbs.

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details):

Measure	Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
Generic Linear Fluorescent Fixture	2012	0.76	1
	2013	0.88	1
	2014	0.93	1

High Efficiency

An interior lighting fixture with one or more florescent tube lamps. Generic linear florescent tubes include, T-8s, T-5s, as well as U-tubes.

Operating Hours

912 hours / year $(2.5 \text{ hrs per day})^{845}$

Loadshape

Residential Indoor Lighting, #1. Vermont State Cost-Effectiveness Screening Tool

Freeridership/Spillover Factors

Measure Category	Residential Lighting Hardwired Fixture						
Measure Code		LFHGENFT					
Product Description	Generic Linear Fluorescent Tube Fixture						
		2012		2013		2014	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
RNC VESH	6038VESH	0.60	1.0	0.5	1.0	0.4	1.0

Persistence

The persistence factor is assumed to be one.

⁸⁴⁵ Based upon 2005 results from RLW Metering study (2005 RLW memo following on from "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs")
Lifetimes

20 years⁸⁴⁶.

Note: a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the analysis period (i.e. the life of the savings) is reduced to the number of years remaining to 2020. So for installations in 2012, the measure life is 8 years, for 2013 7 years⁸⁴⁷.

Measure Cost

The incremental cost for this measure is $$32^{848}$.

Annual Operations and Maintenance Savings

Because compact fluorescent lamps last much longer than incandescent bulbs, CFLs offer significant operation and maintenance (O&M) savings over the life of the fixture for avoided incandescent lamps and the labor to install them. The following assumptions are used to calculate the O&M savings: Incandescent bulb cost: \$0.50 per bulb Life of incandescent bulb: 1000 hours EISA qualified bulb cost: \$1.50 per bulb Life of EISA qualified bulb: 1000 hours T8 lamp cost: \$3.00 per lamp Life of T8 lamp: 8,500 hours (RES), CFL ballast replacement cost: n/a (ballast life exceeds measure life)

The O&M calculation results in a levelized annual baseline replacement cost as presented below (see 2012 EISA Adjustment Calculations.xls for details)⁸⁴⁹:

Measure	Year Installed	Annual baseline	Annual efficient
		replacement cost	replacement cost
Generic Linear	2012	\$4.58	\$1.03
Fluorescent Fixture	2013	\$4.78	\$1.16
	2014	\$5.06	\$1.34

This adjustment will be recalculated for subsequent years

Fossil Fuel Descriptions

There are no fossil-fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁸⁴⁶ "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures", GDS Associates, June 2007 (http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf).

⁸⁴⁷ T8s are more efficient than CFLs so there is savings after 2020, however since the baseline could be a standard incandescent bulb or a linear fluorescent, this is ignored for simplicity.

⁸⁴⁸ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input

⁸⁴⁹ Note: As described above, the measure life is reduced to the number of years remaining until 2020 when the EISA legislation makes the CFL the baseline. The O&M calculation takes the entire stream of replacements for both the baseline and efficient cases over the actual expected lifetime (20 years) and converts to a levelized annual cost over the reduced measure 'savings' lifetime.

Ventilation End Use Residential Fan—Quiet, Exhaust-Only Continuous Ventilation

Measure Number: VI-D-1-e (Residential New Construction, Ventilation End Use)

Version Date & Revision History

Draft date:	Portfolio 7.
Effective date:	1/1/2011
End date:	TBD

Referenced Documents:

- 1. Residential Vent Fan Assessment.xls
- 2. GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures"
- 3. ASHRAE 62.2 Section 4.1 Whole House Ventilation

Description

This market opportunity is defined by the need for continuous mechanical ventilation due to reduced airinfiltration from a tighter building shell. Standard baseline fans may be too loud, or insufficient in other ways, to be operated as required for proper ventilation. This measure assumes a fan capacity of 50 CFM rated at less than 2.0 sones at 0.1 inches of water column static pressure. This measure may be applied to larger capacity, up to 130 CFM, efficient fans with bi-level controls because the savings and incremental costs are very similar. All eligible installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2 and the 2011 Vermont Residential Buildings Energy Code, Section 402

Algorithms

Demand Savings

 $\Delta kW = CFM * (1/Fan_{Efficiency, Baseline} - 1/Fan_{Efficiency, Effcient})/1000$ = 50 * (1/3.1 - 1/8.3)/1000= 0.01 kW

Where:

CFM =	Nominal Capacity of the exhaust fan, 50 CFM ⁸⁵⁰
$Fan_{Efficiency, Baseline} =$	Average efficacy for baseline fan, 3.1 CFM/Watt ⁸⁵¹
Fan Efficiency, Effcient =	Average efficacy for efficient fan, 8.3 CFM/Watt ⁸⁵²

Energy Savings

∆kWh	=	Hours $* \Delta kW$
	=	8760 * 0.01
	=	87 6 kWh

Where:

ΔkW	= connected load kW savings per qualified ventilation fan and controls.
Hours	= assumed annual run hours, 8760 for continuous ventilation.

Baseline Efficiencies – New or Replacement

New standard efficiency (average CFM/Watt of 3.1^{853}) exhaust-only ventilation fan, quiet (< 2.0 sones⁸⁵⁴) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2⁸⁵⁵

⁸⁵⁰ 50CFM is the closest available fan size to ASHRAE 62.2 Section 4.1 Whole House Ventilation rates based upon typical square footage and bedrooms.

⁸⁵¹ Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM. Based on fan information gathered and referenced in the spreadsheet, "Residential Vent Fan Assessment.xls" ⁸⁵² Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for

⁵⁰ CFM. Based on fan information gathered and referenced in the spreadsheet, "Residential Vent Fan Assessment.xls"

High Efficiency

New efficient (average CFM/watt of 8.3) exhaust-only ventilation fan, quiet (< 2.0 sones) Continuous operation in accordance with recommended ventilation rate indicated by ASHRAE 62.2^{856}

Operating Hours

Continuous, 8760.

Loadshape

Loadshape # 25: Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Ventilation	
Measure Code	VNTXCEIL,		
Product Description		Exhaust fan, ceiling,	
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	0.95	1.1
MF Mkt NC	6019MFNC	0.9	1.0
MF Mkt Retro	6020MFMR	1.0	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	1.0	1.0
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0
RNC VESH	6038VESH	0.95	1.1
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

 ⁸⁵³ Average of efficacies at static pressures of 0.1 and 0.25 inches of water column.
 ⁸⁵⁴ Rated fan sound level at a static pressure of 0.1 inches of water column.
 ⁸⁵⁵ On/off cycling controls may be required of baseline fans larger than 50CFM.
 ⁸⁵⁶ Bi-level controls may be used by efficient fans larger than 50 CFM

Lifetime 19 years⁸⁵⁷ Analysis period is the same as the lifetime.

Incremental Cost per Unit Incremental cost per installed fan is \$43.50 for quiet, efficient fans.⁸⁵⁸

Reference Tables None

⁸⁵⁷ Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans.
 ⁸⁵⁸ See the Fan Info worksheet of the spreadsheet "Residential Vent Fan Assessment.xls"

Dishwashing End Use ENERGY STAR Dishwasher

Measure Number: VI-H-1-g (Residential New Construction, Dishwashing End Use)

Version Date & Revision History

Draft date: Portfolio 65 Effective date: 01/01/2011 End date: TBD

Referenced Documents: 1) RNC_ES.DW.kWh.2011.xls; 2) 2009 VT Appliance Data w doc_CostAnalysisTRM; 3) tablehc11.10.pdf; 4) CalculatorConsumerDishwasher.xls.

Description

A dishwasher meeting the efficiency specifications of ENERGY STAR, CEE TIER 1 (for compact dishwashers) or CEE TIER 2 (for standard dishwashers) is installed in place of a model meeting the federal standard.

Algorithms

Energy Savings

Energy savings are presented for each dishwasher type and efficiency standard in the Reference Table section below .

Demand Savings

Demand savings are presented for each dishwasher type and efficiency standard in the Reference Table section below.

Baseline Efficiencies – New or Replacement

The Baseline reflects the minimum federal efficiency standards for dishwashers effective January 1, 2010 as presented in the tables below.

High Efficiency

The high efficiency standard is presented in the table below:

Dishwasher	Efficiency Standard	Minimum	Maximum	Maximum
Туре		Energy Factor	kWh/year	gallons/cycle
Standard	Federal Standard	No requirement	355	6.5
	ENERGY STAR	No requirement	324	5.8
	CEE TIER 1	0.72	307	5.0
	CEE TIER 2	0.75	295	4.25
Compact	Federal Standard	No requirement	260	4.5
	ENERGY STAR	No requirement	234	4.0
	CEE TIER 1	1.0	222	3.5

Operating Hours

Assuming one and a half hours per cycle and 177 cycles per⁸⁵⁹ year therefore 266 operating hours per year.

Loadshape

Residential DHW Conservation, #8. Vermont State Cost-Effectiveness Screening Tool

⁸⁵⁹ 177 cycles per year is based on a weighted average of dishwasher usage in New England derived from the 2005 RECs data;

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc10homeappliaceindicators/pdf/tablehc11.10.pdf

Freeridership/Spillover Factors

Measure Category		Cooking and Laundry	
		CKLSEDRP, CKLS1DRP,	
		CKLS2DRP, CKLCEDRP,	
Measure Codes		CKL	C1DRP,
Product Description		Energy Star Dishwasher	
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	n/a	n/a
RNC VESH	6038VESH	0.90	1.1
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015CC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes 13 years.⁸⁶⁰

Analysis period is the same as the lifetime.

Measure Cost

The incremental costs for these measures are provided below:

Dishwasher	Efficiency Standard	Incremental
Туре		Cost ⁸⁶¹
Standard	ENERGY STAR	\$12
	CEE TIER 1	\$25
	CEE TIER 2	\$100
Compact	ENERGY STAR	\$12
	CEE TIER 1	\$25

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

⁸⁶⁰ Koomey, Jonathan et al. (Lawrence Berkeley National Lab), Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector, February 1998. ⁸⁶¹ ENERGY STAR cost based on ENERGY STAR Dishwasher Calculator

 $⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerDishwasher.xls)\ .Other$ costs estimated based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data.

Fossil Fuel Descriptions

Fossil fuel savings are presented for each dishwasher type and efficiency standard in the Reference Table section below.

Water Descriptions

Water savings are presented for each dishwasher type and efficiency standard in the Reference Table section below.

Reference Tables

Customer Energy Savings by dishwasher type and efficiency standard in RNC Homes⁸⁶²

	Standard			Compact	
	ENERGY STAR	TIER 1	TIER 2	ENERGY STAR	TIER 1
kWh Savings	19.8	25.78	42.84	18.38	33.75
kW savings	0.07	0.1	0.16	0.07	0.13
MMBtu oil savings	0.01	0.01	0.01	0.01	0.01
MMBtu gas savings	0.03	0.04	0.06	0.03	0.05
MMBtu propane savings	0.06	0.08	0.14	0.06	0.11
Water Savings CCF	0.39	0.61	0.74	0.16	0.42

⁸⁶² Source: RNC_ES.DW.kWh.2011.xls

Clothes Dryer End Use Electric Clothes Dryer Fuel Switch

Measure Number: VI-J-1-a (Residential New Construction, Clothes Washing End Use)

Version Date & Revision History

Draft date: Portfolio 42 Effective date: 7/1/06

Referenced Documents: 1) Dryer usage.xls

Description

An electric clothes dryer is replaced with a fossil fuel based clothes dryer meeting specified efficiency criteria. The measure characterization and savings estimates are based on average usage per person and average number of people per Vermont household., Therefore, this is a prescriptive measure, with identical savings applied to all installation instances, applicable across all housing types.

Algorithms

Energy Savings⁸⁶³

 $\Delta kWh = 977 kWh$ (supporting documentation in Dryer Usage.xls) $\Delta MMBtu = -3.33 MMBtu$ (negative indicates increase in fuel consumption) (977 *.003413 = 3.33) it is assumed that gas and electric dryers have similar efficiencies. All heated air passes through the clothes and contributes to drying.

Demand Savings

 $\Delta kW = 4.8 \text{ kW}$ electric dryer = 5kW heating element. Gas dryer may have 200 watt glow coil. Motor wattage assumed to be equal.

Where:

∆kWh	= weighted average annual kWh savings per dryer per residential unit
∆MMBtu	= weighted average fossil fuel energy savings per dryer per residential unit in MMBtu (million
	Btu)
ΔkW	= weighted average connected load kW savings per dryer

Baseline Efficiencies – New or Replacement

Baseline efficiency is an electric dryer used in conjunction with a mix of standard top-loading clothes washers (80%) and Energy Star qualified washers (20%) (supporting documentation in Dryer Usage.xls).

Non-Electric

A propane or natural gas dryer used in conjunction with a mix of standard top-loading clothes washers (80%) and Energy Star qualified washers (20%) (supporting documentation in Dryer Usage.xls).

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years (same as for clothes washers in DPS screening of Efficiency Utility Core programs). Remaining life = 4 years

Analysis Period

30 years

⁸⁶³ Average annual dryer kWh per Vermont household using EIA data for kwh/year/household for nationwide household and using census data for Vermont residents/household. Assumes an average 2.44 people per home in Vermont. Estimates for usage for homes of other sizes is based on MMBtu consumption for DHW by number of bedrooms from RECS 2001 data and scaled proportionally from the per person consumption estimate. Estimated kWh savings detailed above are net of auxiliary electricity use by the new fossil fuel based equipment.

Operating Hours

n/a

Loadshape

Loadshape #9, Residential Clothes Washer, Vermont State Cost-Effectiveness Screening Tool

Freeridership/Spillover Factors

Measure Category		Hot Water Fuel Switch		
Measure Codes		OTFYPROP	OTFYPROP; OTFYNGAS	
		Clothes Dry	ver fuel switch	
Product Description		(various foss	il fuel systems)	
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Retro	6012CNIR	n/a	n/a	
MF Mkt Retro	6012MFMR	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	0.30^{864}	1	
MF Mkt NC	6019MFNC	n/a	n/a	
Customer Credit	6015CC	n/a	n/a	

Measure Costs

Full retrofit costs for the efficient fossil fuel based clothes dryer are detailed below. Note, we estimate the electric clothes dryer being replaced was on average 9 years old with 4 years of working life remaining. This is taken into account in measure screening.

Equipment Type	Est. Full Installed Cost for Baseline Electric Equipment	Est. First Time Full Installed Cost for Efficient Equipment	
Clothes Dryer	\$320	\$580	

Source: Survey of local retailers.

Incentive Level

Track Name	Track No. Incentive		
LISF Retrofit	6034LISF	75% of full installed cost	
RES Retrofit	6036RETR	\$200	

⁸⁶⁴ The freerider rate for both natural gas and propane fired units will be 30%.

RNC VESH	6038VESH	\$100
KINC VLDII	005012511	ψ100

O&M Cost Adjustments

	Baseline (Electric Clothes Dryer)	Fossil Fuel Clothes Clothes Dryer	O&M Cost Adjustments
Equipment Annual Maintenance Costs	\$15	\$35	(\$20)

Source: EVT estimate.

Water Descriptions

There are no water algorithms or default values for this measure.

Clothes Washer

Measure Number: VI-K-1-b (Residential New Construction Program, Clothes Washing End Use)

Version Date & Revision History

Draft date:	Portfolio 81
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

1) 2013 RNC Clothes Washer Savings.xls;

2) 2009 RECS_HC3.8 Appliances in Northeast Region.xls

Description

Clothes washers exceeding minimum qualifying efficiency standards established as ENERGY STAR, CEE Tier 2 or Tier 3 as of 1/1/2011, Most Efficient or Top Ten as defined below:

Efficiency Level Modified Energy Factor (MEF)		Water Factor (WF)			
Federal Standard	>= 1.26	<= 9.5			
ENERGY STAR	>= 2.0	<= 6.0			
CEE TIER 2	>= 2.20	<= 4.5			
CEE TIER 3	>= 2.40	<= 4.0			
ENERGY STAR Most	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <= 2.5 ft3)			
Efficient (as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)			
Top Ten (as of 09/2012)	Defined as the ten most efficient	Defined as the ten most efficient units available.			

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (unit operation, washing and drying); the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Savings are provided for both specific DHW and Dryer fuel combinations and for if the fuel is unknown.

Algorithms

Energy Savings

Energy and Demand Savings are presented in the reference tables below, and are dependent on the fuel type of the DHW system and the dryer. The calculations are based on analysis of rebated units through Efficient Products (see Efficient Product measure for write up of savings methodology). The savings are presented for each efficiency level in the reference table "Customer Energy Savings by Water Heater and Dryer Fuel Type", and 2013 RNC Clothes Washer Savings.xls. The savings for when fuel combination is unknown is also provided.

Demand Savings

 $\Delta kW = \Delta kWh/Hours$

Where:

ΔkWh	= gross customer annual kWh savings for the measure
ΔkW	= gross customer connected load kW savings for the measure
Hours	= assumed annual run hours of clothes washer

See "Customer Energy Savings by Water Heater and Dryer Fuel Type".

Baseline Efficiencies – New or Replacement

The baseline efficiency is determined according to the modified energy factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. The federal baseline MEF of 1.26 is inflated by 20% to 1.51 for savings comparison to account for non-qualifying models that are higher then the federal baseline MEF.

High Efficiency

High efficiency is defined as any model meeting or exceeding ENERGY STAR, CEE Tier 2 or Tier 3 standards as of 1/1/2011, ENERGY STAR Most Efficient of Top Ten as defined in the following table:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)	
ENERGY STAR	>= 2.0	<= 6.0	
CEE TIER 2	>= 2.20	<= 4.5	
CEE TIER 3	>= 2.40	<= 4.0	
ENERGY STAR Most Efficient	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <=2.5 ft3)	
(as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)	
Top Ten	Defined as the ten most efficient units available.		

Energy and water savings estimates are based on the weighted average MEF factor for qualifying models based on the models rebated during the previous calendar year, except Top Ten which is based upon averaging the units provided on the website (<u>http://www.toptenusa.org/Top-Ten-Clothes-Washers</u>) as of September 2012

Operating Cycles

322 clothes washer cycles / year ⁸⁶⁵

Operating Hours

3220perating hours / year 866

Loadshape

Loadshape #9, Residential Clothes Washing, Vermont State Screening Tool.

Freeridership/Spillover Factors

Measure Category		Cooking and Laundry					
Product Description	n	Efficient Clothes Washer					
Measure Code		CKLESWRP, CKLC3WRP C			CKLM	LMEWRP,	
		CKLC2WRP			CKLT	ГWRP	
Track Name	Track No.	Freerider	Spillover	Freerider	Spillover	Freerider	Spillover
RNC VESH	6038VESH	0.5	1.0	0.75	1.0	0.95	1.2

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years⁸⁶⁷ (same as DPS screening of Efficiency Utility program). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for this measure is provided in the table below⁸⁶⁸:

⁸⁶⁵ Weighted average of 322 clothes washer cycles per year. 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section: http://www.eia.gov/consumption/residential/data/2009/

⁸⁶⁶ Assume one hour per cycle.

⁸⁶⁷ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm.</u>

Efficiency Level	Incremental Cost
ENERGY STAR	\$225
CEE Tier 2	\$250
CEE Tier 3	\$350
ENERGY STAR Most Efficient	\$500
Top Ten	\$510

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

Fossil Fuel savings are dependent on the DHW and Dryer fuel type and are presented in the tables below.

Water Descriptions⁸⁶⁹

The water savings for each efficiency level are presented below:

		∆Water
Efficiency Level	WF	(CCF per year)
Federal Standard	7.93	0.0
ENERGY STAR	5.41	3.0
CEE Tier 2	3.61	7.5
CEE Tier 3	3.51	7.1
ENERGY STAR Most Efficient	2.90	8.5
Top Ten	3.54	7.8

Reference Tables

Customer Energy Savings by Water Heater and Dryer Fuel Type⁸⁷⁰ **ENERGY STAR:**

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU	MMBTU	MMBTU
			Oil	Propane	Natural
					Gas
Electric Dryer/Electric DHW	162	0.50	0	0	0
Electric Dryer/Propane DHW	59	0.18	0	0.41	0
Electric Dryer/Natural Gas DHW	59	0.18	0	0	0.41
Electric Dryer/Oil DHW	59	0.18	0.41	0	0
Propane Dryer/Electric DHW	104	0.32	0	0.20	0
Propane Dryer/Propane DHW	2	0.01	0	0.61	0
Propane Dryer/Oil DHW	2	0.01	0.61	0	0
Natural Gas Dryer/Electric DHW	104	0.32	0	0	0.20
Natural Gas Dryer/Natural Gas DHW	2	0.01	0	0	0.61
Natural Gas Dryer/Oil DHW	2	0.01	0.61	0	0

⁸⁶⁸ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm. See '2013 In Unit Clothes Washer Savings.xls' for details. ⁸⁶⁹ Based on analysis of previous year's rebated units, see 2013 RNC Clothes Washer Savings.xls

⁸⁷⁰ Where dryer and DHW use different fossil fuels, savings are combined under the DHW fossil fuel because a single measure can only have one fuel type for screening purposes and the DHW savings are larger than the Dryer savings.

