

Retail/Residential

Technical Reference Manual

Version 2018.3

Effective Date: January 1, 2018

Efficiency Maine Trust 168 Capitol Street Augusta, ME 04330 866-376-2463 <u>efficiencymaine.com</u>

Table of Contents

TABLE OF CONTENTS	2
INTRODUCTION	4
TRM CHANGE LOG	10
CONSUMER PRODUCTS	19
CFL BULB – FOOD PANTRY & APPLIANCE PACKS (INACTIVE) (CFLFP, CFLAPP)	20
STANDARD LED BULB – RETAIL (LEDSTDLL, LEDSTDSL, LEDSTDP)	22
SPECIALTY LED BULB – RETAIL (LEDSPCRFL, LEDSPCRFS, LEDSPCOL, LEDSPCOS, LEDSPCCDL, LEDSPCCDS)	24
STANDARD LED BULB – FOOD PANTRY, DIRECT INSTALL & OPT-IN MAILED DIY KIT (LEDSTDLFP, LEDSTDSFP, LILLEDSTANL, LILEDSTANS)	28
SPECIALTY LED BULB – FOOD PANTRY, DIRECT INSTALL & OPT-IN MAILED DIY KIT (LEDSPCLFP, LEDSPCSFP, LILEDSPECL, LILEDSPECS)	30
STANDARD LED BULB – DISTRIBUTOR (LEDSTDLLD, LEDSTDSLD)	32
SPECIALTY LED LAMP – DISTRIBUTOR (LEDSPCCDDL, LEDSPCCDDS, LEDSPCGLDL, LEDSPCGLDS, LEDSPCBRDL, LEDSPCBRDS, LEDSPCPF	٦DL,
LEDSPCPRDS, LEDSPCPBDL, LEDSPCPBDS, S110 <2/4><l s="">)</l>	34
LED MOGUL LAMP INTERIOR – DISTRIBUTOR (S64 <l h=""><l s="">)</l></l>	36
LED MOGUL LAMP EXTERIOR – DISTRIBUTOR (S6 <b c=""><l h="" m=""><l s="">)</l></l>	38
Refrigerator (Inactive) (RF)	41
Freezer (Inactive)	42
ROOM AIR CONDITIONER (INACTIVE) (RAC)	43
ROOM AIR PURIFIER (RAP)	44
Dehumidifier (DH)	45
DISHWASHER (INACTIVE) (DW)	47
CLOTHES WASHER (CW)	49
LOW-FLOW KITCHEN AERATOR (LFKA, LILFKA)	52
LOW-FLOW BATHROOM AERATOR (LFBA, LILFBA)	54
Low-flow Showerhead (LFSH)	56
Thermostatic Shower Valve (TSV, LILFSH)	58
HEAT PUMP WATER HEATER (HPWH)	60
WI-FI ENABLED THERMOSTAT (WIFITSTAT)	62
HOME ENERGY SAVINGS PROGRAM	63
Сизтом Ратн (T1,T2)	64
Air Sealing (AA, LAA)	65
ATTIC/ROOF INSULATION ALL FUELS (BA, LBA)	67
Attic/Roof Insulation Natural Gas (BA, LBA)	69
WALL INSULATION (BW, LBW)	71
BASEMENT INSULATION (BB, LBB)	73
Mobile Home Underbelly Insulation (LUB)	75
Insulate Attic Openings (LUB)	77
DUCT INSULATION (LUB)	79
DUCT SEALING (LUB)	81
Hydronic Heating Pipe Insulation (LUB)	83
SEAL/INSULATE PIPES/DUCTS (LUB)	84
DUCTLESS HEAT PUMP (CH)	86
HIGH-EFFICIENCY FURNACES AND BOILERS (DB, DF)	88
Pellet/Wood Stove (CPS, CWS)	90
Pellet/Cord Wood Boiler (APB)	91

Central Air-source Heat Pump (ducted) (DHA)93
Central Geothermal (Ground source) Heat Pump (GCL, GOL)95
On-Demand Natural Gas Water Heater (NGWH)97
LOW-INCOME PROGRAM
AIR SEALING DIRECT INSTALL (LNAS)
Attic/Roof Insulation Direct Install (LNAI)
LOW-INCOME GAS HEAT
FURNACE AND BOILER RETROFIT
DUCTLESS HEAT PUMP RETROFIT (LIDHP, LCH)104
HEAT PUMP WATER HEATER DIRECT INSTALL (LIHPWH)108
Domestic Water Heater Temperature Turn-Down
Domestic Water Heater Pipe Insulation
DOMESTIC WATER HEATER WRAP
APPENDIX A: GLOSSARY
APPENDIX B: COINCIDENCE AND ENERGY PERIOD FACTORS119
APPENDIX C: CARBON DIOXIDE EMISSION FACTORS
APPENDIX D: RETAIL LIGHTING EISA HISTORY
APPENDIX E: STANDARD ASSUMPTIONS FOR MAINE
APPENDIX F: SUPPLEMENTARY INFORMATION FOR RETAIL PRODUCTS

Introduction

PURPOSE

The Efficiency Maine Trust Residential/Retail, Commercial and Multifamily Technical Reference Manuals (TRMs) provide documentation for the Trust's calculation of energy and demand savings from energy-efficiency measures. Each TRM serves as a central repository and common point of reference for the methods, formulas, assumptions and sources that are used to estimate savings from energy-efficiency measures, and provides a common platform for analyzing energy savings across measures and programs. The importance of the TRM is derived from the importance of energy and demand savings calculations, which are at the foundation of the Trust's program planning and management, cost-effectiveness analysis, program evaluation, Annual Report and Independent System Operator – New England (ISO-NE) Forward Capacity Market (FCM) participation.

GENERAL FORMAT

The TRM is organized by program area and then by measure category, which may include one or more measures. Each measure category is presented in its own section as a measure characterization, following a standard format. The measure characterization includes a measure overview, energy and demand savings algorithms, baseline assumptions, deemed parameter values or instructions for inputs to savings algorithms, measure life and measure costs and impact factors for calculating adjusted gross savings and net savings. When there is a set of common values across measures, summary tables are provided at the end of the relevant section or in an appendix.

Where deemed savings values are specified, Efficiency Maine Trust (the Trust or EMT) uses integer values when reporting in units of kWh, three decimal places when reporting in units of MMBtu, and three decimal places for all demand (kW) values.

GUIDANCE & COMMON ASSUMPTIONS

In using the Trust's TRMs, it is helpful to note the following:

- **Gross savings:** Algorithms are specified for *gross* savings. To calculate *adjusted gross* savings or *net* savings, impact factors that account for verified measure performance (adjusted gross) and attribution (net) must be applied. The formulas used to calculate adjusted gross and net savings are described below.
- **Annual savings:** Algorithms are specified for *annual* savings. Unless otherwise noted, annual savings are assumed to be realized for each year of the measure life.
- **Unit savings:** Algorithms are specified for *per unit savings*. The Trust's program databases track and record the number of units of a given measure delivered through the program.
- *Meter-level savings:* Savings are assumed to be the savings that occur at the customer's meter (or point of use for non-electric savings); line losses are not included in these calculations.
- Non-electric savings: When applicable, savings are counted for natural gas, oil, propane, kerosene, wood and/or water. The deemed unit savings, algorithms and assumptions for these non-electric impacts are described in the measure characterizations whenever those savings are counted. If a non-electric impact is not described for a measure, it can be assumed that no non-electric impacts are counted for that measure.

- In-Service Rate (ISR): The in-service rate represents the percentage of program units that are installed or implemented. Unless otherwise stated in the measure-specific sections of this TRM, the ISR is set to 100 percent for the following reasons:
 - In the commercial sector, it is uncommon for customers to purchase equipment and not immediately install or use it.
 - The Trust's non-retail programs include some level of verification of the measure purchase and/or installation. These verification procedures ensure that projects and savings are counted only for measures that are implemented.
 - The effects of non-implemented units may be identified in the program impact evaluation and accounted for in the energy and demand realization rates.
 - Direct install measures result in 100 percent installation rates.
- **Coincidence Factors (CF):** Coincidence factors are provided for the summer and winter on-peak periods as defined by the ISO-New England for the Forward Capacity Market (FCM), and are calculated in accordance with the FCM methodology. Electric demand reduction during the ISO New England peak periods is defined as follows:
 - **Summer on-peak**: average demand reduction from 1:00 to 5:00 PM on non-holiday weekdays in June, July and August
 - Winter on-peak: average demand reduction from 5:00 to 7:00 PM on non-holiday weekdays in December and January
- Life: Life refers to the effective useful life of the measure. It represents the equivalent number of years the savings are expected to be realized. Lifetime savings = annual savings x life. Measure life takes one or more of the following aspects into consideration: 1) projected equipment life, 2) documented equipment warranty, 3) measure persistence¹, and 4) savings persistence². Life is set to represent a conservative estimate of the aggregate life of all measures of that type installed and not the characterization of the life of a single, specific installed measure.
- **Deemed savings value vs. deemed savings algorithm:** For some measures, deemed savings values are provided representing the estimated average savings per unit for the measure. The deemed savings value may be based directly on the results from an evaluation or other research study, or may be based on a set of deemed input parameters applied to the stated energy and demand savings algorithms.

For other measures, deemed values are provided for only some of the parameters in the algorithm and actual values for a given measure are required to calculate savings. In these cases, project-specific (or "Actual") data recorded in the relevant program tracking database is used in combination with the TRM deemed parameters to compute savings.

¹ Measure persistence is a quantification of how long the measure will remain in place. Causes of reduced measure persistence include any activity that removes the measure or eliminates the savings such as equipment upgrade, refurbishment or renovation of the building, closure of a business, or override of efficiency controls. ² Savings persistence is a quantification of how long the defined savings will remain. Causes of reduced savings persistence include a change to the baseline over the useful life of the measure so that future savings are less than first-year savings and changes in usage behavior over time.

- **Project-specific ("actual") data for parameter inputs**: The savings methods for some measures specify "actual" data for at least one of the input parameters. Actual data refers to values that are specific to the project. Unless otherwise stated, these actual project data should be collected and documented on the project application forms. For some measures, the TRM provides alternative values if the actual data are unknown.
- **Data sources for deemed parameter inputs:** Wherever possible, deemed parameter values and assumptions are based on Maine-specific research and data. When such data are not available, the TRM relies on relevant data sources from other areas within the U.S.; in doing so, data sources from neighboring states and regions are prioritized. In some cases, engineering judgment and scaling for regional differences are used.
- Decision type: The decision type describes the underlying scenario that is assumed for the savings calculation of a given measure. The decision type has implications for the baseline efficiency case and the measure cost assumptions as shown below.³ For each energy-efficiency measure, the TRM identifies the relevant decision type, or types, corresponding to the scenarios in which the given measure may be implemented.

Decision Type	Scenario	Baseline	Measure Cost
New Construction	Customer is in the market to purchase new equipment for a new construction or new capacity project or as part of a planned renovation or to add controls to improve the performance of new equipment	Federal standards or standard market practice for new equipment	Incremental cost: difference between the cost of baseline and cost of high-efficiency equipment
Replace on Burnout	Customer is in the market to purchase new equipment to replace existing equipment that has worn out or otherwise needs replacing	Federal standards or standard market practice for new equipment	Incremental cost: difference between the cost of baseline and cost of high-efficiency equipment
Retrofit	Customer's existing equipment is in working order and has remaining useful life or customer is adding controls to improve the performance of operating equipment in an existing facility.	Existing equipment or conditions	Full measure cost: cost of the high-efficiency equipment (including installation)

- *Efficiency standards:* The TRM anticipates the effects of changes in efficiency standards for some measures, including shifts in the baseline for CFL and LED bulbs due to changes in Federal Standards for lighting products under the Energy Independence & Security Act of 2007 (EISA).
- TRM updates: The TRMs are reviewed and updated annually, or more frequently if needed, to reflect new information obtained through research and evaluation studies, changes in program offerings (measures) and shifts in technology and baselines. Annual updates to the TRM are published as a new "version" (Version YYYY.1) with a specific effective date. Inter-year updates to the TRM are published as iterations to the version year (Version YYYY.x) with changes and effective date indicated.

³ Table adapted from National Action Plan for Energy Efficiency (2008). Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers. Energy and Environmental Economics, Inc. and Regulatory Assistance Project. https://www.epa.gov/sites/production/files/2015-08/documents/napee_report.pdf

SAVINGS FORMULAS

The formulas and inputs used to calculate the deemed gross annual energy ($\Delta kWh/yr$ (electricity) and $\Delta MMBtu/yr$ (natural gas and other fuels)) and gross max demand (ΔkW) savings for each measure are described in the measure sections. The formulas used to calculate adjusted gross savings, on-peak demand savings, and lifetime savings are described below. For measures that have different gross max demand savings for winter and summer, max heating (ΔkW_H) and max cooling (ΔkW_C) demand savings are reported. For measures where coincident demand reductions are estimated directly, winter (ΔkW_{wP}) and summer peak (ΔkW_{SP}) demand savings are reported and the coincidence factors set to 100 percent.

Adjusted Gross Savings

Adjusted gross savings represent the total energy and demand savings achieved by measures implemented through the Trust's programs. The adjusted gross savings values are calculated by applying various evaluation parameters to the gross annual energy and demand savings:

Adjusted Gross Annual kWh = $\Delta kWh/yr \times ISR \times RR_E$ Adjusted Gross Lifetime kWh = $\Delta kWh/yr \times ISR \times RR_E \times Measure$ Life Adjusted Gross Annual MMBtu⁴ = $\Delta MMBtu/yr \times ISR \times RR_E$ Adjusted Gross Lifetime MMBtu⁴ = $\Delta MMBtu/yr \times ISR \times RR_E \times Measure$ Life Adjusted Gross Summer On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_S$ Adjusted Gross Winter On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_W$

The Adjusted Gross Summer On-Peak kW value is equivalent to the Demand Reduction Value reported to the ISO-NE Forward Capacity Market.

Net Savings

Net Savings represent the total realized energy and demand savings that are attributable to the Trust's programs. These net savings are calculated by applying the net-to-gross (NTG) factors such as free-ridership (FR) and spillover (SO) to the adjusted gross savings.

Net Annual kWh = $\Delta kWh/yr \times ISR \times RR_E \times (1 - FR + SO)$

Net Lifetime kWh = $\Delta kWh/yr \times ISR \times RR_E \times (1 - FR + SO) \times Measure Life$

Net Summer On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_S \times (1 - FR + SO)$

Net Winter On-Peak kW = $\Delta kW \times ISR \times RR_D \times CF_W \times (1 - FR + SO)$

Note the parameter (1 – FR + SO) may be replaced with the net-to-gross (NTG) ratio.

⁴ In this document and other reporting documents, fossil fuel savings are reporting in unit of MMBtu. In the tracking data base (effRT), natural gas savings are calculated in units of therms and then must be converted to MMBtu.

SAVINGS CALCULATIONS

The actual calculation of energy-efficiency savings, pursuant to the algorithms and assumptions documented in the TRM, occurs in the Trust's program tracking databases. In 2012, the Trust initiated a significant effort to upgrade and transform its existing program-specific databases into a comprehensive, unified database system that supports multiple programs with standardized internal processes, features and quality. This initiative builds on the foundation of the successful Efficiency Maine Reporting and Tracking (effRT) database system that historically supported the Business Programs to create a new multi-program database system, effRT 2.0. As part of this effort, the Trust is mapping the TRM deemed values and algorithms into effRT, and establishing processes for updates to effRT to coincide with TRM updates.

As of January 1, 2014, the Trust added adjustment factors for the in-service rate (ISR) and the evaluated realization rate (RR) to the formulas used to calculate the demand reduction value (DRV) for Forward Capacity Market (FCM) monthly reporting. Results using these two additional factors are referred to as *Adjusted Gross Savings* in the effRT report.

TRM Change Log

Change Type	TRM Section	Description	Effective Date	effRT update
PY2014 Addend	dum		1	
Revision	Table B-1: Coincidence Factors and Energy Period Factors	Added coincidence and energy period factors for the new ductless heat pump and ductless heat pump retrofit measures to existing Table	11/12/2013	Y
New	Ductless Heat Pump	New measure section for Ductless Heat Pump	11/12/2013	N
Revision	CFL Bulb, LED Bulb	-Updated savings algorithm and savings values to account for evaluation findings indicating a share of retail lighting program measures being used in commercial settings	7/1/2013	Y
PY2015 Update	2S			
Revision	CFL Bulb, LED Bulb	 -Updated savings to include new EISA update for PY2015 	7/1/2014	Y
Revision	Refrigerator, Freezer, Dehumidifier	 -Updated energy and demand savings based on new evaluation results and a baseline adjustment -Updated Coincidence Factors to be consistent with updated peak demand savings -Updated free ridership (FR) and spillover (SO) using new evaluation results 	7/1/2014	Y
Revision	Room Air Conditioner	-Updated energy and demand savings using a new baseline condition accounting for new code standard -Updated FR and SO using new evaluation results	7/1/2014	Y
Revision	Room Air Purifier	-Updated FR and SO using new evaluation results	7/1/2014	Y
Revision	Clothes Washer, Dishwasher	-Updated distribution of water heater fuels based on new evaluation results -Updated FR and SO using new evaluation results (the values for the dishwasher measure were based on overall program weighted average)	7/1/2014	Y
Revision	effRT schedules (Appliance Rebate and Retail Lighting Programs)	Savings, Pricing and Factor schedules in effRT updated to reflect 2014 TRM values and formulas	7/1/2014	Y
Revision	High-efficiency Electric Water Heater	Temperature setpoint of the water heater was updated based on recent evaluation results	7/1/2014	Y
Revision	Heat Pump Water Heater	-Updated savings based on a Heat Pump Water Heaters Field Evaluation report -Updated FR and SO using new evaluation results	7/1/2014	Y

Change Type	TRM Section	Description	Effective	effRT
			Date	update
Revision	Table B-1:	-Updated Coincidence Factors for the	7/1/2014	Y
	Coincidence Factors	following measures: CFL Bulb, LED Bulb,		
		Refrigerator, Freezer, Denumidifier, Clothes		
		Washer, Heat Pump Water Heater		
		-Added Coincidence Factors for all newly		
Dovision	Table D 1. Energy	Judeo medsures	7/1/2014	V
REVISION	Pariod Eastors	following moscures: CEL Bulb LED Bulb	//1/2014	T
	Feriou Factors	Pofrigorator Franzer Dehumidifier Clethes		
		Washer Heat Pump Water Heater		
		-Added Energy Period Eactors for all newly		
		added measures		
Revision	Ductless Heat Pump	Energy/demand impacts description of	7/1/2014	N
	Ducticss field i unip	methodology, coincidence factors, and	//1/2014	
		energy period factors for the Ductless Heat		
		Pump measure (added to the TRM as a		
		PY2014 addendum) were updated based on		
		a revised savings model		
New	Direct Install CFL Bulb	New measure section for Direct Install CFL in	7/1/2014	N
		Low-income Program		
New	Ductless Heat Pump	New measure section for Ductless Heat	7/1/2014	N
	Retrofit	Pump Retrofit in Low-income Program		
New	Low-income	New measure sections for heating	7/1/2014	N
	Multifamily Gas Heat,	measures: Low-income Multifamily Gas		
	Furnaces and Boilers,	Heat, Furnaces and Boilers, Furnace and		
	Furnace and Boiler	Boiler Retrofit		
	Retrofit			
New	Home Energy Savings	New measure sections for the following	7/1/2014	Ν
	Program	measures: Custom Path, Air Sealing,		
		Attic/Roof Insulation, Wall Insulation,		
		Basement Insulation, High-Efficiency		
		Furnaces/Boilers, Furnace and Boiler		
		Retrofit, Pellet/Wood Stove, Pellet Boiler,		
		Central Air-Source Heat Pump (Ducted),		
		Central Geothermal (Ground Source) Heat		
		Pump, On-Demand Natural Gas Water		
Pemoval	Advanced Power	This measure was discontinued and the	7/1/2014	v
Keniovai	Strin	TRM entry was removed accordingly	//1/2014	
Revision	Ductless Heat Pump	Updated measure life undated measure	9/27/2014	N
	Retrofit	cost	2, _ / , _ 0 ± 1	
Revision	Central Geothermal	Changed baseline to Oil Boiler	9/27/2014	N
	(Ground Source) Heat			
	Pump			
Revision	CFL Bulb, LED Bulb,	Adjusted measure life to 5 years	7/1/2014	Y
	CFL Direct Install			
New	Heat Pump Water	New measure section for Heat Pump Water	1/1/2015	Y
	Heater Direct Install	Heater Direct Install in Low-income Program		

Change Type	TRM Section	Description	Effective	effRT
Revision	Low-flow Kitchen	Measure costs undated to reflect program	3/1/2015	
Nevision	Aerator, Low-flow	costs under the direct install program	3/1/2013	
	Showerhead, CFL			
	Direct Install,			
	Ductless Heat Pump			
	Retrofit			
Revision	Ductless Heat Pump	Updated savings to account for fuel	3/1/2015	Y
	Retrofit	distribution		
Other	Low-income	Added Replace on Burnout decision type	3/1/2015	N
News	Multifamily Gas Heat	Added distribute a LED research	1/1/2015	N N
New		Added distributor LED measure	1/1/2015	Y
Revision	LED High-Efficiency	Adjusted measure cost based on program	7/1/2014	v
REVISION	Furnaces and Boilers	data	//1/2014	
Revision	Wood and Pellet	Adjusted savings estimates to account for	7/1/2014	Y
	Stoves	outdoor make up air kit efficiency	.,_,	
PY2016 Update	25	· · ·		
Other	Introduction	Expanded description of in-service rate;		N
		revised deemed savings value vs. deemed		
		savings algorithm, data sources for deemed		
		parameter inputs, decision type and TRM		
		updates descriptions to make them		
		applicable and consistent across all TRMs	- // /2 2 / -	
Revision	CFL Retail, LED Retail,	Updated to incorporate evaluation results	//1/2015	Y
	LED DISTRIBUTOR, CFL			
Povision	Direct Install Pofrigorator, Eroozor	Lindated to reflect latest ENERGY STAR®	7/1/2015	V
REVISION	Room Air Conditioner	calculator	//1/2013	T
Revision	Clothes Washer	Updated to reflect new federal standard	7/1/2015	N
New	Retail: Low-flow	Added measures to retail section	7/1/2015	N
-	Kitchen Aerator, Low-		, ,	
	flow Bathroom			
	Aerator, Low-flow			
	Showerhead			
New	Thermostatic Shower	Added to retail and low-income sections	7/1/2015	N
	Valve			
Revision	High-efficiency	Updated to reflect updated federal standard	7/1/2015	N
De later	Electric Water Heater	effective 4/16/2015	7/4/2045	
Revision	Heat Pump Water	Updated incremental measure cost based on	//1/2015	Y
	пеацег	water beaters due to new federal standards		
Revision	Air Sealing	Revised savings estimates based on	7/1/2015	Y
Nevision	Attic/Roof Insulation	temperature bin analysis using TMY3 data	//1/2013	
	Wall Insulation.			
	Basement Insulation			
Revision	Ductless Heat Pump,	Updated to reflect refined assumptions and	7/1/2015	Y
	Ductless Heat Pump	modeling		
	Retrofit			

Change Type	TRM Section	Description	Effective Date	effRT update
Other	Low-income Gas Heat	Removed multifamily designation and added	7/1/2015	N
Other	Furnace and Boiler Retrofit (Prescriptive)	Clarified that measure is prescriptive	7/1/2015	N
Revision	Low-income: Low- flow Kitchen Aerator, Low-flow Bathroom Aerator, Low-flow Showerhead	Updated savings estimates to reflect heat pump water heat energy recovery factor	7/1/2015	Y
Revision	Appendix B	Updated coincidence factors and energy period factors for new and modified measures	7/1/2015	Y
Revision	Multiple	Updated MMBtu per kWh conversion factor from 0.003413 to 0.003412	7/1/2015	Y
Other	Appendix: Carbon Dioxide Emission Factors	Added carbon dioxide emission factors table	7/1/2015	N
New	CFL – Food Bank	Added new entry for CFL Food Bank measure	7/1/2015	Y
Other	Appendix: Coincidence and Energy Period Factors	Corrected footnotes	7/1/2015	N
Revision	Retail Products	Added Commercial Sector to Dehumidifier, Room Air Purifier, Clothes Washer and Heat Pump Water Heater – no savings adjustments at this time	7/1/2015	N
Revision	Distributor Lighting	Adjusted deemed savings to account for higher efficacy program requirement	7/1/2015	Y
New	Value-line LED	Added value-line LEDs for retail and distributor	1/1/2015	Y
Revision	CFL & LED	Made several corrections/refinements to CFL and LED entries	7/1/2015	Y
Revision	Pellet Boiler	Added Cord Wood Boilers	3/1/2016	Y
Revision	Low-flow Devices	Minor corrections to calculations	7/1/2015	Y
Revision	On-Demand Natural Gas Water Heater	Updated efficiency, water use and cost assumptions	3/1/2016	Y
Revision	CFL and LED	Corrected avoided O&M estimates to properly account for delay of first purchase; corrected demand savings to apply cooling interactive demand factor to summer peak only	1/1/2016	Y
New	LED – Food Pantry & Appliance Packs	New entry for LED Food Pantry & Appliance Packs	3/1/2016	Y
Revision	Low-flow Kitchen Aerator & Low-flow Showerhead	Added Appliance Pack impact factors to Low-flow Kitchen Aerator and Low-flow Showerhead entries	3/1/2016	Y
Other	Introduction: Savings Formulas	Updated description to clarify demand savings terms	3/1/2016	N