Tier 2:	
---------	--

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas
Electric Dryer/Electric DHW	277	0.86	0	0	0
Electric Dryer/Propane DHW	108	0.34	0	0.67	0
Electric Dryer/Natural Gas DHW	108	0.34	0	0	0.67
Electric Dryer/Oil DHW	108	0.34	0.67	0	0
Propane Dryer/Electric DHW	175	0.54	0	0.35	0
Propane Dryer/Propane DHW	7	0.02	0	1.02	0
Propane Dryer/Oil DHW	7	0.02	1.02	0	0
Natural Gas Dryer/Electric DHW	175	0.54	0	0	0.35
Natural Gas Dryer/Natural Gas DHW	7	0.02	0	0	1.02
Natural Gas Dryer/Oil DHW	7	0.02	1.02	0	0

Tier 3:

		Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	348	1.08	0	0	0	
Electric Dryer/Propane DHW	124	0.39	0	0.89	0	
Electric Dryer/Natural Gas DHW	124	0.39	0	0	0.89	
Electric Dryer/Oil DHW	124	0.39	0.89	0	0	
Propane Dryer/Electric DHW	229	0.71	0	0.40	0	
Propane Dryer/Propane DHW	6	0.02	0	1.30	0	
Propane Dryer/Oil DHW	6	0.02	1.30	0	0	
Natural Gas Dryer/Electric DHW	229	0.71	0	0	0.40	
Natural Gas Dryer/Natural Gas DHW	6	0.02	0	0	1.30	
Natural Gas Dryer/Oil DHW	6	0.02	1.30	0	0	

Most Efficient:

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh kW MMBTU MMBTU MMBT					
			Oil	Propane	Natural	
					Gas	
Electric Dryer/Electric DHW	446	1.38	0	0	0	
Electric Dryer/Propane DHW	164	0.51	0	1.12	0	
Electric Dryer/Natural Gas DHW	164	0.51	0	0	1.12	
Electric Dryer/Oil DHW	164	0.51	1.12	0	0	
Propane Dryer/Electric DHW	289	0.90	0	0.53	0	
Propane Dryer/Propane DHW	8	0.02	0	1.66	0	
Propane Dryer/Oil DHW	8	0.02	1.66	0	0	
Natural Gas Dryer/Electric DHW	289	0.90	0	0	0.53	
Natural Gas Dryer/Natural Gas DHW	8	0.02	0	0	1.66	

	Natural Gas Dryer/Oil DHW	8	0.02	1.66	0	0
--	---------------------------	---	------	------	---	---

Top Ten:

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh kW MMBTU MMBTU MM				
			Oil	Propane	Natural
					Gas
Electric Dryer/Electric DHW	484	1.50	0	0	0
Electric Dryer/Propane DHW	188	0.58	0	1.18	0
Electric Dryer/Natural Gas DHW	188	0.58	0	0	1.18
Electric Dryer/Oil DHW	188	0.58	1.18	0	0
Propane Dryer/Electric DHW	306	0.95	0	0.61	0
Propane Dryer/Propane DHW	10	0.03	0	1.79	0
Propane Dryer/Oil DHW	10	0.03	1.79	0	0
Natural Gas Dryer/Electric DHW	306	0.95	0	0	0.61
Natural Gas Dryer/Natural Gas DHW	10	0.03	0	0	1.79
Natural Gas Dryer/Oil DHW	10	0.03	1.79	0	0

Savings if DHW and Dryer fuel is unknown:

	kWh	kW	MMBTU	MMBTU	MMBTU
			Oil	Natural	Propane
				Gas	
Non-CEE Energy Star Units	51.0	0.16	0.04	0.07	0.31
CEE 2	93.1	0.29	0.07	0.12	0.51
CEE 3	107.9	0.34	0.09	0.15	0.67
Most Efficient	142.1	0.44	0.11	0.19	0.85
Top Ten	161.2	0.50	0.12	0.21	0.90

Multiple End Uses Comprehensive Shell Measure Savings

Measure Number: VI-L-1-b (Residential New Construction, Heating, Cooling and Hot Water End Uses)

Version Date & Revision History

Draft date:Portfolio 81aEffective date:1/1/2014End date:TBD

Referenced Documents:

VT UDRH_Baseline2011_Input Data_MEDIAN-FINAL_121613.xlsx
 VT UDRH_Baseline2011_REMv14.3_MEDIAN-FINAL_121613.udr
 RNC UDRH 2013 Update_Memo to PSD_FINAL bm.docx

Description

This measure characterization documents the methodology and key assumptions for comprehensive residential new construction savings due to thermal shell and mechanical equipment improvements. This characterization includes savings for heating, cooling and hot water end uses⁸⁷¹.

Algorithms

Energy and Demand Savings

Energy and demand savings will be calculated using the User Defined Reference Home (UDRH) feature in REM/RateTM. All Residential New Construction Projects will be modeled in REM/RateTM to estimate annual energy consumption and demand for heating, cooling and hot water. Each project will be modeled a second time to a baseline⁸⁷² specification. The difference in modeled energy consumption and demand between the AsBuilt project and UDRH baseline models will be the savings for that project.

Energy Savings = $Energy_{AsBuilt}$ - $Energy_{UDRH}$ Demand Savings = $Demand_{AsBuilt}$ - $Demand_{UDRH}$

Where:

Energy _{AsBuilt}	= REM/Rate modeled consumption (kWh and MMBtu) of the AsBuilt home
Energy _{UDRHt}	= REM/Rate modeled consumption (kWh and MMBtu) of the UDRH home
Demand _{AsBuilt}	= REM/Rate modeled demand (kW) of the AsBuilt home
Demand _{UDRHt}	= REM/Rate modeled demand (kW) of the UDRH home

Baseline and Above-Baseline Efficiencies

The following table provides an overview of the UDRH baseline specification⁸⁷³. The efficiencies listed below for the Energy Code Plus and ENERGY STAR program tiers are a mixture of prescriptive program guidelines and mandatory prescriptive requirements. Mandatory requirements are noted with an asterisk. Each program home will be unique and may fall above or below the efficiency guidelines listed below. All homes must meet a minimum performance (HERS) target⁸⁷⁴.

 ⁸⁷¹ This comprehensive measure characterization replaces the following Residential New Construction measures: Heating Savings, Efficient Furnace Fan Motor, Central Air Conditioner, Space Cooling Savings, ES Central Air Conditioner, and Fossil Fuel Water Heater
 ⁸⁷² Baseline specifications are derived from the Vermont Residential New Construction Baseline Study Analysis of On-Site

⁸⁷² Baseline specifications are derived from the Vermont Residential New Construction Baseline Study Analysis of On-Site Audits Final Report, February 13, 2013. A new UDRH baseline will be submitted to DPS for review within three months of final updates to a new Vermont RNC baseline study.

 ⁸⁷³ See Reference document VT UDRH_Baseline2011_Input Data_MEDIAN-FINAL_121613.xlsx for the detailed specification.
 ⁸⁷⁴ Efficiency Vermont Residential New Construction Requirements and Specifications
 http://www.efficiencyvermont.com/docs/for_my_home/rnc/VESH_Requirements.pdf

		Baseline Efficiency	Above-Baseline Efficiency	
		UDRH	Energy Code Plus	ENERGY STAR
	Boiler, gas/prop	94.1 AFUE	95 41	
TT 4 ¹	Boiler, oil/kero	86.9AFUE	63 AI	TUE*
neating	Furnace, gas/prop	87.0 AFUE	95 AI	FUE*
	Furnace, oil/kero	83.0 AFUE	85 AI	FUE*
Cooling	CAC	13 SEER	14.5 S	EER*
Head Down	ASHP	7.7 HSPF / 13 SEER	ENERGY STAR	
Heat Pump	GSHP	3.1 COP / 11.24 EER	qualifi	ed* ⁸⁷⁵
	Tank, gas/prop	0.62 EF	0.59) EF
Domestic Hot Water	Tank, oil/kero	0.49 EF	0.51 EF	
	Instant, gas/prop	0.82 EF	0.82 EE	
Water	Indirect, gas/prop	0.97 EF	0.82 EF	
	Indirect, oil/kero	0.80 EF	N/A	
Air Leakage	Infiltration	3.4 ACH50	4 ACH50*	3 ACH50*
	Insulation Grade ⁸⁷⁶	2	2	1
	Ceiling	R-38	R-49	
Thermal Shell	Above-grade walls	R-19	R-20	
	Foundation Wall	R-10	R-15	
	Slab-on-Grade	R-10	R-15	
	Frame floors	R-24	R-	30
	Windows	U - 0.34	U - 0	0.32*

Loadshapes

Loadshape #5, Residential Space Heat Loadshape #11, Residential A/C Loadshape #7, Residential DHW Insulation

Freeridership/Spillover Factors

		Comprehensive Therma		
		Measure REM/Rate		
		Calculated H	eating, Cooling,	
Measure Category		D	HW	
		ТЅНСОМРН, ТЅНСОМРС		
Measure Codes		HWECOMP1		
		Space Heating, Cooling and		
Product Description		DHW Savings		
Track Name	Track No.	Freerider	Spillover	
RNC VESH	6038VESH	0.95	1.1	

Persistence

The persistence factor is assumed to be one.

 ⁸⁷⁵ http://www.energystar.gov/index.cfm?c=products.pr find es products
 ⁸⁷⁶ Insulation grade refers to the quality of insulation installation. Research has shown insulation is typically installed poorly and not to manufacturer's specifications. This has a significant impact on energy performance of the insulation. Grade 1 (per manufacturer instructions) is required by ENERGY STAR Homes.

Lifetimes

25 years. Analysis period is the same as the lifetime.

Measure Cost \$3,627⁸⁷⁷

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

⁸⁷⁷ Incremental costs above IECC 2009 taken from ENERGY STAR Qualified Homes, Version 3 Savings & Cost Estimate Summary

Residential Emerging Markets Program

Hot Water End Use Tank Wrap

(Residential Existing Homes, Hot Water End Use)

Version Date & Revision History

Draft date: Portfolio 81 Effective date: 1/1/2013 End date: TBD

Measure Number: VII-A-1-c

Referenced Documents:

- 1. Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM)
- 2. NREL, National Residential Efficiency Measures Database
- 3. Efficiency Vermont Program Documentation
- 4. DOE, "Residential Heating Products Final Rule Technical Support Document"

Algorithms

Where:

Energy Savings

For electric DHW systems only: $\Delta kWh = -(Uk - \Delta k)$

	ΔkWh	= $((U_{base}A_{base} - U_{insul}A_{insul}) * \Delta T * Hours) / (3412 * \eta DHW)$
ΔkWh		= gross customer annual kWh savings for the measure
U _{base}		= Overall heat transfer coefficient prior to adding tank wrap (Btu/Hr-F-ft ²) = $1/12^{878}$
U_{insul}		= Overall heat transfer coefficient after addition of tank wrap (Btu/Hr-F-ft ²) = $1/22^{879}$
A _{base}		= Surface area of storage tank prior to adding tank wrap (square feet) = 23.18^{880}
A_{insul}		= Surface area of storage tank after addition of tank wrap (square feet) = 25.31^{881}
ΔΤ		= Average temperature difference between tank water and outside air temperature (°F) = $55^{\circ}F^{882}$
Hours		= Number of hours in a year (since savings are assumed to be constant over year). = 8760
3412		= Conversion from BTU to kWh
ηDHW		= Recovery efficiency of electric hot water heater = 0.98^{883}

For the prescriptive assumption, 40 gallons is selected as an average tank⁸⁸⁴, and the savings are derived from adding R-10 to an R-12 tank. The prescriptive savings are therefore:

⁸⁷⁸ Conservative baseline assumption

⁸⁷⁹ Efficiency Vermont program documentation specifies R-10 tank wrap

⁸⁸⁰ Assumptions from PA TRM. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.

⁸⁸¹ Ibid.

⁸⁸² Assumes 120°F water in the hot water tank and average temperature of basement of 65°F.

 ⁸⁸³ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>
 ⁸⁸⁴ DOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch3.pdf

$$\Delta kWh = ((23.18/12 - 25.31/22) * 55 * 8760) / (3412 * 0.98)$$

= 113 kWh

Demand Savings

Where:

ΔkW	$= \Delta kWh / 8766$	
-------------	-----------------------	--

ΔkW	= gross customer connected load kW savings for the measure
ΔkWh	= kWh savings from tank wrap installation, calcualted below
8760	= Number of hours in a year (savings are from reduced standby loss and are therefore
	assumed to be constant over the year).

For the prescriptive assumption, the assumed savings is:

 $\Delta kW = 113 \ / \ 8760$

= 0.0128 kW

Baseline Efficiencies – New or Replacement

The baseline condition is a hot water tank that is not already well insulated. Newer, rigid, foam insulated tanks are considered to be effectively insulated while older tanks with fiberglass insulation that gives to gentle pressure are not.

High Efficiency

High efficiency is a hot water tank with a tank wrap of R-10.

Operating Hours

8760, savings are from reduced standby loss and are therefore assumed to be constant over the year.

Loadshape

Loadshape #25, Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Hot Water	
Measure Code		HWEINSUL	
Product Description		Insulate hot water tank	
Track Name	Track No.	Freerider	Spillover
RES Retrofit	6036RETR	1.0	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

6 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Incremental Cost

\$35 average retrofit cost⁸⁸⁵

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

⁸⁸⁵ Based on EVT online product review.

Fossil Fuel Descriptions n/a

Pipe Wrap

Measure Number: VII-A-2-c (Residential Existing Homes, Hot Water End Use)

Version Date & Revision History

Draft date:Portfolio 81Effective date:1/1/2013End date:TBD

Referenced Documents:

- 1. Navigant Consulting Inc., April 2009; "Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets"
- Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007
- 3. DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com)
- 4. NREL, National Residential Efficiency Measures Database

Description

Insulation is added to both the hot and cold pipes from the hot water tank to the first elbow. This is the most cost effective section to insulate since the water pipes act as an extension of the hot water tank up to the first elbow which acts as a heat trap. Insulating this length therefore helps reduce standby losses.

Algorithms

Energy Savings

For electric DHW systems:

$$\Delta kWh = ((C_{exist} / R_{exist} - C_{new} / R_{new}) * L * \Delta T * 8,760) / \eta DHW / 3412$$

Where:

$\begin{array}{llllllllllllllllllllllllllllllllllll$	
R_{new} = Pipe heat loss coefficient of insulated pipe (new) [(hr-°F-ft)/Btu] = Actual (1.0 + R value of insulation) Assuming R-2.4 (3/8" foam) insulation is added = 3.4 C_{new} = Circumference of pipe after insulation added (ft) (Diameter (in) * $\pi/12$): Assuming $\frac{1}{2}$ " pipe and 3/8" foam ((0.5 + 3/8 + 3/8) * $\pi/12$) = 0.327L= Length of pipe from water heating source covered by pipe wrap (ft) Assuming 3 feet of both the hot and cold pipes = 6C= Circumference of pipe (ft) (Diameter (in) * $\pi/12$): (0.5" pipe = 0.131ft, 0.75" 0.196ft) Assuming $\frac{1}{2}$ " pipe).5" pipe =
C_{new} = Circumference of pipe after insulation added (ft) (Diameter (in) * $\pi/12$): Assuming $\frac{1}{2}$ " pipe and $3/8$ " foam ((0.5 + $3/8 + 3/8$) * $\pi/12$) = 0.327L=Length of pipe from water heating source covered by pipe wrap (ft) Assuming 3 feet of both the hot and cold pipes = 6C= Circumference of pipe (ft) (Diameter (in) * $\pi/12$): (0.5" pipe = 0.131ft, 0.75" 0.196ft) Assuming $\frac{1}{2}$ " pipe	
L =Length of pipe from water heating source covered by pipe wrap (ft) Assuming 3 feet of both the hot and cold pipes = 6 C = Circumference of pipe (ft) (Diameter (in) * $\pi/12$): (0.5" pipe = 0.131ft, 0.75" 0.196ft) Assuming ¹ / ₂ " pipe	
C = Circumference of pipe (ft) (Diameter (in) * $\pi/12$): (0.5" pipe = 0.131ft, 0.75" 0.196ft) Assuming $\frac{1}{2}$ " pipe	
= 0.131	" pipe =

⁸⁸⁶ Navigant Consulting Inc., April 2009; "Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets", p77.

ΔΤ	= Average temperature difference between supplied water and outside air temperature
	(°F)
	$= 55^{\circ}F^{887}$
8,760	= Hours per year
ηDHW	= Recovery efficiency of electric water heater
	$= 0.98^{888}$
3412	= Conversion from Btu to kWh

Assuming defaults provided above: $\Delta kWh = (((0.131 / 1) - (0.327 / 3.4)) * 6 * 55 * 8,760) / 0.98 / 3412$

= 30.0 kWh

Demand Savings

 $\Delta kW = \Delta kWh / 8760 * CF$

Where:

ΔkW	= gross customer connected load kW savings for the measure
ΔkWh	= kWh savings from tank wrap installation, calcualted below
8760	= Number of hours in a year (savings are from reduced standby loss and are therefore
	assumed to be constant over the year).

Assuming defaults provided above:

$$\Delta kW = 30.0 / 8760$$

= 0.0034 kW

Baseline Efficiencies – New or Replacement

The baseline condition is a hot water system without pipe wrap.

High Efficiency

High efficiency is a hot water system with insulation on the hot and cold water pipes up to the first elbow.

Loadshape

Loadshape #25, Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Hot Water End Use	
Measure Code		HWEPIPES	
Product Description		Insulating Water Pipes	
Track Name	Track No.	Freerider	Spillover
RES Retrofit	6036RETR	0.90	1.0

Persistence

The persistence factor is assumed to be one.

Lifetime

15 years⁸⁸⁹. Analysis period is the same as the lifetime.

⁸⁸⁷ Assumes 120°F water leaving the hot water tank and average temperature of basement of 65°F.

 ⁸⁸⁸ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>
 ⁸⁸⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Incremental Cost

The measure cost is assumed to be \$3 per linear foot⁸⁹⁰, or \$18 for a 6 foot length, including installation labor

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions

For fossil fuel DHW systems:

$$\Delta MMbtu = ((C_{exist} / R_{exist} - C_{new} / R_{new}) * L * \Delta T * 8,760) / \eta DHW / 1,000,000$$

Where:

ηDHW	= Recovery efficiency of fossil fuel water heater
	$= 0.76^{891}$
1,000,000	= Conversion from Btu to MMBtu

Other variables as defined above

 $\Delta MMbtu = ((0.131 / 1) - (0.327 / 3.4)) * 6 * 55 * 8,760) / 0.76 / 1,000,000$

= 0.132 MMBtu

⁸⁹⁰ Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com)

⁸⁹¹ NREL, National Residential Efficiency Measures Database, http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

Tank Temperature Turn-down

Measure Number: VII-A-3-c

(Residential Existing Homes, Hot Water End Use)

Version Date & Revision History

Draft date:Portfolio 81Effective date:1/1/2013End date:TBD

Referenced Documents:

- 1. Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM).
- 2. NREL, National Residential Efficiency Measures Database
- 3. DOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch3.pdf

Description

The domestic hot water tank thermostat is lowered to reduce standby losses.

Algorithms

Energy Savings

For electric DHW systems:

 ΔkWh

= $((U_{\text{base}}A_{\text{base}}) * \Delta T * \text{Hours}) / (3412 * \eta \text{DHW})$

Where:

	ΔkWh U_{base}	= Gross customer annual kWh savings for the measure = Overall heat transfer coefficient (Btu/Hr-F-ft ²) = $1/20^{892}$
	A _{base}	= Surface area of storage tank (square feet) = 23.18^{893}
	ΔΤ	= Temperature difference between before and after turn down = $15^{\circ}F^{894}$
	Hours	= Number of hours in a year (savings are assumed to be constant over year) = 8760
	3412 ηDHW	 Conversion from BTU to kWh Recovery efficiency of electric water heater 0.98⁸⁹⁵
∆kWh		= ((1/20 * 23.18) * 15 * 8760) / (3412 * 0.98)
		= 45.5 kWh

Demand Savings

 ⁸⁹² Assumes an existing well insulated tank, or that tank wrap is added at that same time as the turn-down.
 Assumptions from Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM).
 ⁸⁹³ Area includes tank sides and top, for a 40 gallon tank. Assumptions from Pennsylvania Public Utility Commission Technical

⁸⁹³ Area includes tank sides and top, for a 40 gallon tank. Assumptions from Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM). Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.

⁸⁹⁴ Assumes 135°F tank turned down to 120°F.

⁸⁹⁵ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>

ΔkW	$= \Delta kWh / 8760$
Where: ΔkV ΔkV 876	 = Gross customer connected load kW savings for the measure = kWh savings, calculated above = Number of hours in a year (savings are from reduced standby loss and are therefore assumed to be constant over the year).
ΔkW	= 45.5 / 8760
	= 0.00519 kW

Baseline Efficiencies – New or Replacement

The baseline condition is a hot water tank with a thermostat setting that is higher than 125°F, typically 130°F or higher.

High Efficiency

High efficiency is a hot water tank with the thermostat set at 120°F or less.

Operating Hours

8766, savings are from reduced standby loss and are therefore assumed to be constant over the year.

Loadshape

Loadshape #25, Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category		Hot Water End Use	
Measure Code		HWETEMPS	
		Hot Water T	emperature
Product Description		Set b	back
Track Name	Track No.	Freerider	Spillover
RES Retrofit	6036RETR	1.0	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

2 years. Analysis period is the same as the lifetime.

Incremental Cost

\$5 for contractor time.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions

For fossil fuel DHW systems:

ΔMMBtu	$= ((U_{\text{base}}A_{\text{base}}) * \Delta T)$	Γ * Hours) / (1,000,00	0 * ηDHW)
--------	---	------------------------	-----------

Where:

ΔMMBtu	= Gross customer annual MMBtu savings for the measure
U _{base}	= Overall heat transfer coefficient ($Btu/Hr-F-ft^2$)

	$= 1/20^{896}$
A _{base}	= Surface area of storage tank (square feet) ⁸⁹⁷
	= 23.18
ΔT	$= 15^{\circ} F^{898}$
Hours	= Number of hours in a year (savings are assumed to be constant over year) = 8760
1,000,000	= Conversion from BTU to MMBtu
ηDHW	= Recovery efficiency of fossil fuel water heater
	$= 0.76^{899}$

ΔMMBtu

= ((1/20 * 23.18) * 15 * 8760) / (1,000,000 * 0.76)

= 0.20 MMBtu

⁸⁹⁶ Assumes an existing well insulated tank, or that tank wrap is added at that same time as the turn-down.

Assumptions from Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM). ⁸⁹⁷ Area includes tank sides and top to account for typical wrap coverage, for a 40 gallon tank. Number from Tank Wrap measure and PA TRM. ⁸⁹⁸ Assumes 135°F tank turned down to 120°F. ⁸⁹⁹ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>

Low Flow Shower Head

Measure Number: VII-A-4-c

(Residential Existing Homes, Hot Water End Use)

Version Date & Revision History

Draft date:Portfolio 81Effective date:1/1/2013End date:TBD

Referenced Documents:

- 1. Energy Policy Act of 1992
- 2. 2010 Census
- 3. NREL, National Residential Efficiency Measures Database
- 4. AWWA, Residential End Uses of Water, 1999, <u>http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx</u>
- 5. CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.
- 6. Pacific Northwest Laboratory; "Energy Savings from Energy-Efficient Showerheads: REMP Case Study Results, Proposed Evaluation Algorithm, and Program Design Implications" <u>http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=80456EF00AAB94DB204E848BAE65F199?purl=/10</u> <u>185385-CEkZMk/native/</u>
- 7. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf
- 8. SBW Consulting, Evaluation for the Bonneville Power Authority, 1994, <u>http://www.bpa.gov/energy/n/reports/evaluation/residential/faucet_aerator.cfm</u>
- 9. Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h20.org/vertical/Sites/%7B0A660058-838C-4456-B2E9-</u> CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf

Description

An existing shower head with a high flow rate is replaced with new unit that has a low flow rate. This is a retrofit measure.