Change Type	TRM Section	Description	Effective Date	effRT update
PY2017 Update	lS			
Revision	All	Default FR for measures not yet evaluated changed from 0% to 25%.	7/1/2016	Y
Revision	CFL measures	Removed retail CFL measure, food pantry CFL retained to allow for "sell through" of existing inventory until LEDs are available in August 2016	7/1/2016	Y
Revision	LED measures	LED measures split into separate entries for standard and specialty bulbs. Savings estimates updated on FY16 bulb mix	7/1/2016	Y
Other	Various	Marked measures not currently offered as inactive. Inactive measures were not reviewed for revisions.	7/1/2016	Y
Correction	Refrigerator	Removed RATIO _{BASE} which was an inadvertent holdover from a previous version	N/A	Ν
Revision	Dehumidifier	Parameters updated based on PY16 sales data and revised ENERGY STAR [®] standard	7/1/2016	Y
Correction	Dehumidifier	Winter coincidence factor set to 0%	N/A	Ν
Removal	High-efficiency Electric Resistance Water Heater	New federal standards has made high- efficiency electric resistance water heater the baseline	7/1/2016	Y
Revision	Room Air Purifier	CADR updated based on PY16 sales data	7/1/2016	Υ
Revision	Heat Pump Water Heater	Retail and Low-income HPWH savings estimates adjusted for energy factors reflecting current program models and federal minimum standard	7/1/2016	Y
Revision	Heat Pump Water Heater	Updated measure life to reflect NREL, National Residential Efficiency Measure Database	7/1/2016	Y
Correction	Clothes Washer	Calculation correction made to energy savings	7/1/2016	Y
Revision	Clothes Washer	Demand savings algorithm employed to allow calculation based on new efficiency values; evaluation results used to derive coincidence factors	7/1/2016	Y
Revision	Clothes Washer	Measure cost updated per ENERGY STAR®	7/1/2016	Υ
Revision	Home Energy Savings Program	Baseline and energy-efficient measure assumptions updated based on most recent program data	7/1/2016	Y
Revision	Home Energy Savings Program	Fuel savings presented for known and unknown heating fuel type	7/1/2016	Y
New	Attic/Roof Insulation Natural Gas	Separate measure added for attic/roof insulation installed in homes heated with natural gas due to different baseline eligibility	7/1/2016	Y
Revision	Attic/Roof Insulation All Fuels	Natural gas removed from fuel distribution	7/1/2016	Y

Change Type	TRM Section	Description	Effective	effRT
0 //			Date	update
Revision	Insulation measures	Separate free-ridership rate added for Low- income Home Energy Savings Program (LIHESP)	7/1/2016	Y
New	Home Energy Savings Program	Added new measures for mobile home underbelly insulation, insulate attic openings, duct insulation, duct sealing and hydronic heating pipe insulation	7/1/2016	Y
Revision	Ductless Heat Pump	Added savings for multi-head and multiple unit projects	7/1/2016	Y
Revision	High-Efficiency Furnaces and Boilers	Deemed measure cost updated based on data provided in Vermont and Illinois TRMs; separate baseline efficiencies, efficient efficiencies and savings presented by fuel type and equipment type; efficient equipment efficiencies updated based on recent program data	7/1/2016	Y
Revision	Pellet/Cord Wood Boiler	Baseline fuel mix assumption updated; updated annual heat load based on Residential Baseline Study	7/1/2016	Y
Revision	Central Heat Pumps	Savings algorithm updated to use annual heat and cooling loads from Residential Baseline Study; coincidence factors corrected	7/1/2016	Y
New	Air Sealing and Attic Insulation Direct Install	New measures added to low-income section (retroactive to July 1, 2015)	7/1/2015	Y
Revision	Furnace Boiler Retrofit	Savings algorithm updated to use annual heat loads from Residential Baseline Study, transitioned to actual for baseline and efficient-energy factors	7/1/2016	Y
Revision	Low-flow Devices	Measure life adjusted to reflect National Renewable Energy Laboratory's National Residential Efficiency Measure Database	7/1/2016	Y
Revision	Ductless Heat Pump Retrofit	Savings updated to remove assumed fuel distribution; Savings will be allocated based on actual fuel type; Added parameters used in modeling that were not previously included; Modified efficient measure assumption to reflect program requirements; No impact on savings estimates.	7/1/2016	Y
Revision	Low-flow Devices – low-income only	Savings adjusted for revised water heater energy factors	7/1/2016	Y
Other	Appendix Retail Lighting Assumptions and EISA	Appendix renamed to Retail Lighting EISA History. This appendix is being maintained for historical reference only.	7/1/2016	N
Other	Appendix Standard Assumptions for Maine	Updated appendix to reflect baseline assumptions used in TRM entries for boilers and furnaces	7/1/2016	N

Change Type	TRM Section	Description	Effective	effRT
Other	Appendix Carbon	Undated to current US Energy Information	7/1/2016	N
other	Dioxide Emission Factors	Administration (EIA) factors	77172010	
Revision	Ductless Heat Pump	Clarified unit definition to allow up to two units per dwelling	9/14/2016	Y
New	Seal/Insulate Pipe/Ducts	New measure based on weighted average of duct insulation, duct sealing and hydronic heating pipe insulation	7/1/2016	Y
Revision	LED (Retail and Distributor)	Updated measure costs, split specialty bulbs into more refined categories.	11/21/2016	Y
Revision	Heat Pump Water Heater	Updated measure cost based on price survey	11/21/2016	Y
Revision	Retail Products: Thermostatic Shower Valve	Decision type changed to retrofit. In Service Rate estimate updated based on customer survey data. Measure cost updated based on program actuals.	11/21/2016	Y
Revision	Room Air Purifier	Measure cost updated based on shelf survey	11/21/2016	Y
Revision	LED Standard Food Pantry, Direct Install, & Opt-in Mailed DIY Kit	Added 100 W sub measure	12/1/2016	Ŷ
Revision	LED Specialty Food Pantry, Direct Install, & Opt-in Mailed DIY Kit	New measure for specialty bulbs	1/1/2017	Y
Revision	LED (Retail and Distributor)	Updated measure cost	2/1/2017	Y
Revision	On-Demand Natural Gas Water Heater	Revised assumptions and savings based on new program eligibility criteria	3/1/2017	Y
Revision	Central Geothermal (Ground Source) Heat Pump	Revised measure cost based on updated assumed baseline cost	3/1/2017	Y
Revision	Low Income Heat Pump Water Heater	Scaling factors updated for current COP and assumed water use	4/1/2017	Y
Revision	Heat Pump Water Heater	Scaling factors updated for participating models	5/1/2017	Y
Revision	LED (Retail and Distributor)	Updated measure cost	5/1/2017	Y
Other	LED (all)	Removed reference to ENERGY STAR [®]	4/1/2017	N
Other	Glossary	Updated RR definition to distinguish between RR _E and RR _D	4/1/2017	N
PY2018 Update	S			
Revision	LED (AII)	Updated measure costs and delta watts based on program data analysis, revised FR based on pricing trial, updated interactive effects, updated savings estimates accordingly	7/1/2017	Y
Other	Consumer Products Low Flow Devices	Added note about application of ERWH % in effRT when water heat type is unknown.	7/1/2015	N

Change Type	TRM Section	Description	Effective	effRT
			Date	update
Revision	LFKA, LFBA, TSV	Updated measure cost to be actual cost.	7/1/2017	Y
		Changed LFKA to Retrofit. Added HPWH		
		savings for direct install. Updated HPWH		
		savings to reflect 3.5 COP.	- / . /	
Revision	Low Income Low	Combined with Consumer Products	7/1/2017	Y
	Flow Devices	measures and clarified different savings for		
		HPWH and ERWH.	7/4/2047	
Other	All Measures	Updated/added effRT measure codes for all measures	//1/201/	N
Revision	НРШН	Updated measure cost based on program	7/1/2017	Y
		data analysis		
Other	Glossary	Added definitions for interactive effects and	7/1/2017	N
		waste heat factor		
Other	Appendix F	Updated bulb replacement schedule, added	7/1/2017	N
		derivation of interactive effects, added price		
		elasticity FR estimation formula		
Other	Retail Products	Renamed to Consumer Products	7/1/2017	Ν
Correction	Clothes Washer	Corrected %E _{DHW_B} and %E _{DHW_EE} values that	7/1/2016	Υ
		were inverted. (retroactive to 7/1/2016)		
Revision	Clothes Washer	Updated measure cost based on most	10/1/2017	Y
		recent program data		
Revision	Distributor LEDs	Updated measure costs based on most	10/1/2017	Y
		recent program data		
Revision	Distributor LEDs	Updated FR and SO to reflect findings from	10/1/2017	Y
		BIP Evaluation		
New	Distributor LEDs	Added Linear LED and Mogul based LEDs	10/1/2017	Y
New	Appendix B	Added Commercial Interior and Exterior	10/1/2017	Y
		Lighting factors		
Revision	LEDs	Updated measure costs based on most	10/1/2017	Y
		recent program data		
Revision	Heat Pump Water	Measure cost update based on shelf survey	10/1/2017	Y
	Heater	performed Aug 2017		
Revision	Heat Pump Water	Measure cost update based on program	1/1/2018	Y
	Heater	data and shelf survey performed Nov 2017		
Revision	LEDs	Updated measure costs based on most	1/1/2018	Y
		recent program data		

New: indicates a measure that was not included in the previous TRM

Revision: indicates a revision to the savings or costs of an existing measure

Removal: indicates a removal of measure that is discontinued

Other: indicates a change to an existing measure or existing text and that does not affect savings or cost calculation

Note: The Change Log provides a running history of changes in chronological order. More recent changes take precedence over previous changes. Previous change log entries are not updated so as to provide historic reference to past changes.

Consumer Products

CFL Bulb – Food Pantry	& Appliance Packs (Inactive) (CFLFP, CFLAPP)
Last Revised Date	3/1/2016 (retroactive to 1/1/2016)
MEASURE OVERVIEW	
Description	ENERGY STAR [®] Compact Fluorescent Lamps (CFLs). This measure involves giving away CFL bulbs to participants at food pantries and appliance rebate participants that opt-in. Bulbs distributed offset future purchase of inefficient bulbs (incandescent or halogen). ENERGY STAR [®] key efficiency criteria require that CFLs provide three times more lumens per watt than incandescent bulbs. ⁵
Primary Energy Impact	Electric
Sector	Residential
Program(s)	Food Pantry Lighting Program, Appliance Rebate Program
End-Use	Lighting
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS ENERGY	SAVINGS (UNIT SAVINGS)
Electric Demand savings	$\Delta kW = 0.038$ $\Delta kW_{WP} = 0.00588$ $\Delta kW_{SP} = 0.00446$
Annual Energy Savings	$\Delta kWh/yr = 26$ $\Delta MMBtu/yr_{GAS} = -0.004$ $\Delta MMBtu/yr_{OIL} = -0.032$ $\Delta MMBtu/yr_{WOOD} = -0.006$
	$\Delta MMBtu/yr_{PROP} = -0.003$
	$\Delta MMBtu/yr_{KERO} = -0.003$
	Δ MMBtu/yr _{ELEC} = -0.0004 = -0.114 kWh/yr
	$\Delta MMBtu/yr_{net} = 0.041$
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVINGS)
Demand savings	Δ kW = Δ Watt _{CFL} / 1,000 x IE _{COOL D}
	$\Delta kW_{SP} = \Delta Watt_{CFL} / 1,000 \times CF_S \times IE_{COOL D} \qquad \Delta kW_{WP} = \Delta Watt_{CFL} / 1,000 \times CF_W$
Annual energy savings	$ \Delta \text{ kWh/yr} = \Delta \text{Watt}_{CFL} / 1,000 \text{ x} [365 \text{ x} \text{ HPD}_{RES} \text{ x} \% \text{RES} + \text{HPY}_{COMM} \text{ x} \% \text{COMM}] \text{ x} \text{ IE}_{COOL_E} $ $ \Delta \text{MMBtu/yr} = -\Delta \text{Watt}_{CFL} / 1,000 \text{ x} [365 \text{ x} \text{ HPD}_{RES} \text{ x} \% \text{RES} + \text{HPY}_{COMM} \text{ x} \% \text{COMM}] \text{ x} \text{ IE}_{\text{HEAT}_E} $ $ \Delta \text{MMBtu/yr}_{FUEL} = \Delta \text{MMBtu/yr} \text{ x} \% \text{FUEL} $
Definitions	Unit = 1 bulb
	$\Delta Watt_{CFL}$ = Average wattage difference between baseline builts and program CFLS (W)1,000= Conversion: 1,000 Watts per kW365= Conversion: 365 days per yearHPD _{RES} = Average daily operating hours in residential setting (hrs/day)%RES= Share of bulb purchases that are installed in residential sockets (%)HPY _{COMM} = Average annual operating hours in commercial setting (hrs/yr)%COMM= Share of bulb purchases that are installed in commercial sockets (%)IE _{COOL_D} = Electric demand interactive effect multiplier, accounts for reduced cooling loadIE _{COOL_D} = Electric energy interactive effect multiplier, accounts for reduced cooling load
	$I_{\text{HEAT E}} = MMBtu energy interactive effect multiplier. accounts for increased heat load$
	%FUEL = Home heating fuel distribution excluding coal and other ⁶
EFFICIENCY ASSUMPTION	S
Baseline Efficiency	Incandescent/Halogen bulb
Efficient Measure	CFL

⁵ ENERGY STAR[®] CFL Key Performance Requirements: <u>http://www.energystar.gov/index.cfm?c=cfls.pr_crit_cfls</u>

⁶ Heating fuel distribution is used to allocate savings to different fuels because the interactive effects impact the home's heating energy consumption.

CFL Bulb – Food Pantry	CFL Bulb – Food Pantry & Appliance Packs (Inactive) (CFLFP, CFLAPP)											
PARAMETER VALUES (DEE	PARAMETER VALUES (DEEMED)											
Measure	$\Delta \text{Watt}_{\text{CFL}}$	HPD _{RES}	HPY _{COMM}	%RES	%COI	VM Life	(yrs)	C	ost (\$)			
CFL Bulb	35 ⁷	2 ⁸	3,772 ⁹	100%10	0%	10 ·	7 ¹¹	1	2512			
	IE _{COOL_D}	IE _{cool_e}	IE _{HEAT_E}	%FUEL	Avo	Avoided O&M (\$)						
CFL Bulb	1.08 ¹³	1.03 ¹³	0.001914	Table E-1		5.39 ¹⁵						
IMPACT FACTORS												
Measure		ISR	RR _E	RR_{D}	CFs	CF _s CF _w		R	SO			
Food Pantry	000/16		1000/17	1000/18	11 00/19	16 00/20	0%	6 ²¹	00/21			
Appliance Pack	93	970	100%	100%	11.6%	10.8%	21	% ²²	- 0%21			

⁸ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 16.

⁷ CLEAResult Wattage Report 7/1/2014-3/31/2015, weighted average for 13 and 23 watt standard bulbs distributed to food pantry and appliance packs.

⁹ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.

¹⁰ Food pantry participants assumed to be residential consumers installing bulbs in homes. Commercial participation in Appliance Rebate Program is less than 3%; assume that only residential participants opt for bulb packs.

¹¹ Although CFL bulbs have a predicted useful life of 14 years based on rated lifetime of 10,000, measure life has been defined as 7 years to account for more stringent EISA standards that take effect January 1, 2020. Because savings will be reduced after 2020, the reduced measure life represents an equivalent life that results in the same net present value (NPV) benefits as the full life of the measure with the post-2020 savings reduction.

 $^{^{\}rm 12}$ Cost values based on personal communication with Stan Mertz based on industry estimates.

¹³ Derived from the following reports: NMR Group, Inc., "Connecticut Residential Lighting Interactive Effects Memo," submitted to the Connecticut Energy Efficiency Board, October 27, 2014; New York Department of Public Service, *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs*, October 15, 2010; Efficiency Vermont 2013 Technical Reference User Manual--Measure Savings Algorithms and Cost Assumptions, August 9, 2013, p. 367; Minnesota Department of Commerce, *State of Minnesota Technical Reference Manual for Energy Conservation Improvement Programs, Version 1*, 2014; and analysis performed by Cadmus June 2015, based on 2015 NY TRM, Appendix D--HVAC Interactive Effects Multipliers.

¹⁴ NMR Group, Inc., "Connecticut Residential Lighting Interactive Effects Memo," submitted to the Connecticut Energy Efficiency Board October 27, 2014. ¹⁵ Because the efficient measure has a longer effective life than the baseline measure, future replacement costs are avoided. The avoided O&M cost is based on the NPV of \$1.00 avoided replacement cost every 2 years for 13 years starting in year 2 and real discount rate of 2.43%. No labor costs have been included. Replacement cost values based on personal communication with Stan Mertz based on industry estimates. Real discount rate based on Avoided Energy Supply Costs in New England: 2015 Report, April 3, 2015.

¹⁶ ISR equals the evaluated long term in-service rate from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14.

¹⁷ Realization rates are 100 percent since savings estimates are based on evaluation results.

¹⁸ Realization rates are 100 percent since savings estimates are based on evaluation results.

¹⁹ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19.

²⁰ Ibid.

²¹ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 24.

²² Free ridership of appliance pack recipients is assumed to be the same as for retail CFLs. NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 24.

Standard LED (Light Emitting Diode) Bulb – Retail (LEDSTDLL, LEDSTDSL, LEDSTDP)									
Last Revised Date	7/1/2017								
MEASURE OVERVIEW									
Description	Standard (A-Line) LED Bulbs. This measure involves the installation of a new LED in place of an								
	existing or new inefficient bulb.								
Primary Energy	Electric								
Impact									
Sector	Residential, Commercial								
Program(s)	Consumer Products Program – Lighting - Retail								
End-Use	Lighting								
Decision Type	New Construction, Replace on Burnout								
DEEMED GROSS ENERG	iy savings (unit savings)								
Demand savings	See Table 1								
Annual energy savings	See Table 1								
GROSS ENERGY SAVING	GS ALGORITHMS (UNIT SAVINGS)								
Demand savings	Δ kW = Δ Watt _{LED} / 1,000 x IE _{COOL_D}								
	$\Delta kW_{SP} = \Delta Watt_{LED} / 1,000 \times CF_S \times IE_{COOL_D} \qquad \Delta kW_{WP} = \Delta Watt_{LED} / 1,000 \times CF_W$								
Annual energy savings	$\Delta kWh/yr = \Delta Watts_{LED} / 1,000 x [365 x HPD_{RES} x %RES + HPY_{COMM} x %COMM] x IE_{COOL_E}$								
	Δ MMBtu = - Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %RES + HPY _{COMM} x %COMM] x IE _{HEAT_E}								
	Δ MMBtu _{FUEL} = Δ MMBtu x %FUEL								
Definitions	Unit = 1 bulb								
	ΔWatt _{LED} = Average wattage difference between baseline bulbs and program LED (Watts)								
	1,000 = Conversion: 1,000 Watts per kW								
	365 = Conversion: 365 days per year								
	HPD _{RES} = Average daily operating hours in residential setting (hrs/day)								
	%RES = Share of bulb purchases that are installed in residential setting (%)								
	HPY _{COMM} = Average annual operating hours in commercial setting (hrs/yr)								
	%COMM = Share of bulb purchases that are installed in commercial setting (%)								
	IE _{COOL_D} = Electric demand interactive effect multiplier, accounts for reduced cooling load								
	IE _{COOL_E} = Electric energy interactive effect multiplier, accounts for reduced cooling load								
	IE _{HEAT_E} = MMBtu energy interactive effect multiplier, accounts for increased heat load								
	%FUEL = Home heating fuel distribution excluding coal and other ²³								
EFFICIENCY ASSUMPTIC	DNS								
Baseline Efficiency	Halogen bulb								
Efficient Measure	LED bulb								

²³ Heating fuel distribution is used to allocate savings to different fuels because the interactive effects impact the home's heating energy consumption.

Standard LED (Light E	mitting Diod	e) Bu	lb – Re	etail (Ll	EDST	DLL, LEC	OSTD	SL, LED	STDP)			
PARAMETER VALUES (E	PARAMETER VALUES (DEEMED)											
Measure	$\Delta Watts_{LED}$	HP	D _{RES}	HPYco	ММ	%RE	S	%CON	/M	Life (yrs)		Cost (\$)
LED Bulb	Table 1	2	24	3,772 ²⁵		96%	96% ²⁶		≥20,000 hr: <20,000 hr:		28 29	Table 2
	IE _{COOL_D}	IEco	DOL_E	E IEHEAT_E		%FU	EL		Avoided C	0&M (\$)		
LED Bulb	1.087 ³⁰	1.0	23 ³¹	0.001	38 ³²	Table E-1			Table	e 2		
IMPACT FACTORS												
Measure	ISR		R			RR _D	(CFs	CF_W	FR		SO
LED Bulb	99% ³³		100)% ³⁴	1(00% ³⁵	14	.4% ³⁶	18.6% ³⁷	Table 2		0% ³⁸

- ²⁵ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.
- ²⁶ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, p. 71.
- ²⁷ Ibid.

²⁴ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 16.

²⁸ Although long-life LEDs have a useful life of 29 years based on rated lifetime of 25,000 hours, an equivalent measure life has been defined to account for dual baselines (full savings prior to 7/1/2020 and reduced savings post 7/1/2020 when more stringent EISA standards that take effect 1 January 2020 assuming a 6 month sell through).

²⁹ Ibid with useful life of 18 years based on rated lifetime of 15,000 hours.

³⁰ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-

^{37.} See Appendix F: Supplementary Information for Retail Products for derivation and input assumptions.

³¹ Ibid.

³² Ibid.

³³ ISR is based on long term In-Service Rate from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14. It is assumed that storage habits are the same for standard efficiency bulbs as LED therefore the equivalent measure life is based on the long term in-service rate.
³⁴ Realization rates are 100 percent since savings estimates are based on evaluation results.

³⁵ Ibid.

³⁶ Composite summer coincidence factor: 96 percent of bulbs in residential sockets with summer CF at 11.8 percent (NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19) and 4 percent of bulbs in commercial sockets with summer CF at 76 percent (Efficiency Maine Trust Commercial TRM, July 1, 2013).

³⁷ Composite winter CF: 96 percent of bulbs in residential sockets with winter CF at 16.8 percent (NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19) and 4 percent of bulbs in commercial sockets with winter CF at 63 percent (Efficiency Maine Trust Commercial TRM, July 1, 2013).

³⁸ Ibid.

Specialty LED Bulb – Retail (LEDSPCRFL, LEDSPCRFS, LEDSPCOL, LEDSPCOS, LEDSPCCDL, LEDSPCCDS)													
Last Revised Date	4/1/2017 (ef	fective 5/1/2	2017)										
MEASURE OVERVIEW													
Description	Specialty LED	Bulbs (Glob of an existin	oe, Candelabr g or new inef	a, and 3-way) ficient bulb (ir	. This measur	e involves the installa or halogen).	tion of a						
Primary Energy Impact	Electric												
Sector	Residential, (Residential, Commercial											
Program(s)	Consumer Pr	Consumer Products Program – Lighting - Retail											
End-Use	Lighting	-	-	-									
Decision Type	New Constru	ction, Repla	ce on Burnou	t									
DEEMED GROSS ENERG	SY SAVINGS (UNIT SAVINGS)												
Demand savings	See Table 1												
Annual energy savings	See Table 1												
GROSS ENERGY SAVING	SS ALGORITHN	ALGORITHMS (UNIT SAVINGS)											
Demand savings	Δ kW = Δ Wa	tt _{led} / 1,000	x IE _{cool_d}										
	$\Delta kW_{SP} = \Delta W$	$kW_{SP} = \Delta Watt_{LED} / 1,000 \times CF_S \times IE_{COOL_D}$ $\Delta kW_{WP} = \Delta Watt_{LED} / 1,000 \times CF_W$											
Annual energy savings	Δ kWh/yr = Δ	$\Delta kWh/yr = \Delta Watts_{LED} / 1,000 x [365 x HPD_{RES} x %RES + HPY_{COMM} x %COMM] x IE_{COOL E}$											
	Δ MMBtu = - Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %RES + HPY _{COMM} x %COMM] x IE _{HEAT E}												
		= Δ MMBtu x	x %FUEL			•							
Definitions	Unit	Unit = 1 bulb											
	$\Delta Watt_{LED}$	= Average	wattage diffe	rence betwee	en baseline bi	ulbs and program LED	(Watts)						
	1,000	= Conversi	on: 1,000 Wa	tts per kW									
	365	= Conversi	on: 365 days	per year									
	HPD _{RES}	= Average	daily operatir	ng hours in res	sidential setti	ng (hrs/day)							
	%RES	= Share of	bulb purchas	es that are ins	stalled in resi	dential setting (%)							
	HPY _{COMM}	= Average	annual opera	ting hours in (commercial s	etting (hrs/yr)							
	%COMM	= Share of	bulb purchase	es that are ins	stalled in com	mercial setting (%)							
	IE _{COOL_D}	= Electric c	lemand intera	active effect n	nultiplier, acc	ounts for reduced co	oling load						
	IE _{COOL_E}	= Electric e	energy interac	ctive effect m	ultiplier, acco	unts for reduced cool	ing load						
	IE _{HEAT_E}	= MMBtu e	energy intera	ctive effect m	ultiplier, acco	ounts for increased he	at load						
	%FUEL	= Home he	eating fuel dis	tribution excl	uding coal an	d other ³⁹							
EFFICIENCY ASSUMPTIC	ONS												
Baseline Efficiency	Incandescent	t											
Efficient Measure	LED bulb												
PARAMETER VALUES (I	DEEMED)												
Measure	$\Delta Watts_{LED}$	HPD _{RES}	HPY _{COMM}	%RES	%COMM	Life (yrs)	Cost (\$)						
LED Bulb	Table 1	2 ⁴⁰	3,772 ⁴¹	96% ⁴²	4% ⁴³	≥20,000 hr: 25 ⁴⁴ <20,000 hr: 18 ⁴⁵	Table 2						
	IE _{COOL D}	IE _{cool e}	IE _{HEAT E}	%FUEL	Avo	ded O&M (\$)							
LED Bulb	1.08746	1.02347	0.0013848	Table E-1	1	Table 2							

³⁹ Heating fuel distribution is used to allocate savings to different fuels because the interactive effects impact the home's heating energy consumption.

⁴¹ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1, Table 33.

⁴⁴ Although LEDs have a useful life of 29 years based on rated lifetime of 25,000 hours, measure life has been capped at 25 years.

⁴⁵ Based on rated lifetime of 15,000 hours.

37. See Appendix F: Supplementary Information for Retail Products for derivation and input assumptions.

47 Ibid.

⁴⁰ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p.16.

⁴² The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, p. 71.

⁴³ Ibid.

⁴⁶ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-

Specialty LED Bulb – Retail (LEDSPCRFL, LEDSPCRFS, LEDSPCOL, LEDSPCOS, LEDSPCCDL, LEDSPCCDS)											
IMPACT FACTORS											
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO				
LED Bulb	99% ⁴⁹	100%50	100%51	14.4% ⁵²	18.6% ⁵³	Table 2	0% ⁵⁴				

48 Ibid.

54 Ibid.

⁴⁹ ISR is based on long term In-Service Rate from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14. It is assumed that storage habits are the same for standard efficiency bulbs as LED therefore the equivalent measure life is based on the long-term in-service rate.

⁵⁰ Realization rates are 100 percent since savings estimates are based on evaluation results.

⁵¹ Realization rates are 100 percent since savings estimates are based on evaluation results.

⁵² Composite summer coincidence factor: 96 percent of bulbs in residential sockets with summer CF at 11.8 percent (NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19) and 4 percent of bulbs in commercial sockets with summer CF at 76 percent (Efficiency Maine Trust Commercial TRM, July 1, 2013).

⁵³ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 24.

					Energy and Demand Savings with Interactive Effects									
Bulb Type	Measure Codes	Baseline Wattage	Efficient Wattage	∆Watts _{LED}	Electricity	Winter kW	Summer	Natural Gas	Propane MMBtu	Wood MMBtu	Kerosene MMBtu	Oil MMBtu		
					KUVII/ y		RVV	Innibita	WIWIDCu	IVIII ID CU	IVIII DCG	WIWIDCU		
Standard LEDs	LEDSTDLL, LEDSTDSL, LEDSTDP	42	9	33	30	0.006	0.005	-0.004	-0.002	-0.005	-0.002	-0.026		
Specialty LEDs - Reflector	LEDSPCRFL, LEDSPCRFS, LEDSPCRFP	61	9	52	45	0.010	0.008	-0.006	-0.004	-0.007	-0.004	-0.040		
Specialty LEDs - Other (Globe & 3- Way)	LEDSPCOL, LEDSPCOS	48	7	41	36	0.008	0.006	-0.004	-0.003	-0.006	-0.003	-0.032		
Specialty LEDs - Candelabra	LEDSPCCDL, LEDSPCCDS	42	4	38	32	0.007	0.006	-0.004	-0.003	-0.005	-0.003	-0.029		

Table 1. Wattage and Savings by Bulb Type for Retail Channel⁵⁵

Table 2. Measure Cost, O&M and Free Ridership Rates by Bulb Type for Retail Channel⁵⁶

Bulb Type	Measure Codes	Baseline Retail	Average Product Re Before Ir	Efficient etail Price ncentive	Incrementa	l First Cost	Avoided	d O&M ⁵⁷	Free Rie Rat	dership te ⁵⁸
		Price	≥20,000 hr	<20,000 hr	≥20,000 hr	<20,000 hr	≥20,000 hr	<20,000 hr	20,000 ≥20,000 hr hr \$6.06 3%	<20,000 hr
Standard LEDs	LEDSTDLL, LEDSTDSL	\$1.38	\$3.80	\$3.02	\$2.42	\$1.64	\$7.23	\$6.06	3%	1%
Specialty LEDs - Reflector	LEDSPCRFL, LEDSPCRFS	\$3.61	\$8.05	N/A	\$4.44	N/A*	\$18.92	\$15.86	21%	N/A*

⁵⁵ Weighted average based on January – February 2017 program sales data for LEDs.

⁵⁶ Cost values based on weighted average pre-incentivized retail costs from Jan-Mar 2017 program sales data for efficient cost and surveyed baseline cost.

⁵⁷ Because the efficient measure has a longer effective life than the baseline measure, future replacement costs are avoided. The avoided O&M cost is based on the NPV of avoided replacement costs for baseline products throughout the lifetime of the efficient products. No labor costs have been included. See Table F-2 for baseline bulb replacement schedule.

⁵⁸ The free ridership rate is estimated from the retail price before incentive and the anticipated customer facing price and the coefficient of elasticity. A nominal incentive of 90% of incremental cost is assumed for

calculating free ridership rates for all bulbs not participating in off-shelf promotion. For standard LED bulbs participating in off-shelf promotion, the anticipated customer facing price is \$0.50. For reflector LED promotion bulbs the anticipated customer facing price is \$1.50. See Appendix F: Supplementary Information for Retail Products.

Bulb Type	Measure Codes	Baseline Retail	Average Product Re Before Ir	Efficient etail Price ncentive	Incrementa	l First Cost	Avoideo	1 O&M ⁵⁷	Free Rie Rat	dership :e ⁵⁸
		Price	≥20,000 hr	<20,000 hr	≥20,000 hr	<20,000 hr	≥20,000 hr	<20,000 hr	≥20,000 hr	<20,000 hr
Specialty LEDs - Other (Globe & 3-Way)	LEDSPCOL, LEDSPCOS	\$2.14	\$7.08	N/A	\$4.94	N/A*	\$11.22	\$9.40	15%	N/A*
Specialty LEDs - Candelabra	LEDSPCCDL, LEDSPCCDS	\$1.21	\$5.65	\$5.35	\$4.44	\$4.14	\$6.34	\$5.32	15%	16%

*These bulb categories have not had any program participation and therefore have no program data to analyze. Values for ≥20,000 hr category will be used as placeholders in effRT.

Standard LED Bulb –	Food Pantry, Direct Install & DIY Kit (LEDSTD	DLFP, LEDSTDSFP, LILEDSTANL, LILEDSTANS)										
Last Revised Date	7/1/2017											
MEASURE OVERVIEW												
Description	This measure involves giving LED bulbs to partic	ipants via food pantries direct mail or direct										
Primary Energy												
Impact	Electric											
Sector	Residential											
Program(s)	Arrearage Management Program, Food Pantry L Income Direct Mail	Arrearage Management Program, Food Pantry Lighting Program, Low Income Direct Install, Low ncome Direct Mail										
End-Use	Lighting	Lighting										
Decision Type	New Construction, Replace on Burnout											
DEEMED GROSS ENER	D GROSS ENERGY SAVINGS (UNIT SAVINGS)											
Demand savings	60 W Equivalent LED Bulb: $\Delta kW = 0.037$ 100 W Equivalent LED Bulb: $\Delta kW = 0.060$	$\Delta kW_{WP} = 0.00571$ $\Delta kW_{SP} = 0.00435$ $\Delta kW_{WP} = 0.00924$ $\Delta kW_{SP} = 0.00704$										
Annual energy	60 W Equivalent LED Bulb	100 W Equivalent LED Bulb										
savings	$\Delta kWh/yr = 25$	$\Lambda kWh/vr = 41$										
	Δ MMBtu/yr _{GAS} = -0.004	$\Delta MMBtu/vr_{GAS} = -0.005$										
	Δ MMBtu/yr _{OIL} = -0.022	ΔMMBtu/yr _{OIL} = -0.036										
	Δ MMBtu/yr _{WOOD} = -0.004	ΔMMBtu/yr _{wood} = -0.007										
	Δ MMBtu/yr _{PROP} = -0.002	Δ MMBtu/yr _{PROP} = -0.003										
	Δ MMBtu/yr _{KERO} =-0.002	ΔMMBtu/yr _{KERO} =-0.003										
	Δ MMBtu/yr _{ELEC} = -0.0003 = -0.081 kWh	Δ MMBtu/yr _{ELEC} = -0.0004 = -0.131 kWh										
	Δ MMBtu/yr _{NET} = 0.052	$\Delta MMBtu/yr_{NET} = 0.085$										
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)											
Demand savings	Δ kW = Δ Watt _{LED} / 1,000 x IE _{COOL D}											
	Δ kW _{SP} = Δ Watt _{LED} / 1,000 x CF _s x IE _{COOL_D}	Δ kW _{WP} = Δ Watt _{LED} / 1,000 x CF _W										
Annual energy	Δ kWh/yr = Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %	SRES + HPY _{COMM} x %COMM] x IE _{COOL_E}										
savings	Δ MMBtu = - Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x	%RES + HPY _{COMM} x %COMM] x IE _{HEAT_E}										
	Δ MMBtu _{FUEL} = Δ MMBtu x %FUEL											
Definitions	Unit = 1 bulb											
	ΔWatt _{LED} = Average wattage difference betwee	een baseline bulbs and program LED (Watts)										
	1,000 = Conversion: 1,000 Watts per kW											
	365 = Conversion: 365 days per year											
	HPD _{RES} = Average daily operating hours in re	esidential setting (hrs/day)										
	%RES = Share of bulb purchases that are in	nstalled in residential setting (%)										
	HPY _{COMM} = Average annual operating hours in	n commercial setting (hrs/yr)										
	%COMM = Share of bulb purchases that are installed in commercial setting (%)											
	$ IE_{COOL_D} = Electric demand interactive effect$	multiplier, accounts for reduced cooling load										
	IE_{COOL_E} = Electric energy interactive effect in	nuitiplier, accounts for reduced cooling load										
	%FUEL = Home heating fuel distribution exc	cluding coal and other ⁵⁹										
EFFICIENCY ASSUMPTI	ONS											
Baseline Efficiency	Halogen bulb											
Efficient Measure	ENERGY STAR [®] certified LED bulb											

⁵⁹ Heating fuel distribution is used to allocate savings to different fuels because the interactive effects impact the home's heating energy consumption.

Standard LED Bulb –	Food Pantry	, Direct I	nstall &	DIY k	(it (LEDS	TDLF	P, LEDS	TDSFP, L	ILEDSTANL,	LILE	DSTANS)
PARAMETER VALUES (DEEMED)										
Measure	$\Delta Watts_{LED}$	HPD _{RES}	HPD _{RES} HPY _{COMM}		%RE	%RES		IM	Life (yrs)		Cost (\$)
60 W Equivalent	34 ⁶⁰	7 61	2 77	2 772 ⁶²		⁄ 63	00/64	4 2	20,000 hr: 8	65	actual ⁶⁷
100 W Equivalent	55 ⁶⁸	Z	5,77	3,77262		100%03		<	<20,000 hr: 7 ⁶⁶		
	IE _{COOL_D}	$IE_{COOL_{E}}$	IE _{HEA}	IE _{HEAT_E}		%FUEL		Avoided O&M (\$)			
LED Bulb	1.085 ⁶⁹	1.021 ⁷⁰	0.001	37 ⁷¹	7^{71} Table E-1 $\geq 20,000 \text{ hr: } 6.46$ $< 20,000 \text{ hr: } 6.06^{72}$						
IMPACT FACTORS											
Measure	ISR		RR _E		RR_{D}	(CFs	CF_W	FR		SO
Low-Income	00%73	1	1000/74		000/75	11	00/76	16 00/77	0%78		00/79
Non-Low-Income	35%		5070		0070	11.	.070	10.070	23% ⁸⁰		070

⁷³ ISR is based on long-term ISR from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14. It is assumed that storage habits are the same for standard efficiency bulbs as LED therefore the equivalent measure life is based on the long-term ISR.

⁷⁹ Assume same free ridership as Appliance Pack CFL bulbs NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 24.

⁶⁰9 watt A-line standard bulb replacing a 43 W halogen.

⁶¹ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 16.

⁶² Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.

⁶³ Assume residential only for food pantry and appliance packs.

⁶⁴ Ibid.

⁶⁵ Although long-life LEDs have a useful life of 34 years based on rated lifetime of 25,000 hours, an equivalent measure life has been defined to account for dual baselines (full savings prior to 7/1/2020 and reduced savings post 7/1/2020 when more stringent EISA standards that take effect 1 January 2020 assuming a 6 month sell through).

⁶⁶ Ibid with rated lifetime of 15,000 hours.

⁶⁷ Actual cost paid by program.

⁶⁸ 17 watt A-line standard bulb replacing a 72 W halogen.

⁶⁹ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix F: Supplementary Information for Retail Products for derivation and input assumptions.

⁷⁰ Ibid.

⁷¹ Ibid.

⁷² Because the efficient measure has a longer effective life than the baseline measure, future replacement costs are avoided. The avoided O&M cost is based on the NPV of avoided replacement costs for baseline products throughout the lifetime of the efficient products. No labor costs have been included. See Table F-2 for baseline bulb replacement schedule.

⁷⁴ Realization rates are 100 percent since savings estimates are based on evaluation results.

⁷⁵ Ibid.

⁷⁶ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19.

⁷⁷ Ibid.

⁷⁸ Assume same free ridership as Food Pantry CFL bulbs: NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 24.

⁸⁰ Ibid.

Specialty LED Bulb –	Food Pantry, Direct Install & DIY Kit (LEDSPCLFP, LEDSPCSFP, LILEDSPECL, LILEDSPECS)
Last Revised Date	4/1/2017
MEASURE OVERVIEW	
Description	This measure involves giving LED bulbs to participants via food pantries, direct mail, direct
	install. Bulbs distributed offset future purchase of inefficient bulbs.
Primary Energy Impact	Electric
Sector	Residential
Program(s)	Arrearage Management Program, Food Pantry Lighting Program, Low Income Direct Install, Low Income Direct Mail
End-Use	Lighting
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS)
Demand savings	$\Delta kW = 0.059$ $\Delta kW_{WP} = 0.00907$ $\Delta kW_{SP} = 0.00691$
Annual energy	$\Delta kWh/yr = 40$
savings	Δ MMBtu/yr _{GAS} = -0.005
	Δ MMBtu/yr _{OIL} = -0.036
	Δ MMBtu/yr _{wood} = -0.007
	Δ MMBtu/yr _{PROP} = -0.003
	Δ MMBtu/yr _{KERO} =-0.003
	Δ MMBtu/yr _{ELEC} = -0.0004 = -0.128 kWh
	$\Delta MMBtu/yr_{NET} = 0.083$
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)
Demand savings	Δ kW = Δ Watt _{LED} / 1,000 x IE _{COOL_D}
	$\Delta kW_{SP} = \Delta Watt_{LED} / 1,000 \text{ x CF}_{S} \text{ x IE}_{COOL} \qquad \Delta kW_{WP} = \Delta Watt_{LED} / 1,000 \text{ x CF}_{W}$
Annual energy	$\Delta kWh/yr = \Delta Watts_{LED} / 1,000 x [365 x HPD_{RES} x %RES + HPY_{COMM} x %COMM] x IE_{COOL_E}$
savings	Δ MMBtu = - Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %RES + HPY _{COMM} x %COMM] x IE _{HEAT_E}
	$\Delta MMBtu_{FUEL} = \Delta MMBtu x \% FUEL$
Definitions	Unit = 1 bulb
	ΔWatt _{LED} = Average wattage difference between baseline bulbs and program LED (Watts)
	1,000 = Conversion: 1,000 Watts per kW
	365 = Conversion: 365 days per year
	HPD _{RES} = Average daily operating nours in residential setting (nrs/day) (DES) = Share of bulk surplaces that are installed in residential setting (%)
	%RES = Share of build purchases that are installed in residential setting (%)
	= Average annual operating nous in commercial setting (in s/yr) %COMM = Share of bulb purchases that are installed in commercial setting (%)
	= Electric demand interactive effect multiplier accounts for reduced cooling load
	$ \mathbf{E}_{COOL} _{\mathbf{E}}$ = Electric energy interactive effect multiplier, accounts for reduced cooling load
	$I_{\text{E}_{\text{H}}\text{E}_{\text{H}}\text{E}_{\text{H}}}$ = MMBtu energy interactive effect multiplier, accounts for increased heat load
	%FUEL = Home heating fuel distribution excluding coal and other ⁸¹
EFFICIENCY ASSUMPTI	ONS
Baseline Efficiency	Incandescent bulb
Efficient Measure	ENERGY STAR [®] certified LED bulb

⁸¹ Heating fuel distribution is used to allocate savings to different fuels because the interactive effects impact the home's heating energy consumption.

Specialty LED Bulb –	Food Pantry	, Dir	ect In	stall &	DIY K	(it (LEDS	PCLFF	P, LEDS	PCSFP,	LILE	DSPECL, L	ILED.	SPECS)
PARAMETER VALUES (DEEMED)												
Measure	$\Delta Watts_{LED}$	HP	D _{RES}	HPYcc	омм	%RE	S	%CON	1M		Life (yrs)		Cost (\$)
	E 182	-	83	2 772 ⁸⁴		100%	(85 00/)		6	≥20	,000 hr: 25	87	actual ⁸⁹
	54	2	_	3,77284		10076)	0%		<20	,000 hr: 21	1 ⁸⁸	
	IE _{COOL_D}	IEc	OOL_E	IE _{HEAT_E}		%FUI	EL		Avoide	Avoided O&M (\$)			
	1 09590	1 0	71 91	0.0012792		Table F-1			≥20,00	0 hr	: 16.90		
	1.065	1.0	121	0.001	57	Table	C-T		<20,000	000 hr: 15.86 ⁹³			
IMPACT FACTORS													
Measure	ISR		R	RR _E		RR _D	(CFs	CFw		FR		SO
Low-Income	0.0%/94		100	1000/95		000/96	11	0 0/97	16 9%	98	0% ⁹⁹		00/100
Non-Low-Income	3570		100	J70	1	0070	11.8%"		10.0/0	23% ¹⁰¹			070

⁹¹ Ibid.

⁸² 10 watt reflector bulb replacing a 64 W incandescent bulb (based on weighted average of retail program).

⁸³ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 16.

⁸⁴ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.

⁸⁵ Assume residential only for food pantry and appliance packs.

⁸⁶ Ibid.

⁸⁷ Although long-life LEDs have a useful life of 34 years based on rated lifetime of 25,000 hours, effective useful life is capped at 25 years.

⁸⁸ Based on rated lifetime of 15,000 hours.

⁸⁹ Actual cost paid by program.

⁹⁰ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix F: Supplementary Information for Retail Products for derivation and input assumptions.

⁹² Ibid.

⁹³ Because the efficient measure has a longer effective life than the baseline measure, future replacement costs are avoided. The avoided O&M cost is based on the NPV of avoided replacement costs for baseline products throughout the lifetime of the efficient products. No labor costs have been included. See Table F-2 for baseline bulb replacement schedule.

⁹⁴ ISR is based on long-term ISR from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14. It is assumed that storage habits are the same for standard efficiency bulbs as LED therefore the equivalent measure life is based on the long-term ISR.

⁹⁵ Realization rates are 100 percent since savings estimates are based on evaluation results.

⁹⁶ Ibid.

⁹⁷ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19.

⁹⁸ Ibid.

⁹⁹ Assume same free ridership as Food Pantry CFL bulbs: NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 24. ¹⁰⁰ Assume same free ridership as Appliance Pack CFL bulbs NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 24. ¹⁰¹ Ibid.

Standard LED Bulb –	Distributor (LEDSTDLLD, LEDSTDSLD)
Last Revised Date	4/1/2017 (effective 5/1/2017)
MEASURE OVERVIEW	
Description	Standard (A-Line) LED Bulbs. This measure involves the installation of a new LED in place of an
	existing or new inefficient bulb (incandescent or halogen).
Primary Energy Impact	Electric
Sector	Residential, Commercial
Program(s)	Consumer Products Program – Lighting - Distributor
End-Use	Lighting
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS ENERG	SY SAVINGS (UNIT SAVINGS)
Demand savings	See Table 3
Annual energy savings	See Table 3
GROSS ENERGY SAVING	GS ALGORITHMS (UNIT SAVINGS)
Demand savings	Δ kW = Δ Watt _{LED} / 1,000 x IE _{COOL_D}
	$\Delta kW_{SP} = \Delta Watt_{LED} / 1,000 \times CF_S \times IE_{COOL_D} \qquad \Delta kW_{WP} = \Delta Watt_{LED} / 1,000 \times CF_W$
Annual energy savings	$\Delta kWh/yr = \Delta Watts_{LED} / 1,000 x [365 x HPD_{RES} x %RES + HPY_{COMM} x %COMM] x IE_{COOL_E}$
	Δ MMBtu = - Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %RES + HPY _{COMM} x %COMM] x IE _{HEAT_E}
	Δ MMBtu _{FUEL} = Δ MMBtu x %FUEL
Definitions	Unit = 1 bulb
	ΔWatt _{LED} = Average wattage difference between baseline bulbs and program LED (Watts)
	1,000 = Conversion: 1,000 Watts per kW
	365 = Conversion: 365 days per year
	HPD _{RES} = Average daily operating hours in residential setting (hrs/day)
	%RES = Share of bulb purchases that are installed in residential setting (%)
	HPY _{COMM} = Average annual operating hours in commercial setting (hrs/yr)
	%COMM = Share of bulb purchases that are installed in commercial setting (%)
	IE _{COOL_D} = Electric demand interactive effect multiplier, accounts for reduced cooling load
	IE_{COOL_E} = Electric energy interactive effect multiplier, accounts for reduced cooling load
	IE _{HEAT_E} = MMBtu energy interactive effect multiplier, accounts for increased heat load
	%FUEL = Home heating fuel distribution excluding coal and other
Baseline Efficiency	Halogen bulb
Efficient Measure	LED bulb

¹⁰² Heating fuel distribution is used to allocate savings to different fuels because the interactive effects impact the home's heating energy consumption.

Standard LED Bulb – Distributor (LEDSTDLLD, LEDSTDSLD)												
PARAMETER VALUES (D	DEEMED)											
Measure	$\Delta Watts_{LED}$	HPD _{RES}		HPY _{COMM}		%RES		%COMM		Life (yrs)		Cost (\$)
LED Bulb	Table 3	2 ¹⁰³		3,772 ¹⁰⁴		31% ¹⁰⁵		69% ¹⁰⁵		≥20,000 hr: 5 ¹⁰⁶ <20,000 hr: 3 ¹⁰⁷		Table 4
	IE _{COOL_D}	IEco	DOL_E	IE _{HEAT_E}		%FUEL		Avoided O&M (\$)				
LED Bulb	1.126 ¹⁰⁸	1.04	48 ¹⁰⁹	0.00152 ¹¹⁰		Table E-1		Table 4				
IMPACT FACTORS												
Measure	ISR		R	R _E	R	R _D	l _D (CFw	FR		SO
LED Bulb	99% ¹¹¹	10		D% ¹¹² 1		% ¹¹³ 56.		1% ¹¹⁴	48.7%115	26%116		1.6%117

¹⁰⁹ Ibid. ¹¹⁰ Ibid.

¹¹³ Ibid.

¹⁰³ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 16.

¹⁰⁴ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.

¹⁰⁵ Percent of bulbs sold through distributor channel installed in commercial setting based on program data collected 7/1/2016-3/31/2017.

¹⁰⁶ Although long-life LEDs have a useful life of 18 years based on rated lifetime of 25,000 hours, an equivalent measure life has been defined account for dual baselines (full savings prior to 7/1/2020 and reduced savings post 7/1/2020 when more stringent EISA standards that take effect 1 January 2020 assuming a 6-month sell through).

¹⁰⁷ Ibid with rated life of 15,000 hours.

¹⁰⁸ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix F: Supplementary Information for Retail Products for derivation and input assumptions.

¹¹¹ ISR is based on long-term ISR from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14. It is assumed that storage habits are the same for standard efficiency bulbs as LED therefore the equivalent measure life is based on the long-term ISR. ¹¹² Realization rates are 100 percent since savings estimates are based on evaluation results.