Algorithms

Energy Savings

If electric domestic water heater:

∆kWh ⁹⁰⁰	0	$= (((GPM_{base} \times min/person/day_{base} - GPM_{efficient} \times min/person/day_{efficient}) \times \# people \times days/year) / SH/home) \times 8.3 \times (TEMP_{sh} - TEMP_{in}) / DHW Recovery Efficiency / 3412 \times ISR$
	GPM _{base}	= Gallons Per Minute of baseline shower head = 2.02^{901}
	GPM _{efficient}	= Gallons Per Minute of low flow shower head = 1.5^{902}
	min/person/day _{ba}	$_{se}$ = Average minutes in the shower per person per day with baseline showerhead = 4.7 903

 ⁹⁰⁰ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all shower head installations.
 ⁹⁰¹ Median from AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-end-uses-

⁹⁰¹ Median from AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx

⁹⁰² EVT program documentation as of November 2012

	min/person/day _{efficient} = Average minutes in the shower per person per day with low flow showerheat = 4.7^{904}			
	# people	= Average number of people per household = 2.34^{905}		
	days/y	= Days shower used per year = 365		
	SH/home	= Average number of showers in the home = 1.7^{906}		
	8.3	= Constant to convert gallons to lbs		
	TEMP _{sh}	= Assumed temperature of water used by shower head = $101F^{907}$		
	TEMP _{in}	= Assumed temperature of water entering house = 54 F^{908}		
	DHW Recovery	Efficiency = Recovery efficiency of electric water heater = 0.98^{909}		
	3412	= Constant to converts BTU to kWh		
	ISR	= In Service Rate = 0.95^{910}		
	$\Delta kWh =$	= [((2.02 × 4.7 – 1.5 × 4.7) × 2.34 × 365) / 1.7] × 8.3 × (101-54) / 0.98 / 3412 × 0.95		
		= 136 kWh		
Deman ∆kW	d Savings	$= \Delta kWh / hours$		
Where:	Hours	 Operating hours from Residential DHW Conservation Loadshape⁹¹¹ = 3427 		
	ΔkW	= 136 kWh / 3427		

= 0.0395 kW

Baseline Efficiencies – New or Replacement

The baseline condition is an existing shower head with a high flow.

⁹⁰³ Based on 7.8 minutes per shower and 0.6 showers per person per day ($7.8 \times 0.6 = 4.7$ minutes per person per day); CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.

904 Ibid.

⁹⁰⁵ Average people per household in Vermont single family buildings, 2010 Census

⁹⁰⁶ Estimate based on review of a number of studies:

Pacific Northwest Laboratory; "Energy Savings from Energy-Efficient Showerheads: REMP Case Study Results, d. Proposed Evaluation Algorithm, and Program Design Implications" http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=80456EF00AAB94DB204E848BAE65F199?purl=/10185385-CEkZMk/native/

East Bay Municipal Utility District; "Water Conservation Market Penetration Study" e. http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf

AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-end-uses-off. water-study-1999.aspx

⁹⁰⁷ CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.

⁹⁰⁸ Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h2o.org/vertical/Sites/%7B0A660058-838C-4456-</u> B2E9-CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf 909 NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>

⁹¹⁰ Navigant, 2013, Draft Evaluation of Multi-Family Home Energy Savings Program for ComEd PY4 and Nicor Gas PY1

⁹¹¹ Based on Itron eShapes (8760 data) and adjusted for diversity within the hour

High Efficiency

High efficiency is a low flow shower head.

Loadshape

For DHW systems not on Utility Controlled DHW program (Default): Loadshape #8, Residential DHW Conservation

For DHW systems on Utility Controlled DHW program: Loadshape #54, Controlled DHW Conservation

Freeridership/Spillover Factors

Measure Category		Hot Water		
Measure Code		HWESHOWR		
		Low Flow		
Product Description		Shower Head		
Track Name Track No.		Freerider	Spillover	
RES Retrofit	6036RETR	RETR 0.90 1.0		

Persistence

The persistence factor is assumed to be one.

Lifetimes

9 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for low-flow shower heads is presumed to be zero for new construction or major rehab projects, and \$15 for retrofit applications.⁹¹²

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions⁹¹³

If fossil fuel water heating:	
ΔMMBtu	$= ((\Delta k Wh \times \eta WH_{electric}) \ / \ \eta WH_{combustion}) \times 0.003412$

Where:

$$\begin{split} \eta WH_{electric} &= \text{Recovery efficiency of electric water heater} \\ &= 0.98^{914} \\ \eta WH_{combustion} &= \text{Recovery efficiency of fossil fuel water heater} \\ &= 0.76^{915} \\ \end{split}$$

 Δ MMBtu = ((136 × 0.98) / 0.76) × 0.003412

= 0.60 MMBtu

⁹¹³ Fossil fuel savings based on efficiency factors of .62 for oil, natural gas, and liquid propane high efficiency stand alone DHW heaters as approved by the VT- DPS and used by Efficiency Vermont. Efficiency factor of .88 is used for electric DHW heater.
⁹¹⁴ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>

⁹¹² Includes showerhead cost of \$2.5 for a regular, \$2.97 for chrome and \$7.26 for handheld, plus labor installation costs.

⁹¹⁵ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>

Water Descriptions

 $\Delta CCF = ((GPM_{base} \times min/person/day_{base} - GPM_{efficient} \times min/person/day_{efficient}) \times \# people \times days/year) / (SH/home \times 748)$

Where:

 ΔCCF = customer water savings in hundreds of cubic feet for the measure748= Conversion from gallons to CCFOther factors are as defined above

$$\Delta \text{CCF} = ((2.02 \times 4.7 - 1.5 \times 4.7) \times 2.34 \times 365) / (1.7 \times 748)$$

= 1.64 CCF

Low Flow Faucet Aerator

Measure Number: VII-A-5-c (Residential Existing Homes, Hot Water End Use)

Version Date & Revision History

Draft date:Portfolio 81Effective date:1/1/2013End date:TBD

Referenced Documents:

- DOE, "Energy and Water Conservation Standards," Federal Register Vol. 63, No. 52, March 18, 1998, 13307
- 2. AWWA, Residential End Uses of Water, 1999, http://www.allianceforwaterefficiency.org/residential-end-uses-of-water-study-1999.aspx
- 3. Ontario Energy Board, "Measures and Assumptions for Demand Side Management Planning."
- 4. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf
- 5. CADMUS and Opinion Dynamics, "Showerhead and Faucet Aerator Meter Study," prepared for the Michigan Evaluation Working Group, 2013.
- Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h2o.org/vertical/Sites/%7B0A660058-838C-4456-B2E9-</u> CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf
- NREL, National Residential Efficiency Measures Database, http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40
- 8. 2010 Census

Description

An existing faucet aerator with a high flow rate is replaced with new unit that has a low flow rate. This is a retrofit measure.

Algorithms

Energy Savings

If electric domestic water heater:

 ΔkWh^{916}

= (((GPM_{base} – GPM_{efficient}) / GPM_{base} × # people × gpcd × days/year × DR) / (F/home)) × $8.3 \times$ (TEMP_{ft} - TEMP_{in}) / DHW Recovery Efficiency / 3412

Where:

GPM _{base}	= Gallons Per Minute of baseline faucet
	$= 2.2^{917}$
GPM _{efficient}	= Gallons Per Minute of low flow faucet
	= 1.5 or
	= 1.0
# people	= Average number of people per household
	$= 2.34^{918}$
gpcd	= Average gallons per person per day using faucets
	$= 10.9^{919}$

⁹¹⁶ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all faucet aerator installations.

⁹¹⁷ In 1998, the Department of Energy adopted a maximum flow rate standard of 2.2 GPM at 60 psi for all faucets: DOE, "Energy and Water Conservation Standards," Federal Register Vol. 63, No. 52, March 18, 1998, 13307 ⁹¹⁸ Average people per household in Vermont single family buildings, 2010 Census

⁹¹⁹ AWWA, Residential End Uses of Water, 1999, <u>http://www.allianceforwaterefficiency.org/residential-end-uses-of-</u>

water-study-1999.aspx

	days/y	= Days faucet used per year
	DR	= 505 = Percentage of water flowing down drain (if water is collected in a sink, a faucet aerator will not result in any saved water) -50% ⁹²⁰
	F/home	= 30^{-10} = Average number of faucets in the home = 3.5^{-921}
	8.3	= Constant to convert gallons to lbs
	TEMP _{ft}	= Assumed temperature of water used by faucet = $88 F^{922}$
	TEMP _{in}	= Assumed temperature of water entering house = 54 F^{923}
	DHW Recovery	Efficiency = Recovery efficiency of electric water heater = 0.98^{924}
	3412	= Constant to converts BTU to kWh
	Aerator at 1.5 gp ΔkWh =	em = ((2.2 - 1.5) / 2.2 × 2.34 × 10.9 × 365 × 0.5) / 3.5 × 8.3 × (88 - 54) / 0.98 / 3412
		= 35.7 kWh
	Aerator at 1.0 gp ∆kWh =	m = ((2.2 - 1.0) / 2.2 × 2.34 × 10.9 × 365 × 0.5) / 3.5 × 8.3 × (88 - 54) / 0.98 / 3412
		= 61.2 kWh
Demano ∆kW	l Savings	$= \Delta kWh / hours$
Where:	Hours	= Operating hours from Residential DHW Conservation Loadshape ⁹²⁵ = 3427
	Aerator at 1.5 gp	m
	ΔkW	= 35.7 kWh / 3427 = 0.0104 kW
	Aerator at 1.0 gp	m
	ΔkW	= 61.2 kWh / 3427 = 0.0179 kW
Baseline The base	e Efficiencies – N eline condition is	few or Replacement an existing faucet aerator using 2.2 gpm.

⁹²⁰ Estimate consistent with Ontario Energy Board, "Measures and Assumptions for Demand Side Management

Planning." ⁹²¹ Estimate based on East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf ⁹²² Weighted average of kitchen (93F) and bathroom (86F) faucet use temperatures, CADMUS and Opinion Dynamics,

 ⁹²³ Champlain Water District, 2010 Water Quality Report, <u>http://www.cwd-h2o.org/vertical/Sites/%7B0A660058-838C-4456-B2E9-CCDA30420B07%7D/uploads/2011 Water Quality Report1.pdf</u>
 ⁹²⁴ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40 ⁹²⁵ Based on Itron eShapes (8760 data) and adjusted for diversity within the hour

High Efficiency

High efficiency is a low flow aerator, 1.5 or 1.0 gpm.

Loadshape

For DHW systems not on Utility Controlled DHW program (Default): Loadshape #8, Residential DHW Conservation

For DHW systems on Utility Controlled DHW program: Loadshape #54, Controlled DHW Conservation

Freeridership/Spillover Factors

Measure Category		Hot Water		
Measure Code	HWEFAUCT			
Product Description		Low Flow Faucet Aerator		
Track Name	Track No.	Freerider Spillover		
RES Retrofit	6036RETR	0.90 1.0		

Persistence

The persistence factor is assumed to be one.

Lifetimes

The expected lifetime of the measure is 9 years (same as in DPS screening of Efficiency Utility Core programs). Analysis period is the same as the lifetime.

Measure Cost

The incremental cost for low-flow faucet aerators is presumed to be zero for new construction or major rehab projects, and \$10 for retrofit applications.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure

Fossil Fuel Descriptions⁹²⁶

If fossil fuel water heating: ΔMMBtu

= (($\Delta kWh \times \eta WH_{electric}$) / $\eta WH_{combustion}$) × 0.003412

Where:

$$\begin{split} \eta WH_{electric} &= \text{Recovery efficiency of electric water heater} \\ &= 0.98^{927} \\ \eta WH_{combustion} &= \text{Recovery efficiency of fossil fuel water heater} \\ &= 0.76^{928} \\ \end{split}$$

Aerator at 1.5 gpm Δ MMBtu = ((35.7 × 0.98) / 0.76) × 0.003412

= 0.157 MMBtu

Aerator at 1.0 gpm

 ⁹²⁷ NREL, National Residential Efficiency Measures Database, <u>http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40</u>
 ⁹²⁸ NREL, National Residential Efficiency Measures Database,

⁹²⁶ Fossil fuel savings based on efficiency factors of .62 for oil, natural gas, and liquid propane high efficiency standalone DHW heaters as approved by the VT- DPS and used by Efficiency Vermont. Efficiency factor of .88 is used for electric DHW heater.
⁹²⁷ NREL, National Residential Efficiency Measures Database,

http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40

 Δ MMBtu = ((61.2 × 0.98) / 0.76) × 0.003412

= 0.269 MMBtu

Water Descriptions

 $\Delta CCF = ((GPM_{base} - GPM_{efficient}) / GPM_{base} \times \# people \times gpcd \times days/year \times DR) / (F/home \times 748)$

Where:

ΔCCF	= customer water savings in hundreds of cubic feet for the measure
748	= Conversion from gallons to CCF

Other factors are as defined above

Aerator at 1.5 gpm $\Delta CCF = ((2.2 - 1.5) / 2.2 \times 2.34 \times 10.9 \times 365 \times 0.5) / (3.5 \times 748)$

= 0.566 CCF

Aerator at 1.0 gpm

 $\Delta CCF = ((2.2 - 1.0) / 2.2 \times 2.34 \times 10.9 \times 365 \times 0.5) / (3.5 \times 748)$

= 0.970 CCF

Hot Water End Use (with Electric Hot Water Fuel Switch) Electric Domestic Hot Water System Fuel Switch

Measure Number: VII-A-15-b Residential Existing Homes, Water Heating End Use)

Version Date & Revision History

Draft date:	Portfolio 49
Effective date:	9/1/2007
End date:	TBD

Referenced Documents: 1) 2007_Rx DHW Economics Tool.xls

Description

An electric domestic hot water heater is replaced with a fossil fuel based domestic hot water heater meeting specified efficiency criteria. This measure characterization and savings estimates are taken from averages, and, as such, is applicable across all house types.

Algorithms

Energy Savings

Electric DHW Fuel Switch Prescriptive Saving Values			
Bedrooms kWh Savings			
1	2,400		
2	3,000		
3	3,600		
4	4,500		
5+	5,400		

Source: Negotiated Efficiency Vermont and DPS estimate based on an analysis of 1993 and 2001 RECS data and 2000 DOE Technical Support Document for DHW Efficiency Standards. Assumes the average 3 bedroom home consumes 3,600 kWh. Estimates for usage for homes of other sizes is based on MMBtu consumption for DHW by number of bedrooms from RECS 2001 data and scaled proportionally from the 3 bedroom consumption estimate. Estimated kWh savings detailed above are net of auxiliary electricity use by the new fossil fuel based equipment. For full reference, see "Rx EDHW Fuel Switch.xls"

Baseline Efficiencies – New or Replacement

Electric domestic hot water heating system installed prior to the new 2004 Federal efficiency standards with a 50 gallon storage tank and energy factor of 0.88.

High Efficiency

Cost-effective fossil fuel based domestic hot water heating system meeting the following minimum efficiency standards and installed in homes meeting the minimum number of bedrooms by system type and fuel.

Fuel Type	Equipment Type	Average Efficient EF	Minimum Bedrooms Uncontrolled Electric Rate	Minimum Bedrooms Controlled Electric Rate
# 2 Heating Oil	Water Heater (stand-alone)	64%	>=3	>=4

Minimum Bedrooms for Cost-Effective Fuel Switch Threshold Table
	Storage Tank (indirect-fired)	75%	>=1	>=1
	Instantaneous (continuous)	88%	>=1	>=2
	Water Heater (stand-alone)	59%	>=1	>=1
Natural Gas	Storage Tank (indirect-fired)	75%	>=1	>=1
	Instantaneous (continuous)	80%	>=1	>=1
			NY 1	N.T. 1.
			Not cost-	Not cost-
	Water Heater (stand-alone)	61%	Not cost- effective	Not cost- effective
Liquid Dromono	Water Heater (stand-alone)	61%	Not cost- effective >=4	Not cost- effective Not cost-
Liquid Propane	Water Heater (stand-alone) Storage Tank (indirect-fired)	61% 75%	Not cost- effective >=4	Not cost- effective Not cost- effective
Liquid Propane	Water Heater (stand-alone) Storage Tank (indirect-fired)	61% 75%	Not cost- effective >=4	Not cost- effective Not cost- effective Not cost-
Liquid Propane	Water Heater (stand-alone) Storage Tank (indirect-fired) Instantaneous (continuous)	61% 75% 80%	Not cost- effective >=4 >=4	Not cost- effective Not cost- effective Not cost- effective
Liquid Propane	Water Heater (stand-alone) Storage Tank (indirect-fired) Instantaneous (continuous)	61% 75% 80%	Not cost- effective >=4 >=4	Not cost- effective Not cost- effective Not cost- effective
Liquid Propane Kerosene	Water Heater (stand-alone) Storage Tank (indirect-fired) Instantaneous (continuous) Instantaneous (continuous)	61% 75% 80% 88%	Not cost- effective >=4 >=4 >=2	Not cost- effective Not cost- effective Not cost- effective >=2

Operating Hours n/a

Loadshape

Loadshape #6, Residential DHW Fuel Switch Loadshape # 52, Controlled DHW Fuel Switch

Freeridership/Spillover Factors

Measure Category Hot Water Fuel Switch			Fuel Switch	
		HWFCFOIL, HWFCKERO, HWFCNGAS,		
		HWFCPROP, HWFN	FOIL, HWFNNGAS,	
		HWFNPROP, HWFNWOOD, HWFSFOIL,		
Measure Code		HWFSNGAS, HWFSPROP,		
Product Description		Hot water fuel switch (various fossil fuel systems)		
Track Name	Track No.	Freerider	Spillover	
LISF Retrofit	6034LISF	1	1	
RES Retrofit	6036RETR	$0.80/0.50^{929}$	1	

Persistence

The persistence factor is assumed to be one.

Lifetimes

Fuel Type	Equipment Type	Analysis Period	Measure Lifetime
	Water Heater (stand-alone)	30	10
# 2 Heating Oil	Storage Tank (indirect-fired)	30	15
	Instantaneous (continuous)	30	15

⁹²⁹ The freerider rate for stand-alone natural gas fired systems will be 0.50. All other systems will have a freerider rate of 0.80.

	Water Heater (stand-alone)	30	13
Natural Gas	Storage Tank (indirect-fired)	30	15
	Instantaneous (continuous)	30	15
	Water Heater (stand-alone)	30	13
Liquid Propane	Storage Tank (indirect-fired)	30	15
	Instantaneous (continuous)	30	15
Kerosene	Instantaneous (continuous)	30	15

Source: EVT estimate.

Measure Costs

Full retrofit costs for the efficient fossil fuel based DHW heating system are detailed below. Note, we estimate the electric DHW system being replaced was on average 12 years old, with only 3 years of working life remaining. This is taken into account in measure screening.

		Est. Full Installed Cost for Baseline Electric DHW Equipment	Est. First Time Full Installed Cost for Efficient	Replacement Costs for Efficient Equipment
Fuel Type	Equipment Type		Equipment	
	Water Heater (stand-alone)	\$500	\$2,250	\$1,500
# 2 Heating Oil	Storage Tank (indirect-fired)	\$500	\$1,700	\$1,200
	Instantaneous (continuous)	\$500	\$2,500	\$1,925
	Water Heater (stand-alone)	\$500	\$9,75	\$950
Natural Gas	Storage Tank (indirect-fired)	\$500	\$1,350	\$1,200
	Instantaneous (continuous)	\$500	\$1,500	\$1,400
	Water Heater (stand-alone)	\$500	\$1,300	\$950
Liquid Propane	Storage Tank (indirect-fired)	\$500	\$1,650	\$1,200
	Instantaneous (continuous)	\$500	\$2,000	\$1,400
Kerosene	Instantaneous (continuous)	\$500	\$2,600	\$2,200

Source: Estimate from actual installed costs reported to Efficiency Vermont from custom DHW fuel switches during 2006-2007.

O&M Cost Adjustments

		Baseline Equipment Annual Maintenance Costs (Electric DHW	Efficient Fossil Fuel Equipment Annual Maintenance Costs	O&M Cost Adjustments
Fuel Type	Equipment Type	Heater)		
	Water Heater (stand-alone)	\$10	\$35	(\$25)
# 2 Heating Oil	Storage Tank (indirect-fired)	\$10	\$10	\$0
	Instantaneous (continuous)	\$10	\$35	(\$25)
	Water Heater (stand-alone)	\$10	\$17	(\$7)
Natural Gas	Storage Tank (indirect-fired)	\$10	\$10	\$0
	Instantaneous (continuous)	\$10	\$17	(\$7)
	Water Heater (stand-alone)	\$10	\$17	(\$7)
Liquid Propane	Storage Tank (indirect-fired)	\$10	\$10	\$0
	Instantaneous (continuous)	\$10	\$17	(\$7)
Kerosene	Instantaneous (continuous)	\$10	\$35	(\$25)

Source: EVT estimate.

Fossil Fuel Descriptions

Replacing an electric domestic hot water heater with a fossil fuel based heater results in an increase in fossil fuel consumption. The tables below details increased MMBTU consumption by system type and house size in terms of bedrooms. These consumption estimates were calculated based on a comparison of the former kWh consumption per bedroom for DHW and the electric hot water heater energy factor of 0.88 and the new energy factor of the specific fuel and system type.

Controlled and Uncontrolled Rate Electric Fuel Switch: MMBtu Consumption per System Type by House Size (Bedrooms)

	Equipment	1	2	3	4	5+
Fuel Type	Туре	Bedroom	Bedroom	Bedroom	Bedroom	Bedroom
# 2 Heating Oil	Water Heater					
# 2 Heating On	(stand-alone)	11.26	14.08	16.89	21.12	25.34

	Storage Tank (indirect-fired)	9.61	12.01	14.42	18.02	21.62
	Instantaneous (continuous)	8.19	10.24	12.29	15.36	18.43
	Water Heater (stand-alone)	12.22	15.27	18.33	22.91	27.49
Natural Gas	Storage Tank (indirect-fired)	9.61	12.01	14.42	18.02	21.62
	Instantaneous (continuous)	9.01	11.26	13.52	16.89	20.27
	Water Heater (stand-alone)	11.82	14.77	17.73	22.16	26.59
Liquid Propane	Storage Tank (indirect-fired)	9.61	12.01	14.42	18.02	21.62
	Instantaneous					
	(continuous)	9.01	11.26	13.52	16.89	20.27
	(continuous)	9.01	11.26	13.52	16.89	20.27
Kerosene	Instantaneous (continuous) Instantaneous (continuous)	9.01 8.19	11.26	13.52	16.89	20.27

Water Descriptions There are no water algorithms or default values for this measure.

Clothes Dryer End Use Electric Clothes Dryer Fuel Switch

Measure Number: VII-A-16-a (Existing Homes, Clothes Washing End Use)

Version Date & Revision History

Draft date: Portfolio 42 Effective date: 1/1/07

Referenced Documents: 1) Dryer usage.xls

Description

An electric clothes dryer is replaced with a fossil fuel based clothes dryer meeting specified efficiency criteria. The measure characterization and savings estimates are based on average usage per person and average number of people per Vermont household., Therefore, this is a prescriptive measure, with identical savings applied to all installation instances, applicable across all housing types.

Algorithms

Energy Savings930

 $\Delta kWh = 977 kWh$ (supporting documentation in Dryer Usage.xls)

 Δ MMBtu = -3.33 MMBtu (negative indicates increase in fuel consumption) (977*.003413 = 3.33) it is assumed that gas and electric dryers have similar efficiencies. All heated air passes through the clothes ad contributes to drying.

Demand Savings

 $\Delta kW = 4.8 \text{ kW}$ electric dryer = 5kW heating element. Gas dryer may have 200 watt glow coil. Motor wattage assumed to be equal.