¹¹⁴ Composite summer coincidence factor: 31 percent of bulbs in residential sockets with summer CF at 11.8 percent (NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p.19) and 69 percent of bulbs in commercial sockets with summer CF at 76 percent (Efficiency Maine Trust Commercial TRM, July 1, 2013).

¹¹⁵ Composite winter coincidence factor: 96 percent of bulbs in residential sockets with winter CF at 16.8 percent (NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19) and 4 percent of bulbs in commercial sockets with winter CF at 63 percent (Efficiency Maine Trust Commercial TRM, July 1, 2013).

¹¹⁶ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.
¹¹⁷ Ibid.

Specialty LED Lamp –	Distributor (Codes: LEDSPCCDDL, LEDSPCCDDS, LEDSPCGLDL, LEDSPCGLDS,
LEDSPCBRDL,	LEDSPCBRDS, LEDSPCPRDL, LEDSPCPRDS, LEDSPCPBDL, LEDSPCPBDS,
S110 <2,	/4> <l \$="">)</l>
Last Revised Date	10/1/2017
MEASURE OVERVIEW	
Description	Specialty LED Bulbs (Globe, Reflector, Candelabra, 3-way and Linear). This measure involves the
	installation of a new LED in place of an existing or new inefficient bulb (incandescent or
	halogen).
Primary Energy Impact	Electric
Sector	Residential, Commercial
Program(s)	Consumer Products Program – Lighting - Distributor
End-Use	Lighting
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS ENERG	SY SAVINGS (UNIT SAVINGS)
Demand savings	See Table 3
Annual energy savings	See Table 3
GROSS ENERGY SAVING	GS ALGORITHMS (UNIT SAVINGS)
Demand savings	Δ kW = Δ Watt _{LED} / 1,000 x IE _{COOL_D}
	$\Delta kW_{SP} = \Delta Watt_{LED} / 1,000 \times CF_S \times IE_{COOL_D} \qquad \Delta kW_{WP} = \Delta Watt_{LED} / 1,000 \times CF_W$
Annual energy savings	$\Delta kWh/yr = \Delta Watts_{LED} / 1,000 x [365 x HPD_{RES} x %RES + HPY_{COMM} x %COMM] x IE_{COOL_E}$
	Δ MMBtu = - Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %RES + HPY _{COMM} x %COMM] x IE _{HEAT_E}
	Δ MMBtu _{FUEL} = Δ MMBtu x %FUEL
Definitions	Unit = 1 bulb
	ΔWatt _{LED} = Average wattage difference between baseline bulbs and program LED (Watts)
	1,000 = Conversion: 1,000 Watts per kW
	365 = Conversion: 365 days per year
	HPD _{RES} = Average daily operating hours in residential setting (hrs/day)
	%RES = Share of bulb purchases that are installed in residential setting (%)
	HPY _{COMM} = Average annual operating hours in commercial setting (hrs/yr)
	%COMM = Share of bulb purchases that are installed in commercial setting (%)
	IE _{COOL_D} = Electric demand interactive effect multiplier, accounts for reduced cooling load
	IE _{COOL_E} = Electric energy interactive effect multiplier, accounts for reduced cooling load
	IE _{HEAT_E} = MMBtu energy interactive effect multiplier, accounts for increased heat load
	%FUEL = Home heating fuel distribution excluding coal and other ¹¹⁸
EFFICIENCY ASSUMPTIC	ONS
Baseline Efficiency	Incandescent
Efficient Measure	LED bulb

¹¹⁸ Heating fuel distribution is used to allocate savings to different fuels because the interactive effects impact the home's heating energy consumption.

Specialty LED Lamp – Distributor (Codes: LEDSPCCDDL, LEDSPCCDDS, LEDSPCGLDL, LEDSPCGLDS, LEDSPCBRDL, LEDSPCBRDS, LEDSPCPRDL, LEDSPCPRDS, LEDSPCPBDL, LEDSPCPBDS, S110<A/C><2/4><L/S>)

PARAMETER VALUES (D	DEEMED)											
Measure	$\Delta Watts_{LED}$	HPD _{RES}		HPY _{COMM}		%RES		%CON	/M	Life (yrs)		Cost (\$)
	Table 2	2119	9	2 772120		210/121		60%	122 2	≥20,000 hr: 9 ¹²³		Table 4
			5,772		51%		09%	<	20,000 hr: 5	5 ¹²⁴	Table 4	
	IE _{COOL_D}	IE _{COOL_E}		IE _{HEAT_E}		%FUEL		Avoided O&M (\$)				
LED Bulb	1.126 ¹²⁵	1.048	3 ¹²⁶	0.00152127		Table E-1		Table 4				
IMPACT FACTORS												
Measure	ISR		RR	E	RI	R _D (CFs	CF_W	FR		SO
LED Bulb	99% ¹²⁸		100%	/129 0	100% ¹³⁰		56.1% ¹³¹		48.7% ¹³	² 26% ¹³³		1.6% ¹³⁴

¹²⁶ Ibid. ¹²⁷ Ibid.

¹³⁰ Ibid.

¹¹⁹ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 16.

¹²⁰ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.

¹²¹ Percent of bulbs sold through distributor channel installed in commercial setting based on interviews with distributors in July 2015 in advance of additional data gathering.

¹²² Ibid.

¹²³ Based on rated lifetime of 25,000 hours.

¹²⁴ Based on rated lifetime of 15,000 hours.

¹²⁵ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix F: Supplementary Information for Retail Products for derivation and input assumptions.

 ¹²⁸ ISR is based on long-term ISR from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14. It is assumed that storage habits are the same for standard efficiency bulbs as LED therefore the equivalent measure life is based on the long-term ISR
 ¹²⁹ Realization rates are 100 percent since savings estimates are based on evaluation results.

¹³¹ Composite summer coincidence factor: 31 percent of bulbs in residential sockets with summer CF at 11.8 percent (NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p.19) and 69 percent of bulbs in commercial sockets with summer CF at 76 percent (Efficiency Maine Trust Commercial TRM, July 1, 2013).

¹³² Composite winter coincidence factor: 96 percent of bulbs in residential sockets with winter CF at 16.8 percent (NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19) and 4 percent of bulbs in commercial sockets with winter CF at 63 percent (Efficiency Maine Trust Commercial TRM, July 1, 2013).

 ¹³³ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.
 ¹³⁴ Ibid.

LED Mogul Lamp Inte	rior – Distributor (Codes: S64 <l h=""><l s="">)</l></l>
Last Revised Date	10/1/2017
MEASURE OVERVIEW	
Description	LED mogul base lamps. This measure involves the installation of a new LED in place of an
	existing or new inefficient bulb (incandescent or halogen) in an interior fixture.
Primary Energy Impact	Electric
Sector	Residential, Commercial
Program(s)	Consumer Products Program – Lighting - Distributor
End-Use	Lighting
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS ENERG	Y SAVINGS (UNIT SAVINGS)
Demand savings	See Table 3
Annual energy savings	See Table 3
GROSS ENERGY SAVING	SS ALGORITHMS (UNIT SAVINGS)
Demand savings	Δ kW = Δ Watt _{LED} / 1,000 x IE _{COOL_D}
	$\Delta kW_{SP} = \Delta Watt_{LED} / 1,000 \times CF_S \times IE_{COOL_D} \qquad \Delta kW_{WP} = \Delta Watt_{LED} / 1,000 \times CF_W$
Annual energy savings	Δ kWh/yr = Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %RES + HPY _{COMM} x %COMM] x IE _{COOL_E}
	Δ MMBtu = - Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %RES + HPY _{COMM} x %COMM] x IE _{HEAT_E}
	Δ MMBtu _{FUEL} = Δ MMBtu x %FUEL
Definitions	Unit = 1 bulb
	ΔWatt _{LED} = Average wattage difference between baseline bulbs and program LED (Watts)
	1,000 = Conversion: 1,000 Watts per kW
	365 = Conversion: 365 days per year
	HPD _{RES} = Average daily operating hours in residential setting (hrs/day)
	%RES = Share of bulb purchases that are installed in residential setting (%)
	HPY _{COMM} = Average annual operating hours in commercial setting (hrs/yr)
	%COMM = Share of bulb purchases that are installed in commercial setting (%)
	IE _{COOL_D} = Electric demand interactive effect multiplier, accounts for reduced cooling load
	IE _{COOL_E} = Electric energy interactive effect multiplier, accounts for reduced cooling load
	IE _{HEAT_E} = MMBtu energy interactive effect multiplier, accounts for increased heat load
	%FUEL = Home heating fuel distribution excluding coal and other ¹³⁵
EFFICIENCY ASSUMPTIC	DNS
Baseline Efficiency	Incandescent
Efficient Measure	LED bulb

¹³⁵ Heating fuel distribution is used to allocate savings to different fuels because the interactive effects impact the home's heating energy consumption.
LED Mogul Lamp Interior – Distributor (Codes: S64 <l h=""><l s="">)</l></l>												
PARAMETER VALUES (E	PARAMETER VALUES (DEEMED)											
Measure ΔWattsLED HPDRES HPYCOMM %RES %COMM Life (yrs) Cost (\$												
LED Bulb	Table 3	2	136	3,77	2 ¹³⁷	0 % ²	138	100%	₂ 2 ≥2	0,000 hr: 9 [:] 0 000 hr: 5	140 141	Table 4
	IE _{COOL_D}	DOL_E IEHEAT		AT_E	%FL	JEL		Avoided (0&M (\$)	, 		
LED Bulb	1.144 ¹⁴²	1.0	60 ¹⁴³	0.001	59 ¹⁴⁴	Table	E-1		Tabl	e 4		
IMPACT FACTORS												
Measure ISR RR _E RR _D CF _S CF _W FR SO											SO	
LED Bulb	LED Bulb 99% ¹⁴⁵ 100% ¹⁴⁶ 100% ¹⁴⁷ 63.0% ¹⁴⁸ 76.0% ¹⁴⁹ 26% ¹⁵⁰ 1.6									1.6% ¹⁵¹		

¹⁴⁶ Realization rates are 100 percent since savings estimates are based on evaluation results.

¹³⁶ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 16.

¹³⁷ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.

¹³⁸ Mogul base lamps are primarily applicable to commercial settings. Percent installed in commercial applications is assumed to be 100%.

¹³⁹ Ibid.

¹⁴⁰ Based on rated lifetime of 25,000 hours.

¹⁴¹ Based on rated lifetime of 15,000 hours.

 ¹⁴² Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28 37. See Appendix F: Supplementary Information for Retail Products for derivation and input assumptions.

¹⁴³ Ibid. ¹⁴⁴ Ibid.

¹⁴⁵ ISR is based on long-term ISR from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14. It is assumed that storage habits are the same for standard efficiency bulbs as LED therefore the equivalent measure life is based on the long-term ISR

¹⁴⁷ Ibid.

¹⁴⁸ KEMA, C&I Lighting Load Shape Project FINAL Report, July 2011.

¹⁴⁹ Ibid.

¹⁵⁰ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹⁵¹ Ibid.

LED Mogul Lamp Exterior – Distributor (Codes: S6 <b c=""><l h="" m=""><l s="">)</l></l>													
Last Revised Date	10/1/2017												
MEASURE OVERVIEW													
Description	LED mogul b	ase la	amp ext	terior. ⁻	This n	neasure i	nvolv	es the i	nstallat	ion c	of a new LE	D in	place of
	an existing o	r new	ineffic	ient bu	lb (in	candesce	ent or	halogei	n) in an	exte	erior fixture	e.	
Primary Energy Impact	Electric												
Sector	Residential,	Comm	nercial										
Program(s)	Consumer Pr	oduct	ts Prog	ram – L	ightir	ng - Distri	butor						
End-Use	Lighting												
Decision Type	New Constru	ction,	, Repla	ce on B	urnou	ut							
DEEMED GROSS ENERG	Y SAVINGS (U	SAVINGS (UNIT SAVINGS)											
Demand savings	See Table 3												
Annual energy savings	See Table 3	ee Table 3											
GROSS ENERGY SAVING	GS ALGORITHN	ALGORITHMS (UNIT SAVINGS)											
Demand savings	Δ kW = Δ Wat	kW = Δ Watt _{LED} / 1,000											
	$\Delta kW_{SP} = \Delta W$	$\Delta kW_{SP} = \Delta Watt_{LED} / 1,000 \times CF_S \Delta kW_{WP} = \Delta Watt_{LED} / 1,000 \times CF_W$											
Annual energy savings	$\Delta kWh/yr = \Delta$	kWh/yr = Δ Watts _{LED} / 1,000 x [365 x HPD _{RES} x %RES + HPY _{COMM} x %COMM]											
Definitions	Unit	Jnit = 1 bulb											
	$\Delta Watt_{LED}$	= Av	erage v	wattage	e diffe	erence be	etwee	n baseli	ine bulk	os an	d program	1 LED	(Watts)
	1,000	= Co	nversio	on: 1,00	00 Wa	itts per k	W						
	365	= Co	nversio	on: 365	days	per year							
	HPD _{RES}	= Av	erage o	daily op	erati	ng hours	in res	identia	lsetting	g (hrs	s/day)		
	%RES	= Sh	are of l	bulb pu	rchas	es that a	re ins	talled ir	n reside	ntial	l setting (%	6)	
	НРҮ _{сомм}	= Av	erage a	annual	opera	iting hou	rs in c	ommer	cial set	ting	(hrs/yr)		
	%COMM	= Sh	are of l	bulb pu	rchas	es that a	re ins	talled ir	n comm	ercia	al setting (%)	
EFFICIENCY ASSUMPTIC	ONS												
Baseline Efficiency	Incandescent												
Efficient Measure	LED bulb												
PARAMETER VALUES (I	DEEMED)					1							
Measure	$\Delta Watts_{LED}$	HP	D _{RES}	HPY _C	OMM	%RE	S	%CON	ЛМ		Life (yrs)		Cost (\$)
I FD Lamp	Table 3	Table 3 2^{152} 3 772 ¹⁵³ $0\%^{154}$ 100% ¹⁵⁵ $\geq 20,000 \text{ hr: } 9^{156}$ Table 4											
		20,000 hr: 5 ¹⁵ /											
									Avoide	ed O	&M (\$)		
LED Lamp									Т	able	4		
IMPACT FACTORS			1				1		1			1	
Measure	ISR		R	R _E		RR _D	(CFs	CFw	/	FR		SO
LED Bulb	99% ¹⁵⁸	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									1.6% ¹⁶⁴		

¹⁵² NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 16.

¹⁵⁹ Realization rates are 100 percent since savings estimates are based on evaluation results.

¹⁶⁰ Ibid.

164 Ibid.

 ¹⁵³ Average annual hours of use for commercial spaces. Efficiency Maine Commercial Technical Reference Manual Version 2015.1 Table 33.
 ¹⁵⁴ Mogul base lamps are primarily applicable to commercial settings. Percent installed in commercial applications is assumed to be 100%.

¹⁵⁵ Ibid.

¹⁵⁶ Based on rated lifetime of 25,000 hours.

¹⁵⁷ Based on rated lifetime of 15,000 hours.

¹⁵⁸ ISR is based on long-term ISR from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 14. It is assumed that storage habits are the same for standard efficiency bulbs as LED therefore the equivalent measure life is based on the long-term ISR

¹⁶¹ Efficiency Vermont TRM 2012, Commercial Outdoor Lighting.

¹⁶² Ibid.

¹⁶³ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

			Energy and Demand Savings with Interactive Effects									
Bulh Type	Measure Codes	Baseline	Efficient	AWattsurp				Natural				
build rype	Micusure coues	Wattage	Wattage		Electricity	Winter	Summer	Gas	Propane	Wood	Kerosene	Oil
					kWh/y	kW	kW	MMBtu	MMBtu	MMBtu	MMBtu	MMBtu
Standard A-Line LED	LEDSTDLLD, LEDSTDSLD	47	10	37	110	0.018	0.023	-0.015	-0.010	-0.019	-0.010	-0.105
Specialty LED - Candelabra	LEDSPCCDDL, LEDSPCCDDS	47	5	42	124	0.020	0.026	-0.016	-0.011	-0.022	-0.011	-0.119
Specialty LED - R20, MR16, Globe	LEDSPCGLDL, LEDSPCGLDS	36	7	29	87	0.014	0.018	-0.011	-0.008	-0.015	-0.008	-0.083
Specialty LED - BR30, PAR16	LEDSPCBRDL, LEDSPCBRDS	42	7	36	105	0.017	0.022	-0.014	-0.009	-0.019	-0.009	-0.101
Specialty LED - PAR20, PAR30	LEDSPCPRDL, LEDSPCPRDS	59	9	50	148	0.024	0.031	-0.020	-0.013	-0.026	-0.013	-0.141
Specialty LED - PAR38, BR40	LEDSPCPBDL, LEDSPCPBDS	84	15	69	205	0.034	0.044	-0.027	-0.018	-0.036	-0.018	-0.196
Linear LED 2 ft	S110A2L, S110C2L, S110A2S, S110C2S	37	11	26	127	0.021	0.027	-0.017	-0.012	-0.023	-0.012	-0.125
Linear LED 4 ft	S110A4L, S110C4L, S110A4S, S110C4S	91	12	80	203	0.033	0.043	-0.028	-0.019	-0.037	-0.019	-0.201
LED Low Bay Mogul Screw-Base Low Output	S64ALL, S64BCLLL, S64ALS, S64BCLLS	204	57	147	587	0.092	0.128	-0.080	-0.080	-0.107	-0.053	-0.579
LED Low Bay Mogul Screw-Base High Output	S64AHL, S64BCLHL, S64AHS, S64BCLHS	363	99	264	1057	0.167	0.230	-0.144	-0.144	-0.193	-0.096	-1.043
LED High Bay Mogul Screw-Base Low Output	S64BCHLL, S64BCHLS	449	105	344	1376	0.217	0.299	-0.188	-0.188	-0.251	-0.125	-1.358
LED High Bay Mogul Screw-Base High Output	S64BCHHL, S64BCHHS	447	138	309	1237	0.195	0.269	-0.169	-0.113	-0.225	-0.113	-1.221
Outdoor Mogul Screw- Base Low Output	S6BLL, S6CLL, S6BLS, S6CLS	200	42	158	598	0.006	0.111	0.000	0.000	0.000	0.000	0.000
Outdoor Mogul Screw- Base Medium Output	S6BML, S6CML, S6BMS, S6CMS	309	89	220	831	0.008	0.155	0.000	0.000	0.000	0.000	0.000
Outdoor Mogul Screw- Base High Output	S6BHL, S6CHL, S6BHS, S6CHS	458	129	329	1241	0.012	0.231	0.000	0.000	0.000	0.000	0.000

Table 3. Wattage and Savings by Bulb Type for Distributor Channel

Bulb Type	Measure Codes	Baseline	Retail Pri	ce Before	Incrementa	al First Cost	Avoided O&M ¹⁶⁶		
		Retail Price	Ince	ntive		-20,000 1			
		41.00	≥20,000 hr	<20,000 nr	≥20,000 hr	<20,000 hr	≥20,000 hr	<20,000 nr	
Standard A-Line LED	LEDSTDLLD, LEDSTDSLD	Ş1.38	\$4.62	Ş4.11	\$3.24	Ş2.73	\$13.33	\$8.10	
Specialty LED - Candelabra	LEDSPCCDDL, LEDSPCCDDS	\$1.21	\$6.69	\$4.69	\$5.48	\$3.48	\$11.69	\$7.11	
Specialty LED - R20, MR16, Globe	LEDSPCGLDL, LEDSPCGLDS	\$2.92	\$9.29	\$6.61	\$6.37	\$3.69	\$28.21	\$17.15	
Specialty LED - BR30, PAR16	LEDSPCBRDL, LEDSPCBRDS	\$2.85	\$7.92	N/A	\$5.07	N/A*	\$27.54	N/A	
Specialty LED - PAR20, PAR30	LEDSPCPRDL, LEDSPCPRDS	\$6.53	\$12.24	N/A	\$5.71	N/A*	\$63.09	N/A	
Specialty LED - PAR38, BR40	LEDSPCPBDL, LEDSPCPBDS	\$3.80	\$15.46	N/A	\$11.66	N/A*	\$36.72	N/A	
Linear LED 2 ft	S110A2L, S110C2L, S110A2S, S110C2S	\$2.96	\$12.91	N/A	\$9.95	N/A*	\$28.62	N/A	
Linear LED 4 ft	S110A4L, S110C4L, S110A4S, S110C4S	\$2.96	\$8.51	N/A	\$5.55	N/A*	\$28.62	N/A	
LED Low Bay Mogul Screw-Base Low Output Type A	S64ALL, S64ALS	\$40.00	\$120.00	N/A	\$80.00	N/A*	\$407.67	N/A	
LED Low Bay Mogul Screw-Base High Output Type A	S64AHL, S64AHS	\$50.00	\$240.00	N/A	\$190.00	N/A*	\$509.59	N/A	
LED Low Bay Mogul Screw-Base Low Output Type B&C	S64BCLLL, S64BCLLS	\$40.00	\$128.54	N/A	\$88.54	N/A*	\$407.67	N/A	
LED Low Bay Mogul Screw-Base High Output Type B&C	S64BCLHL, S64BCLHS	\$50.00	\$245.15	N/A	\$195.15	N/A*	\$509.59	N/A	
LED High Bay Mogul Screw-Base Low Output	S64BCHLL, S64BCHLS	\$60.00	\$191.39	N/A	\$131.39	N/A*	\$611.50	N/A	
LED High Bay Mogul Screw-Base High Output	S64BCHHL, S64BCHHS	\$50.00	\$270.10	N/A	\$220.10	N/A*	\$509.59	N/A	
Outdoor Mogul Screw-Base Low Output	S6BLL, S6CLL, S6BLS, S6CLS	\$60.00	\$90.81	N/A	\$30.81	N/A*	\$611.50	N/A	
Outdoor Mogul Screw-Base Medium Output	S6BML, S6CML, S6BMS, S6CMS	\$80.00	\$123.12	N/A	\$43.12	N/A*	\$815.34	N/A	
Outdoor Mogul Screw-Base High Output	S6BHL, S6CHL, S6BHS, S6CHS	\$130.00	\$305.83	N/A	\$175.83	N/A*	\$1,324.92	N/A	

Table 4. Measure Cost, O&M and Free Ridership Rates by Bulb Type for Distributor Channel¹⁶⁵

*These bulb categories have not had any program participation and therefore have no program data to analyze. Values for >20,000 hr category will be used as placeholders in effRT.

¹⁶⁵ Cost values based on weighted average pre-incentivized distributor costs from October-November 2017 program sales data for efficient cost and surveyed baseline cost.

¹⁶⁶ Because the efficient measure has a longer effective life than the baseline measure, future replacement costs are avoided. The avoided O&M cost is based on the NPV of avoided replacement costs for baseline products throughout the lifetime of the efficient products. No labor costs have been included. See Table F-2 for baseline bulb replacement schedule.

Refrigerator (Inactive) (RF)												
Last Revised Date	7/1/2015											
MEASURE OVERVIEW												
Description	ENERGY ST ENERGY ST refrigerato The ENERG percent mo ENERGY ST	ENERGY STAR® certified refrigerator in place of a new code-compliant or standard efficiency refrigerator. The ENERGY STAR® key efficiency criteria requires that full-size refrigerators be at least 20 percent more energy efficient than the minimum federal standard. ¹⁶⁷ A list of certified ENERGY STAR® refrigerators is available at: <u>http://downloads.energystar.gov/bi/qplist/refrigerators.xls</u>										
	<u>http://dow</u>	nloads.energy	<u>star.gov/bi</u>	/qplist/refrig	<u>erators.xls</u>							
Primary Energy Impact	Electric	Electric										
Sector	Residentia	Residential										
Program(s)	Appliance	Rebate Progra	m									
End-Use	Retrigeration	on mustice Daula										
		ruction, Repla	ce on Burno	but								
DEEIVIED GROSS EIVERGY		NII SAVINGS)										
Demand savings	$\Delta KW_{SP} = 0.0$ $\Delta kW_{WP} = 0$.017 ¹⁶⁹										
Annual energy savings	∆kWh/yr =	49.1										
GROSS ENERGY SAVINGS	ALGORITHM	IS (UNIT SAVIN	NGS)									
Demand savings	$\Delta kW_{SP} = De$	eemed based o	on evaluate	d results								
	$\Delta kW_{WP} = D$	eemed based	on evaluate	ed results								
Annual energy savings	$\Delta kWh/yr =$	(kWh _{BASE} - kW	/h _{EE}) x ISA									
Definitions	kWh _{BASE} kWh _{EE} ISA	= Average a = Average a = In-situ ad	annual ener annual ener justment fa	gy consump gy consump ctor (%)	tion for bas tion for ENE	eline mo RGY STA	dels (kWh/yr R® models (k) Wh/yr)				
EFFICIENCY ASSUMPTION	S											
Baseline Efficiency	Residential effective Section	l refrigerator t eptember 15, 2	hat meets t 2014 ¹⁷⁰	he current fe	ederal minir	num effi	ciency requir	ement,				
Efficient Measure	ENERGY ST	AR [®] -certified	refrigerator									
PARAMETER VALUES (DEE	EMED)		-									
Measure	kWh _{BASE}	kWh _{EE}	ISA		Life (yrs)	Cost (5)					
Refrigerator	509.7 ¹⁷¹	460.0171	98.8% 172		12 ¹⁷¹	20 ¹⁷³						
IMPACT FACTORS	1	- 1	<u> </u>		1	1						
Measure	ISR	RRE	RR _D	CFs	(CFw	FR	SO				
Refrigerator	100% ¹⁷⁴	ISR RR_E RR_D CF_S CF_W FR SO $100\%^{174}$ $100\%^{175}$ $100\%^{176}$ $100\%^{176}$ $67.8\%^{177}$ $3.3\%^{177}$										

¹⁶⁷ ENERGY STAR® Refrigerators and Freezers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=refrig.pr_crit_refrigerators</u>

¹⁷³ ENERGY STAR Appliance Calculator.

¹⁶⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 30.

¹⁶⁹ Memo provided to supplement NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

¹⁷⁰ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

¹⁷¹ Table F-1. Weighted Average Refrigerator Energy Use.

¹⁷² Ibid., p. 28. The in-situ adjustment (ISA) factor is a correction factor applied to a refrigerator's rated kWh consumption to reflect real world conditions, such as door openings, food in the refrigerators, internal temperature settings, and ambient conditions. The ISA factor for refrigerators was derived by comparing the *actual* (metered) kWh consumption with the *rated* kWh consumption; the ratio of each refrigerator's actual metered kWh consumption to its rated kWh consumption was calculated and averaged to calculate the ISA factor.

¹⁷⁴ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

¹⁷⁵ Realization rates are 100 percent since savings estimates are based on evaluation results.

¹⁷⁶ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

¹⁷⁷ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

Freezer (Inactive) (FR)										
Last Revised Date	7/1/2015									
MEASURE OVERVIEW										
Description	ENERGY STA ENERGY STA freezer. The 10 percent n	R [®] Freezer. Th R [®] -certified fr ENERGY STAR hore energy e	his measure in reezer in place ® key efficien fficient than t	volves of a n cy crite he min	the pu ew cod eria req imum f	rchase ar le-compli uires tha federal st	nd in ant o t full anda	stallation of or standard e -size freezer ard. ¹⁷⁸	a new efficiency s be at least	
	A list of certi	fied ENERGY	STAR® freezer	s is ava	ailable a	at:				
	http://down	loads.eneravs	tar.aov/bi/ap	list/Fre	ezers%	20Produ	ct%2	0List.xls		
Primary Energy Impact	Electric	<u> </u>			0201070			<u></u>		
Sector	Residential									
Program(s)	Appliance Re	ebate Program	1							
End-Use	Refrigeration	<u>וסי</u>								
Decision Type	New Constru	New Construction, Replace on Burnout								
DEEMED GROSS ENERGY S	AVINGS (UNIT	SAVINGS)								
Demand savings	$\Delta kW_{SP} = 0.00$)9								
	$\Delta kW_{WP} = 0.0$	10								
Annual energy savings	$\Delta kWh/yr = 3$	0								
GROSS ENERGY SAVINGS A	LGORITHMS	UNIT SAVING	iS)							
Demand savings	$\Delta kW_{SP} = \Delta kW$	$V_{\text{SP-Refrig}} x (\Delta k V)$	/h _{FREEZER} / Δ kW	/h _{REFRIG})					
	$\Delta k W_{WP} = \Delta k V$	$V_{WP-Refrig} x (\Delta k)$	$Nh_{FREEZER} / \Delta k$	Nh _{REFRIC}	G)					
Annual energy savings	$\Delta kWh/yr = \Delta$	kWh _{FREEZER}								
Definitions	Unit	= 1 Freez	er							
	$\Delta kWh_{FREEZER}$	= Averag non-cei	e annual ener tified models	gy savi (kWh/	ngs for 'yr)	ENERGY	STAF	R [®] freezer co	mpared to	
	Δ kWh _{REFRIG}	= Average to non-	e annual ener certified mod	gy savi els (kW	ngs for /h/yr)	ENERGY	STAF	R [®] refrigerat	or compared	
	$\Delta kW_{SP-Refrig}$	= Evaluat	ed summer p	eak dei	mand r	eduction	for F	Refrigerator	measure (kW)	
	$\Delta kW_{\text{WP-Refrig}}$	= Evaluat	ed winter pea	ak dem	and red	duction fo	or Re	frigerator m	easure (kW)	
	RATIOBASE	= Adjustr	nent factor to	accou	nt for b	aseline u	pdat	te (%)		
EFFICIENCY ASSUMPTIONS	5									
Baseline Efficiency	Standard res	idential freez	er that meets	the cu	rrent fe	ederal mi	nimu	Im efficiency	,	
	requirement	, effective Se	otember 15, 2	014 ¹⁷⁹						
Efficient Measure	ENERGY STA	R [®] -certified fr	eezer							
PARAMETER VALUES (DEE	EEMED)									
Measure	$\Delta kWh_{FREEZER}$	$\frac{\Delta kWh_{REFRIG}}{\Delta kW_{SP-Refrig}} = \frac{\Delta kW_{WP-Refrig}}{\Delta kW_{WP-Refrig}} = \frac{\Delta kW_{KP-Refrig}}{\Delta kW_{KP-Refrig}} = \frac{\Delta kWh_{REFRIG}}{\Delta kWh_{REFRIG}} = \frac{\Delta kW}{\Delta kW} = \frac{\Delta kW_{KP-Refrig}}{\Delta kW_{KP-Refrig}} = \frac{\Delta kW}{\Delta kW} = \frac{\Delta kW}{\Delta $						Cost (\$)		
ENERGY STAR [®] Freezer	30 ¹⁸⁰	49.1 ¹⁸¹ 0.015 ¹⁸¹ 0.017 ¹⁸¹ 12 ¹⁸⁰				0 ¹⁸⁰				
IMPACT FACTORS										
Measure	ISR	RR _E	RR_{D}	C	Fs	CFw		FR	SO	
ENERGY STAR [®] Freezer	100% ¹⁸²	100% ¹⁸³	100% ¹⁸³	100	% ¹⁸⁴	100% ¹	84	65.5% ¹⁸⁵	3.3% ¹⁸⁵	

¹⁷⁸ ENERGY STAR[®] Refrigerators and Freezers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=refrig.pr_crit_refrigerators</u>

¹⁷⁹ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

¹⁸⁰ United States Environmental Protection Agency (USEPA), ENERGY STAR Appliance Savings Calculator, May 2015. Annual energy savings are based on savings of 30kWh at the default settings (15.4 cubic feet, chest freezer).

¹⁸¹ See Refrigerator measure entry.

¹⁸² Efficiency Maine Trust (EMT) assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

¹⁸³ Realization rates are 100 percent since savings estimates are based on evaluation results.

¹⁸⁴ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

Room Air Conditioner (Inactive) (RAC)													
Last Revised Date	7/1/2015												
MEASURE OVERVIEW													
Description	ENERGY STAR [®] ENERGY STAR [®] efficiency roor conditioners b standards. ¹⁸⁶ A list of certifie	[®] Room AC (R/ [®] -certified roo m air condition the at least 10 p ed ENERGY ST	AC). T m ain ner. T perce AR® 1	This meas r conditio The ENER(nt more e room air (ure invo ner in p GY STAF energy e conditic	olves th lace of ® key e efficien oners is	e purchase a new cod efficiency c t than the available a	e and installatio e-compliant or riteria require minimum feder at:	on of a new standard that room air ral				
	http://downlo	ads.energysta	r.gov	//bi/qplist	/Room	<mark>%20Air</mark>	%20Condit	ioners%20Prod	luct%20List.xls				
Primary Energy Impact	Electric	Electric											
Sector	Residential	esidential											
Program(s)	Appliance Reb	ate Program											
End-Use	Cooling												
Decision Type	New Construct	lew Construction, Replace on Burnout											
DEEMED GROSS ENERG	GY SAVINGS (UN	SAVINGS (UNIT SAVINGS)											
Demand savings	$\Delta kW = 0.094$	ΔkW_{WP} = 0	Z	$\Delta kW_{SP} = 0$.01								
Annual energy savings	Δ kWh/yr = 10												
GROSS ENERGY SAVING	GS ALGORITHM	S (UNIT SAVI	IGS)										
Demand savings	$\Delta kW = CAP_{EE} x$	(1 / EER _{BASE} –	1/E	ER _{EE}) / 10	00								
Annual energy savings	Δ kWh/yr = CA	P _{EE} x (1 / EER _B	ase — S	1 / EER _{EE})	/ 1000	x EFLH							
Definitions	Unit	= 1 room air c	ondit	tioner									
	CAP _{EE}	= Average cap	acity	of install	ed roor	n air co	onditioner	Btu/h)					
	EER _{BASE}	= Energy-effic	iency	ratio of o	code-co	mplian	t room air	conditioner (Bt	.u/h/Watt)				
	EER _{EE}	= Energy-effic	iency	ratio of I	ENERGY	′ STAR®	-certified r	oom air condit	ioner				
		(Btu/h/Watt)			-								
	EFLH	= Equivalent f	ull lo	ad hours	for roor	n air co	onditioner	(hrs/yr)					
	1000	= Conversion:	1000) Watts pe	er kW								
	ONS				. 1			<u> </u>	<u> </u>				
Baseline Efficiency	Standard room	n air condition	er th	lat meets	the cur	rent fe	deral minir	num efficiency	requirement				
	effective June	1, 2014 ¹⁰											
Efficient Measure	ENERGY STAR	e-certified roo	m all	r conditio	ner								
Measure		EEKBASE		EER	EE 190	E	FLH	LITE (Yrs)	Lost (\$)				
	10,000	9.8-33		10.8		1	02***	9.00	50100				
					0	-	CF						
	100% ¹⁹²	KKE 100.00/193	10	κκ _D	11 1	rs o/194			5 2 20/ 195				
EINERGY STAK® KAC	100%	100.0%	10	0.0%	11.1	70	0.0%**	05.5%	3.3%-55				

¹⁸⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

185 ENERGY STAR® Room Air Conditioners Key Product Criteria: http://www.energystar.gov/index.cfm?c=roomac.pr_crit_room_ac

¹⁸⁷ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

¹⁸⁹ Minimum EER for code-compliant room air conditioner effective June 1, 2014.

¹⁹⁰ ENERGY STAR[®] requirement for room air conditioner as of October 2013.

¹⁹¹ Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008, Table 22, full load equivalent hours for Portland, ME.

¹⁹² EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

¹⁹³ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

¹⁸⁸ Typical room air conditioner size, April 2009 according to ENERGY STAR® Room Air Conditioner calculator.

Room Air Purifier (RAP)											
Last Revised Date	11/21/2016										
MEASURE OVERVIEW											
Description	ENERGY ST	AR [®] -certified	l room air p	urifier (RAP). This	s measi	ure involv	ves tł	he purcha	se and	
	installatior	n of a new EN	ERGY STAR®	-certified r	oom a	air puri [.]	fier (also	calle	ed room a	ir cleaners)	
	in place of	a standard e	fficiency roo	m air purifi	er. Th	ne ENEF	RGY STAF	R® ke	y efficiend	cy criteria	
	require that	at room air pu	urifiers have	a minimun	n effic	ciency c	of 2.0 CAI	DR/W	Vatt and n	naximum	
	standby po	ower of 2.0 W	/atts. ¹⁹⁶								
	A list of ce	rtified ENERG	iy star® roo	om air purif	iers is	availal	ole at:				
	<u>http://dow</u>	<u>nloads.energ</u>	<u>ystar.gov/b</u>	i/qplist/Roc	<u>om_A</u>	<u>ir_Clea</u>	ners_Qu	<u>alifie</u>	<u>d_Produc</u>	<u>t_List.xls</u>	
Primary Energy Impact	Electric										
Sector	Residentia	Residential, Commercial									
Program(s)	Appliance	Rebate Progr	am								
End-Use	Appliance										
Decision Type	New Const	New Construction, Replace on Burnout									
DEEMED GROSS ENERGY	SAVINGS (U	NIT SAVINGS									
Demand Savings	$\Delta kW = 0.1$.07 ΔkW_{SP} =	= 0.071 ∆k\	$N_{\rm WP} = 0.071$	1						
Annual Energy Savings	Δ kWh/yr =	624									
GROSS ENERGY SAVINGS	ALGORITHN	IS (UNIT SAV	INGS)								
Demand Savings	$\Delta kW = CAI$	DR × (1/EF _{BASE}	- 1/EF _{ES}) / 1	L000							
Annual Energy Savings	$\Delta kWh/yr =$: [CADR × (1/I	EF _{BASE} – 1/EF	_{ES}) × Hours	+ (SBI	P _{BASE} – S	SBP_{ES}) × (8,760	0 – Hours)] / 1000	
Definitions	Unit	= 1 room air	purifier								
	CADR	= Rated Clea	r Air Deliver	y Rate (CAD	DR)						
	EFBASE	= Rated effic	iency for ba	seline unit ((CADF	R/Watt)					
	EF _{ES}	= Rated effic	iency for EN	ERGY STAR	® unit	: (CADR	/Watt)				
	SBPBASE	= Rated stan	dby power f	or baseline	unit ((Watts)					
	SBPES	= Rated stan	dby for ENE	RGY STAR®	unit (Watts)					
	Hours	= Annual ope	erating hour	s (hrs/yr)							
	8,760	= Total hours	s in a year (2	4 hours/da	y × 36	55 days	/year)				
	1,000	= Conversion	i: 1,000 Wat	ts per kW							
EFFICIENCY ASSUMPTION	S										
Baseline Efficiency	Conventio	nal model wit	:h CADR = 18	33, CADR/W	/att =	1.0, an	id standb	ру ро	wer = 1.0	Watts	
Efficient Measure	Average av	ailable ENER	GY STAR [®] -ce	ertified mod	del						
PARAMETER VALUES (DEE	EMED)										
Measure	CADR EF _{BASE} SBP _{BASE} EF _{ES} SBP _{ES} Hours Life (yrs) Cost (\$)										
ENERGY STAR [®] RAP	153 ¹⁹⁷	1.0 ¹⁹⁸	1.0 ¹⁹⁸	3.3197	0.	6 ¹⁹⁷	5,840 ¹⁹	99	9 ²⁰⁰	55.82 ²⁰¹	
Measure	%RES	%COMM									
ENERGY STAR [®] RAP	99% ²⁰²	1% ²⁰²									
IMPACT FACTORS	1	r	1	1		-	r				
Measure	ISR	RR _E	RR _D	CFs		C	Fw		FR	SO	
ENERGY STAR [®] RAP	100% ²⁰³	100% ²⁰⁴	100% ²⁰⁴	66.7% ²	:05	66.	7% ²⁰⁵	65	.5% ²⁰⁶	3.3% ²⁰⁶	

¹⁹⁴ See Appendix B: Coincidence and Energy Period Factors.

196 ENERGY STAR® Room Air Cleaners Key Product Criteria: http://www.energystar.gov/index.cfm?c=room_airclean.pr_crit_room_airclean

¹⁹⁷ Average CADR based on PY 2016 sales data as of 4/21/16.

¹⁹⁸ EPA Research based on available models, 2011 (from ENERGY STAR® Appliance Savings Calculator, accessed 3/31/2013).

¹⁹⁹ Assume average 16 hours per day operating (from ENERGY STAR® Appliance Savings Calculator, accessed 3/31/2013).

²⁰⁰ Appliance Magazine, Portrait of the U.S. Appliance Industry 1998 (from ENERGY STAR® Appliance Savings Calculator, accessed 3/31/2013).

²⁰¹ Shelf and on-line survey November 2016 of ENERGY STAR[®] and non-ENERGY STAR[®] units sold through Home Depot, Walmart, Best Buy, Lowe's and Amazon. ²⁰² EFI program data analysis Sept 23, 2015. Since commercial sector participation is currently very low, no adjustments to savings estimates are being made at this time.

¹⁹⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

Dehumidifier (DH)												
Last Revised Date	7/1/201	6										
MEASURE OVERVIEW	•											
Description	ENERGY new ENE efficienc The ENE Liters/k\ dehumic	STAR [®] def ERGY STAR by dehumic RGY STAR [®] Wh for deh difiers up to	numidifien -certifien lifier. * key effic umidifier o 185 pin	rs. This me d dehumic :iency crite s < 75 pint ts per day.	easure inve lifier in pla eria specif s per day 207	olves the po ace of a nev y a minimu and a minin	urchase and w code-com m energy fa mum energ	d installation opliant or st actor of 2.0 by factor of	n of a tandard 2.80 for			
	A list of	certified El	NERGY ST	AR [®] dehu	midifiers i	s available :	at:					
	http://d	ownloads.e	energysta	r.gov/bi/g	plist/dehu	imid_prod_	<u>list.xls</u>					
Primary Energy Impact	Electric											
Sector	Resident	sidential, Commercial										
Program(s)	Applianc	pliance Rebate Program										
End-Use	Applianc	pliance										
Decision Type	New Cor	ew Construction, Replace on Burnout										
DEEMED GROSS ENERGY SAVI	NGS (UN	IT SAVING	S)									
Demand savings	$\Delta kW = 0$.092 ∆k	$W_{SP} = 0.0$	34 ∆kW _v	_{/P} = 0.000							
Annual energy savings	∆kWh/y	r = 150										
GROSS ENERGY SAVINGS ALG	ORITHMS	G (UNIT SAV	VINGS)									
Demand savings	∆kW = C	AP _{EE} x 0.47	′3 x (1 / E	$F_{BASE} - 1/$	EF _{EE}) / 24	x ISA						
Annual energy savings	∆kWh/y	r = CAP _{EE} x	0.473 x (1 / EF _{BASE} -	- 1 / EF _{EE}) :	k Hours / 24	4 x ISA					
Definitions	Unit	= 1 c	lehumidif	fier								
	CAPEE	= Ra	ted capao	ity of the	dehumidi	fier in pints	per day (pi	ints/day)				
	EFBASE	= Ra	ted Energ	gy Factor fo	or baselin	e dehumidi	fier (liters/l	kWh)				
	EFEE	= Ra	ted Energ	gy Factor fo	or ENERG	۲ STAR® de	humidifier	(liters/kWh)			
	Hours	= An	nual ope	rating hou	rs (hrs/yr)							
	0.473	= Co	nversion:	0.473 lite	rs per pint	t						
	24	= Co	nversion:	24 hours	per day							
	ISA	= In-	situ Adju	stment Fa	ctor							
EFFICIENCY ASSUMPTIONS	1											
Baseline Efficiency	effective October 2012 ²⁰⁸											
Efficient Measure	ENERGY	STAR [®] -cer	tified deh	numidifier								
PARAMETER VALUES (DEEME	D)	[[[[
Measure	%RES	%COMM	CAP _{EE}	EF_{BASE}	EF_{EE}	Hours	ISA	Life (yrs)	Cost (\$)			
ENERGY STAR [®] Dehumidifier	97% ²⁰⁹	3% ²⁰⁹	54 ²¹⁰	1.65 ²¹⁰	2.0 ²¹¹	1,632 ²¹²	81.6% ²¹³	12 ²¹⁴	50 ²¹⁵			

²⁰³ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

²⁰⁴ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

²⁰⁵ See Appendix B: Coincidence and Energy Period Factors.

²⁰⁶ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

²⁰⁷ ENERGY STAR[®] Dehumidifiers Key Product Criteria:

 $https://www.energystar.gov/sites/default/files/ENERGY\%20STAR_Dehumidifiers_V4\%200_Specification_Final.pdf$

²⁰⁹ EFI program data analysis Sept 23, 2015. Since commercial sector participation is currently very low, no adjustments to savings estimates are being made at this time.

 $^{\rm 210}$ Average capacity based on PY16 sales data as of 4/21/16.

²¹¹ <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR_Dehumidifiers_V4%200_Specification_Final.pdf</u>

²¹² NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 53.

²⁰⁸ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

Dehumidifier (DH)							
IMPACT FACTORS							
Measure	ISR	RRE	RR _D	CFs	CFw	FR	SO
ENERGY STAR [®] Dehumidifier	100% ²¹⁶	100% ²¹⁷	100% ²¹⁷	37.1% ²¹⁸	0% ²¹⁹	65.3% ²²⁰	3.3% ²²¹

²¹⁹ Assumed that dehumidifiers are not operating in the winter.

²²¹ Ibid.

²¹³ Ibid, p. 53. The in-situ adjustment (ISA) factor is a correction factor applied to a dehumidifier's *rated* power draw to accurately represent its *actual* power draw. The ISA factor for dehumidifiers was derived by averaging the ratio of actual (metered) power draw of each metered dehumidifier to its rated power draw. ²¹⁴ <u>https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx</u>

²¹⁵ https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

²¹⁶ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 51.

²¹⁷ Realization rates are 100 percent since savings estimates are based on evaluation results.

²¹⁸ Derived from summer peak demand, NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 55.

²²⁰ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-42.

Dishwasher (Inactive) (DW)
Last Revised Date	7/1/2015
MEASURE OVERVIEW	
Description	ENERGY STAR [®] Dishwashers. This measure involves the purchase and installation of a new ENERGY STAR [®] -certified dishwasher in place of a new code-compliant or standard efficiency dishwasher. The current ENERGY STAR [®] requirements, effective as of January 20, 2012, specify a maximum 295 kWh/year and minimum 4.25 gallons/cycle. ²²²
	The associated water heater may be electric or non-electric. The deemed unit energy savings are weighted averages based on the percentages of homes with electric and non-electric water heaters. A list of certified ENERGY STAR [®] dishwashers is available at: <u>http://downloads.energystar.gov/bi/qplist/Dishwashers%20Product%20List.xls</u>
Primary Energy Impact	Electric (additional impacts include: natural gas, heating oil, propane and water)
Sector	Residential
Program(s)	Appliance Rebate Program
End-Use	Process
Decision Type	New Construction, Replace on Burnout
GROSS ENERGY SAVINGS	(UNIT SAVINGS)
Demand Savings	$\Delta kW = 0.159$ $\Delta kW_{WP} = 0.006$ $\Delta kW_{SP} = 0.003$
Annual Energy Savings	$\Delta kWh/yr = 6.6$
	Δ MMBtu _{GAS} /yr = 0.003
	$\Delta MMBtu_{OIL}/yr = 0.02$
	$\Delta MMBtu_{PROP}/yr = 0.003$
Annual water savings	Δ Gallons/yr = 468
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVINGS)
Demand savings	$\Delta kW = \Delta kWh/yr / Hours$
Annual energy savings	$\Delta kWh/yr = (kWh_{BASE} - kWh_{EE}) / RCycles \times Cycles \times [(1 - \%E_{HW}) + (\%E_{HW} \times \%HW_{ELEC})]$
	Δ MMBtu _{GAS} /yr = (kWh _{BASE} – kWh _E) / RCycles × Cycles × %E _{HW} × 0.003412 / Eff _{GAS} × %HW _{GAS}
	Δ MMBtu _{OIL} /yr = (kWh _{BASE} – kWh _{EE}) / RCycles × Cycles × %E _{HW} × 0.003412 / Eff _{OIL} × %HW _{OIL}
	Δ MMBtu _{PROP} /yr = (kWh _{BASE} – kWh _{EE}) / RCycles × Cycles × %E _{HW} × 0.003412 / Eff _{PROP} ×
	%HW _{PROP}
Annual water savings	Δ Gallons/yr = (WC _{BASE} – WC _{FE}) × Cycles

²²² ENERGY STAR[®] Dishwashers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=dishwash.pr_crit_dishwashers</u>

Dishwasher (Inactive) (DW)												
Definitions	Unit	= 1 dish	washer										
	kWh _{BASE}	= Rated	annual er	nergy	, use of	baseline	dishwash	er (kW	'h/yr)				
	kWh _{EE}	= Rated	annual er	nergy	, use of	ENERGY	STAR® dis	hwash	er (kWh/y	r)			
	RCycles	= Rated	dishwash	er cy	cles pe	r year (cy	cles/yr)						
	Cycles	= Annua	al dishwas	her d	cycles (c	ycles/yr)							
	Hours	= Annua	al operatin	ig ho	ours (hrs	/yr)							
	%E _{HW}	= Perce	ntage of d	ishw	asher e	nergy use	ed for wat	er hea	ting (%)				
	HW _{ELEC}	= Perce	ntage of h	ome	s with e	lectric w	ater heati	ng (%)					
	HW_{GAS}	= Perce	ntage of h	ome	s with n	atural ga	s water h	eating	(%)				
	%HW _{OIL}	= Perce	ntage of h	ome	s with c	il water l	neating (%	6)					
	%HW _{PROP}	= Perce	ntage of h	ome	s with p	ropane c	or LNG wa	ter hea	ating (%)				
	Eff_{GAS}	= Efficie	ency of exis	sting	gas-fire	ed water	heaters (୨	%)					
	Eff _{OIL}	= Efficie	ency of exis	sting	g oil-fire	d water h	eaters (%	5)					
	Eff _{PROP}	= Efficie	ency of exis	sting	g propar	e-fired w	ater heat	ers (%))				
	WC _{BASE}	= Rated	water cor	nsum	nption p	er cycle f	or the ba	seline o	dishwashe	r			
		(gallons/cycle)											
	WCEE	VC _{EE} = Rated water consumption per cycle for the ENERGY STAR [®] dishwasher											
	(gallons/cycle)												
	0.003412	= Conve	ersion fact	or: 0	.003412	2 MMBtu	per kWh						
EFFICIENCY ASSUMPTION	IS												
Baseline Efficiency	Standard o	dishwasher	that meet	s the	e curren	t federal	minimum	efficie	ency requi	reme	ent,		
	effective N	Лау 2013. Т	he require	emer	nt states	s that Sta	ndard size	e dishw	vashers sha	all n	ot exceed		
	355 kWh/	year and 6.5	5 gallons p	er cy	ycle.223								
Efficient Measure	ENERGY S	TAR [®] -certifi	ed dishwa	sher	-								
PARAMETER VALUES (DE	EMED)			1				-					
Measure	kWh _{BASE}	kWhee	RCycles	C	ycles	Hours	WCBASE	WC	ее %Ен	N			
ENERGY STAR®	307 ²²⁴	295 ²²⁴	215 ²²⁴	2	08224	208 ²²⁵	6 5 ²²⁴	4 25	²²⁴ 56% ²	24			
Dishwasher	507	233	215		00	200	0.5	7.25	5070				
Measure	[%] HW _{ELEC}	HW_{GAS}	%HW _{OIL}	%⊦	WPROP	Eff_{GAS}	Eff _{OIL}	Eff _{PRC}	DP Life (y	rs)	Cost (\$)		
ENERGY STAR®	73% ²²⁶	1 0% ²²⁶	53% 226	q	0/226	75% ²²	75% ²²⁷	7 5% ²	27 1022	4	10 ²²⁴		
Dishwasher	2370												
IMPACT FACTORS													
Measure	ISR	RR _E	RR)	0	CF _S	CFw		FR		SO		
ENERGY STAR®	100%228	$100\%^{228}$ $100\%^{229}$ $100\%^{229}$ $2.2\%^{230}$ $4.0\%^{230}$ $54.9\%^{231}$ $3.3\%^{231}$											
Dishwasher	10070	10070	10070		2.2	.70	4.070		J7.J/0		J.J/0		

²²⁹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

²³⁰ See Appendix B: Coincidence and Energy Period Factors.