Where:

∆kWh	= weighted average annual kWh savings per dryer per residential unit
∆MMBtu	= weighted average fossil fuel energy savings per dryer per residential unit in MMBtu (million
	Btu)
ΔkW	= weighted average connected load kW savings per dryer

Baseline Efficiencies – New or Replacement

Baseline efficiency is an electric dryer used in conjunction with a mix of standard top-loading clothes washers (80%) and ENERGY STAR qualified washers (20%)⁹³¹ (supporting documentation in Dryer Usage.xls).

Non-Electric

A propane or natural gas dryer used in conjunction with a mix of standard top-loading clothes washers (80%) and ENERGY STAR qualified washers (20%) (supporting documentation in Dryer Usage.xls).

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years (same as for clothes washers in DPS screening of Efficiency Utility Core programs). Remaining life = 4 years

⁹³⁰ Average annual dryer kWh per Vermont household using EIA data for kwh/year/household for nationwide household and using census data for Vermont residents/household. Assumes an average 2.44 people per home in Vermont. Estimates for usage for homes of other sizes is based on MMBtu consumption for DHW by number of bedrooms from RECS 2001 data and scaled proportionally from the per person consumption estimate. Estimated kWh savings detailed above are net of auxiliary electricity use by the new fossil fuel based equipment.

⁹³¹ Vermont estimates saturation of ENERGY STAR washers to be 20%

Analysis Period

30 years

Baseline Efficiencies – New or Replacement

Efficiencies assumed to be the same for both baseline and new equipment.

Operating Hours

n/a

Loadshape

Loadshape #9, Residential Clothes Washer, Vermont State Cost Effectiveness Screening Tool

Ficeriaci sinp/spino			
Measure Category		Hot Water	Fuel Switch
Measure Codes		OTFYPROF	; OTFYNGAS
		Clothes Dry	ver fuel switch
Product Description		(various foss	il fuel systems)
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	1	1
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	$1.0/0.90^{932}$	1
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
Customer Credit	6015CC	n/a	n/a

Freeridership/Spillover Factors

Measure Costs

Full retrofit costs for the efficient fossil fuel based clothes dryer are detailed below. Note, we estimate the electric clothes dryer being replaced was on average 10 years old with 4 years of working life remaining. This is taken into account in measure screening.

Equipment Type	Est. Full Installed Cost for Baseline Electric Equipment	Est. First Time Full Installed Cost for Efficient Equipment	Replacement Costs for Efficient Equipment
Clothes Dryer	\$320	\$580	\$380

Source: Survey of local retailers.

⁹³² The freerider rate for natural gas fired units will be 10%, propane will have a freerider rate of 0%.

Incentive Level

Track Name	Track No.	Incentive
LISF Retrofit	6034LISF	75% of full installed cost
RES Retrofit	6036RETR	\$200
RNC VESH	6038VESH	\$100

O&M Cost Adjustments

	Baseline (Electric Clothes Dryer)	Fossil Fuel Clothes Clothes Dryer	O&M Cost Adjustments
Equipment Annual Maintenance Costs	\$15	\$35	(\$20)

Source: EVT estimate.

Water Descriptions

There are no water algorithms or default values for this measure.

Lighting End Use

Standard CFL Direct Install

Measure Number: VII-B-2-c (Residential Emerging Markets Program, Lighting End Use)

Version Date & Revision History:

Draft date:Portfolio 76Effective date:01/01/12End date:12/31/14

Referenced Documents:

1. DI Cost Query.xls, Direct Install Prescriptive Lighting TAG.doc

2. Residential Lighting Markdown Impact Evaluation, Nexus Market Research, RLW Analytics, and GDS Associated, January 20, 2009

- 3. Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)
- 4. 2012 EISA Adjustment Calculations.xls

Description

A compact fluorescent lamp replaces an incandescent bulb in an interior lighting fixture in a low income single-family homes direct install application.

Algorithms

Demand Savings

ΔkW

 $= ((\Delta Watts) / 1000)^* ISR$

Year	Algorithm	ΔkW
2012	= (49.0 / 1000) * 0.8	0.0392
2013	= (43.6 / 1000) * 0.8	0.0349
2014	= (37.0 / 1000) * 0.8	0.0296

Energy Savings

∆kWh

= ((Δ Watts) /1000) * ISR * HOURS

Year	Algorithm	∆kWh
2012	= (49.0 / 1000) * 0.8 * 694	27.2
2013	= (43.6 / 1000) * 0.8 * 694	24.2
2014	= (37.0 / 1000) * 0.8 * 694	20.5

Where:

ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used $= 0.8^{933}$
HOURS	= average hours of use per year = 694^{934}

⁹³³ 0.8 ISR based on TAG 2009 agreement.

⁹³⁴ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

Baseline Efficiencies – New or Replacement

The baseline is an incandescent bulb.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become Halogen bulbs (see percentages in O&M table below).

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012.

The appropriate adjustments are provided below (see <u>CFL baseline savings shift.xls</u> for details on how adjustment is calculated):

Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
2012	0.66	2
2013	0.77	1
2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR compact fluorescent bulb. Delta watts based on NEEP Residential Lighting Survey, 2011.

Operating Hours

Operating hours will be assumed as 1.9 hours per day or 694 hours per year⁹³⁵.

Loadshape

If Indoor, Loadshape #1 - Residential Indoor Lighting If Outdoor, Loadshape #2 - Residential Outdoor Lighting

Freeridership/Spillover Factors

Measure Category	Light Bulbs/Lamps				
Measure Code		LBLCFBLB			
		Compact			
		Fluorescent Screw-			
Product Description		base	base bulb		
Track Name	Track No.	Freerider	Spillover		
LIMF Retrofit	6017RETR	1	1		
LIMF NC	6018LINC	1	1		
LIMF Rehab	6018LIRH	1	1		
MF Mkt NC	6019MFNC	1	1		
MF Mkt Retro	6020MFMR	0.9	1.05		
LISF Retrofit	6034LISF	1	1		
RES Retrofit	6036RETR	0.9	1		
RNC VESH	6038VESH	1	1		

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

⁹³⁵ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). At 694 hours per year and including the 90% persistence factor this equates to 11 years. A provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the measure life will reduce each year and be equal to the number of years remaining to 2020; so for 2012 this will be 8 years, 2013 7 years.

Analysis period is the same as the lifetime.

Measure Cost⁹³⁶

The average installed cost is assumed to be $6.09 (2.50 \text{ for the bulb and } 3.59 \text{ for labor})^{937}$.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see 2012 EISA Adjustments.xls). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen	CFL
Replacement Cost	\$0.50	\$1.50	\$2.50
Component Life (hours)	1000	1000	8500
Baseline % in 2009-2011	100%	0%	0%
Baseline % in 2012	67%	33%	0%
Baseline % in 2013	33%	67%	0%
Baseline % in 2014 onward	0%	100%	0%
Baseline % in 2020 onward	0%	0%	100%

The calculation results in a levelized assumption of \$0.96 baseline replacement cost every 1 year for CFL installations in 2012, \$1.14 every year for installations in 2013, and \$1.19 for installations in 2014. This adjustment will be recalculated for subsequent years.

⁹³⁶ 2009 cost represents full, installed cost and is computed with a weighted average of all direct install interior CFLs installed under the Efficiency Vermont Existing Homes and Low Income Program between 1/1/2006 and 12/1/2007. 2010 and 2011 costs decline at same rate as the assumption for CFL bulbs.

⁹³⁷ \$2.50 for CFL is based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011. Labor rate consistent with other measures.

Solid State (LED) Recessed Downlight

Measure Number: VII-B-4-a (Residential Emerging Markets Program, Lighting End Use)

Version Date & Revision History

Draft date:	Portfolio 77
Effective date:	1/1/2011
End date:	TBD

Referenced Documents:

1) WasteHeatAdjustment.doc;

2) "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993

Description

An LED Downlight is used in place of an incandescent downlight. The downlight must be tested by the DOE Caliper Testing Program or Independent 3rd party testing with results shown to meet the upcoming Energy Star Specification for Solid State Luminaires. This Specification will take effect September 31st, 2008, and can be downloaded from http://www.netl.doe.gov/ssl/. See Reference Table of Energy Star requirements for recessed downlights.

Algorithms

Demand Savings	
ΔkW	= $((Watts_{RASE} - Watts_{EE}) / 1000) \times ISR \times WHF_d$
∆kW(Residential)	$= ((65 - 12) / 1000) \times 0.95) \times 1.0 = 0.05035$
ΔkW(Commercial)	$= ((65 - 12) / 1000) \times 0.95) \times 1.082 = 0.054479$
Energy Savings	
∆kWh	= ((Watts _{BASE} – Watts _{EE}) /1000) × HOURS × ISR × WHF _e
∆kWh (Residential)	$= ((65 - 12) / 1000) \times 1241 \times 0.95 \times 1.0 = 62.48$
∆kWh (Commercial)	$= ((65 - 12) / 1000) \times 2800 \times 0.95 \times 1.033 = 145.63$
Where:	
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW. 938
$Watts_{EE}$	= Energy efficient connected kW. ⁹³⁹
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units rebated that actually get used 940
WHF _d	= Waste heat factor for demand to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.082 (calculated as $1 + (0.47*0.67*.808) / 3.1))^{941}$. The cooling savings are only added to the summer peak savings.
WHF _e	= Waste heat factor for energy to account for cooling savings from efficient lighting. For commercial lighting, the value is 1.033 (calculated as $1 + ((0.47*0.29*.75) / 2.5))^{942}$.
HOURS	= average hours of use per year 943

⁹³⁸ Baseline wattage based on 65 Watt BR30 incandescent bulb.

⁹⁴⁰ ISR differs for residential and commercial applications. See table below for ISR in each application.

⁹⁴² Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 25% average outside air; and 29% of annual lighting energy contributes to cooling load. See "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993 and

WasteHeatAdjustment.doc for additional discussion.

⁹⁴³ Hours of usage differs for residential and commercial applications. See table below for HOURS at each application.

⁹³⁹ Energy Efficient wattage based on 12 Watt LR6 Downlight from LLF Inc.

 ⁹⁴¹ Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have mechanical cooling; 33% average outside air; and 80.8% coincidence of cooling with the summer peak period. See WasteHeatAdjustment.doc for additional discussion.
 ⁹⁴² Based on the following assumptions: 3.1 COP typical cooling system efficiency; average 47% of spaces have

Waste Heat Adjustment

Cooling savings are incorporated into the electric savings algorithm with the waste heat factor (WHF). See above.

Heating Increased Usage

 $\begin{array}{ll} \Delta MMBTU_{WH} &= (\Delta kWh \ / \ WHF_e) \times 0.003413 \times AR \times HF \ / \ 0.75 \\ \Delta MMBTU_{WH} \ (Residential) &= (62.48 \ / \ 1.033) \times 0.003413 \times (1-0.25) \times 0.70 \times 0.0 \times 0.95 \ / \ 0.79 = 0.0 \\ \Delta MMBTU_{WH} \ (Commercial) = (145.63 \ / \ 1.033) \times 0.003413 \times (1-0.25) \times 0.70 \times 0.39 \times 0.95 \ / \ 0.79 = 0.11847 \\ \end{array}$

Where:

$\Delta MMBTU_{WH}$	= Gross customer annual heating MMBTU fuel increased usage for the measure
	from the reduction in lighting heat.
0.003413	= Conversion from kWh to MMBTU
OA	= Outside Air - the average percent of the supply air that is Outside Air, assumed to be $25\%^{944}$.
AR	 Typical aspect ratio factor. The ASHRAE heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones. It is assumed that 70% is the typical square footage of commercial buildings within 15 feet of exterior wall. The assumed aspect ratio for residential buildings is 100%.
HF	= ASHRAE heating factor of 0.39 for lighting waste heat for Burlington, Vermont for commercial lighting, assumed 0.0 for residential lighting 945
DFH	= Percent of lighting in heated spaces, assumed to be 95%
HEff	= Average heating system efficiency, assumed to be $79\%^{946}$

Oil heating is assumed typical for commercial.

Baseline Efficiencies – New or Replacement

The baseline condition is a 65 watt BR30 incandescent fixture installed in a screw-base socket.

High Efficiency

High Efficiency is a downlight that has been tested by the DOE Caliper Testing Program or Independent 3rd party testing with results shown to meet the upcoming Energy Star Specification for Solid State Luminaires. This Specification will take effect September 31st, 2008, and can be downloaded from http://www.netl.doe.gov/ssl/. See Reference Table of Energy Star requirements for recessed downlights.

Operating Hours

Residential: 1,241 hours / year Commercial: 2,800 hours / year⁹⁴⁷

Loadshape

Residential: Loadshape, #1 - Residential Indoor Lighting; Commercial: Loadshape; #101: Commercial EP Lighting⁹⁴⁸

⁹⁴⁴ Based on 2009 ASHRAE Handbook Fundamentals (p. 16.2): "Conventional all-air air-handling systems for commercial and institutional buildings have approximately 10 to 40% outside air." See WasteHeatAdjustment.doc ⁹⁴⁵ From "Calculating lighting and HVAC interactions", Table 1, ASHRAE Journal November 1993. Efficiency

Vermont does not calculate interactive effects for residential lighting. ⁹⁴⁶ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent

⁹⁴⁶ Based on average efficiency for furnaces and boilers of varied sizes in ASHRAE 90.1.1999, assumed to represent typical commercial building stock in Vermont. See WasteHeatAdjustment.doc.

⁹⁴⁷ Based on agreement made during Savings Verification 2009.

⁹⁴⁸ Based on Commercial "Other" Lighting coincidence factors from RLW Analytics; "Development of Common Demand Impacts Standards for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)". Agreement made during Savings Verification 2009.

Freeridership/Spillover Factors

Measure Category	LED		
Measure Code		LFHRDLED	
	Solid State Recessed		
Product Description	Downlight		
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032EPEP	0.94	1.25
LISF Retrofit 6034LISF		1.0	1.0
RES Retrofit 6036RETR		0.90	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

Lifetime is a function of the average hours of use of the lumenaire. The Energy Star Specification for Solid State Recessed Downlights requires luminaires to maintain at least 70% initial light output for 25,000 hrs in a residential application and 35,000 hours in a commercial application. Based on these lifetimes, LED Recessed Downlights rebated through this program are expected to have a life of 20.1 years for residential applications (assumed average daily usage of 3.4 hours) and 12.5 years for commercial applications (assumed annual usage of 2800 hours).

Analysis period is 20 years for residential installations, 12.5 years for commercial installations..

Measure Cost

The incremental cost for this measure is \$44.35

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Fossil Fuel Descriptions

See Heating Increased Usage above.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Hours of Use, In Use Rates, and Waste Heat Factors by Customer Type

	Average Annual Hours	Average In Service	WHF _d	WHF _e	AR	HF
	of Use	Rate				
Residential	1,241	0.95	1.0	1.0	1.0	0.0
Commercial	$2,800^{949}$	0.95	1.082	1.033	0.7	0.39

Component Costs and Lifetimes Used in Computing O&M Savings Residential

Component	Market	Baseline Measures	
component	i i i i i i i i i i i i i i i i i i i	Cost	Life ⁹⁵⁰
Lamp	Residential	\$4.67	1.13
	Commercial	\$4.67	0.71

Partial List of Energy Star Requirements for Solid State Recessed Downlights

Lumen Depreciation / Lifetime	LED shall deliver at least 70% of initial lumens for
	the minimum number of hours specified below:

⁹⁴⁹ Based on agreement made during Savings Verification 2009.

⁹⁵⁰ Based on standard assumption of 2000 hours lamp life for baseline bulb 65 watt BR30 incandescent.

	• >= 25,000 hrs Residential Indoor
	• >= 35,000 hrs Commercial
Minimum CRI	75
Minimum Light Output	<= 4.5" Aperture: 345 lumens (initial)
	> 4.5" Aperture: 575 lumens (initial)
Zonal Lumen Density Requirement	Luminaire shall deliver a total of 75% lumens (initial) within the 0-60 zone (bilaterally symmetrical)
Minimum Luminaire Efficacy	35 lm/w
Allowable CCTs	 2700K, 3000K, and 3500K for residential products No restrictions for commercial
Reduced Air Leakage	Recessed downlights intended for installation in insulated ceilings shall be IC rated and be leak tested per ASTM E283 to demonstrate no more than 2.0 cfm at 75 Pascals pressure difference. The luminaire must include a label certifying "sirtight" or similar designation to show accordance with ASTM E283.
Minimum Warranty	3 years
Eligible Products must meet the full requirer Energy Star Specification for Solid State Lui	nents of the Energy Star specification. The complete minaires can be obtained at <u>www.netl.doe.gov</u>

Free CFL

Measure Number: VII-B-5-c (Residential Emerging Markets Program, Lighting End Use)

Version Date & Revision History:

Draft date:	Portfolio 76
Effective date:	01/01/12
End date:	12/31/14

Referenced Documents:

1) EKOS Porchlight Report- December 2006.pdf

2) Residential Lighting Markdown Impact Evaluation, Nexus Market Research, RLW Analytics, and GDS Associated, January 20, 2009

3) Northeast Regional Residential Lighting Strategy, 2011 (NEEP RLS, 2011)

4) 2012 EISA Adjustment Calculations.xls

Description

An existing incandescent screw-in bulb is replaced with a lower wattage ENERGY STAR qualified compact fluorescent screw-in bulb that was received free of charge at a Efficiency Vermont event or as part of a targeted campaign, and is installed in a Residential fixture.

Algorithms

Demand Savings

 ΔkW

$= ((\Delta Watts) / 1000) \times ISR$		
Year	Algorithm	ΔkW
2012	(49.0 / 1000) * 0.5	0.0245
2013	(43.6 / 1000) * 0.5	0.0218
2014	(37.0 / 1000) * 0.5	0.0185

Energy Savings

= ((Δ Watts) /1000) × HOURS × ISR

Year	Algorithm	ΔkWh
2012	(49.0 / 1000) * 694 * 0.5	17.0
2013	(43.6 / 1000) * 694 * 0.5	15.1
2014	(37.0 / 1000) * 694 * 0.5	12.8

Where:

ΔkWh

Δ Watts	= Watts _{BASE} – Watts _{EE} ⁹⁵¹
ΔkW	= gross customer connected load kW savings for the measure
Watts _{BASE}	= Baseline connected kW
Watts _{EE}	= Energy efficient connected kW
ΔkWh	= gross customer annual kWh savings for the measure
ISR	= in service rate or the percentage of units given out that actually get used 952
HOURS	= average hours of use per year

Waste Heat Adjustment

N/A

Heating Increased Usage

⁹⁵¹ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

⁹⁵² Efficiency Vermont will assume an In Service Rate for a Free CFL of 50%. An EKOS study of a free CFL campaign, 'Project Porchlight' in Ottawa, found an install rate of 70% of those who could recall receiving the bulb. A 50% ISR is considered a conservative assumption, especially when the bulbs will be accompanied by marketing material explaining the benefits. The state-wide CFL media campaign set to launch in January,2008 will also increase in-service rates by significantly raising awareness of the benefits of CFLs.

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent light bulb.

Baseline Adjustment

In 2012, Federal legislation stemming from the Energy Independence and Security Act of 2007 will begin phasing out incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will become Halogen bulbs (see percentages in O&M table below).

To account for these new standards, the savings for this measure will be reduced to account for the higher baseline starting in 2012, 2013 or 2014 depending on the assumed baseline wattage (note if a mix of bulbs is assumed, the adjustment always occurs in 2012).

The appropriate adjustments are provided below (see 2012 EISA Adjustment Calculations.xls for details)

Year Installed	Savings Adjustment	Years of Full Savings Before Adjustment
2012	0.66	2
2013	0.77	1
2014	0.88	1

High Efficiency

High efficiency is an ENERGY STAR qualified compact fluorescent lamp.

Operating Hours

Operating hours will be assumed as 1.9 hours per day or 694 hours per year⁹⁵³.

Loadshape

Residential: Loadshape #1: Residential Indoor Lighting Source: Vermont State Cost-Effectiveness Screening Tool.

Freeridership/Spillover Factors

Measure Category		Light Bulbs/Lamps	
Measure Code		LBLCFFRE	
		Free Compact	
		Fluorescent screw-	
Product Description		base	bulbs
Track Name Track No.		Freerider	Spillover
Efficient Products 6032EPEP		1.0	1.0
RES Retrofit	6036RETR	1.0	1.0

Persistence

The persistence factor is assumed to be 90%.

Lifetimes

CFLs rebated through this program are assumed to have a rated life of 8,500 hours.

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). At 694 hours per year and including the 90% persistence factor this equates to 11 years. A provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore the measure life will reduce each year and be equal to the number of years remaining to 2020; so for 2012 this will be 8 years, 2013 7 years.

N/A

⁹⁵³ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011.

Measure Cost⁹⁵⁴

The incremental cost for this measure is as follows

Year	Measure Cost
2012	\$1.90
2013	\$1.80
2014	\$1.50

Fossil Fuel Descriptions

N/A

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Methodology for Computing O&M Savings

In order to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the CFL was calculated (see 2012 <u>EISA Adjustment Calculations.xls</u>). The key assumptions used in this calculation are documented below:

	Incandescent	Halogen
Replacement Cost	\$0.50	\$1.50
Component Life (hours)	1000	1000
Baseline % in 2012	67%	33%
Baseline % in 2013	33%	67%
Baseline % in 2014 onward	0%	100%

The calculation results in a levelized assumption of \$0.93 baseline replacement cost every 1 year for CFL installations in 2012, \$0.96 every year for installations in 2013, and \$0.97 for installations in 2014. This adjustment will be recalculated for subsequent years.

⁹⁵⁴ Based on TAG 2011 agreement to use recommendation from NEEP RLS, 2011

Specialty CFL Direct Install

Measure Number: VII-B-6-a (Residential Emerging Markets, Lighting End Use)

Version Date & Revision History

Draft date:Portfolio 75Effective date:1/1/2012End date:TBD

Referenced Documents:

- 1. 2009 to 2011 bulbs installed.xlsx
- 2. Xenergy, 1998; "Process and Impact Evaluation of Joint Utilities Starlights Residential Lighting Program".

Description

An existing incandescent bulb is replaced with a lower wattage ENERGY STAR qualified specialty compact fluorescent bulb through a Direct Install program. Specialty CFL bulbs are defined as lamps for general illumination that use fluorescent light emitting technology and an integrated electronic ballast with or without a standard Edison screw-base. They can be dimmable, designed for special applications, have special color enhancement properties or have screw-bases that are not standard Edison bases, and include A-lamps, candelabras, G-lamps (globe), reflectors, torpedoes, dimmables, and 3-way bulbs. This TRM should be used for both interior and exterior installations, the only difference being the loadshape. Note specialty bulbs are currently exempt from EISA regulations.

Algorithms

Demand Savings ΔkW $\Delta kW(Res. <=15W)$ $\Delta kW(Res. >15W)$	= $((\Delta Watts) / 1000) \times ISR$ = $((43.9) / 1000) \times 0.8 = 0.0351$ = $((62.6) / 1000) \times 0.8 = 0.0501$
Energy Savings	
ΔkWh	$= \Delta kW \times HOURS$
ΔkWh (Res. <=15W)	$=(0.0351 \times 694) = 24.4$
ΔkWh (Res. >15W)	$=(0.0501 \times 694) = 34.8$
Where:	
ΔkW	= gross customer connected load kW savings for the measure
Δ Watts	= Average delta watts between specialty CFL and incandescent $Watts_{BASE}^{955} - Watts_{EE}^{955}$
ISR	= in service rate or the percentage of units rebated that actually get used 956
ΔkWh	= gross customer annual kWh savings for the measure
HOURS	= average hours of use per year

Baseline Efficiencies – New or Replacement

The baseline condition is an incandescent specialty light bulb.

High Efficiency

High efficiency is an ENERGY STAR qualified specialty compact fluorescent lamp.

Operating Hours

Assumed to be 1.9 hours a day or 694 hours per year ⁹⁵⁷.

⁹⁵⁵ The delta watts is calculated by finding the weighted average wattage of specialty bulbs installed in Existing Homes, Low Income and RNC from 01/2009-04/2011. The equivalent incandescent wattage was used to calculate delta watts. See 2009 to 2011 bulbs installed.xlsx

⁹⁵⁶ ISR is assumed to be equal to standard CFL Direct Install measure, and is based on a 2009 TAG agreement.

Loadshape

Loadshape #1: Residential Indoor Lighting Loadshape #2: Residential Outdoor Lighting

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Freeridership/Spillover Factors			
Measure Category		Light Bulbs/Lamps	
Measure Code		LBLCFSPD	
		Compact F	luorescent
		 Specialty Bulb 	
Product Description	l	Direct	Install
Track Name	Track No.	Freerider	Spillover
LIMF Retrofit	6017RETR	1	1
LIMF NC	6018LINC	1	1
LIMF Rehab	6018LIRH	1	1
MF Mkt NC	6019MFNC	1	1
MF Mkt Retro	6020MFMR	1	1
LISF Retrofit	6034LISF	1	1
RES Retrofit	6036RETR	0.9	1
RNC VESH	6038VESH	1	1

Persistence

The persistence factor is assumed to be 90% as agreed to by EVT and the DPS (TAG 2007).

Lifetimes

Bulb life is assumed to be 8500 hours, based on agreement between EVT and the DPS (TAG 2009). The measure life, including the 90% persistence factor is therefore assumed to be 8500/694 * 0.9 = 11 years. Analysis period is the same as the lifetime.

Measure Cost⁹⁵⁸

Cost (Watts <=15)	= \$8.16 + \$3.59 (labor)	= \$11.75
Cost (Watts >15)	= \$8.84 + \$3.59 (labor)	= \$12.43

Incentive Level

The incentive level is equal to the measure cost (these bulbs are free to the customer).

O&M Cost Adjustments

O& M cost adjustments are based on component costs provided in the reference table below.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables Component Costs and Lifetimes Used in Computing O&M Savings

⁹⁵⁷ Hours of use are based on TAG 2011 agreement to use the NEEP Residential Lighting Survey, 2011 proposed values.

⁹⁵⁸ Incremental cost of bulb is consistent with the assumptions from the NEEP Residential Lighting Survey, 2011. This evaluation did not provide the <=15W and >15W categories and so the costs from EVT's analysis of incremental costs are adjusted such that the average matches the values from the NEEP study. Labor cost is consistent with the standard bulb direct install measures.

Residential		
	Baseline Mea	isures
Component	Cost ⁹⁵⁹	Life ⁹⁶⁰
Lamp<=15W	\$2.71	1.4
Lamp>15W	\$4.29	1.4

⁹⁵⁹ Baseline cost is consistent with the assumptions from the NEEP Residential Lighting Survey, 2011. This evaluation did not provide the $\leq 15W$ and $\geq 15W$ categories and so the costs from EVT's analysis of baseline costs are adjusted such that the average matches the values from the NEEP study ⁹⁶⁰ Based on the assumption that the incandescent bulb rated life is 1000 hours. 1000/694 = 1.4 years.

HVAC End Use Efficient Furnace Fan Motor

Measure Number: VII-C-1-d

Version Date & Revision History

Draft date: Portfolio 77 Effective date: 1/1/2012 End date: TBD

Referenced Documents:

- 1) Pigg Furnace Fan Report 2003.pdf;
- 2) "Energy Savings from Efficient Furnace Fan Air Handlers in Massachusetts" ACEEE Sachs and Smith, 2003
- 3) 2009 Focus on Energy ECM Furnace Blower Motor Impact Assessment.pdf
- 4) FOE to VT Blower Savings.xls

Description

This measure will provide incentives for installing an ENERGY STAR qualified natural gas, or propane and an efficient oil fired furnace with a high efficiency brushless permanent magnet fan motor (BPM, also called ECM, ICM, and other terms), hereafter referred to as "efficient fan motor". This prescriptive measure will apply when retrofitting an existing unit or installing a new furnace. The incentive offer and savings estimation relate only to the efficiency gains associated with an upgrade to an efficient fan motor. For homes that install an efficient furnace fan and have central A/C, additional kWh savings are estimated due to the efficiency gains from the furnace fan which is used to circulate cooled air.

Algorithms

Energy Savings⁹⁶¹ Heating Only Efficient Furnace Fan kWh Savings

0 1	e
ΔkWh	= (Heating + Shoulder ΔkWh savings)
ΔkWh	=418 + 145 + 79 = 642

& Central A/C Efficient Fu	Irnace Fan kWh Savings
ΔkWh	= (Heating + Shoulder Δk Wh savings) + (Cooling Δk Wh savings)
ΔkWh	=418 + 178 + 79 = 675
∆kWh	= gross customer annual kWh savings for the measure
Heating + Shoulder ΔkWh	savings $=$ kWh savings during heating and shoulder seasons
Cooling ΔkWh savings	= kWh savings during cooling season
	& Central A/C Efficient Fu ΔkWh ΔkWh Heating + Shoulder ΔkWh Cooling ΔkWh savings

Demand Savings⁹⁶²

⁹⁶¹ To estimate heating, cooling and shoulder season savings for Vermont, VEIC adapted results from a 2009 Focus on Energy study of BPM blower motor savings in Wisconsin. This study included effects of behavior change based on the efficiency of new motor greatly increasing the amount of people that run the fan continuously. The savings from the Wisconsin study were adjusted to account for different run hour assumptions (average values used) for Illinois. See: Reference Table, below and reference doc "FOE to VT Blower Savings.xlsx"

 $^{^{962}}$ This measure's peak savings occur in the heating season. Demand savings are accordingly unrelated to the presence of CAC, and are based upon heating savings and heating operating hours. The heating operating hours are based upon the kWh to max kW (1522) used by the loadshape

Efficient Furnace Fan kW Savings

ΔkW	= (Heating ΔkWh savings) / Hours
ΔkW	=405/(1522)=0.27

Where:

ΔkW	= gross customer connected load kW savings for the measure
Hours	= Fan Heating Operating Hours

Baseline Efficiencies – New or Replacement

A furnace meeting minimum Federal efficiency standards using a low-efficiency permanent split capacitor (PSC) fan motor.

High Efficiency

The installed natural gas or propane furnace must be ENERGY STAR qualified, residential sized, i.e. <=200,000 Btu/hr unit that meets the criteria for electricity consumption by the furnace fan motor⁹⁶³, a calculation of of annual electricity used relative to total energy use. Version 3.0, effective 2/1/2012 requires this new metric to be less than or equal to 2.0%. Version 4.0, effective 2/1/2013 includes a new metric for case leakage with negligible energy impacts. Qualification criteria for oil fired furnaces are that they must be residential sized as described above and have an AFUE >=85 and an EaE <=600.

Operating Hours

Cooling Only: 375 hours/year⁹⁶⁴

Loadshape

Loadshape #5, Residential Space Heat. Loadshape #71, Furnace Fan Heating and Cooling

Freeridership/Spillover Factors⁹⁶⁵

		Space	e Heat
Measure Category		Effic	iency
Measure Code		SHEF	NMTR
		Efficient	Furnace
Product Description		Fan M	Aotor
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0

⁹⁶³ Complete Energy Star version criteria and the current methodology for calculating Furnace fan efficiency metric can be found here: <u>http://www.energystar.gov/index.cfm?c=revisions.furnace_spec</u>.

⁹⁶⁴ ARI data indicates 500 full load hours for A/C use in Vermont. VEIC experience in other states suggests that ARI estimates for A/C use tend to be overstated. In an effort to compensate for this overstatement, Efficiency Vermont applied a .75 multiplier to the ARI estimate in determining residential A/C hours of use.

⁹⁶⁵ EVT estimate for freerider and spillover rates

LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	1.0	1.0
MF Mkt NC	6019MFNC	1.0	1.0
MF Mkt Retro	6020MFMR	1.0	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	1.0	1.0
LISF Retrofit	6034LISF	n/a	n/a
RES Retrofit	6036RETR	0.95	1.0
RNC VESH	6038VESH	0.95	1.0
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

18 years.⁹⁶⁶ Analysis period is the same as the lifetime.

Measure Cost

\$97⁹⁶⁷

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

No net increase in fossil fuel consumption occurs due to the comparative increase in average AFUEs of furnace models with efficient furnace fans compared to the lower AFUEs of condensing furnaces without efficient furnace fans. The increased AFUEs fully compensates for the lost waste heat from the inefficient furnace fan motors.⁹⁶⁸

 $\Delta MMBtu Oil = 0$ $\Delta MMBtu Nat Gas = 0$ $\Delta MMBtu Propane = 0$

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Table

Efficient Furnace Fan Savings Estimates by Season and presence of Central A/C

	Total Savings (kWh)	
Season	CAC	No CAC

⁹⁶⁶ "Energy Savings from Efficient Furnace Fan Air Handlers in Massachusetts" ACEEE Sachs and Smith, 2003.

⁹⁶⁷ Adapted from Federal Appliance Standard Life-Cycle and Payback Analysis, Tables 8.2.3 and 8.2.13 in

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/hvac_ch_08_lcc_2011-06-24.pdf ⁹⁶⁸ Pigg, 2003, Electricity Use By New Furnaces: A Wisconsin Field Study. Page 45 "Impact of ECM Furnaces on Gas Consumption"

Heating Season	418	418
Cooling Season	178	145
Shoulder Periods	79	79
Total Savings	675	642
Demand Savings	0.27 kW	

Brushless Permanent Magnet (BLPM) Circulator Pump

Measure Number: VII-C-3-a

Version Date & Revision History

Draft Date:	3/3/2015
Effective date:	1/1/2014
End date:	TBD

Referenced Documents:

- 1. 98 PIP High Perf Circ Pump_2015 Final.docx
- 2. Final Analyzed Data.xlsx
- 3. ISR CIRC PUMP_FINAL CALL LIST.xlsx

Description

This measure is for installing fractional horsepower circulator pumps with brushless permanent magnet pump (BLPM) motors. Typical applications include baseboard and radiant floor heating systems that utilize a primary/secondary loop system in single-family residences. Circulator pumps that use BLPMs are more efficient because they lack brushes that add friction to the motor, as well as the ability to modulate their speed to match the load. This is possible because the drive senses the difference between the magnetic field of the rotating rotor and the rotating magnetic field of the windings in the motor stator. As the system flow demand changes (zones open or close), the drive senses the torque difference at the impeller via the change in the magnetic field difference and adjusts its speed by altering the frequency to the motor. BLPMs are especially efficient in no-load/low-load applications.

The Efficiency Vermont High Performance Circulator Pump (HPCP) Program is a pilot program to promote the installation of efficient brushless permanent magnet motor (BLPM) circulator pumps with integrated variable speed controls in Vermont homes and businesses. The program is offered to HVAC distributors who sell/ship equipment in Vermont, and provides upstream financial incentives at the wholesale level for qualifying circulator pumps sold for installation in a commercial facility or residential home in Vermont.

Demand ∆kW	Savings	= $\Delta kWh/HOURS$
Energy S ∆kWh	Savings	= HOURS x [(Watts _{Base} – Watts _{EE})/1000] x ISR
Where:		
2	∆kW	= gross customer connected load kW savings for the measure (kW) = 0.05864 kW
2	∆kWh	= gross customer annual kWh savings for the measure (kWh) = 115.7 kWh
]	HOURS	$= 1973^{969}$
,	Watts _{Base}	= Baseline connected kW = 87.7 Watts ⁹⁷⁰
,	$Watts_{EE}$	= Energy efficient connected kW = 14.4 Watts ⁹⁷¹

 ⁹⁶⁹ Efficiency Vermont performed a metering study to better understand run hours of high performance circulator pumps.
 Analysis can be found in Final Analyzed Data.xlsx.
 ⁹⁷⁰ Efficiency Vermont performed a metering study to better understand watt draw. Analysis can be found in Final Analyzed

⁹⁷⁰ Efficiency Vermont performed a metering study to better understand watt draw. Analysis can be found in Final Analyzed Data.xlsx.

⁹⁷¹ Efficiency Vermont performed a metering study to better understand watt draw. Analysis can be found in Final Analyzed Data.xlsx.

ISR = In Service Rate, or the percentage of units rebated that actually get used $= 80\%^{972}$

Baseline Efficiencies – New or Replacement

The baseline equipment is a circulator pump using a low-efficiency shaded pole motor. It is assumed that this pump is installed on the primary loop of a multi-loop system, and is running constantly when outside temperatures are 55°F or lower during the winter heating season (October – April).

High Efficiency

The efficient equipment is a circulator pump with brushless permanent magnet motor.

Operating Hours

The annual operating hours are assumed to be 1973^{973} .

Loadshape

Loadshape #5: Residential Space Heat

Freeridership/Spillover Factors

Measure Category		Space Heat Efficiency		
Measure Code		MTRCIRCZ		
		Efficient Circulator Pump		
Product Description		Motor		
Track Name Track No.		Freerider	Spillover	
Efficient Products	6032EPEP	0.95	1.00	

Persistence

The persistence factor is assumed to be 1.

Lifetimes

20 years – typical circulator pumps using shaded pole motors are expected to last around 15 years; circulator pump motors with ECMs typically operate at lower RPMs, thus producing less heat and extending the life of the motor.

Measure Cost

The estimated incremental cost for this measure is \$100.

O&M Cost Adjustments None.

Fossil Fuel Descriptions None.

Water Descriptions None.

⁹⁷² In-Service Rate Study performed by Efficiency Vermont found the ISR to be 80%. Calculation can be found in ISR CIRC PUMP_FINAL CALL LIST.xlsx

⁹⁷³ Efficiency Vermont performed a metering study to better understand run hours of high performance circulator pumps. Analysis can be found in Final Analyzed Data.xlsx.

ENERGY STAR Central Air Conditioner

Measure Number: VII-C-4-e

Version Date & Revision History

Draft date:	Portfolio 77
Effective date:	01/01/2012
End date:	TBD

Referenced Documents:

- 1) CAC savings calc.xls, CAC Average size calc.xls
- 2) Central_ASHP_and_CAC_Program_Requirements.pdf ("Energy Star Version 4.1 for Central Air Conditioners"

Description

This measure is for upgrading the total system to a Consortium for Energy Efficiency (CEE) Tier 1 qualified central air conditioner (CAC) ducted split system when retrofitting an existing unit or installing a new system in existing homes. This will be a stand-alone prescriptive measure.

Algorithms

Demand Savings ΔkW ΔkW	= BtuH /1000 * ($1/\text{EER}_{\text{BASE}}$ - $1/\text{EER}_{\text{EE}}$) = 36000/1000 * ($1/11 - 1/12$) = 0.2727
Energy Savings	
ΔkWh	= BtuH /1000 * (1 /SEER _{BASE} - 1/SEER _{EE}) * Hours
ΔkWh	= 36000/1000 * (1/13 - 1/14.5) * 375 = 107.4
Where:	
ΔkW	= gross customer connected load kW savings for the measure
EER _{EE}	= EER rating for efficient CAC unit
EERBASE	= EER rating for baseline CAC unit
BtuH	= CAC unit size in British thermal units per hour (36,000 or 3 tons is the average CAC unit size rebated by EVT between 2004 and 2008^{974})
ΔkWh	= gross customer annual kWh savings for the measure
SEER _{EE}	=SEER rating for efficient CAC unit
SEER _{BASE}	= SEER rating for baseline CAC unit
HOURS	= average hours of use per year

Baseline Efficiencies – New or Replacement

Meets minimum Federal standards for residential central air conditioner; SEER 13, EER 11.

High Efficiency

ENERGY STAR qualified, residential sized, i.e. <=65,000 Btu/hr, central air-conditioning units, split system.

The ENERGY STAR standard for split Central Air Conditioners as of January 1, 2009 is >= 14.5 SEER and >=12 EER.

Operating Hours

375 hours / Year⁹⁷⁵

⁹⁷⁴ See CAC Average size calc.xls

⁹⁷⁵ EVT applied 25% adjustment factor to U.S. Climate Cooling Region 2 Full Load Hours of 500 hours for 375 hours.

Loadshape

Loadshape #11, Residential A/C, Vermont State Cost Effectiveness Screening Tool

Measure Category		Air Conditioner			
Measure Code		ACEESACP			
Product Description		Energy St	Energy Star Air Conditioner		
Track Name	Track No.	Freerider	Spillover		
C&I Retrofit	6012CNIR	n/a	n/a		
Farm Retrofit	6012FARM	n/a	n/a		
Cust Equip Rpl	6013CUST	n/a	n/a		
Farm Equip Rpl	6013FARM	n/a	n/a		
Farm Rx	6013FRMP	n/a	n/a		
Pres Equip Rpl	6013PRES	n/a	n/a		
C&I Upstream	6013UPST	n/a	n/a		
Act250 NC	6014A250	n/a	n/a		
Farm NC	6014FARM	n/a	n/a		
Non Act 250 NC	6014NANC	n/a	n/a		
LIMF Retrofit	6017RETR	n/a	n/a		
LIMF NC	6018LINC	n/a	n/a		
LIMF Rehab	6018LIRH	n/a	n/a		
MF Mkt NC	6019MFNC	n/a	n/a		
MF Mkt Retro	6020MFMR	n/a	n/a		
C&I Lplus	6021LPLU	n/a	n/a		
Efficient Products	6032EPEP	n/a	n/a		
LISF Retrofit	6034LISF	1.0	1.0		
RES Retrofit	6036RETR	0.90	1.0		
RNC VESH	6038VESH	0.90	1.0		
EP GMP Blueline	6042EPEP	n/a	n/a		
GMP Furnace	6042EPEP	n/a	n/a		
GMP HP	6046RETR	n/a	n/a		
VEEP GMP	6048VEEP	n/a	n/a		
LIMF Lplus	6052LPLU	n/a	n/a		
MFMR Lplus	6053LPLU	n/a	n/a		

Freeridership/Spillover Factors

Persistence

The persistence factor is assumed to be one.

Lifetimes 14 years.⁹⁷⁶

Analysis period is the same as the lifetime.

976 ENERGY STAR assumption:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls

Measure Cost

\$97.⁹⁷⁷

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

⁹⁷⁷ Incremental cost from 13 to 14.5 SEER is based on an EPA review of 2007 Industry Data

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) finding incremental costs of \$39-\$104 for 2.5 to 5 ton units, and review of the Technical Support Document for Energy Efficiency Standards for Consumer Products: Residential Central Air Conditioners and Heat Pumps. Appendix J, Table J-1. U.S. Department of Energy, May, 2002, where interpolation of the data suggests an incremental cost of \$137. See CAC savings calc.xls for more detail.

Residential Fan—Quiet, Exhaust-Only Continuous Ventilation

Measure Number: VII-C-5-a

Version Date & Revision History

Draft date:	Portfolio 73
Effective date:	1/1/2011
End date:	TBD

Referenced Documents:

- 1. Residential Vent Fan Assessment.xls
- 2. GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures"
- ASHRAE 62.2 Section 4.1 Whole House Ventilation 3.

Description

This market opportunity is defined by the need for continuous mechanical ventilation due to reduced airinfiltration from a tighter building shell. In retrofit projects, existing fans may be too loud, or insufficient in other ways, to be operated as required for proper ventilation. This measure assumes a fan capacity of 50 CFM rated at less than 2.0 sones at 0.1 inches of water column static pressure. This measure may be applied to larger capacity, up to 130 CFM, efficient fans with bi-level controls because the savings and incremental costs are very similar. All eligible installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2.

Algorithms

Demand Savings

ΔkW = CFM * (1/Fan_{Efficiency, Baseline} - 1/Fan_{Efficiency, Effcient})/1000 = 50 * (1/3.1 - 1/8.3)/1000= 0.01 kW

Where:

CFM =	Nominal Capacity of the exhaust fan, 50 CFM ⁹⁷⁸
Fan _{Efficiency, Baseline} =	Average efficacy for baseline fan, 3.1 CFM/Watt ⁹⁷⁹
Fan Efficiency, Effcient =	Average efficacy for efficient fan, 8.3 CFM/Watt ⁹⁸⁰

Energy Savings

∆kWh	=	Hours $* \Delta kW$	
	=	8760 * 0.01	
	=	87.6 kWh	

Where:

ΔkW	= connected load kW savings per qualified ventilation fan and controls.
Hours	= assumed annual run hours, 8760 for continuous ventilation.

Baseline Efficiencies – New or Replacement

New standard efficiency (average CFM/Watt of 3.1^{981}) exhaust-only ventilation fan, quiet (< 2.0 sones⁹⁸²) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2⁹⁸³

⁹⁷⁸ 50CFM is the closest available fan size to ASHRAE 62.2 Section 4.1 Whole House Ventilation rates based upon typical square footage and bedrooms.

Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM. Based on fan information gathered and referenced in the spreadsheet, "Residential Vent Fan Assessment.xls" ⁹⁸⁰ Average of CFM/Watt values at two static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for

⁵⁰ CFM. Based on fan information gathered and referenced in the spreadsheet, "Residential Vent Fan Assessment.xls" ⁹⁸¹ Average of efficacies at static pressures of 0.1 and 0.25 inches of water column.

⁹⁸² Rated fan sound level at a static pressure of 0.1 inches of water column.

⁹⁸³ On/off cycling controls may be required of baseline fans larger than 50CFM.

High Efficiency

New efficient (average CFM/watt of 8.3) exhaust-only ventilation fan, quiet (< 2.0 sones) Continuous operation in accordance with recommended ventilation rate indicated by ASHRAE 62.2^{984}

Operating Hours

Continuous, 8760.

Loadshape

Loadshape # 25: Flat (8760 hours)

Freeridership/Spillover Factors

Measure Category	Ventilation		
Measure Code	VNTXCEIL,		
Product Description	Exhaust fan, ceiling,		
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	1.0	1.0
LIMF NC	6018LINC	1.0	1.0
LIMF Rehab	6018LIRH	0.95	1.1
MF Mkt NC	6019MFNC	0.9	1.0
MF Mkt Retro	6020MFMR	1.0	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	1.0	1.0
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0
RNC VESH	6038VESH	0.95	1.1
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetime 19 years⁹⁸⁵

 $^{^{984}}$ Bi-level controls may be used by efficient fans larger than 50 CFM

Analysis period is the same as the lifetime.