²²³ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

²²⁴ Minimum federal efficiency standard (effective May 30, 2013).

²²⁵ Assume that each cycle is 1 hour so the total operating hours is equal to the total number of cycles.

²²⁶ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-15

²²⁷ Values are assumed to be the same as a gas-fired water heater.

²²⁸ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with evaluation findings for other appliance measures.

²³¹ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-42; used program average.

Clothes Washer (CW)	
Last Revised Date	10/1/2017 (retroactive to 7/1/2016)
MEASURE OVERVIEW	
Description	ENERGY STAR [®] clothes washer. This measure involves the purchase and installation of a new ENERGY STAR [®] -certified clothes washer in place of a new code-compliant or standard efficiency clothes washer. The current ENERGY STAR [®] requirements, effective as of February 1, 2013, specify a minimum Integrated Modified Energy Factor (IMEF) of 2.06 and maximum integrated water factor (IWF) of 4.3 for top-loading machines and IMEF of 2.38 and WF of 3.7 for front-loading machines. ²³² The associated water heater and clothes dryer may be electric or non-electric. The deemed
	 unit energy savings are weighted averages based on percentages of homes with electric and non-electric water heaters and clothes dryers. A list of certified ENERGY STAR[®] clothes washers is available at: http://www.energystar.gov/productfinder/product/certified-clothes-washers/
Primary Energy Impact	Electric (additional impacts include: natural gas, heating oil, propane and water)
Sector	Residential, Commercial
Program(s)	Appliance Rebate Program
End-Use	Process
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS ENERGY S	AVINGS (UNIT SAVINGS)
Demand savings	$\Delta kW = 0.505$ $\Delta kW_{SP} = 0.024$ $\Delta kW_{WP} = 0.032$
Annual energy savings	Δ kWh/yr = 163
	Δ MMBtu _{GAS} /yr = 0.100
	Δ MMBtu _{oll} /yr = 0.292
	Δ MMBtu _{PROP} /yr = 0.065
Annual water savings	Δ Gallons/yr = 2,444
GROSS ENERGY SAVINGS A	LGORITHMS (UNIT SAVINGS)
Demand savings	$\Delta kW = \Delta kWh/yr / Loads^{233}$
Annual energy savings	ΔkWh/yr = CAP _{EE} × Loads × [(1/IMEF _{BASE}) × (%E _{MACHINE_B} + %E _{DHW_B} × %DHW _{ELEC} + %E _{DRYER_B} × %Dryer _{ELEC} × %Dried) – (1/IMEF _{EE}) × (%E _{MACHINE_EE} + %E _{DHW_EE} × %DHW _{ELEC} + %E _{DRYER_EE} × %Dryer _{ELEC} × %Dried)] ΔMMBtu _{GAS} /yr = CAP _{EE} × Loads × [(1/IMEF _{BASE}) × (%E _{DHW_B} × %DHW _{GAS} + %E _{DRYER_B} × %Dryer _{GAS} x %Dried) – (1/IMEF _{EE}) × (%E _{DHW_EE} × %DHW _{GAS} + %E _{DRYER_EE} × %Dryer _{GAS} x %Dried)] × 0.003412 / Eff _{GAS} ΔMMBtu _{OIL} /yr = CAP _{EE} × Loads × [(1/IMEF _{BASE}) × (%E _{DHW_B} × %DHW _{OIL}) – (1/IMEF _{EE}) × (%E _{DHW_EE} × %DHW _{OIL}] × 0.003412 / Eff _{OIL} ΔMMBtu _{PROP} /yr = CAP _{EE} × Loads × [(1/IMEF _{BASE}) × (%E _{DHW_B} × %DHW _{PROP} + %E _{DRYER_B} × %Dryer _{PROP} x %Dried) – (1/IMEF _{EE}) × (%E _{DHW_EE} × %DHW _{PROP} + %E _{DRYER_B} × %Dryer _{PROP} x %Dried) – (1/IMEF _{EE}) × (%E _{DHW_EE} × %DHW _{PROP} + %E _{DRYER_EE} × %Dryer _{PROP} x %Dried)] × 0.003412 / Eff _{PROP}
Annual water savings	Δ Gallons/yr = CAP _{EE} × (IWF _{BASE} – IWF _{EE}) × Loads

 ²³² ENERGY STAR[®] Clothes Washers Key Product Criteria: <u>http://www.energystar.gov/index.cfm?c=clotheswash.pr_crit_clothes_washers</u>
 ²³³ Demand savings algorithm assumes that the average load time is one hour.

Clothes Washer (CW)		
Definitions	Unit	= 1 clothes washer
	%DHW _{ELEC}	= Percentage of homes with electric domestic hot water
	%Dryer _{ELEC}	= Percentage of homes with electric dryers
	IMEF BASE	= Rated Integrated Modified Energy Factor for baseline model
		(ft³/kWh/cycle)
	IMEFEE	= Rated Integrated Modified Energy Factor for ENERGY STAR [®] model
		(ft³/kWh/cycle)
	Loads	= Washer loads per year (cycles/yr)
	%Е _{масніле_в}	= Percentage of baseline clothes washer system energy used for washer
		machine
	%Emachine_ee	= Percentage of ENERGY STAR [®] clothes washer system energy used for washer machine
	%Едны в	= Percentage of baseline clothes washer system energy used for water
	55	heating
	%E _{dhw ee}	= Percentage of ENERGY STAR [®] clothes washer system energy used for
	-	water heating
	%E _{dryer_b}	= Percentage of baseline clothes washer system energy used for the clothes
	_	dryer
	%E _{dryer_ee}	= Percentage of ENERGY STAR [®] clothes washer system energy used for the
		clothes dryer
	%Dried	= Percentage of washed loads that are dried in dryer (%)
	CAPEE	= Rated capacity of the installed clothes washer (ft ³)
	%DHW _{GAS}	= Percentage of homes with natural gas water heating (%)
	%DHW _{OIL}	= Percentage of homes with oil water heating (%)
	%DHW _{PROP}	= Percentage of homes with propane or LNG water heating (%)
	%Dryer _{GAS}	= Percentage of homes with gas clothes dryers (%)
	%Dryer _{PROP}	= Percentage of homes with propane or LNG clothes dryers (%)
	Eff _{GAS}	= Efficiency of existing gas-fired water heaters (%)
	Eff _{OIL}	= Efficiency of existing oil-fired water heaters (%)
	Eff _{PROP}	= Efficiency of existing propane-fired water heaters (%)
	IWF _{BASE}	= Rated integrated water factor for the baseline clothes washer
		(gallons/cycle/ft ³)
	IWFEE	= Rated integrated water factor for the ENERGY STAR [®] clothes washer
		(gallons/cycle/ft ³)
	0.003412	= Conversion factor: 0.003412 MMBtu per kWh
EFFICIENCY ASSUMPTIONS		
Baseline Efficiency	Standard cloth	es washer. The current federal standard requires a minimum IMEF of 1.29 and
	IWF of 8.4 for t	op loading machines and IMEF of 1.84 and IWF of 4.7 for front loading
	machines. The	se standards are valid for clothes washers manufactured on or after March 7,
	2015.	
Efficient Measure	ENERGY STAR®	-certified clothes washer.

Clothes Washer (CW)													
PARAMETER VALUES (DEEMED)													
Measure	CAPEE	IMEF BASE	IMEF	EE E	ff _{GAS}	Eff _{PF}	ROP	Eff _{OIL}	Life (yı	rs)	Cost (\$)		
	3.81 ²³⁴	1.66 ²³⁵	66 ²³⁵ 2.61 ²		75% ²³⁶		236	75% ²³⁶	11 ²³⁷	'	92 ²³⁸		
	%Emachine_	в %Ема	CHINE_EE	%Edry	′ER_B	%Ε _Γ	DRYER_EE	%	Edhw_b	0	%E _{DHW_ee}		
	8% ²³⁹	8%	6 ²³⁹	61%	239	69	69% ²³⁹		31% ²³⁹		23% ²³⁹		
ENERGY STAR [®] CW	IWF_{BASE}	IW	Ϋ́F _{EE}	%DHV	V _{elec}	%D	HW _{GAS}	%D	%DHW _{PROP}		%DHW _{OIL}		
	5.92 ²³⁵	3.9	3 ²³⁴	23%	240	10)%²⁴⁰	g)%²⁴⁰		53% ²⁴⁰		
	Loads	%Dried	1 %C	Dryer _{ELEC}	er _{ELEC} %Dry		ver _{GAS} %Dryer		%RES		%COMM		
	322.4 ²⁴¹	100% ²⁴	² 89	9.6% ²⁴³	7.8	²⁴³ 2.6%		%	99% ²⁴⁴		1% ²⁴⁴		
IMPACT FACTORS													
Measure	ISR	RRE		RR _D	C	Fs	CF	w	FR		SO		
ENERGY STAR [®] CW	100% ²⁴⁵	100%2	¹⁶ 1	00% ²⁴⁶	4.8%	6% ²⁴⁷	6.3%	6 ²⁴⁸	56.7% ²⁴⁹		3.3% ²⁴⁹		

- ²³⁸ Based on program data 7/1/2016-6/30/2017 and shelf survey of non-program units conducted in August 2017. Average price of program unit: \$647. Weighted average price of surveyed non-program unit using assumed sales shares: \$555.
- ²³⁹ Illinois Statewide TRM Effective 06/01/15.

²³⁴ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-13.

²³⁵ Weighted average IMEF and IWF of Federal Standard rating for Front Loading and Top Loading units. Weighting is based upon the relative top- versus front-loading percentage of available non-ENERGY STAR[®] product in the CEC database.

²³⁶ EMT assumes 75 percent efficiency for existing fossil fuel-fired water heaters.

²³⁷ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-18.

²⁴⁰ Ibid., Table 2-15.

²⁴¹ Ibid., Table 2-14.

²⁴² NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 40: consistent with implicit assumption used in the savings algorithm for clothes washers.

²⁴³ Ibid., Table 2-16.

²⁴⁴ EFI program data analysis Sept 23, 2015. Since commercial sector participation is currently very low, no adjustments to savings estimates are being made at this time.

²⁴⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 38.

²⁴⁶ Realization rates are 100 percent since savings estimates are based on evaluation results.

 ²⁴⁷ Derived from summer peak demand NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 45.
 ²⁴⁸ Derived from winter peak demand Memo provided to supplement NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

²⁴⁹ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41

Low-flow Kitchen Aera	tor (LFKA, LILFKA)									
Last Revised Date	7/1/2017									
MEASURE OVERVIEW										
Description	This measure involves the replacement of existing kitchen aerators with low-flow aerators.									
	he savings assume all fixtures are served by electric resistance water heaters.									
Primary Energy Impact	Electric (additional impacts include: water)									
Sector	Residential									
Program(s)	Appliance Rebate Program									
End-Use	Domestic Hot Water									
Decision Type	Retrofit									
DEEMED GROSS ENERGY	SAVINGS (UNIT SAVINGS)									
Demand Savings ²⁵⁰	HPWH: $\Delta kW = 0.007$ $\Delta kW_{WP} = 0.00008$ $\Delta kW_{SP} = 0.00005$									
	ERWH: $\Delta kW = 0.023$ $\Delta kW_{WP} = 0.0003$ $\Delta kW_{SP} = 0.0002$									
Annual Energy Savings ²⁵¹	HPWH: ΔkWh/yr = 79 ERWH: ΔkWh/yr = 283									
Annual Water Savings	$\Delta Gallons/yr = 2.696$									
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVINGS)									
Demand Savings	$\Delta kW = \Delta kWh/vr \times F_{ED}$									
Annual Energy Savings	$\Delta kWh/vr = N_{opl} \times t \times 365 \times (GPM_{BASE} - GPM_{FE}) / N_{fixtures} \times \rho_{H20} \times C\rho_{H20} / 3.412 \times (T_{opl} - T_{in}) / RE_{FWH}$									
Annual Water Savings	$\Delta Gallons/vr = N_{pol} \times t \times 365 \times (GPM_{RASE} - GPM_{EE}) / N_{fivtures}$									
Definitions	Unit = 1 kitchen aerator									
	F_{ED} = Energy to Demand ratio (kW/kWh)									
	N_{pol} = Number of people per home (person/home)									
	t = Total time all kitchen aerators are used per day per person (min/day/person)									
	GPM _{BASE} = Baseline flowrate of kitchen aerator (gallon/min)									
	GPM _{EE} = Measure flowrate of kitchen aerator (gallon/min)									
	N _{fixtures} = Number of kitchen sinks (sinks/home)									
	T _{pou} = Temperature at point of use (°F)									
	T _{in} = Temperature of water mains (°F)									
	RE _{EWH} = Recovery efficiency of electric hot water heater									
	ρ_{H20} = Density of water (8.33 lbs per gallons)									
	Cp _{H20} = Specific heat of water: 1 Btu/lb/°F									
	3,412 = Conversion: 3,412 Btu per kWh									
	365 = Conversion: 365 days per year									
	60 = Conversion: 60 minutes per hour									
EFFICIENCY ASSUMPTION	NS									
Baseline Efficiency	Federal standards set a maximum 2.2 GPM for faucet aerators manufactured after January 1, 1994. ²⁵²									
Efficient Measure	High-efficiency Kitchen Faucet Aerator (1.5 GPM)									

²⁵⁰ For consumer products where water heater type is unknown savings listed in TRM for ERWH are multiplied by 21% in effRT to account for the percent of water heaters that are electric resistance. NMR, 2015 Maine Residential Baseline Study.

²⁵¹ For consumer products where water heater type is unknown savings listed in TRM for ERWH are multiplied by 21% in effRT to account for the percent of water heaters that are electric resistance. NMR, 2015 Maine Residential Baseline Study.

²⁵² Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

Low-flow Kitchen Aerator (LFKA, LILFKA)											
PARAMETER VALUES (DEE	EMED)										
Measure	t	N _{ppl}		GPM _{BASE}	PM _{BASE} GPM _{EE} N _{fixtures} Life (Life (y	rs)	Cost (\$)		
Low-flow Kitchen Aerator	4.51 ²⁵³	2.3	4 ²⁵⁴	2.2 ²⁵²	1.5	1 ²⁵⁵	10 ²⁵	6	Actual ²⁵⁷		
	F _{ED}			T _{pou}	T _{in}	REEV	VH				
ERWH	0.000080	0.0000040258		02253	FO 9 259	0.98	260				
HPWH	0.000080	13		93	50.8	3.5 ²	61				
IMPACT FACTORS											
Measure	ISR	R	R _E	RR _D	CFs	CFw	FF	2	SO		
Retail	100% ²⁶²	100	% ²⁶³	100% ²⁶³	0.8% ²⁶⁴	1.2% ²⁶⁴	25%	265	0% ²⁶⁶		
Low Income	100% ²⁶⁷	100% ²⁶⁸		100%268	0.8% ²⁶⁹	1.2% ²⁶⁹	0%2	270	0% ²⁷¹		

²⁶⁴ See Appendix B: Coincidence and Energy Period Factors.

 ²⁵³ The Cadmus Group and Opinion Dynamics, MEMD: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.
 ²⁵⁴ American Community Survey, 2011 1-year estimate for population of Maine: http://www.census.gov/acs/www/

²⁵⁵ Assumed value: 1 kitchen faucet per home.

²⁵⁶ NREL, National Residential Efficiency Measure Database.

²⁵⁷ Total cost. For direct install it includes installation cost.

²⁵⁸ State of Pennsylvania, Technical Reference Manual, Rev date: March 2015, p. 126.

²⁵⁹ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

²⁶⁰ NREL, Building America Research Benchmark Definition, 2009, p.12, <u>http://www.nrel.gov/docs/fy10osti/47246.pdf</u>

²⁶¹ Program heat pump water heater required energy factor.

²⁶² EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

²⁶³ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

²⁶⁵ Program not yet evaluated, assume default FR of 25%.

²⁶⁶ Program not yet evaluated, assume default SO of 0%.

²⁶⁷ EMT assumes that all received units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

²⁶⁸ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

²⁶⁹ See Appendix B: Coincidence and Energy Period Factors.

²⁷⁰ Program assumes no free ridership for Low Income programs.

²⁷¹ Program not yet evaluated, assume default SO of 0%.

Low-flow Bathroom Aer	ator (LFBA, LILFBA)									
Last Revised Date	7/1/2017									
MEASURE OVERVIEW										
Description	PA WaterSense Low-flow Aerator. This measure involves the replacement of existing									
	athroom aerators with low-flow aerators. The savings assume all fixtures are served by									
	ectric resistance water heaters.									
Primary Energy Impact	Electric (additional impacts include: water)									
Sector	Residential									
Program(s)	Appliance Rebate Program									
End-Use	Domestic Hot Water									
Decision Type	Retrofit									
DEEMED GROSS ENERGY S	AVINGS (UNIT SAVINGS)									
Demand Savings ²⁷²	HPWH: $\Delta kW = 0.001$ $\Delta kW_{WP} = 0.000003$ $\Delta kW_{SP} = 0.000002$									
	ERWH: $\Delta kW = 0.002$ $\Delta kW_{WP} = 0.000009$ $\Delta kW_{SP} = 0.000007$									
Annual Energy Savings ²⁷³	HPWH: Δ kWh/yr = 8 ERWH: Δ kWh/yr = 29									
Annual Water Savings	ΔGallons/yr = 333									
GROSS ENERGY SAVINGS A	ALGORITHMS (UNIT SAVINGS)									
Demand Savings	$\Delta kW = \Delta kWh/yr \times F_{ED}$									
Annual Energy Savings	$\Delta kWh/yr = N_{ppl} \times t \times 365 \times (GPM_{BASE} - GPM_{EE}) / N_{fixture} \times \rho_{H20} \times Cp_{H20} / 3,412 \times (T_{pou} - T_{in}) / C_{Pou} + C_{$									
	RE _{EWH}									
Annual Water Savings	Δ Gallons/yr = N _{ppl} × t × 365 × (GPM _{BASE} – GPM _{EE}) / N _{fixture}									
Definitions	Unit = 1 bathroom aerator									
	F _{ED} = Energy to demand ratio (kW/kWh)									
	GPM _{BASE} = Baseline flowrate of bathroom aerator (gallon/min)									
	GPM _{EE} = Measure flowrate of bathroom aerator (gallon/min)									
	t = Total time all bathroom aerators are used per day per person (min/day/person)									
	N _{ppl} = Number of people per home (person/home)									
	N _{fixture} = Number of bathroom sinks (sinks/home)									
	T _{pou} = Temperature at point of use (°F)									
	T _{in} = Temperature of water mains (°F)									
	RE _{EWH} = Recovery efficiency of electric hot water heater									
	ρ_{H20} = Density of water (8.33 lbs per gallons)									
	Cp _{H20} = Specific heat of water: 1 Btu/lb/°F									
	3,412 = Conversion: 3,412 Btu per kWh									
	365 = Conversion: 365 days per year									
	60 = Conversion: 60 minutes per hour									
EFFICIENCY ASSUMPTIONS										
Baseline Efficiency	Federal standards set a maximum 2.2 GPM for faucet aerators manufactured after January									
Efficient Measure	LISEDA WaterSense High-efficiency Bathroom Sink Faucet (1 E GDM) ²⁷⁵									
	USERA WATERSEISE HIGH-EITCHEICY BACHTOUTH SHIK FAULET (1.5 GPIVI)									

²⁷⁴ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

²⁷² For consumer products where water heater type is unknown savings listed in TRM for ERWH are multiplied by 21% in effRT to account for the percent of water heaters that are electric resistance. NMR, 2015 Maine Residential Baseline Study.

²⁷³ For consumer products where water heater type is unknown savings listed in TRM for ERWH are multiplied by 21% in effRT to account for the percent of water heaters that are electric resistance. NMR, 2015 Maine Residential Baseline Study.

²⁷⁵ http://www.epa.gov/WaterSense/docs/faucet_spec508.pdf

Low-flow Bathroom Aerator (LFBA, LILFBA)													
PARAMETER VALUES (DEEL	MED)												
Meas	sure	t		1	N _{ppl}	N _{fixture}		GPM BASE		GPM _{EE}	Life	(yrs)	Cost (\$)
Low-flow Bathroom Aer	ator	1.65^{2}	276	2.3	34 ²⁷⁷	2.96 ²⁷	8	2.2 ²⁷⁴		1.5 ²⁷⁵	10	279	actual
		FE				T _{pou}	T _{in}			RI	EWH		
ER	WH	0 0000001 2280		280	9C ²⁷⁶			FO 9281		0.98 ²⁸²			
HP	WH	0.00008013-00			80		50.8			3.5 ²⁸³			
IMPACT FACTORS													
Measure	-	SR	SR RR _E			RR_{D}		CFs		-w	FR		SO
Retail	10	0% ²⁸⁴ 10		0% ²⁸⁵	5 1	.00% ²⁸⁶	(0.3% ²⁸⁷	0.42	6 ²⁸⁸	25% ²⁸⁹		0% ²⁹⁰
Low Income	10	00% ²⁹¹ 10		0% ²⁹²	² 1	.00% ²⁹³	(0.3% ²⁹⁴	0.49	6 ²⁹⁵	0% ²⁹⁶		0% ²⁹⁷

²⁷⁶ The Cadmus Group and Opinion Dynamics, MEMD: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.

²⁷⁷ American Community Survey, 2011 1 year estimate for population of Maine: http://www.census.gov/acs/www/

²⁷⁸ 2009 Residential Energy Consumption Survey (RECS). Microdata for CT, ME, NH, RI, and VT single-family detached homes; assuming 1.5 faucets per full bathroom and 1 per half bathroom.

²⁷⁹ NREL, National Residential Efficiency Measure Database.

²⁸⁰ State of Pennsylvania, Technical Reference Manual, Rev date: March 2015, p. 126.

²⁸¹ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

²⁸² NREL, Building America Research Benchmark Definition, 2009, p.12, http://www.nrel.gov/docs/fy10osti/47246.pdf

²⁸³ Program heat pump water heater required energy factor.

²⁸⁴ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

²⁸⁵ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.
²⁸⁶ Ibid.

²⁸⁷ See Appendix B: Coincidence and Energy Period Factors.

²⁸⁸ Ibid.

²⁸⁹ Program not yet evaluated, assume default FR of 25%.

²⁹⁰ Program not yet evaluated, assume default SO of 0%.

²⁹¹ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

 ²⁹² This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.
 ²⁹³ Ibid.

²⁹⁴ See Appendix B: Coincidence and Energy Period Factors.

²⁹⁵ Ibid.

²⁹⁶ Program assumes no free ridership for Low Income programs.

²⁹⁷ Program not yet evaluated, assume default SO of 0%.