Incremental Cost per Unit

Incremental cost per installed fan is \$43.50 for quiet, efficient fans.⁹⁸⁶

Reference Tables

None

⁹⁸⁵ Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans.
 ⁹⁸⁶ See the Fan Info worksheet of the spreadsheet "Residential Vent Fan Assessment.xls"

Variable Speed Mini-Split Heat Pumps

Measure Number: VII-C-6-a

Version Date & Revision History

Draft date:	8/12/2014
Effective date:	12/1/2014
End date:	TBD

Referenced Documents:

- 1. Energy & Resource Solutions. *Emerging Technology Program Primary Research Ductless Heat Pumps*. Lexington, MA: NEEP Regional EM&V Forum, 2014.
- 2. GDS Associates, Inc. *Measure Life Report Residential and Commercial/Industrial Lighting and HVAC Measures.* Manchester, NH: The New England State Program Working Group (SPWG), 2007.
- 3. Navigant Consulting Inc. *Incremental Cost Study Phase Two Final Report*. Burlington, MA: NEEP Evaluation, Measurement, and Verification Forum, 2013.
- 4. NMR Group, Inc. "Vermont Single-Family Existing Homes Onsite Report FINAL." 2013.
- 5. U.S. Environmental Protection Agency. n.d. http://www.epa.gov/burnwise/woodstoves.html (accessed March 7, 2014).
- 6. CCHPSavingsAnalysis.xlsx
- 7. DHP LoadProfileAverager.xlsx

Description

This measure claims savings for the installation of single head variable speed mini-split heat pumps in a residential application. The measure is characterized as a market opportunity claiming electric energy and demand savings for both heating and cooling versus the installation of a baseline heat pump.

Baseline Efficiency

The baseline condition is assumed to be a new heat pump that is capable of providing heat using the heat pump cycle down to $5^{\circ}F$ and meets the following minimum efficiency criteria:

Table 5 – Baseline Efficiency Criteria ⁹⁸⁷				
Equipment HSPF EER SEER				
Air-Source Heat Pump	8.2	12	14.5	

High Efficiency

To qualify for savings under this measure the installed equipment must be a new mini-split heat pump that has a variable speed inverter-driven compressor, COP at $5^{\circ}F \ge 1.75$ (at maximum capacity operation), and be capable of providing heat using the heat pump cycle down to $-5^{\circ}F$. It must also meet or exceed the following efficiency criteria, per AHRI Standard 210-240-2008 for Unitary Air-Conditioning and Air-Source Heat Pump equipment.

Table 6 – High Efficiency Criteria

Equipment	HSPF	EER	SEER
Air-Source Heat Pump	10.3	12	20

⁹⁸⁷ Based on November 2014 TAG Agreement and ENERGY STAR Key Product Criteria for Air-Source Heat Pumps, effective date January 1, 2009

Algorithms

Energy Savings

Electric energy savings include reductions in heating and cooling consumption based on improved system efficiency. Seasonal efficiency values have been used to approximate varying system efficiencies due to changes in operating conditions.

Cooling savings are calculated using nominal system capacity and Full Load Cooling Hours for Vermont.

Heating savings are calculated using a weather bin analysis in order to account for the variable heating capacity of CCHPs at different outdoor temperatures. The analysis assumes that both efficient and baseline heating systems operate below 50°F, except in summer months (May to August), and that the heat pump provides heating based on its maximum capacity for each weather bin.⁹⁸⁸ Below 5°F the baseline system cuts off and the efficient system continues to provide heating. The operation of the efficient system below 5° F is treated as an electric consumption and demand penalty taken against the previously mentioned savings. While this operation represents a penalty, it also represents a savings of fuel from the home's existing heating system, and the electric penalty is slightly reduced to account for homes with existing electric resistance heat.

$$\Delta kWh = \left[Q_{Cooling} \times FLH_{Cooling} \times \left(\frac{1}{SEER_{Baseline}} - \frac{1}{SEER_{Efficient}}\right) + \sum_{i=1}^{n} (Q_{Heating \ge 5^{\circ}F,i}) \times \left(\frac{1}{HSPF_{Baseline} \times 90\%} - \frac{1}{HSPF_{Efficient} \times 90\%}\right) - \sum_{i=1}^{n} (Q_{Heating < 5^{\circ}F,i}) \times \left(\frac{1}{HSPF_{Efficient} \times 90\%}\right) \right] \times \frac{1 \, kWh}{1,000 \, wh} + \sum_{i=1}^{n} (Q_{Heating < 5^{\circ}F,i}) \times \% ElecHeat \times \frac{1 \, kWh}{3 \, 412 \, Btu}$$

Where:

ΔkWh	= total net kWh savings for heating and cooling (deemed assumption for prescriptive savings, based on size category)					
Q _{Cooling}	= nominal cooling capacity, Btu/hr					
U	= See Table 3 (deemed assumption for prescriptive savings, based on size					
	category)					
FLH _{Cooling}	= full load cooling hours					
	$= 375^{989}$ (deemed assumption for prescriptive savings)					
SEER _{Baseline}	$= 14.5^{770}$, Btu/Wh (deemed assumption for prescriptive savings)					
SEER _{Efficient}	= See					
Table 7 (deemed	Table 7 (deemed assumption for prescriptive savings, based on size category)					
Q _{Heating≥} 5°F,i	= heating capacity in weather bin i at or above 5°F, MMBtu = See					
Table 7 (deemed	assumption for prescriptive savings, based on size category)					
HSPF _{Baseline}	$= 8.2^{991}$, Btu/Wh (deemed assumption for prescriptive savings)					
HSPF _{Efficient}	= See					
Table 7 (deemed	assumption for prescriptive savings, based on size category)					
90%	= Climatic adjustment to HSPF (deemed assumption for prescriptive savings) = heating capacity in weather bin <i>i</i> below 5° F MMBtu					
✓Heating<5°F,1	= See					

⁹⁸⁸ See CCHPSavingsAnalysis.xlsx for detailed analysis

⁹⁸⁹ ARI data indicates 500 full load hours for A/C use in Vermont. VEIC experience in other states suggests that ARI estimates for A/C use tend to be overstated. In an effort to compensate for this overstatement, Efficiency Vermont applied a .75 multiplier to the ARI estimate in determining residential A/C hours of use.

 ⁹⁹⁰ See Baseline Efficiency section
 ⁹⁹¹ See Baseline Efficiency section

⁹⁹² Energy & Resource Solutions. (2014). Emerging Technology Program Primary Research – Ductless Heat Pumps. Lexington, MA: NEEP Regional EM&V Forum. Table 1-2. Page 5.

Table 7 (deemed assumption for prescriptive savings, based on size category)%ElecHeat= portion of homes with electric space heat= 1% (deemed assumption for prescriptive savings)

For prescriptive purposes, electric savings will be assigned using deemed values based on nominal system capacity, SEER, and HSPF as outlined in

Table 7.

Demand Savings

Demand savings are calculated using a weather bin analysis based on the average demand savings during winter peak demand periods where maximum reductions are anticipated. Reduced power draw for the efficient system compared to the baseline system is treated as a demand savings for heating at or above 5°F. For heating below 5°F the full power draw of the efficient system is treated as a demand penalty.

$$\Delta kW = \frac{\begin{bmatrix} \sum_{i=1}^{n} \left[Q_{Heating \ge 5^{\circ}F,i} \times \left(\frac{1}{HSPF_{Baseline} \times 90\%} - \frac{1}{HSPF_{Efficient} \times 90\%} \right) \right] \\ -\sum_{i=1}^{n} \left[Q_{Heating < 5^{\circ}F,i} \times \left(\frac{1}{HSPF_{Efficient} \times 90\%} \right) \right]}{n} \times \frac{1 \ kWh}{1,000 \ Wh}$$

 ΔkW = total average winter coincident peak kW reduction (deemed assumption for prescriptive)

For prescriptive purposes, demand savings will be assigned using deemed values based on nominal system capacity, HSPF, and EER as outlined in

Table **7**.⁹⁹⁴

Fossil Fuel Descriptions

Fossil fuel savings are taken for operation of the efficient system below 5°F for offsetting fuel use from the home's existing heating system.

$$\Delta MMBtu = \sum_{i=1}^{n} Q_{Heating < 5^{\circ}F,i} \times \% HeatSource_{j}/\eta_{Heatj}$$

Where:

$$\Delta MMBtu_{j} = MMbtu savings for each fuel type j (deemed assumption for prescriptive)%HeatSource_{j}^{995} = Percent of existing heating systems using fuel type j= 51% for fuel oil= 15% for propane= 12% for Wood/Other= 21% for Natural Gas $\eta_{Heat j}^{996}$ = Heating system efficiency for fuel type j (deemed assumption for
prescriptive)
= 84.2% for fuel oil
= 87.4% for propane
= 65% for Wood/Other
= 88% for Natural Gas$$

⁹⁹³ Split of primary heating fuels from the VT SF Existing Homes Onsite Report Table 5-1. (NMR Group, Inc. 2013)

⁹⁹⁴ See CCHPSavingsAnalysis.xlsx, Demand Savings, for detailed analysis

⁹⁹⁵ Split of primary heating fuels from the VT SF Existing Homes Onsite Report Table 5-1. (NMR Group, Inc. 2013).

⁹⁹⁶ Weighted efficiencies based on VT SF Existing Homes Onsite Report Table 5-8 and 5-9. (NMR Group, Inc. 2013). Efficiency for homes using wood or pellet stoves based on review of EPA-Certified wood stoves. (U.S. Environmental Protection Agency n.d.)

For prescriptive purposes, fossil fuel savings will be assigned using deemed values based on nominal system capacity, as outlined in Table 8.997

Water Descriptions

N/A

Nominal Capacity	SEER _{Avg}	EER _{Avg}	HSPF _{Avg}	$\Delta kWh_{cooling}$	$Q_{\geq5F}$	Q<5F	$\Delta kWh_{heating}$	ΔkWh_{total}	ΔkW
9,000	26.37	15.7	12.8	105	35.8	1.5	1600	1705	0.22
12,000	23.05	13.1	11.8	115	38.4	1.6	1427	1542	0.24
15,000	21.10	12.9	11.5	121	37.3	1.7	1283	1404	0.27
18,000	20.25	13.5	10.7	132	50.0	1.6	1393	1525	0.33
24,000	20.00	12.5	10.6	171	54.3	1.9	1471	1642	0.37

Table 7 – Prescriptive Electric Savings Values⁹⁹⁸

|--|

Nominal Capacity	$\Delta MMBtu_{oil}$	$\Delta MMBtu_{propane}$	$\Delta MMBtu_{wood}$	$\Delta MMBtu_{natural gas}$
9,000	0.92	0.26	0.28	0.37
12,000	0.98	0.28	0.30	0.39
15,000	1.02	0.29	0.31	0.40
18,000	1.00	0.28	0.30	0.39
24,000	1.16	0.33	0.36	0.46

Loadshape

Loadshape #116, Residential Variable Speed Mini-Split and Multi-Split Heat Pumps

Table 9 – Freeridership/Spillover Factors

Measure Category	• •	HVAC	
Product Description	Efficient ductless mini- split, heat pump baseline		
Measure Code		SHRHPCVE	I
Track Name	Track No.	Freerider	Spillover
Efficient Products	6032UPST	0.81	1.07

Persistence

The persistence factor is assumed to be one.

Lifetimes

The expected measure life is assumed to be 18 years.⁹⁹⁹

Measure Cost

Measure cost represents the incremental installed cost of an efficient versus a baseline CCHP.

⁹⁹⁷ See CCHPSavingsAnalysis.xlsx, Fuel Offset, for detailed analysis

⁹⁹⁸ Efficiency values for each bin based on average values from AHRI rated equipment, see AHRI in

CCHPSavingsAnalysis.xlsx 999 Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Table 1 - Residential Measures. https://neep.org/Assets/uploads/files/emv/emvlibrary/measure_life_GDS%5B1%5D.pdf
Nominal Equipment Capacity (Btu/hr)	Incremental Costs
9,000	\$493
12,000	\$591
15,000	\$588
18,000	\$611
24,000	\$693

Table 10 – Measure Costs¹⁰⁰⁰

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

¹⁰⁰⁰ Incremental Cost Study Phase Two Final Report, Navigant Consulting Inc., January 16, 2013. See excerpted data in CCHPSavingsAnalysis.xlsx

Residential Efficient Space Heating System

Measure Number: VII-C-7-a

Version Date & Revision History

Draft date:	Portfolio 87
Effective date:	1/1/2014
End date:	TBD

Referenced Documents:

- 1. Table 8.3.3 The Technical support documents for federal residential appliance standards: http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/chapter_8.pdf
- 2. EVT estimated heating full load hours.doc
- 3. NEEP Incremental Cost Study, phase 1:
- http://www.neep.org/sites/default/files/resources/Incremental%20Cost_study_FINAL_REPORT_2011Sep23.pdf
 - NEEP Residential Boilers 2011_08_18.xlsx
 - NEEP Residential Furnace Analysis 2011_08_19.xlsx
- 4. DOE Technical Appliance Standards Technical Support Document: "Appendix E. Engineering Analysis Cost and Efficiency Tables"
- 5. NMR Group Inc "Vermont Single-Family Existing Homes Onsite Report. Final 2/15/2013"
- 6. VGS Usage Regression Work.xls

Description

This measure applies to the installation of primary oil- or propane-fired boiler or furnace heating systems in residential existing homes applications. Fossil fuel savings are realized due to the higher AFUE of the qualifying equipment. All systems must be installed per the VT Residential Building Energy Standards and all boiler installations must incorporate high performance Circulator Pumps (electric savings for this will be claimed based on existing measure characterizations).

This measure will provide a standard incentive through two channels. First through the existing Home Performance with ENERGY STAR (HPwES) program where this measure will continue to be treated as an Early Replacement since Efficiency Vermont's involvement results in replacements that would not likely have occurred otherwise. The savings from HPwES projects are generated through modeling software (not characterized here), and a mid life baseline shift will be incorporated to account for the hypothetical future baseline replacement at the AFUE level presented below, consistent with the Market Opportunity measure. The second channel is through the Energy Efficiency Network (EEN) whereby member HVAC contractors and fuel dealers will be able to offer an identical incentive for their customers to upsell to the higher efficiency levels. For measures installed this way (outside of Home Performance with ENERGY STAR) a market opportunity baseline will be used.

Algorithms

Electrical Savings

The electrical energy and demand savings associated with high performance Circulator Pump is provided in a standalone characterization.

Fossil Fuel Savings

For Market Opportunity measures provided through a rebate form:

$a_{ase} - 1 / AFUE_{Eff}$
ase - 1 /AFU

Where:

Δ MMBTU	= gross customer annual MMBtu fuel savings for the measure
FLH	= estimated average full load heating hours

Capacity = capacity of equipment to be installed $(Btuh)^{1002}$

Unit Type	Capacity (Btuh)
Boiler	125,000
Furnace	73,000

1,000,000 = Conversion from Btuh to MMBtu/hour

AFUE_{Base} = Efficiency of baseline equipment in AFUE; see table below¹⁰⁰³

AFUE_{Eff} = Efficiency of new equipment in AFUE; see table below¹⁰⁰⁴

Unit Type	AFUE _{Base}	$AFUE_{\text{Eff}}$
Oil Boiler	85%	87%
LP Boiler	86.7%	95%
Oil Furnace	82.6%	87%
LP Furnace	88%	95%

Prescriptive savings are provided below:

Unit Type	ΔΜΜΒΤU
Oil Boiler	2.7
LP Boiler	10.2
Oil Furnace	4.6
LP Furnace	6.3

Note: Savings from Early Replacement measures provided through the Home Performance with ENERGY STAR program will be calculated using the modeling software and include a mid-life savings adjustment to account for the deferred baseline replacement.

Baseline Efficiencies

Baseline equipment is a new standard efficiency oil- or propane-fired furnace or boiler with an AFUE provided below.

For the Early Replacement measure the initial baseline is the existing unit efficiency. A mid life baseline adjustment will be incorporated to account for the hypothetical new baseline replacement at the same AFUEbase level provided below. It is assumed that this baseline shift will occur after a third of the measure life – so after 6.7 years for furnaces and 8.3 years for boilers.

¹⁰⁰¹ Estimated by following a methodology outlined in the Uniform Methods Project using natural gas billing data provided by Vermont Gas Systems (VGS) for homes that participated in Efficiency Vermont's Residential New Construction (RNC) program. Since capacity has not been collected through the Home Performance with ENERGY STAR program it was not possible to perform the analysis with a more appropriate data set for this program. The RNC data was limited to only those homes with annual gas consumption greater than 75MMBtus in an attempt to remove the high performance/ low load homes in RNC. See "EVT estimated heating full load hours.doc" for greater explanation and 'VGS Usage Regression Work.xls' for analysis. ¹⁰⁰² Weighted average of capacity data from NEEP Incremental Cost Study Phase 1. See Workbook Volume 2 Market

Characterization tab; <u>http://neep.org/emv-forum/forum-products-and-guidelines/#Incremental</u>. Includes data from Vermont, Massachusetts and New York. Analysis provided in 'NEEP Residential Boilers 2011_08-18.xls' and 'NEEP Residential Furnace Analysis 2011_08_19.xls'. ¹⁰⁰³ Based on the average findings from p60, NMR Group Inc "Vermont Single-Family Existing Homes Onsite Report. Final

 ¹⁰⁰³ Based on the average findings from p60, NMR Group Inc "Vermont Single-Family Existing Homes Onsite Report. Final 2/15/2013". Note these are significantly above the Federal Minimum Standard but represent an estimate of what people are purchasing without Efficiency Vermont intervention.
 ¹⁰⁰⁴ The efficiency criteria were developed based on consideration of availability of product, incremental cost etc and with input

¹⁰⁰⁴ The efficiency criteria were developed based on consideration of availability of product, incremental cost etc and with input from EEN representatives.

High Efficiency

The installed oil or propane furnace or boiler must have an AFUE greater than those shown below.

Unit Type	AFUE _{Base}	AFUE_{Eff}
Oil Boiler	85%	87%
LP Boiler	86.7%	95%
Oil Furnace	82.6%	87%
LP Furnace	88%	95%

Loadshape

N/A.

Freeridership/Spillover Factors

Measure Category		Space Heating Equipment	
		SHRFFOIL, SHRFFOUF, SHRBFOIL,	
		SHRBFOUF, SHRBPROP, SHRBPRUF,	
Measure Codes		SHRFPROP	
Product Description		Efficient Space Heating Equipment	
Track Name	Track No.	Freerider	Spillover
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	1.0	1.0

Persistence

The persistence factor is assumed to be one.

Lifetimes

Equipment Type	Measure Lifetime ¹⁰⁰⁵	
Furnaces	20	
Boilers	25	

Measure Cost

The incremental costs of more efficient equipment are detailed below¹⁰⁰⁶:

Unit Type	Baseline cost	Efficient Cost	Incremental Cost
Oil Boiler	\$4,316	\$4,642	\$326
LP Boiler	\$5,212	\$7,242	\$2,030
Oil Furnace	\$2,906	\$3,574	\$668
LP Furnace	\$2,564	\$3,306	\$742

O&M Cost Adjustments

O&M cost estimates for baseline and efficient boilers and furnaces are provided below¹⁰⁰⁷:

¹⁰⁰⁵ Table 8.3.3 The Technical support documents for federal residential appliance standards:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/chapter_8.pdf 1006 Costs are derived based upon the NEEP Incremental Cost Study (<u>http://neep.org/emv-forum/forum-products-and-guidelines/#Incremental</u>) and also cross checking with the DOE Technical Appliance Standards Technical Support Document "Appendix E. Engineering Analysis Cost and Efficiency Tables". See 'CostsFurnacesBoilersNEW.xls'.

Unit Type	Baseline Annual	Efficient Annual
	O&M Cost	O&M Cost
Boilers	\$90.82	\$111.50
Furnaces	\$80.13	\$103.01

Water Descriptions

There are no water algorithms or default values for this measure.

¹⁰⁰⁷ The DOE Technical Appliance Standards Technical Support Document "Appendix E. Engineering Analysis Cost and Efficiency Tables" provides a slight increase in annual O&M assumption for gas boilers and furnaces. The same values are assumed for oil units. See 'CostsFurnacesBoilersNEW.xls'.

Refrigeration End Use Refrigerator Early Replacement

Measure Number: VII-G-1-c (Residential Emerging Markets, Refrigeration End Use)

Version Date & Revision History

Draft date:Portfolio 80Effective date:1/1/2012End date:TBD

Referenced Documents:

1) 2012 Refrigerator Retrofit Savings.xls

- 2) http://www.energystar.gov/ia/partners/product_specs/program_reqs/refrig_prog_req.pdf
- 3) <u>http://www1.eere.energy.gov/buildings/appliance_standards/downloads/nia_refrig-frzr_final.zip</u>
- 4) <u>http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrigerator_report_1.pdf</u>
- 5) Refrigerator kW Calculations.xls

Description

This is an early replacement measure of an existing pre-2001 inefficient refrigerator with a new refrigerator exceeding minimum qualifying efficiency standards established as Energy Star or optionally CEE Tier 2 or CEE Tier 3. Savings are calculated between the average energy usage of an existing unit and that of a higher efficiency unit for the remaining life of the existing unit, plus the savings between an average baseline unit and that of a higher efficiency unit for the remainder of the measure life. This measure will be reviewed on a 3 year basis to gauge the accuracy of savings and review cost-effectiveness of the program. Prior to 2012, eligibility was restricted to pre-1993 refrigerators. Efficiency Vermont has decided to expand eligibility to the next refrigerator standard change (2001). The estimated decrease in consumption of a post-1993 / pre-2001 unit over a pre-1993 unit is 43%. EVT has assumed that 30% of the future replacements will fall in to the 1993-2001 category¹⁰⁰⁸ and have adjusted the savings accordingly (see '2012 Refrigerator Retrofit Savings.xls' for more details). We will review this assumption after a year and adjust as necessary.