Low-flow Showerhead	I (LFSH)										
Last Revised Date	3/1/2015										
MEASURE OVERVIEW											
Description	EPA WaterSense Low-flow Showerhead. This measure involves the replacement of existing showerheads with low-flow showerheads. The savings assume all fixtures are served by electric resistance water heaters.										
Primary Energy Impact	ectric (additional impacts include: water)										
Sector	Residential										
Program(s)	Appliance Rebate Program										
End-Use	Domestic Hot Water										
Decision Type	Retrofit										
DEEMED ENERGY SAVIN	GS (UNIT SAVINGS)										
Demand Savings ²⁹⁸	HPWH: $\Delta kW = 0.007$ $\Delta kW_{WP} = 0.00005$ $\Delta kW_{SP} = 0.00003$ ERWH: $\Delta kW = 0.012$ $\Delta kW_{WP} = 0.0001$ $\Delta kW_{SP} = 0.00006$										
Annual Energy Savings ²⁹⁹	HPWH: ΔkWh/yr = 84 ERWH: ΔkWh/yr = 150										
Annual Water Savings	$\Delta Gallons/yr = 1,200$										
GROSS ENERGY SAVING	S ALGORITHMS (UNIT SAVINGS)										
Demand Savings	$\Delta kW = \Delta kWh/yr \times F_{ED}$										
Annual Energy Savings	$\label{eq:linear_state} \begin{split} \Delta k W h/yr = N_{ppl} \times t \times 365 \times N_{showers} / N_{fixture} \times (GPM_{BASE} - GPM_{EE}) \times \rho_{H20} \times C_{H20} / 3,412 \times (T_{pou} - T_{in}) \\ / RE_{EWH} \end{split}$										
Annual Water Savings	Δ Gallons/yr = N _{ppl} × t × 365 × N _{showers} / N _{fixture} × (GPM _{BASE} – GPM _{EE})										
Definitions	Unit = 1 efficient showerhead										
	F _{ED} = Energy to demand ratio (kW/kWh)										
	GPM _{BASE} = Baseline flowrate of showerhead (gallon/min)										
	GPM _{EE} = Measure flowrate of showerhead (gallon/min)										
	t = Length of shower (minutes/shower)										
	N _{ppl} = Number of people per home (person/home)										
	N _{showers} = Number of showers per person per day (showers/person/day)										
	N _{fixture} = Number of showerheads (showerhead/home)										
	T _{pou} = Temperature at point of use (°F)										
	T _{in} = Temperature of water mains (°F)										
	RE _{EWH} = Recovery efficiency of electric hot water heater										
	ρ _{H20} = Density of water: 8.33 lbs per gallons										
	C _{H20} = Specific heat of water: 1 Btu/lb/°F										
	3,412 = Conversion: 3,412 Btu per kWh										
	365 = Conversion: 365 day per year										
	60 = Conversion: 60 minutes per hour										
EFFICIENCY ASSUMPTIO	NS										
Baseline Efficiency	Federal standards set a maximum 2.5 GPM for all showerheads manufactured after January 1, 1994. ³⁰⁰										
Efficient Measure	USEPA WaterSense High-efficiency Showerhead (2.0 GPM) ³⁰¹										

²⁹⁸ For consumer products where water heater type is unknown savings listed in TRM for ERWH are multiplied by 21% in effRT to account for the percent of water heaters that are electric resistance. NMR, 2015 Maine Residential Baseline Study.

²⁹⁹ For consumer products where water heater type is unknown savings listed in TRM for ERWH are multiplied by 21% in effRT to account for the percent of water heaters that are electric resistance. NMR, 2015 Maine Residential Baseline Study.

 $^{^{\}rm 300}$ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

³⁰¹ Water-Efficient Showerheads, WaterSense: An EPA Partnership Program, <u>http://www.epa.gov/WaterSense/products/showerheads.html</u>

Low-flow Showerhead	l (LFSH)								
PARAMETER VALUES (D	EEMED)								
Measure	t	N _{ppl}	N_{showers}	N _{fixture}	GPM BASE	GPMEE	T _{pou}	Life (yrs)	Cost (\$)
Low-flow Showerhead	7.83 ³⁰²	2.34 ³⁰³	0.61 ³⁰⁴	1.7 ³⁰⁵	2.5 ³⁰⁰	2.0 ³⁰⁶	101 ³⁰⁷	10 ³⁰⁸	actual
Measure	T _{in}	REEWH	F	Đ					
ERWH	FO 9309	0.98310	0.0000	001 2311					
HPWH	50.8	3.5 ³¹²	0.00008	5013					
IMPACT FACTORS									
Measure	ISR		RRE	RR□)	CFs	CFw	FR	SO
Retail	100% ³¹	³ 1	00% ³¹⁴	100%	³¹⁴ C	.5% ³¹⁵	0.8% ³¹⁵	25% ³¹⁶	0% ³¹⁷
Low Income	100%31	8 1	00% ³¹⁹	100%	³¹⁹ C	.5% ³²⁰	0.8% ³²⁰	0% ³²¹	0% ³²²

³⁰² The Cadmus Group and Opinion Dynamics, MEMD: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group. ³⁰³ American Community Survey, 2011 1 year estimate for population of Maine: http://www.census.gov/acs/www/

 ³⁰⁴ The Cadmus Group and Opinion Dynamics, MEMD: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.
 ³⁰⁵ 2009 Residential Energy Consumption Survey (RECS). Number of full bathrooms for single family detached home, microdata for CT, ME, NH, RI, and Vermont.
 ³⁰⁶ Measure flowrate: http://www.epa.gov/WaterSense/products/showerheads.html

³⁰⁷ The Cadmus Group and Opinion Dynamics, MEMD: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group. ³⁰⁸ NREL, National Residential Efficiency Measure Database.

³⁰⁹ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

³¹⁰ NREL, Building America Research Benchmark Definition, 2009, p.12, <u>http://www.nrel.gov/docs/fy10osti/47246.pdf</u>

³¹¹ State of Pennsylvania, Technical Reference Manual, Rev date: March 2015, p.126.

³¹² Program heat pump water heater required energy factor.

³¹³ EMT assumes that all purchased units are installed (i.e. .ISR = 100%). This is consistent with the MA 2013-2015 TRM.

³¹⁴ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

³¹⁵ See Appendix B: Coincidence and Energy Period Factors.

³¹⁶ Program not yet evaluated, assume default FR of 25%.

³¹⁷ Program not yet evaluated, assume default SO of 0%.

³¹⁸ EMT assumes that all received units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

³¹⁹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

³²⁰ See Appendix B: Coincidence and Energy Period Factors.

 $^{^{\}rm 321}\,{\rm Program}$ assumes no free ridership for Low Income programs.

³²² Program not yet evaluated, assume default SO of 0%.

	valve (ISV, LILISH)									
Last Revised Date	7/1/2017									
MEASURE OVERVIEW										
Description	This measure involves the replacement of existing showerheads with thermostatically controlled low-flow showerheads that shutoff water when set temperature is reached until restarted. Savings are achieved by eliminating wasted hot water between the time hot water reaches the shower and when the shower begins to be used. The savings assume all fixtures are served by electric resistance water heaters.									
Primary Energy Impact	Electric (additional impacts include: water)									
Sector	Residential									
Program(s)	Appliance Rebate Program									
End-Use	Domestic Hot Water									
Decision Type	Retrofit									
DEEMED ENERGY SAVIN	GS (UNIT SAVINGS)									
Demand Savings ³²³	HPWH: $\Delta kW = 0.010$ $\Delta kW_{WP} = 0.0008$ $\Delta kW_{SP} = 0.0005$ ERWH: $\Delta kW = 0.035$ $\Delta kW_{WP} = 0.0003$ $\Delta kW_{SP} = 0.0002$									
Annual Energy Savings ³²⁴	HPWH: ΔkWh/yr = 123 ERWH: ΔkWh/yr = 442									
Annual Water Savings	$\Delta Gallons/yr = 3,153$									
GROSS ENERGY SAVINGS	S ALGORITHMS (UNIT SAVINGS)									
Demand Savings	$\Delta kW = \Delta kWh/yr \times F_{ED}$									
Annual Energy Savings	$ \begin{array}{l} \Delta kWh/yr = N_{ppl} \times 365 \times N_{showers} \ / \ N_{fixture} \times \rho_{H20} \times C_{H20} \ / \ 3,412 \times (t \times (GPM_{BASE} - GPM_{EE}) \times (T_{pou} - T_{in}) \\ + \ GPM_{BASE} \times t_W/60 \times (T_{WH} - T_{in}) \) \ / \ RE_{EWH} \end{array} $									
Annual Water Savings	$\Delta Gallons/yr = N_{ppl} \times 365 \times N_{showers} / N_{fixture} \times (t \times (GPM_{BASE} - GPM_{EE}) + GPM_{BASE} \times t_W/60)$									
Definitions	Unit= 1 efficient showerhead GPM_{BASE} = Baseline flowrate of showerhead (gallon/min) GPM_{EE} = Measure flowrate of showerhead (gallon/min)t= Length of shower (minutes/shower) t_w = Seconds of wasted hot water between when water gets hot and user steps in N_{ppl} = Number of people per home (person/home) $N_{showers}$ = Number of showers per person per day (showers/person/day) $N_{fixture}$ = Number of showerheads (showerhead/home) T_{pou} = Temperature at point of use (°F) T_{in} = Temperature of water mains (°F) T_{WH} = Water heater set temperature (°F) RE_{EWH} = Recovery efficiency of electric hot water heater ρ_{H20} = Density of water: 8.33 lbs per gallons C_{H20} = Specific heat of water: 1 Btu/lb/°F $3,412$ = Conversion: $3,412$ Btu per kWh 365 = Conversion: 365 day per year 60 = Conversion: 60 minutes per hour									

³²³ For consumer products where water heater type is unknown savings listed in TRM for ERWH are multiplied by 21% in effRT to account for the percent of water heaters that are electric resistance. NMR, 2015 Maine Residential Baseline Study.

³²⁴ For consumer products where water heater type is unknown savings listed in TRM for ERWH are multiplied by 21% in effRT to account for the percent of water heaters that are electric resistance. NMR, 2015 Maine Residential Baseline Study.

Thermostatic Shower	Valve (TSV	, LILF	FSH)								
EFFICIENCY ASSUMPTIONS											
Baseline Efficiency	Federal st 1994. ³²⁵	ederal standards set a maximum 2.5 GPM for all showerheads manufactured after January 1, 1994. ³²⁵									
Efficient Measure	USEPA Wa	aterSe	ense l	High-effic	ciency Sh	owerl	head v	with The	rmostatic Co	ntrol Valve (2	L.5 GPM) ³²⁶
PARAMETER VALUES (D	ARAMETER VALUES (DEEMED)										
Measure	N _{ppl}	Nsho	wers	N _{fixture}	t	GPN	I BASE	GPMEE	T _{pou}	T _{in}	tw
Low-flow Showerhead	2.34 ³²⁷	0.61	1 ³²⁸	1.7 ³²⁹	7.83 ³³⁰	2.5 ³³¹		1.5 ³³²	101 ³³³	50.8 ³³⁴	59 ³³⁵
Measure	Т _{WH}	REH	PWH	F	Đ					Life (yrs)	Cost (\$)
ERWH	126.2 ³³⁶	0.98	8 ³³⁷	0.0000	8013 ³³⁸					10 ³³⁹	\$30 ³⁴⁰
HPWH		3.5	341								+
IMPACT FACTORS											
Measure	ISR			RRE	RRD		(CFs	CFw	FR	SO
Retail	70% ³⁴²		10	0% ³⁴³	100%	344	0.5% ³⁴⁵		0.8% ³⁴⁶	25% ³⁴⁷	0% ³⁴⁸
Low Income	70% ³⁴⁹		10	00% ³⁵⁰ 100%		351	0.5	5% ³⁵²	0.8% ³⁵³	0% ³⁵⁴	0% ³⁵⁵

³²⁵ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

³²⁶ http://thinkevolve.com/wp-content/uploads/2014/11/evolve-1.5-gpm-Single-Function-Showerhead-with-ShowerStart-TSV.pdf

³²⁷ American Community Survey, 2011 1 year estimate for population of Maine: http://www.census.gov/acs/www/

³²⁸ Ibid.

³²⁹ 2009 Residential Energy Consumption Survey (RECS). Number of full bathrooms for single family detached home, microdata for CT, ME, NH, RI, and Vermont.

³³⁰ The Cadmus Group and Opinion Dynamics, MEMD: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.
³³¹ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

³³² Measure flowrate: <u>http://www.epa.gov/WaterSense/products/showerheads.html</u>

³³³ The Cadmus Group and Opinion Dynamics, MEMD: Showerhead and Faucet Aerator Meter Study, June 2013. Prepare for Michigan Evaluation Working Group.
³³⁴ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

³³⁵ State of Pennsylvania, Technical Reference Manual, Rev date: March 2015, p. 126.

³³⁶ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014

³³⁷ NREL, Building America Research Benchmark Definition, 2009, p.12, <u>http://www.nrel.gov/docs/fy10osti/47246.pdf</u>

³³⁸ State of Pennsylvania, Technical Reference Manual, Rev date: March 2015, p. 126.

³³⁹ 2010 Ohio TRM: conservative estimate based on review of TRM assumptions from other states.

³⁴⁰ Based on program data. \$40 TSV showerhead and \$10 non-WaterSense showerhead.

³⁴¹ Program heat pump water heater required energy factor.

³⁴² Assumes same ISR as mailed kits.

³⁴³ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

³⁴⁴ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

³⁴⁵ See Appendix B: Coincidence and Energy Period Factors.

³⁴⁶ See Appendix B: Coincidence and Energy Period Factors.

³⁴⁷ Program not yet evaluated, assume default FR of 25%.

³⁴⁸ Program not yet evaluated, assume default SO of 0%.

³⁴⁹ ISR based on results of customer survey conducted in October 2016 by CLEAResult for kits mailed April-Sept 2016.

³⁵⁰ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

³⁵¹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

³⁵² See Appendix B: Coincidence and Energy Period Factors.

³⁵³ See Appendix B: Coincidence and Energy Period Factors.

³⁵⁴ Program assumes no free ridership for Low Income programs

³⁵⁵ Program not yet evaluated, assume default SO of 0%.

/1/2017
NERGY STAR [®] -certified Heat Pump Water Heaters (HPWH). This measure involves the purchase and stallation of a new ENERGY STAR [®] certified HPWH in place of a new code-compliant or standard ficiency electric water heater. Savings are counted only for the improved water heater efficiency. ³⁵⁶ list of certified ENERGY STAR [®] heat pump water heaters is available at: ttp://downloads.energystar.gov/bi/gplist/Water Heaters Product List.xls
ectric
esidential, Commercial
ppliance Rebate Program
omestic Hot Water
ew Construction, Replace on Burnout
AVINGS (UNIT SAVINGS)
kW _{SP} = 0.195 kW _{WP} = 0.417
kWh/yr = 2,115
LGORITHMS (UNIT SAVINGS)
kW _{SP} = ∆kW _{SP} /y _{Evaluated} *Scaling factor Demand - Summer Peak kW savings from a HPWH eld-evaluation study scaled for a COP of 3.35 kW _{WP} = ∆kW _{WP} /y _{Evaluated} *Scaling factor Demand - Winter Peak kW savings from a HPWH eld-evaluation study scaled for a COP of 3.35
kWh/yr = Δ kWh/yr _{Evaluated} *Scaling factor Energy - Annual kWh savings from a HPWH field- valuation study scaled for a COP of 3.35 ey assumptions include: Average tank size for the Efficiency Maine Trust (EMT) in-program HPWHs is approximately 50 gallons. ³⁵⁷ Typical HPWH set-point temperature in Maine households is expected to be comparable to the set-point temperature in Massachusetts and Rhode Island households metered. ³⁵⁸ Most, if not all, of EMT's in-program HPWHs will be installed in conditioned or partially conditioned spaces (i.e. regulated temperature and/or humidity), as was the case for most HPWH units studied in the evaluation ³⁵⁹ Realized energy savings scale by COP and water use as follows: caling factor energy = (1/COP _{BASE} – 1/COP _{EE})/(1/COP _{BASE_STUDY} – 1/COP _{STUDY}) * WU _{ME} /WU _{STUDY} = 254 Realized demand savings scale by COP as follows: caling factor demand = (1/COP _{BASE} – 1/COP _{EE})/(1/COP _{BASE_STUDY} – 1/COP _{STUDY}) = 1.116 Vhere \circ COP _{BASE} study = 0.904 – coefficient of performance for standard 50 gallon water heater

³⁵⁶ Interactive impacts on cooling, heating and humidification energy are assumed to be negligible due to the short cooling season in Maine and the expectation that most water heaters are not located in conditioned spaces. EMT will re-evaluate this assumption as more data and evaluation results are available.

³⁵⁷ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-31; at least 89 percent of HPWH units in EMT program are 50 gallons units (with the remaining 11 percent with unknown tank size). Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012 included 10 units with 50 gallon tanks; 1 unit with a 60 gallon tank; and 3 units with 80 gallon tanks.

³⁵⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-35; the average set-point temperature in Maine is 126.2°F, compared to the average set-point temperature of 127.6°F found in Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012.

³⁵⁹ Considering Maine's climate (winter), it can be anticipated that most, if not all, properly installed HPWHs will be installed in fully or partially conditioned spaces. ³⁶⁰ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

Heat Pump Water Heater (HPWH)											
 COP_{STUDY} = 2.35 – average rated coefficient of performance of water heaters included in the study³⁶¹ COP_{BASE} = 0.945 – coefficient of performance for standard 50 gallon water heater COP_{EE} = 3.35 – Average EF of a participating Heat Pump Water Heater based on PY 2017 sales data for the time period of 3/23/17 - 4/7/17 (reflects new models entering the marketplace) WU_{ME} = 51.1³⁶² WU_{STUDY} = 45.5³⁶³ 											
EFFICIENCY ASSUMPTIONS											
Baseline Efficiency Standard 50-gallon residential water heater with an AHRI Energy Factor = 0.945. ³⁶⁴											
Efficient Measure	Efficient Measure ENERGY STAR [®] -certified model (EF = 3.11 ³⁶⁵)										
PARAMETER VALUES (DE	EEMED)										
Measure	%F	RES	%C	%COMM		rs)		Cost (\$)			
ENERGY STAR [®] HPWH	989	6 ³⁶⁶	29	% ³⁶⁶	13 ³⁶⁷		1,028 ³⁶⁸		8 ³⁶⁸		
	A 1.3 A / h. /		41.347		A L-) A /		S	caling	factors		
	ΔKWN/	Y Evaluated	ΔKVVs	P, Evaluated	$\Delta KVV_{WP, EV}$	aluated	Ene	rgy	Demand		
ENERGY STAR [®] HPWH	1,6	687	0.	175	0.374	1	1.2	54	1.116		
IMPACT FACTORS	•										
Measure	ISR	RR _E	RR _D	CFs	CFw	FR			SO		
ENERGY STAR [®] HPWH	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										

³⁶⁴ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C. EF = 0.945 value is calculated for 50-gallon water heater.

³⁶⁵ Average EF of a 50 gallon Heat Pump Water Heater based on PY 2016 sales data for the time period of 3/3/16-4/7/16.

³⁶⁷ NREL, National Residential Efficiency Measure Database.

³⁶¹ Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012, Table 1.

³⁶² For Maine, 51.1 GPD is used based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev. Lawrence Berkeley Laboratory, 1996.

³⁶³ Average GPD found in the Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012, was 45.5 GPD.

³⁶⁶ EFI program data analysis Sept 23, 2015. Since commercial sector participation is currently very low, no adjustments to savings estimates are being made at this time.

³⁶⁸ Incremental cost for 40-50-gallon unit, based on water heater cost market research conducted by CleaResult, August 2017. Weighted average MSRP for heat pump water heaters rebated between Feb-Oct 2017 is \$1,379 and average retail price for top selling electric resistance water heater is \$352 based on November 2017 shelf prices from Home Depot, and Lowe's.

³⁶⁹ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 60.

³⁷⁰ Realization rates are 100 percent since savings estimates are based on evaluation results.

³⁷¹ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

³⁷² NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-41.

Wi-Fi Enabled Thermostat (WIFITSTAT)													
Last Revised Date	evised Date 2/1/2016 (new measure)												
MEASURE OVERVIEW													
Description	This measure existing non-	e involves the programmab	e purchase a le thermosta	nd inst at.	allation	of a nev	w Wi-Fi E	nabled	Thermosta	t in p	lace of an		
Primary Energy Impact	Electric, Hea	lectric, Heating Oil, Propane, Natural Gas											
Sector	Residential,	esidential, Commercial											
Program(s)	Appliance R	ppliance Rebate Program											
End-Use	Heating and	leating and Cooling											
Decision Type	Retrofit	etrofit											
DEEMED GROSS ENERGY	Y SAVINGS (U	AVINGS (UNIT SAVINGS)											
Demand Savings	$\Delta kW = 0$	$\Delta kW = 0$											
Annual Energy Savings	Electric Savir	lectric Savings: $\Delta kWh/yr = 2$											
	Fuel Savings	AMMBtu/yr = 11.4											
	Fuel Savings	el Savings by Type: Δ MMBtu _{GAS} = 1.2											
		$\Delta MMBtu_{PROP} = 0.8$											
		$\Delta MMBtu_{OIL} = 8.5$											
	$\Delta MMBtu_{KERO} = 0.8$												
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)													
Demand Savings	$\Delta kW = 0$												
Annual Energy Savings	Electric: ∆kW	/h/yr = CSF	x %COOL x	SEER	x CL + ⊦	ISF x HO	C / 0.003	412 x 9	%FUEL				
	Fuel: ΔMMB	tu/yr = HSF	x HC	Z	\MMBt	u _{FUEL} =	ΔMMBtι	u/yr x 🤅	%FUEL				
Definitions	Unit =	1 Wi-Fi ena	bled therm	ostat									
	CSF =	Cooling Sav	ings Factor	(%)									
	%COOL =	% of homes	s that have	centra	al air co	ndition	ers						
	SEER =	Seasonal er	nergy-efficie	ency ra	atio for	centra	l air cono	ditione	er (Btu/Wa	tt-hr	.)		
	CL =	Annual Coo	ling Load (I	MMBt	u)								
	HSF =	Heating Sav	ings Factor	(%)									
	HC =	Annual Hea	iting Consu	mptio	n (MMI	Btu)							
	3,412 =	Conversion	: 3,412 Btu	per k\	Nh								
	%FUEL =	Home neat	ing tuel dist	ributi	on exci	uding v	vood, co	al and	other				
Basolino Efficiency	Standard no	n nrogramn	aabla tharm	octat									
Efficient Measure	Standard non-programmable thermostat												
PARAMETER VALUES (D													
Measure	CSF	%(00)	CI	F	ISF	нс		%FUFI	Life (v	rs)	Cost (\$)		
Wi-Fi Thermostat	16% ³⁷³	2.4% ³⁷⁴	6.4 ³⁷⁴	10	% ³⁷⁵	114	- 374 T:	able F-	1 10 ³⁷	6	\$249 ³⁷⁷		
IMPACT FACTORS	10/0	2.175	0. 1	1 10	.,.				- 10		Υ <u></u> 'J		
Measure	ISR	RR⊧	RR	D	C	Fs	CFv	N	FR		SO		
ENERGY STAR [®] HPWH	100% ³⁷⁸	100%379	, 100%	379	100	% ³⁸⁰	100%	380	25% ³⁸¹		0% ³⁸²		
L		1			•		1			I			

³⁷³ Based on electricity savings per thermostat from Cadmus Group, Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation, September 2012. ³⁷⁴ NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

³⁷⁵ Based on gas savings per thermostat from Cadmus Group, Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation, September 2012.

³⁷⁶ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007. Table 1.

³⁷⁷ Based on online pricing from multiple retailers as of February 2016.

³⁷⁸ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent ISR.

³⁷⁹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent Realization Rate.

³⁸⁰ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

³⁸¹ Program not yet evaluated, assume default FR of 25%.

Home Energy Savings Program

 $^{^{\}rm 382}$ Program not yet evaluated, assume default SO of 0%.

Custom Path (T1,T2)													
Last Revised Date	7/1/2016												
MEASURE OVERVIEW													
Description	The HESP c	ne HESP custom path involves multiple energy-efficiency measures that achieve at least 20											
	percent ene	ercent energy savings compared to baseline annual energy consumption. ³⁸³											
Energy Impacts	Electric, Na	tural Gas, He	ating Oil, I	Propane, Kero	sene,	Wood, Pelle	et						
Sector	Residential												
Program(s)	Home Ener	gy Savings Pr	ogram										
End-Use	Lighting, He	eating, Coolir	ng, Domest	ic Hot Water,	Refrig	geration, Ap	pliances						
Decision Type	Retrofit												
DEEMED GROSS ENERG	<u>GY SAVINGS (</u>	UNIT SAVIN	GS)										
Demand savings	$\Delta kW = NA$												
Annual energy savings	Annual ene	rgy savings a	lepend on	project-specifi	c data	а.							
GROSS ENERGY SAVING	GS ALGORITH	IMS (UNIT SA	AVINGS)										
Demand savings	$\Delta kW = NA^{38}$	34											
Annual Energy savings	If fuel know	fuel known: Δ MMBtu _{FUEL} = Δ MMBTU											
	If fuel is un	f fuel is unknown: Δ kWh = Δ MMBTU × %FUEL × (1,000 / 3.412)											
	Δ MMBtu _{FUE}	$_{\rm EL} = \Delta MMBTL$	J × %FUEL										
Definitions	Unit	= HESP cu	stom proje	ect									
	Δ MMBTU	= Annual (energy sav	ings predicted	lusing	g the Real H	ome Ana	lyzer (RH	IA) b	uilding			
		simulation	n software	(MMBtu) or c	other a	approved m	odeling s	oftware					
	%FUEL	= Home h	eating fue	distribution e	exclud	ling coal and	l other to	be used	whe	en fuel			
		type is un	known ³⁸⁵										
EFFICIENCY ASSUMPTIC	ONS												
Baseline Efficiency	The baselin	e case is the	baseline a	nnual energy	consu	umption of t	he existir	ng home,	befo	ore any			
	energy-effic	ciency measu	ires are ins	stalled.									
Efficient Measure	The high-ef	ficiency case	involves n	nultiple measu	ires th	hat reduce k	baseline a	annual er	nergy	/			
	consumptio	on by a minin	num of 20	percent. The e	energy	y savings es	timate is	based or	ו bui	lding			
	energy simulation using the RHA or other approved modeling software.												
PARAMETER VALUES							_						
Measure								Life (yı	rs)	Cost (\$)			
	U	%FUEL						0.0397	,				
Custom Path	Model	Table E-1						20387		Actual			
	100			65	<u> </u>	CГ	-	D	<u> </u>				
Measure	ISK 1000/	KK _E					+	K / 390	┣──	SU 00(201			
Custom Path	100%	100%300	NA	10.7509		/9./303	25%	0		U% ³⁹¹			

³⁸³ While not limited to any specific energy-efficiency measure, it is expected that a vast majority of projects in the HESP Custom Path will be weatherization measures that do not perfectly align with the prescriptive weatherization measures offered as part of the Home Energy Savings Program.