Algorithms

$\Delta kWh - Energy Star$ for remaining life of existing unit (3 years)	= 709 kWh
$\Delta kWh - CEE$ Tier 2 for remaining life of existing unit (3 years)	= 737 kWh
$\Delta kWh - CEE$ Tier 3 for remaining life of existing unit (3 years)	= 764 kWh
Al-W/h Energy Stop for remaining many life (0 years)	- 112 hW/h
$\Delta k w n - Energy Star for remaining measure file (9 years)$	- 115 KWII
$\Delta kWh - CEE Ther 2 for remaining measure life (9 years)$	= 141 kWh
$\Delta kWh - CEE$ Tier 3 for remaining measure life (9 years)	= 169 kWh
Demand Savings	
$\Delta kW = \Delta kWh/Hours$	
ΔkW – Energy Star for remaining life of existing unit (3 years)	= 709/8477 = 0.084 kW
$\Delta kW - CEE$ Tier 2 for remaining life of existing unit (3 years)	= 737/8477 = 0.087 kW
ΔkW – CEE Tier 3 for remaining life of existing unit (3 years)	= 764/8477 = 0.090 kW
AkW – Energy Star for remaining measure life (9 years)	-113/8477 - 0.013 kW
$\Delta k W = \text{Energy Star for remaining incastre ine (9 years)}$	= 113/6477 = 0.013 KW
$\Delta kW - CEE$ Tier 2 for remaining measure life (9 years)	= 141/84/7 = 0.017 kW
$\Delta kW - CEE$ Tier 3 for remaining measure life (9 years)	= 169/8477 = 0.020 kW

¹⁰⁰⁸ Based upon conversations with the weatherization agencies.

Where:

 $\begin{array}{ll} \Delta k W h &= {\rm gross} \mbox{ customer annual kWh savings for the measure} \\ {\rm HOURS} &= {\rm Equivalent} \mbox{ Full Load Hours} \\ &= {\rm 8477}^{1009} \\ {\rm \Delta kW} &= {\rm gross} \mbox{ customer connected load kW savings for the measure} \end{array}$

Baseline Efficiencies – New or Replacement

The existing pre-2001 refrigerator baseline efficiency is estimated according to a combination of Association of Home Appliance Manufacturers (AHAM) estimated usage data and actual meter measurements from replacements installed thru EVT from 2006-2008¹⁰¹⁰. For the purpose of this measure it is assumed that the remaining life of the existing refrigerator is 3 years. For the remaining 14 years of the new refrigerator, the 2001 federal minimum standard is set as the baseline efficiency. See 2012 Refrigerator Retrofit Savings.xls for more details.

High Efficiency

High efficiency is defined as any model meeting or exceeding 2007 Energy Star standard – currently set to 20% over the 2001 federal minimum standard or optionally 25% or 30% to meet CEE Tier 2 or Tier 3. EVT's energy savings estimates are based on the weighted average test measurements for qualifying models based on the models rebated during 2006-2008.

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refri	geration
		RFRESRER, RFRT2RER,	
Measure Code		RFRT3RER	
Product Description		Energy Sta	r Refrigerator
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
MF Mkt Retro	6020MFMR	n/a	n/a
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	1.0	1.0

¹⁰⁰⁹ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

¹⁰¹⁰ Note that in 2009 this measure became prescriptive and so individual unit consumption values were no longer tracked.

RES Retrofit	6036RETR	0.9	1.0
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes 12 Years¹⁰¹¹

Analysis period is the same as the lifetime.

Measure Cost

The initial measure cost for an Energy Star refrigerator is \$740, Tier 2 is \$850 and Tier 3 is \$930. The avoided replacement cost (after 3 years) of a baseline replacement refrigerator is \$700.¹⁰¹²

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel savings for this measure.

Water Descriptions

There are no water savings for this measure.

Reference Tables

N/A

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-f5e6 "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data. ESTAR incremental cost reduced to \$40 based on ENERGY STAR Calculator; http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-f5e6

¹⁰¹¹ From ENERGY STAR calculator:

Freezer Early Replacement

Measure Number: VII-G-2-b

(Existing Homes, Refrigeration End Use)

Version Date & Revision History

Draft date: Portfolio 80 Effective date: 1/1/2012 End date: TBD

Referenced Documents:

2012 Freezer Retrofit Savings.xls;
 2009 VT Appliance Data_TRMCostAnalysis.xls

Description

This is early replacement measure of an existing pre-2001 inefficient freezer with a new freezer exceeding minimum qualifying efficiency standards established as ENERGY STAR. Savings are calculated between the average energy usage of an existing unit and that of a higher efficiency unit for the remaining life of the existing unit, plus the savings between an average baseline unit and that of a higher efficiency unit for the remainder of the measure life. Prior to 2012, eligibility was restricted to pre-1993 refrigerators. Efficiency Vermont has decided to expand eligibility to the next freezer standard change (2001). The estimated decrease in consumption of a post-1993 / pre-2001 unit over a pre-1993 unit is 25%. EVT has assumed that 30% of the future replacements will fall in to the 1993-2001 category¹⁰¹³ and have adjusted the savings accordingly (see '2012 Freezer Retrofit Savings.xls' for more details). We will review this assumption after a year and adjust as necessary.

Algorithms

Energy Savings

$\Delta kWh - ENERGY$ STAR for remaining life of existing unit (3 years)	= 269 kWh
$\Delta kWh - ENERGY$ STAR for remaining measure life (9 years)	= 52.5 kWh

Demand Savings

 $\Delta kW = \Delta kWh/Hours$

ΔkW – ENERGY STAR for remaining life of existing unit (3 years)	= 269/8477 = 0.032 kW
$\Delta kW - ENERGY STAR$ for remaining measure life (9 years)	= 52.5/8477 = 0.006 kW

Where:

 $\begin{array}{ll} \Delta k W h &= {\rm gross\ customer\ annual\ k W h\ savings\ for\ the\ measure} \\ {\rm HOURS} &= {\rm Equivalent\ Full\ Load\ Hours} \\ &= {\rm 8477}^{1014} \\ \Delta k W &= {\rm gross\ customer\ connected\ load\ k W\ savings\ for\ the\ measure} \end{array}$

Baseline Efficiencies – New or Replacement

The existing pre-2001 freezer baseline efficiency is estimated by calculating the estimated kWh for an equivalent unit at the Federal Standard in 1990 and 1993 for all units incentivized through the Efficient Product program in 2009-2010¹⁰¹⁵. For the purpose of this measure it is assumed that the remaining life of the existing freezer is 3 years.

¹⁰¹⁴ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

¹⁰¹⁵ Energy usage algorithms taken from: http://eec.ucdavis.edu/ACEEE/1994-96/1996/VOL09/207.PDF and <u>http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf</u>. Note that in 2010 this measure became prescriptive and so individual unit consumption values were no longer tracked.

¹⁰¹³ Based upon conversations with the weatherization agencies.

For the remaining 14 years of the new freezer, the 2001 Federal minimum standard is set as the baseline efficiency. See Freezer Retrofit Savings.xls for more details.

High Efficiency

High efficiency is defined as any model meeting or exceeding 2007 ENERGY STAR standard – currently set to 10% over the 2001 Federal minimum standard .

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrigeration	
Measure Code		RFRESFZR	
		Energy Star	Freezer Early
Product Description		Repla	cement
Track Name	Track No.	Freerider	Spillover
C&I Retrofit	6012CNIR	n/a	n/a
Farm Retrofit	6012FARM	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Farm Rx	6013FRMP	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Upstream	6013UPST	n/a	n/a
Act250 NC	6014A250	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a
MF Mkt Retro	6020MFMR	0.9	1.0
C&I Lplus	6021LPLU	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0
RNC VESH	6038VESH	n/a	n/a
EP GMP Blueline	6042EPEP	n/a	n/a
GMP Furnace	6042EPEP	n/a	n/a
GMP HP	6046RETR	n/a	n/a
VEEP GMP	6048VEEP	n/a	n/a
LIMF Lplus	6052LPLU	n/a	n/a
MFMR Lplus	6053LPLU	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes 12 Years¹⁰¹⁶

¹⁰¹⁶ From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?e678-f5e6&e678-f5e6

Analysis period is the same as the lifetime.

Measure Cost

The full cost for an ENERGY STAR unit is \$500. The cost of a baseline replacement freezer is \$465.¹⁰¹⁷

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel algorithms or default values for this measure.

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables N/A

¹⁰¹⁷ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative; "2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009. See 2009 VT Appliance Data_TRMCostAnalysis.xlsfor data.

Refrigerator Early Removal

Measure Number: VII-G-3-a (Residential Emerging Markets, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. ADM Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program;
- 2. KEMA Residential Refrigerator Recycling Ninth Year Retention Study;
- 3. Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"
- 4. The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010
- 5. Appliance Recycling data2008-2012_V2.xls
- 6. Refrigerator kW Calculations.xls

Description

This is an early retirement measure for the removal of an existing inefficient secondary refrigerator from service observed during a site visit by a weatherization agency, Home Performance contractor or Efficiency Vermont staff member. The contractor has signed an agreement that the unit will be rendered permanently inoperable and properly recycled or disposed of. The program will target refrigerators with an age greater than 10 years, although data from the Efficient Product program suggests the average age of retired units is over 30 years. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Algorithms

Energy Savings

 $\Delta kWh = UEC * PartUse$ = 956 * 0.779 = 745 kWh

Demand Savings

 $\Delta kW = \Delta kWh/Hours$ = 745/8477= 0.088 kW

Where:

- $\Delta kWh = gross customer annual kWh savings for the measure$
- UEC = Unit Energy Consumption

$$= 745 \text{kWh}^{101}$$

PartUse = adjustment factor for weighted partial use of appliance = 0.779^{1019}

¹⁰¹⁸ Unit Energy Consumption is based upon review of the data collected by Jaco from units retired in the program from 2009-2012. To estimate the consumption of the retired units EVT used a regression equation with multiple attributes from a recent Illinois evaluation (Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"). For information see "Appliance Recycling data2008-2012_V2.xls".

HOURS = Equivalent Full Load Hours

 $= 8477^{1020}$

 ΔkW = gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

The existing refrigerator baseline consumption is based upon data collected by Jaco from units retired in the Efficient Products program from 2009-2012 and adjusted for part use consumption.

High Efficiency

N/A

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrigeration	
Measure Code		RFRRERPS	
		Refrigerator Early	
Product Description		Retir	ement
Track Name	Track No.	Freerider	Spillover
Act250 NC	6014A250	n/a	n/a
Cust Equip Rpl	6013CUST	n/a	n/a
Farm NC	6014FARM	n/a	n/a
Farm Equip Rpl	6013FARM	n/a	n/a
Non Act 250 NC	6014NANC	n/a	n/a
Pres Equip Rpl	6013PRES	n/a	n/a
C&I Retro	6012CNIR	n/a	n/a
MF Mkt Retro	6012MFMR	n/a	n/a
Efficient Products	6032EPEP	n/a	n/a
LISF Retrofit	6034LISF	n/a	n/a
LIMF Retrofit	6017RETR	n/a	n/a
LIMF NC	6018LINC	n/a	n/a
LIMF Rehab	6018LIRH	n/a	n/a
RES Retrofit	6036RETR	1.0	1.0
RNC VESH	6038VESH	n/a	n/a
MF Mkt NC	6019MFNC	n/a	n/a

Persistence

The persistence factor is assumed to be one.

Lifetimes

8 years ¹⁰²¹ Analysis period is the same as the lifetime.

¹⁰²¹ KEMA "Residential refrigerator recycling ninth year retention study", 2004

 ¹⁰¹⁹ Based on analysis of Jaco data. Participants were asked how much the refrigerator was run through the year. The data was weighted assuming the response "All months" equaled 12 months, "Summer" or "Winter" equaled 3 months and "Spring/Fall" equaled 6 months.
 ¹⁰²⁰ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours)

¹⁰²⁰ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls".

Measure Cost

The cost of pickup and recycling of the refrigerator is \$50 based upon agreement with contractors or vendors who will collect secondary units when replacing the primary unit. Contractors have signed an agreement that the units will be recycled and not placed on the secondary market.

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

There are no fossil fuel savings for this measure.

Water Descriptions

There are no water savings for this measure.

Freezer Early Removal

Measure Number: VII-G-4-a (Residential Emerging Markets, Refrigeration End Use)

Version Date & Revision History

Draft date:	Portfolio 80
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1. ADM Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program;
- 2. KEMA Residential Refrigerator Recycling Ninth Year Retention Study;
- 3. Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"
- 4. The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010
- 5. Appliance Recycling data2008-2012_V2.xls
- 6. Refrigerator kW Calculations.xls

Description

This is an early retirement measure for the removal of an existing inefficient freezer from service observed during a site visit by a weatherization agency, Home Performance contractor or Efficiency Vermont staff member. The contractor has signed an agreement that the unit will be rendered permanently inoperable and properly recycled or disposed of. The program will target freezers with an age greater than 10 years, although data from the Efficient Product program suggests the average age of retired units is over 30 years. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Algorithms

Energy Savings $\Delta kWh = UEC * PartUse$ = 1231 * 0.777= 956 kWh

Demand Savings

∆kW	$= \Delta kWh/Hours$
	= 956 /8477
	= 0.113 kW

Where:

 $\begin{array}{ll} \Delta k Wh & = {\rm gross\ customer\ annual\ }k Wh\ savings\ for\ the\ measure} \\ UEC & = {\rm Unit\ Energy\ Consumption} \\ & = {\rm 1231\ }k Wh^{1022} \\ PartUse & = {\rm adjustment\ factor\ for\ weighted\ partial\ use\ of\ appliance} \\ & = {\rm 0.777}^{1023} \\ HOURS & = {\rm Equivalent\ Full\ Load\ Hours} \\ & = {\rm 8477}^{1024} \end{array}$

¹⁰²² Unit Energy Consumption is based upon review of the data collected by Jaco from units retired in the program from 2009-2012. To estimate the consumption of the retired units EVT used a regression equation with multiple attributes from a recent Illinois evaluation (Opinion Dynamics; "Fridge & Freezer Recycle Rewards Program PY4 Metering Study: DRAFT Savings Results"). For information see "Appliance Recycling data2008-2012_V2.xls".

¹⁰²³ Based on analysis of Jaco data. Participants were asked how much the freezer was run through the year. The data was weighted assuming the response "All months" equaled 12 months, "Summer" or "Winter" equaled 3 months and "Spring/Fall" equaled 6 months.

ΔkW = gross customer connected load kW savings for the measure

Baseline Efficiencies – New or Replacement

The existing freezer baseline consumption is based upon data collected by Jaco from units retired in the Efficient Products program from 2009-2012 and adjusted for part use consumption.

High Efficiency

N/A

Loadshape

Loadshape #4, Residential Refrigerator

Freeridership/Spillover Factors

Measure Category		Refrigeration		
Measure Code		RFRFERPS		
Product Description		Freezer Ear	ly Retirement	
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	n/a	n/a	
Cust Equip Rpl	6013CUST	n/a	n/a	
Farm NC	6014FARM	n/a	n/a	
Farm Equip Rpl	6013FARM	n/a	n/a	
Non Act 250 NC	6014NANC	n/a	n/a	
Pres Equip Rpl	6013PRES	n/a	n/a	
C&I Retro	6012CNIR	n/a	n/a	
MF Mkt Retro	6012MFMR	n/a	n/a	
Efficient Products	6032EPEP	n/a	n/a	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	n/a	n/a	
LIMF Rehab	6018LIRH	n/a	n/a	
RES Retrofit	6036RETR	1.0	1.0	
RNC VESH	6038VESH	n/a	n/a	
MF Mkt NC	6019MFNC	n/a	n/a	

Persistence

The persistence factor is assumed to be one.

Lifetimes

8 years 1025 Analysis period is the same as the lifetime.

Measure Cost

The cost of pickup and recycling of the refrigerator is \$50 based upon agreement with contractors or vendors who will collect secondary units when replacing the primary unit. Contractors have signed an agreement that the units will be recycled and not placed on the secondary market.

¹⁰²⁴ The Summer and Winter Coincident kW are calculated using an algorithm for the kW during any hour (or group of hours) from the California study; Cadmus Group; "Residential Retrofit High Impact Measure Evaluation Report", Feb 8, 2010. To calculate an Equivalent Full Load Hours the UEC (* PartUse) is divided by the summer coincident kW (956 * .779)/0.088 = 8477 hours. The summer coincidence factor is therefore assumed to be 1.0 and a winter coincidence factor calculated as the relative winter to summer kW result from the algorithm. For the calculation see "Refrigerator kW Calculations.xls". ¹⁰²⁵ KEMA "Residential refrigerator recycling ninth year retention study", 2004

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions There are no fossil fuel savings for this measure.

Water Descriptions There are no water savings for this measure.

Clothes Washing End Use Clothes Washer Retrofit

Measure Number: VII-H-1-c (Residential Emerging Markets, Clothes Washing End Use)

Version Date & Revision History

Draft date:	Portfolio 81
Effective date:	1/1/2013
End date:	TBD

Referenced Documents:

- 1) 2013 Clothes Washer Retrofit Savings.xls
- 2) http://www.eia.gov/consumption/residential/data/2009/
- 3) <u>http://www1.eere.energy.gov/buildings/appliance_standards/residentia</u> l/clothes_washers_support_stakeholder_negotiations.html

Description

This is an early retrofit measure of an existing inefficient clothes washer with a new clothes washer exceeding minimum qualifying efficiency standards established as ENERGY STAR, CEE Tier 2 or CEE Tier 3, Most Efficient or Top Ten (defined below). Savings are calculated between the average energy usage of an existing unit and that of a CEE Tier 3 unit for the remaining life of the existing unit, phlus the savings between an average baseline unit and that of a CEE Tier 3 unit for the remainder of the measure life.

Savings are provided for both specific DHW and Dryer fuel combinations and for if the fuel is unknown.

Algorithms

Energy Savings

Energy and Demand Savings are presented in the reference tables below, and are dependent on the fuel type of the DHW system and the dryer. The calculations are based on analysis of previous year's rebated units, see 2013 MF In unit Clothes Washer Savings.xls.

Demand Savings

 $\Delta kW = \Delta kWh/Hours$

Where:

ΔkWh	= gross customer annual kWh savings for the measure
ΔkW	= gross customer connected load kW savings for the measure
Hours	= Operating hours of clothes washer= 322

Baseline Efficiencies – New or Replacement

The baseline efficiency is determined according to the modified energy factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. For the purpose of this measure it is assumed that the remaining life of the existing clothes washer is 3 years (i.e. it is 11 years in to its 14 year life). The federal baseline for clothes washers prior to 2004 was 0.817 MEF¹⁰²⁶, and the average value of units tested in a 2001 DOE market assessment was 1.164.. For the remaining 11 years of the new clothes washer, the current federal baseline MEF of 1.26 is inflated by 20% to 1.51 to account for a transforming market. See 2013 Clothes Washer Retrofit Savings.xls for more details.

¹⁰²⁶ http://www.cee1.org/resid/seha/rwsh/press-rel.php3

High Efficiency

High efficiency is defined as any model meeting or exceeding the efficiency standards presented below.

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR	>= 2.0	<= 6.0
CEE TIER 2	>= 2.20	<= 4.5
CEE TIER 3	>= 2.40	<= 4.0
ENERGY STAR Most Efficient	>= 2.4 (for units <=2.5 ft3)	<= 4.5 (for units <=2.5 ft3)
(as of 1/1/2013)	>= 3.2 (for units >2.5 ft3)	<= 3.0 (for units >2.5 ft3)
Top Ten	Defined as the ten most efficient u	inits available.

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (unit operation, washing and drying); the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Energy and water savings estimates are based on the weighted average MEF factor for qualifying models based on the models rebated during the previous calendar year, except Top Ten which is based upon averaging the units provided on the website (<u>http://www.toptenusa.org/Top-Ten-Clothes-Washers</u>) as of September 2012.

Operating Cycles

322 clothes washer cycles / year ¹⁰²⁷

Operating Hours

 $3\overline{22}$ operating hours / year ¹⁰²⁸

Loadshape

Loadshape #9, Residential Clothes Washing, Vermont State Screening Tool.

Freeridership/Spillover Factors

Measure Category		Cooking and Laundry			
		CKLESWER CKLT2WER,			
		CKLT3WER, CKLMEWE			
Measure Code		CKLTTWER			
Product Description		Energy Star Clothes Washer			
Track Name	Track No.	Freerider	Spillover		
LISF Retrofit	6034LISF	1.0	1.0		
RES Retrofit	6036RETR	0.9	1.0		

Persistence

The persistence factor is assumed to be one.

Lifetimes

14 years¹⁰²⁹. Analysis period is the same as the lifetime.

Measure Cost

¹⁰²⁷ Weighted average of 322 clothes washer cycles per year. 2009 Residential Energy Consumption Survey (RECS) national sample survey of housing appliances section: <u>http://www.eia.gov/consumption/residential/data/2009/</u> ¹⁰²⁸ Based on assumption of average one hour per cycle.

 $http://www1.eere.energy.gov/buildings/appliance_standards/residential/clothes_washers_support_stakeholder_negotiations.html$

¹⁰²⁹ Consistent with DOE Federal Standard Lifecycle Analysis (14.3 years):

The full measure cost assumption is provided below:

Efficiency Level	Full Measure Cost
ENERGY STAR	\$825
CEE Tier 2	\$850
CEE Tier 3	\$950
ENERGY STAR Most Efficient	\$1100
Top Ten	\$1110

The deferred (for 3 years) baseline replacement clothes washer cost is assumed to be \$600.¹⁰³⁰

O&M Cost Adjustments

There are no operation and maintenance cost adjustments for this measure.

Fossil Fuel Descriptions

See reference tables below

Water Descriptions

The water savings for each efficiency level are presented below:

		∆Water			
			(CCF per year)	1	
		Remaining	Remaining	Weighted	
		life of	measure life	average for	
		existing unit	(Next 11	use in	
Efficiency Level	WF	(first 3 years)	years)	screening ¹⁰³¹	
Existing unit	12.87 ¹⁰³²	n/a	n/a	n/a	
Federal Standard	7.93	n/a	n/a	n/a	
ENERGY STAR	5.41	8.8	3.0	4.2	
CEE Tier 2	3.61	16.1	7.5	9.4	
CEE Tier 3	3.51	15.1	7.1	8.8	
ENERGY STAR Most Efficient	2.90	16.8	8.5	10.3	
Top Ten	3.54	16.5	7.8	9.6	

¹⁰³⁰ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm</u>. See '2013 Clothes Washer Savings_Retrofit.xls' for details. ¹⁰³¹ Efficiency Vermont's screening tool does not allow for mid-life savings adjustments for water, thus a single value

is required. ¹⁰³² US DOE, Life Cycle Cost Model, spreadsheet dated December 1999, indicates 38.61 gallons of water per cycle.

Assume average size of 3 cu ft gives 12.87 WF assumption.

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_spreadsheet.xls

Reference Tables

Customer Energy Savings by Water Heater and Dryer Fuel Type¹⁰³³

ENERGY STAR

For remaining life of existing unit (first 3 years):

		Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	336	1.05	0	0	0	
Electric Dryer/Propane DHW	173	0.54	0	0.70	0	
Electric Dryer/Natural Gas DHW	173	0.54	0	0	0.70	
Electric Dryer/Oil DHW	173	0.54	0.70	0	0	
Propane Dryer/Electric DHW	175	0.54	0	0.55	0	
Propane Dryer/Propane DHW	11	0.04	0	1.25	0	
Propane Dryer/Oil DHW	11	0.04	1.25	0.00	0	
Natural Gas Dryer/Electric DHW	175	0.54	0	0	0.55	
Natural Gas Dryer/Natural Gas DHW	11	0.04	0	0	1.25	
Natural Gas Dryer/Oil DHW	11	0.04	1.25	0	0.00	

For remaining measure life (Next 11 years):

		Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	162	0.50	0	0	0	
Electric Dryer/Propane DHW	59	0.18	0	0.44	0	
Electric Dryer/Natural Gas DHW	59	0.18	0	0	0.44	
Electric Dryer/Oil DHW	59	0.18	0.44	0	0	
Propane Dryer/Electric DHW	104	0.32	0	0.20	0	
Propane Dryer/Propane DHW	2	0.01	0	0.64	0	
Propane Dryer/Oil DHW	2	0.01	0.64	0.00	0	
Natural Gas Dryer/Electric DHW	104	0.32	0	0	0.20	
Natural Gas Dryer/Natural Gas DHW	2	0.01	0	0	0.64	
Natural Gas Dryer/Oil DHW	2	0.01	0.64	0	0.00	

CEE T2

For remaining life of existing unit (first 3 years):

	Per Unit Savings				
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas
Electric Dryer/Electric DHW	534	1.66	0	0	0
Electric Dryer/Propane DHW	276	0.86	0	1.11	0

¹⁰³³ Where dryer and DHW use different fossil fuels, savings are combined under the DHW fossil fuel because a single measure can only have one fuel type for screening purposes and the DHW savings are larger than the Dryer savings.

Electric Dryer/Natural Gas DHW	276	0.86	0	0	1.11
Electric Dryer/Oil DHW	276	0.86	1.11	0	0
Propane Dryer/Electric DHW	280	0.87	0	0.87	0
Propane Dryer/Propane DHW	21	0.07	0	1.98	0
Propane Dryer/Oil DHW	21	0.07	1.98	0.00	0
Natural Gas Dryer/Electric DHW	280	0.87	0	0	0.87
Natural Gas Dryer/Natural Gas DHW	21	0.07	0	0	1.98
Natural Gas Dryer/Oil DHW	21	0.07	1.98	0	0.00

For remaining measure life (Next 11 years):

		Per Unit Savings			
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas
Electric Dryer/Electric DHW	277	0.86	0	0	0
Electric Dryer/Propane DHW	108	0.34	0	0.72	0
Electric Dryer/Natural Gas DHW	108	0.34	0	0	0.72
Electric Dryer/Oil DHW	108	0.34	0.72	0	0
Propane Dryer/Electric DHW	175	0.54	0	0.35	0
Propane Dryer/Propane DHW	7	0.02	0	1.07	0
Propane Dryer/Oil DHW	7	0.02	1.07	0.00	0
Natural Gas Dryer/Electric DHW	175	0.54	0	0	0.35
Natural Gas Dryer/Natural Gas DHW	7	0.02	0	0	1.07
Natural Gas Dryer/Oil DHW	7	0.02	1.07	0	0.00

CEE T3

For remaining life of existing unit (first 3 years):

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	587	1.82	0	0	0	
Electric Dryer/Propane DHW	279	0.87	0	1.32	0	
Electric Dryer/Natural Gas DHW	279	0.87	0	0	1.32	
Electric Dryer/Oil DHW	279	0.87	1.32	0	0	
Propane Dryer/Electric DHW	326	1.01	0	0.89	0	
Propane Dryer/Propane DHW	19	0.06	0	2.21	0	
Propane Dryer/Oil DHW	19	0.06	2.21	0.00	0	
Natural Gas Dryer/Electric DHW	326	1.01	0	0	0.89	
Natural Gas Dryer/Natural Gas DHW	19	0.06	0	0	2.21	
Natural Gas Dryer/Oil DHW	19	0.06	2.21	0	0.00	

For remaining measure life (Next 11 years):

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	

Electric Dryer/Electric DHW	348	1.08	0	0	0
Electric Dryer/Propane DHW	124	0.39	0	0.96	0
Electric Dryer/Natural Gas DHW	124	0.39	0	0	0.96
Electric Dryer/Oil DHW	124	0.39	0.96	0	0
Propane Dryer/Electric DHW	229	0.71	0	0.40	0
Propane Dryer/Propane DHW	6	0.02	0	1.37	0
Propane Dryer/Oil DHW	6	0.02	1.37	0.00	0
Natural Gas Dryer/Electric DHW	229	0.71	0	0	0.40
Natural Gas Dryer/Natural Gas DHW	6	0.02	0	0	1.37
Natural Gas Dryer/Oil DHW	6	0.02	1.37	0	0.00

Most Efficient

For remaining life of existing unit (first 3 years):

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	695	2.16	0	0	0	
Electric Dryer/Propane DHW	326	1.01	0	1.58	0	
Electric Dryer/Natural Gas DHW	326	1.01	0	0	1.58	
Electric Dryer/Oil DHW	326	1.01	1.58	0	0	
Propane Dryer/Electric DHW	390	1.21	0	1.04	0	
Propane Dryer/Propane DHW	22	0.07	0	2.62	0	
Propane Dryer/Oil DHW	22	0.07	2.62	0.00	0	
Natural Gas Dryer/Electric DHW	390	1.21	0	0	1.04	
Natural Gas Dryer/Natural Gas DHW	22	0.07	0	0	2.62	
Natural Gas Dryer/Oil DHW	22	0.07	2.62	0	0.00	

For remaining measure life (Next 11 years):

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	446	1.38	0	0	0	
Electric Dryer/Propane DHW	164	0.51	0	1.21	0	
Electric Dryer/Natural Gas DHW	164	0.51	0	0	1.21	
Electric Dryer/Oil DHW	164	0.51	1.21	0	0	
Propane Dryer/Electric DHW	289	0.90	0	0.53	0	
Propane Dryer/Propane DHW	8	0.02	0	1.74	0	
Propane Dryer/Oil DHW	8	0.02	1.74	0.00	0	
Natural Gas Dryer/Electric DHW	289	0.90	0	0	0.53	
Natural Gas Dryer/Natural Gas DHW	8	0.02	0	0	1.74	
Natural Gas Dryer/Oil DHW	8	0.02	1.74	0	0.00	

Top Ten

For remaining life of existing unit (first 3 years):

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	746	2.32	0	0	0	
Electric Dryer/Propane DHW	358	1.11	0	1.67	0	
Electric Dryer/Natural Gas DHW	358	1.11	0	0	1.67	
Electric Dryer/Oil DHW	358	1.11	1.67	0	0	
Propane Dryer/Electric DHW	412	1.28	0	1.14	0	
Propane Dryer/Propane DHW	24	0.08	0	2.81	0	
Propane Dryer/Oil DHW	24	0.08	2.81	0.00	0	
Natural Gas Dryer/Electric DHW	412	1.28	0	0	1.14	
Natural Gas Dryer/Natural Gas DHW	24	0.08	0	0	2.81	
Natural Gas Dryer/Oil DHW	24	0.08	2.81	0	0.00	

For remaining measure life (Next 11 years):

	Per Unit Savings					
Dryer/DHW Fuel Combo	kWh	kW	MMBTU Oil	MMBTU Propane	MMBTU Natural Gas	
Electric Dryer/Electric DHW	484	1.50	0	0	0	
Electric Dryer/Propane DHW	188	0.58	0	1.27	0	
Electric Dryer/Natural Gas DHW	188	0.58	0	0	1.27	
Electric Dryer/Oil DHW	188	0.58	1.27	0	0	
Propane Dryer/Electric DHW	306	0.95	0	0.61	0	
Propane Dryer/Propane DHW	10	0.03	0	1.88	0	
Propane Dryer/Oil DHW	10	0.03	1.88	0.00	0	
Natural Gas Dryer/Electric DHW	306	0.95	0	0	0.61	
Natural Gas Dryer/Natural Gas DHW	10	0.03	0	0	1.88	
Natural Gas Dryer/Oil DHW	10	0.03	1.88	0	0.00	

Savings if DHW and Dryer fuel is unknown:

For remaining life of existing unit (first 3 years):

	kWh	kW	MMBTU Natural Gas	MMBTU Propane	MMBTU Oil
Non-CEE Energy Star Units	197.7	0.61	0.17	0.15	0.26
CEE 2	315.3	0.98	0.27	0.23	0.41
CEE 3	332.8	1.03	0.31	0.26	0.49
Most Efficient	391.7	1.22	0.37	0.30	0.59
Top Ten	425.0	1.32	0.39	0.33	0.62

For remaining measure life (Next 11 years):

	kWh	kW	MMBTU Natural Gas	MMBTU Propane	MMBTU Oil
Non-CEE Energy Star Units	81.8	0.25	0.10	0.07	0.16
CEE 2	144.4	0.45	0.16	0.12	0.27
CEE 3	174.4	0.54	0.21	0.16	0.36
Most Efficient	226.6	0.70	0.27	0.20	0.45
Top Ten	251.5	0.78	0.28	0.22	0.47

Multiple End Use Mail Order Efficiency Kit

Measure Number: VII-J-1-c (Residential Emerging Markets, Multiple End Use)

Version Date & Revision History:

Draft date:	Portfolio 87
Effective date:	6/1/2014
End date:	TBD

Referenced Documents:

- 1. FINAL REPORT: TIER 1 WORKSHOP MODEL 2007-2008, Prepared for the Governor's Energy Office by Energy Outreach Colorado, July 3, 2008
- 2. Efficiency Kit 2014 Savings Calculations Feb2015.xlsx

Description

This characterization provides information related to the mailing of any combination of a number of free efficient products in an "Efficiency Kit" after request by a residential customer. This characterization references other product specific TRM entries that should be used to see details of each characterization, and will be identical except for details stated in the savings tables below.

Kits may include any combination of the following products:

- Standard CFL (13W)
- Screw Based SSL (11W LED)
- Low Flow Faucet Aerator (1.0 GPM)
- Controlled Power Strip

Algorithms

Demand Savings

Measure	TRM Reference (Market)	Difference from Reference TRM	Demand Savings (kW)
Standard CFL (13W)	Interior CFL Direct Install	ISR = 0.80	0.0277
	(Residential Emerging Markets)	ISIX = 0.00	
Sorow Based SSL (11W LED)	Screw Based SSL (LED)	ISP = 0.80	0.0294
Screw Based SSL (11 w LED)	(Efficient Products)	15K - 0.00	
1.0 GPM I ow Flow Faucet	Low Flow Faucet Aerator	Assume 31% of DHW	0.0017
Aerator	(Residential Emerging Markets)	units are electric, ISR = 0.30	0.0017
	Controlled Power Strip	Office and Entertainment	0.0062
Controlled Power Strip	(Efficient Products)	Centre savings weighted average ^{1034} , ISR = 0.60	0.0002

¹⁰³⁴ Data gathered from the Smartstrip coupon in retail show that of the 119 sold, 60 went to Entertainment use, 11 Home Office, 5 Business Office, 1 other and 42 left blank. Entertainment and Residential Office savings are therefore weighted 5.45:1 respectively.

Energy Savings

Measure	TRM Reference	Difference from Reference TRM	Energy Savings (Annual kWh)
Standard CFL (13W)	Interior CFL Direct Install	ISR = 0.80; Hours of Use = 949^{1035}	25.1
Screw Based SSL (11W LED)	Screw Based SSL (LED)	ISR = 0.80; Hours of Use = 949^{1036}	26.7
1.0 GPM Low Flow Faucet Aerator	Low Flow Faucet Aerator	Assume 31% of DHW units are electric, $ISR = 0.30$	5.77
Controlled Power Strip	Controlled Power Strip	Office and Entertainment Centre savings weighted average ^{1037} , ISR = 0.60	43.60

Baseline Efficiencies – New or Replacement

See individual TRM entries.

High Efficiency

See individual TRM entries.

Operating Hours

See individual TRM entries.

Loadshape

See individual TRM entries.

Freeridership/Spillover Factors

		Light Bul	lbs/Lamps,
	Hot Water Conservation,		
Measure Category	Electronic	Technology	
		LBLCFBLB	, LBLLEDSC,
		HWEF	FAUCT,
Measure Code		EQPP	WREK
	Free products mailed in		
Product Description		Efficiency Kit	
Track Name	Track No.	Freerider	Spillover
LISF Retrofit	6034LISF	1.0	1.0
RES Retrofit	6036RETR	0.9	1.0

Persistence

See individual TRM entries.

Lifetimes

See individual TRM entries.

 ¹⁰³⁵ Northeast Residential Lighting Hours Of Use Study, 5/5/2014, Table 3-1 in report, pg. 34
 ¹⁰³⁶ Northeast Residential Lighting Hours Of Use Study, 5/5/2014, Table 3-1 in report, pg. 34
 ¹⁰³⁷ Entertainment and Residential Office savings are weighted 5.45:1 per previous footnote for demand savings.

Measure Cost

The cost of the package will be calculated as follows:

Measure	TRM Reference	Difference from Reference TRM	Cost per unit
Standard CFL	Interior CFL Direct Install	Cost of product, kit assembly, and postage	\$6.38
Residential LED >=10W	Screw Based SSL (LED)	Cost of product, kit assembly, and postage	\$20.30
Low Flow Faucet Aerator	Low Flow Faucet Aerator	Cost of product, kit assembly, and postage	\$5.80
Controlled Power Strip	Controlled Power Strip	Cost of product, kit assembly, and postage	\$15.80

Fossil Fuel Descriptions

Measure	TRM Reference	Difference from Reference TRM	MMBtu Savings
1.0 GPM Low Flow Faucet Aerator	Low Flow Faucet Aerator	Assume 13.3% of DHW units are Natural Gas, 23.9% LP, 31.4% Oil., ISR = 0.30	Natural Gas = 0.0107 LP = 0.0193
			Oil = 0.0254

See "Efficiency Kit 2014 - Savings Calculations - Feb2015.xlsx" for calculation of savings. DHW fuel percentages based on coupon data from EP Clothes Washer program. Fossil fuel system DHW efficiencies and savings consistent with "Low Flow Faucet Aerator" TRM.

Water Descriptions

Measure	TRM Reference	Difference from Reference TRM	Water Savings (CCF)
1.0 GPM Low Flow Faucet Aerator	Low Flow Faucet Aerator	ISR = 0.30	0.291

Reference Tables

See above.

Commercial Heat and Process Fuels

Space Heating End Use

Efficient Space Heating System

Measure Number: VIII-C-1-b (Commercial Heat and Process Fuels, Space Heating End Use)

Version Date & Revision History

Draft date:	Portfolio 66
Effective date:	01/01/10
End date:	TBD

Referenced Documents:

'DOE_Large_ch5.pdf'
'DOE_Small_appendix_e.pdf'
'HDD Calculation Method.pdf'
'Small Boiler market share.xls'
'Boiler Furnace Cost Analysis - FINAL052410.xls'
"The Facts About Venting And Efficiencies" (http://www.raypak.com/pdfs/100012.pdf)
'HDD calc.xls'
'NOAA NCDC Historical Climatological Series 5-1'
(http://www.ncdc.noaa.gov/oa/documentlibrary/hcs/hcs.html)

Description

This measure applies to oil- and propane-fired boilers and furnaces up to 500 MBH in capacity, used in non-residential and multi-family residential space-heating applications that meet the specified minimum efficiency requirement. Fossil fuel savings are realized due to the higher AFUE or Thermal Efficiency of the qualifying equipment. This measure will provide incentives for market based opportunities, including standard equipment replacement, new equipment purchases, and new construction.

Algorithms Energy Savings ΔΜΜΒΤU	= (HDD * CF * 24 / Dt) * (Capacity / 1000) * (1/ η_{Base} – 1 / η_{Eff})
Where:	
Δ MMBTU	= gross customer annual MMBtu fuel savings for the measure
HDD	= heating degree days for Vermont (assume $7,859^{1038}$)
CE	- Correction Easter (assume 0.77 ¹⁰³⁹)

CF	= Correction Factor (assume 0.77^{1039})
24	= hours per day
Dt	= design temperature difference (assume from -20 F to 70 F)
Capacity	= capacity of equipment to be installed (in MBH – 1000's of Btu/hr)
1000	= Conversion from MBH to MMBtu/hour
η_{Base}	= efficiency of baseline equipment, in AFUE or Thermal Efficiency. See
	ReferenceTable 1: Efficiency Standards and Qualifying Efficiencies

 ¹⁰³⁸ 10-year weighted average (2000-2009) for Vermont, from NOAA NCDC Historical Climatological
 Series 5-1 (http://www.ncdc.noaa.gov/oa/documentlibrary/hcs/hcs.html). See analysis in HDD calc.xls.
 ¹⁰³⁹ Principles of Heating Ventilating and Air Conditioning 6th Edition (Based on the 2009 ASHRE

Handbook - Fundamentals) Chapter 8 Energy Estimating Methods Section 8.5.3 Heating Degree-Day Method (see excerpt in 'HDD Calculation Method.pdf). The factor of 0.77 is an empirical correction factor that adjusts typical HDD data downward to account for the fact that typical HDD data is based on a balance point of 65 degrees, which tends to be too high due to better insulation and increased internal electric loads of buildings.

 η_{Eff} = efficiency of new equipment, in AFUE or Thermal Efficiency.

There are no electrical energy or demand algorithms associated with this measure. Electric energy savings from efficient furnace fans included with efficient furnaces are calculated separately.

Baseline Efficiencies

Baseline equipment is a new standard efficiency oil- or propane-fired furnace or boiler, used for space heating in a non-residential or multi-family residential application. Baseline efficiencies are detailed below in **ReferenceTable 1: Efficiency Standards and Qualifying Efficiencies**.

High Efficiency

The installed oil or propane furnace or boiler must have an AFUE or thermal efficiency (Et) greater than that shown below in **ReferenceTable 1: Efficiency Standards and Qualifying Efficiencies** and be used for space-heating only in a non-residential or multi-family residential installation.

Loadshape

N/A.

Freeridership/Spillover Factors

Measure Category		Space Heating Equipment		
		SHRFPROP, SHRFNGAS, SHRFFOIL,		
Mansura Codas		SHRHPROP, SHRHNGAS, SHRHFOIL,		
Measure Coues			BNOAS, SHKBFOIL	
Product Description		Efficient Space I	Heating Equipment	
Track Name	Track No.	Freerider	Spillover	
Act250 NC	6014A250	$1 \times 0.95 = 0.95 *$	1.075 **	
Cust Equip Rpl	6013CUST	0.94	1	
Farm NC	6014FARM	1	1	
Farm Equip Rpl	6013FARM	1	1	
Non Act 250 NC	6014NANC	1	1.075 **	
Pres Equip Rpl	6013PRES	1	1	
C&I Retro	6012CNIR	n/a	n/a	
MF Mkt Retro	6012MFMR	n/a	n/a	
Efficient Products	6032EPEP	1	1	
LISF Retrofit	6034LISF	n/a	n/a	
LIMF Retrofit	6017RETR	n/a	n/a	
LIMF NC	6018LINC	1	1	
LIMF Rehab	6018LIRH	1	1	
RES Retrofit	6036RETR	n/a	n/a	
RNC VESH	6038VESH	1	1	
MF Mkt NC	6019MFNC	1	1	

* Freeridership of 0% per agreement between DPS and EVT. All Act 250 measures will also have a 5% Adjustment Factor applied, which will be implemented through the Freeridership factor.

** Spillover of 7.5% only for 2010, based on TAG agreement with DPS, to revert to 0% in 2011.

Persistence

The persistence factor is assumed to be one.

Lifetimes

Equipment Type	Measure Lifetime
Furnaces	20

Boil	ers		25	
2	2			

Source: Consistent with previous lifetime estimates used by Efficiency Vermont in the state screening tool.

Measure Cost

The incremental costs of more efficient equipment are detailed below in **Reference Table 2: Measure Costs**.

Incentive Level

The incentive provided is \$2 per kBtu. For example, a 350 kBtu/h system would receive an incentive of \$700.

O&M Cost Adjustments

There are no O&M cost adjustments.

Fossil Fuel Descriptions

See Energy Savings algorithms above

Water Descriptions

There are no water algorithms or default values for this measure.

Reference Tables

Table 1: Efficiency Standards and Qualifying Efficiencies

	ASHRAE 90.1 – 2004 Minimum Efficiency	Baseline Efficiency	Minimum Qualifying efficiency
Oil Boiler (< 300 MBH)	80% AFUE	82.9% AFUE(1)	85% AFUE(2)
Oil Boiler (300 – 500 MBH)	78% Et	81% Et (3)	87% Et
Oil Furnace (< 225 MBH)	78% AFUE	80% AFUE (3)	85% AFUE(2)
Oil Furnace (≥ 225 MBH)	81% Et	81% Et (4)	82% Et (5)
LP Boiler (<300 MBH)	80% AFUE	82.3% AFUE (1)	85% AFUE(2)
LP Boiler (300 – 500 MBH)	75% Et	84% Et (6)	87% Et
LP Furnace (< 225 MBH)	78% AFUE	84% AFUE (3)	90% AFUE(2)
LP Furnace (≥ 225 MBH)	79% Et (7)	80% Et (8)	82% Et (5)

(1) Based on GAMA 2005 shipment data. See 'Small Boiler market share.xls'.

- (2) Minimum qualifying efficiency for Energy Star standard.
- (3) Based on AHRI data
- (4) ASHRAE standard. Lowest efficiency available from AHRI database is 80% Et.
- (5) Highest Efficiency Available from AHRI database
- (6) Performance threshold for non-condensing boilers
- (7) Assumed Thermal Efficiency is 1% lower than combustion efficiency $^{\rm 1040}$
- (8) Lowest Efficiency Available from AHRI database

Table2: Measure Costs

	Baseline Installed Cost (\$ per Btu/h)	Efficient Installed Cost (\$ per Btu/h)	Incremental Cost (\$ per Btu/h)		
Oil Boiler (< 300 kBtu/h)	\$0.026	\$0.032	\$0.006		
Oil Boiler (≥ 300 kBtu/h)	\$0.028	\$0.043	\$0.015		
LP Boiler (< 300 kBtu/h)	\$0.034	\$0.045	\$0.012		
LP Boiler (≥ 300 kBtu/h)	\$0.029	\$0.039	\$0.010		
Oil Furnace (< 225 kBtu/h)	\$0.025	\$0.034	\$0.009		
Oil Furnace (≥ 225 kBtu/h)	\$0.025	\$0.028	\$0.003		
LP Furnace (< 225 kBtu/h)	\$0.028	\$0.036	\$0.009		
LP Furnace (≥ 225 kBtu/h)	\$0.028	\$0.031	\$0.003		
Costs from analysis of DOE cost data from DOE technical support documentation (see referenced documents), as summarized in file "Boiler Furnace Cost Analysis - FINAL052410.xls."					

 $^{^{1040}}$ $E_{\rm c}$ is the combustion efficiency of the equipment. E_t is the thermal efficiency, and includes both combustion losses and jacket losses. Assumed that E_t is 1% lower than E_c based on "The Facts About Venting And Efficiencies" (<u>http://www.raypak.com/pdfs/100012.pdf</u>), in which thermal efficiencies range from 1% to 3% less than combustion efficiencies. Used 1% as a conservative estimate.