³⁸⁴ While there may be some net kW impact associated with Custom Path measures, they are expected to be insignificant in magnitude, and therefore assumed to be negligible.

³⁸⁵ Heating fuel distribution is used to allocate savings to different fuels because the vast majority of the HESP Custom Path projects are expected to be weatherization measures, which predominantly impact the home's heating energy consumption.

³⁸⁶ Annual energy savings are determined on a case-by-case basis by performing building energy simulations using the Real Home Analyzer (RHA) or other approved modeling software.

 ³⁸⁷ 20 years is assumed by EMT. Prescriptive building envelope insulation measures in the Home Energy Savings Program have measure lives of 25 years. To account for any projects that are not weatherization measures and potentially have shorter measure lives, the measure life was adjusted down 20 percent to 20 years.
 ³⁸⁸ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

³⁸⁹ Since most custom path projects will be related to weatherization and savings will be for heating and cooling, the same factors as Ductless Heat Pump are assumed.

³⁹⁰ Program not yet evaluated, assume default FR of 25%.

³⁹¹ Program not yet evaluated, assume default SO of 0%.

Air Sealing (AA, LAA)											
Last Revised Date	7/1/2016										
MEASURE OVERVIEW											
Description	This measure in	nvolves sealing air leaks in v	vindows, doors, roof, crawl spaces and outside walls								
	resulting in dec	creased heating and cooling	loads.								
Energy Impacts	Electric, Natura	al Gas, Oil, Propane, Wood,	Kerosene								
Sector	Residential										
Program(s)	Home Energy S	Savings Program									
End-Use	Heating, Coolir	ng									
Decision Type	on Type Retrofit										
DEEMED GROSS ENERGY SAVINGS (UNIT SAVINGS)											
Demand savings $\Delta kW_{SP} = 0.023$											
	$\Delta kW_{WP} = 0.000$										
Annual energy	For electric hea	at:	If fuel is unknown distribute savings based on % Fuel								
savings	∆kWh = 2953		Δ kWh = 36								
		$\Delta MMBtu_{GAS} = 0.914$									
	For non-electri	r non-electric heat: $\Delta MMBtu_{OIL} = 6.601$									
	$\Delta kWh = 12.816$	5	$\Delta MMBtu_{WOOD} = 1.219$								
	Δ MMBtu = 10.	033	$\Delta MMBtu_{PROP} = 0.609$								
			$\Delta MMBtu_{KERO} = 0.609$								
GROSS ENERGY SAVIN	GS ALGORITHMS	S (UNIT SAVINGS)									
Demand savings $\Delta kW = \Delta kWh_{COOL} \times LSF_{SP} \times %COOL$											
Annual Energy	hergy For known fuel and non-electric heat: Δ MMBtu _{FUEL} = Δ MMBtu _{HEAT} / EFF										
savings	$\Delta kWh = \Delta MME$	Btu _{cool} / EER x 1000 x %COO	DL								
	For known elec	ctric heat: Δ kWh = Δ MMBtu	u _{HEAT} / 0.003412 / EFF + ΔMMBtu _{COOL} / EER x 1000 x								
	%COOL										
	For unknown f	uel: Δ MMBtu _{FUEL} = Δ MMBtu	J _{HEAT} / EFF x %FUEL								
	$\Delta kWh = \Delta MME$	Btu _{HEAT} / 0.003412 / EFF x %	FUEL + Δ MMBtu _{COOL} / EER x 1000 x %COOL								
Definitions	Unit	= Air sealing project									
	$\Delta MMBtu_{HEAT}$	= Reduction in annual hea	t loss due to improved insulation and associated air								
		sealing derived from temp	perature bin analysis using Typical Meteorological Year								
		3 (TMY3)									
	$\Delta MMBtu_{COOL}$	= Reduction in annual hea	t gain due to improved insulation and associated air								
		sealing derived from temp	perature bin analysis using TMY3								
	EFF	= Efficiency factor of repre	esentative heating system (Btu/Btu)								
	EER	= Energy-efficiency ratio o	f representative cooling system (Btu/Wh)								
	%FUEL	= Home heating fuel distri	bution excluding coal and other ³⁹²								
	LSF _{SP}	= Summer peak load shap	e factor (kW/kWh/yr)								
	%COOL = Equivalent percentage of homes with full electric cooling equipment (%)										
	0.003412	= Conversion factor (MME	Btu/kWh)								
1000 = Conversion factor (kW/MW)											
EFFICIENCY ASSUMPTI	ONS										
Baseline Efficiency	The baseline ca	ase is the existing home bef	ore the air-sealing measures are installed. The								
	program contra	actor measures the baseline	e leakage rate (CFM50 _{PRE}) during the home audit.								
Efficient Measure	The high-efficie	ency case is the home after	the air-sealing measures are installed. The program								
	contractor mea	asures the post-upgrade lea	kage rate (CFM50 $_{POST}$) after the air-sealing installation								
	is complete.										

 $^{^{\}rm 392}$ Heating fuel distribution is used when heating system fuel is unknown.

Air Sealing (AA, LAA)												
PARAMETER VALUES (DEEMED)											
Measure	∆CFM50	$\Delta \text{MMBtu}_{\text{HEAT}}$	Δ MMBtu	COOL	%CO0	DL	LSF_{SP}		%FUEI	L	Life (yrs)	Cost (\$)
Air Sealing	593 ³⁹³	8.077 ³⁹⁴	0.238 ³⁹	4	53% ³⁹	95	0.00176 ³	96	Table E	-1	15 ³⁹⁷	\$700 ³⁹⁸
Measure	EFF	EER										
Air Sealing	80.5 ³⁹⁹	9.8 ⁴⁰⁰										
IMPACT FACTORS												
Measure	ISR	RR _E	RR _D		CF	5	CFw	/	F	R		SO
Air Sealing									25%	6 ⁴⁰⁴		
Low Income Air	100%401	100%402	100%	102	100%	403 2	100%	403	0%	406		0% ⁴⁰⁵
Sealing									070	D		

³⁹⁹ Representative heating system efficiency NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁴⁰⁰ Average existing cooling efficiency is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F:

- ⁴⁰¹ ISR is 100 percent because deemed savings results are based on evaluated results that include installation verification.
- ⁴⁰² The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

³⁹³ Average participant improvement in cubic feet per minute at 50 pounds per square inch pressure, Opinion Dynamics, Evaluation of the Efficiency Maine Trust PACE, PowerSaver, and RDI Programs – Final Evaluation Report, Volume II: Residential Direct Install Program, October 2013.

³⁹⁴ Heat loss/gain changes based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) and the factors defined in this TRM entry. CFM50 converted to cubic feet per hour (CFH) at natural pressure using 14.8 LBNL factor. Btu savings estimated using 0.018 Btu/CFH natural/delta temperature* hours per year for each delta temperature. Delta temperature defined as ambient minus 65 degrees F for heating season and 70 degrees F minus ambient temperature for cooling season.

³⁹⁵ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /</u>. In 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21 percent have no cooling equipment installed. Assuming that the 39 percent of homes with 1 or 2 window units are equivalent to 33% of whole home cooling, the resulting equivalent cooling for all homes is 53 percent (40%*100% + 39%*33%).

³⁹⁶ Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins.

³⁹⁷ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007, Table 1.

³⁹⁸ Average cost of sampled 2016 projects where attic insulation was itemized separately on contractor invoice (N=51).

http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is about 9 years, most units will meet this standard.

⁴⁰³ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁴⁰⁴ Program not yet evaluated, assume default FR of 25%.

⁴⁰⁵ Program not yet evaluated, assume default SO of 0%.

⁴⁰⁶ Program assumes no free ridership for the LIHESP program

Attic/Roof Insulation A	Il Fuels (excluding	natural gas) (BA, LBA)								
Last Revised Date	7/1/2016									
MEASURE OVERVIEW										
Description	This measure involve	s the insulation of the attic f	floor to decrease heating and cooling losses. The							
	participant must also	complete a comprehensive	air-sealing project. The total savings below reflect savings							
5	due to the added att	d attic/roof insulation and improved air sealing.								
Energy Impacts	Electric, Oil, Propai	ne, Wood, Kerosene								
Sector	Residential									
Program(s)	Home Energy Savir	igs Program								
End-Use	Heating, Cooling									
Decision Type		(11.00)								
DEEMED GROSS ENERGY	SAVINGS (UNIT SAV	/INGS)								
Demand savings	$\Delta kW_{SP} = 0.043$									
	$\Delta kW_{WP} = 0.0$									
Annual energy savings	For electric heat:	lt	f fuel is unknown distribute savings based on % Fuel							
	∆kWh = 5661	Δ	1kWh = 75							
		Δ	AMMBtu _{GAS} = 0							
	For non-electric he	at: Δ	AMMBtu _{oil} = 13.847							
	∆kWh = 25	Δ	MMBtu _{wood} = 2.500							
	Δ MMBtu = 19.315	Δ	MMBtu _{PROP} = 1.346							
		Δ	MMBtu _{kero} = 1.346							
GROSS ENERGY SAVINGS	ALGORITHMS (UNI	T SAVINGS)								
Demand savings	$\Delta kW = \Delta kWh_{COOL} x$	LSF _{SP} x %COOL								
Annual Energy savings	For known fuel and	l non-electric heat: Δ MME	$Btu_{FUEL} = \Delta MMBtu_{HEAT} / EFF$							
	$\Delta kWh = \Delta MMBtu_{CO}$	DOL / EER x 1000 x %COOL								
	For known electric	heat: $\Delta kWh = \Delta MMBtu_{HEA}$	_{AT} / 0.003412 / EFF + Δ MMBtu _{COOL} / EER x 1000 x							
	%COOL									
	For unknown fuel:	$\Delta MMBtu_{FUEL} = \Delta MMBtu_{HE}$	at / EFF x %FUEL							
	$\Delta kWh = \Delta MMBtu_{H}$	_{EAT} / 0.003412 / EFF x %FU	JEL + Δ MMBtu _{COOL} / EER x 1000 x %COOL							
Definitions	Unit	= Attic/roof insulation pr	roject							
	$\Delta MMBtu_{HEAT}$	= Reduction in annual he	eat loss due to improved insulation and associated							
		air sealing derived from	temperature bin analysis using TMY3							
	$\Delta MMBtu_{COOL}$	= Reduction in annual he	eat gain due to improved insulation and associated							
		air sealing derived from	temperature bin analysis using TMY3							
	EFF	= Efficiency factor of rep	presentative heating system (Btu/Btu)							
	EER	= Energy-efficiency ratio	of representative cooling system (Btu/Wh)							
	%FUEL	= Home heating fuel dist	tribution excluding natural gas, coal and other ⁴⁰⁷							
	LSF _{SP}	= Summer peak load shape factor (kW/kWh/yr)								
	%COOL	= Equivalent percentage	of homes with full electric cooling equipment (%)							
	0.003412	= Conversion factor (MN	/Btu/kWh)							
	1000	= Conversion factor (kW)	//MW)							
	SQFT	= Area of attic insulation	n (ft ²) assumed in temperature bin analysis							
	RVALPRE	= Pre-upgrade attic R-val	lue (ft ² -°F-hr/Btu) assumed in temperature bin							
		analysis								
	RVALPOST	= Post-upgrade attic R-va	alue (ft ² -°F-hr/Btu) assumed in temperature bin							
		analysis								

⁴⁰⁷ Heating fuel distribution is used to allocate savings to different fuels because the savings achieved through insulation impact the home's heating energy consumption.

Attic/Roof Insulation A	Attic/Roof Insulation All Fuels (excluding natural gas) (BA, LBA)											
EFFICIENCY ASSUMPTION	NS											
Baseline Efficiency The baseline is the existing (pre-upgrade) insulation												
Efficient Measure The high-efficiency case is the upgraded insulation												
PARAMETER VALUES (DE	EMED)											
Measure ΔMMBtu _{HEAT} ΔMMBtu _{COOL} EFF EER %FUEL Life (yrs) Cost (\$)												
Attic/Roof Insulation	15.481 ⁴⁰⁸	³ 0.455 ⁴⁰⁸ 80.5 ⁴⁰⁹ 9.8 ⁴¹⁰ Table E-1 25 ⁴¹¹ 2,617 ⁴								617 ⁴¹²		
Measure	SQFT	RVALPRE	RV	AL _{POST}	I	LSF _{SP}			%C	00L	$\Delta 0$	CFM50
Attic/Roof Insulation	986 ⁴¹³	13.3 ⁴¹⁴	50).8 ⁴¹⁵	0.0	0176 ⁴¹⁶			539	% ⁴¹⁷	···	387 ⁴¹⁸
IMPACT FACTORS												
Program	ISR	ISR RR _E RR _D CF _S CF _W FR ^{419, 420} SO ⁴²¹										
HESP	100%422	100%/422 100%/423 100%/424 25% 0%										
LIHESP	100%	10070		100%		1007	D	100%		0%	0	070

⁴¹⁰ Average existing cooling efficiency is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F:

http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is about 9 years, most units will meet this standard.

⁴¹² Average cost of sampled 2016 projects where attic insulation was itemized separately on contractor invoice (N=58).

⁴¹⁴ Average pre and post cavity R-values from FY16 projects consisting of only air sealing and attic insulation.
⁴¹⁵ Ibid.

⁴¹⁶ Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins.

⁴⁰⁸ Heat loss/gain changes based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) and the factors defined in this TRM entry. Heat transfer calculated as area insulated * delta temperature * hours per year for the delta temperature * (1/R value_pre – 1/R value_post). Delta temperature defined as ambient minus 65 degrees F for heating season and 70 degrees F minus ambient temperature for cooling season.
⁴⁰⁹ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁴¹¹ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁴¹³ Representative square footage for a footprint of 32 ft x 40 ft and 23 percent framing. Representative footprint based on average square footage from NMR Residential Baseline Study, 2015 and General Housing Data - All Occupied Units (National) 2013 American Housing Survey.

⁴¹⁷ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /</u>. In 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79percent, 40 percent of homes have equivalent of whole home A/C (3 window A/C's); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21 percent have no cooling equipment installed. Assuming that the 39 percent of homes with 1 or 2 window units are equivalent to 33% of whole home cooling, the resulting equivalent cooling for all homes is 53 percent (40%*100% + 39%*33%).

⁴¹⁸ Based on FY16 project blower-door tests for projects consisting of only air sealing and attic insulation minus the average CFM50 reduction of air sealing only projects. CFM50 converted to CFH natural using 14.8 LBNL factor. Btu savings estimated using 0.018 Btu/CFH natural/delta temperature* hours per year for each delta temperature.

⁴¹⁹ HESP Program not yet evaluated, assume default FR of 25%.

⁴²⁰ Program assumes no free ridership for the LIHESP program

⁴²¹ Program not yet evaluated, assume default SO of 0%.

⁴²² EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁴²³ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁴²⁴ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

Attic/Roof Insulation N	Attic/Roof Insulation Natural Gas (BA, LBA)									
Last Revised Date	7/1/2016									
MEASURE OVERVIEW										
Description	This measure involve heated with natural g also complete a comp added attic/roof insu	s the insulation of the attic floor to decrease heating and cooling losses in homes gas where the existing attic insulation is rated at R-8 or lower. The participant must prehensive air-sealing project. The total savings below reflect savings due to the lation and improved air sealing.								
Energy Impacts	Natural Gas									
Sector	Residential									
Program(s)	Home Energy Savin	gs Program								
End-Use	Heating, Cooling									
Decision Type	Retrofit									
DEEMED GROSS ENERGY	SAVINGS (UNIT SAV	/INGS)								
Demand savings	ΔkW_{SP} = 0.069									
	$\Delta kW_{WP} = 0.0$									
Annual energy savings	Δ kWh = 39									
	Δ MMBtu _{NG} = 30.61	5								
GROSS ENERGY SAVINGS	ALGORITHMS (UNI	T SAVINGS)								
Demand savings	$\Delta kW = \Delta kWh_{COOL} x$	LSF _{SP} x %COOL								
Annual Energy savings	$\Delta MMBtu_{FUEL} = \Delta MN$	MBtu _{HEAT} / EFF								
	$\Delta kWh = \Delta MMBtu_{cc}$	DOL / EER x 1000 x %COOL								
Definitions	Unit	= Attic/roof insulation project								
	$\Delta MMBtu_{HEAT}$	= Reduction in annual heat loss due to improved insulation and associated								
		air sealing derived from temperature bin analysis using TMY3								
	$\Delta MMBtu_{COOL}$	= Reduction in annual heat gain due to improved insulation and associated								
		air sealing derived from temperature bin analysis using TMY3								
	EFF	= Efficiency factor of representative heating system (Btu/Btu)								
	EER	= Energy-efficiency ratio of representative cooling system (Btu/Wh)								
	%FUEL	= Home heating fuel distribution excluding coal and other ⁴²⁵								
	LSF _{SP}	= Summer peak load shape factor (kW/kWh/yr)								
	%COOL	= Equivalent percentage of homes with full electric cooling equipment (%)								
	0.003412	= Conversion factor (MMBtu/kWh)								
	1000	= Conversion factor (kW/MW)								
	SQFT	= Area of attic insulation (ft ²) assumed in temperature bin analysis								
	RVALPRE	= Pre-upgrade attic R-value (ft ² -°F-hr/Btu) assumed in temperature bin								
		analysis								
	RVALPOST	= Post-upgrade attic R-value (ft ² -"F-hr/Btu) assumed in temperature bin								
	L	anaiysis								
EFFICIENCY ASSUMPTION	15									
Baseline Efficiency	The baseline is the	existing (pre-upgrade) insulation								
Efficient Measure	The high-efficiency	case is the upgraded insulation								

⁴²⁵ Heating fuel distribution is used to allocate savings to different fuels because the savings achieved through insulation impact the home's heating energy consumption.

Attic/Roof Insulation Natural Gas (BA, LBA)												
PARAMETER VALUES (DE	EMED)											
Measure	$\Delta MMBtu_{HEAT}$	Δ MMBtu _c	OOL	EFF	E	ER	%	FUEL	%C	00L	Δ0	CFM50
Attic/Roof Insulation	24.645 ⁴²⁶	0.725426	5	80.5 ⁴²⁷		9.8 ⁴²⁸	Tab	ole E-1	539	% ⁴²⁹	(1) (1)	87 ⁴³⁰
Measure	SQFT	RVALPRE	RV	AL _{POST}		LSF_{SP}			Life	(yrs)	C	ost (\$)
Attic/Roof Insulation	986 ⁴³¹	8 ⁴³²	50).8 ⁴³³	0.0	00176 ⁴³⁴			25	5 435	2,	617 ⁴³⁶
IMPACT FACTORS												
Program	ISR	RR _E		RR_{D}		CF	5	CFw	1	FR437	7, 438	SO ⁴³⁹
HESP	1000/440	1000/441		1000/42	3	100%	442	1000/	424	25	%	00/
LIHESP	100%	100%		100%		100%)	100%		0%	6	0%

⁴²⁸ Average existing cooling efficiency is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F:

http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is about 9 years, most units will meet this standard.

⁴³⁰ Based on FY16 project blower door tests for projects consisting of only air sealing and attic insulation minus the average CFM50 reduction of air sealing only projects. CFM50 converted to CFH natural using 14.8 LBNL factor. Btu savings estimated using 0.018 Btu/CFH natural/delta temperature* hours per year for each delta temperature.

⁴³² Program pre-condition criteria.

 ⁴²⁶ Heat loss/gain changes based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) and the factors defined in this TRM entry. Heat transfer calculated as area insulated * delta temperature * hours per year for the delta temperature * (1/R value_pre – 1/R value_post). Delta temperature defined as ambient minus 65 degrees F for heating season and 70 degrees F minus ambient temperature for cooling season.
 ⁴²⁷ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁴²⁹ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /</u>. In 2010, an estimated 79% of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/C's); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21percent have no cooling equipment installed. Assuming that the 39 percent of homes with 1 or 2 window units are equivalent to 33 percent of whole home cooling, the resulting equivalent cooling for all homes is 53percent (40%*100% + 39%*33%).

⁴³¹ Representative square footage for a footprint of 32 ft x 40 ft and 23 percent framing. Representative footprint based on average square footage from NMR Residential Baseline Study, 2015 and General Housing Data - All Occupied Units (National) 2013 American Housing Survey.

⁴³³ Average pre and post cavity R-values from FY16 projects consisting of only air sealing and attic insulation.

⁴³⁴ Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins.

⁴³⁵ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁴³⁶ Average cost of sampled 2016 projects where attic insulation was itemized separately on contractor invoice (N=58).

⁴³⁷ HESP Program not yet evaluated, assume default FR of 25%.

⁴³⁸ Program assumes no free ridership for the LIHESP program

⁴³⁹ Program not yet evaluated, assume default SO of 0%.

⁴⁴⁰ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁴⁴¹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁴⁴² Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

Wall Insulation (BW,	LBW)									
Last Revised Date	7/1/2016									
MEASURE OVERVIEW										
Description	This measure involve	es the insulation of exterior v	walls to decrease heating and cooling losses. The							
	participant must also	o complete a comprehensive	e air-sealing project. The total savings below reflect							
	savings due to the ac	ngs due to the added insulation and improved air sealing.								
Energy Impacts	Electric, Natural Ga	c, Natural Gas, Oil, Propane, Wood, Kerosene								
Sector	Residential									
Program(s)	Home Energy Savir	ngs Program								
End-Use	Heating, Cooling									
Decision Type	Retrofit									
DEEMED GROSS ENER	GY SAVINGS (UNIT S	SAVINGS)								
Demand savings	$\Delta kW_{SP} = 0.16$									
	$\Delta kW_{WP} = 0.0$									
Annual energy	For electric boot		If fuel is unknown distribute savings based on %							
savings			Fuel							
	∆kwn = 21,044		Δ kWh = 259							
	For non-olostria br	t .	$\Delta MMBtu_{GAS} = 6.512$							
		edl.	∆MMBtu _{OIL} = 47.034							
	$\Delta KWN = 91$		$\Delta MMBtu_{WOOD} = 8.683$							
	$\Delta N N N B t u = 71.492$		$\Delta MMBtu_{PROP} = 4.342$							
			Δ MMBtu _{KERO} = 4.342							
GROSS ENERGY SAVIN	GS ALGORITHMS (U	NIT SAVINGS)								
Demand savings	$\Delta kW = \Delta kWh_{COOL} x$	LSF _{SP} x %COOL								
Annual Energy	For known fuel and	d non-electric heat: Δ MM	$Btu_{FUEL} = \Delta MMBtu_{HEAT} / EFF$							
savings	$\Delta kWh = \Delta MMBtu_{c}$	COOL / EER x 1000 x %COOL								
_	For known electric	: heat: $\Delta kWh = \Delta MMBtu_{HF}$	_{FAT} / 0.003412 / EFF + ΔMMBtu _{COOL} / EER x 1000 x							
	%COOL									
	For unknown fuel:	Δ MMBtu _{FUEL} = Δ MMBtu _{HI}	_{EAT} / EFF x %FUEL							
	Δ kWh = Δ MMBtu _F	_{НЕАТ} / 0.003412 / EFF x %FL	JEL + Δ MMBtu _{COOL} / EER x 1000 x %COOL							
Definitions	Unit	= Exterior walls insulation	on project							
	Δ MMBtu _{HEAT}	= Reduction in annual h	eat loss due to improved insulation and associated							
		air sealing derived from	temperature bin analysis using TMY3							
		= Reduction in annual h	eat gain due to improved insulation and associated							
		air sealing derived from	temperature bin analysis using TMY3							
	EFF	= Efficiency factor of rep	presentative heating system (Btu/Btu)							
	EER	= Energy-efficiency ratio	o of representative cooling system (Btu/Wh)							
	%FUEL	= Home heating fuel dis	tribution excluding coal and other ⁴⁴³							
	LSF _{SP}	= Summer peak load shape factor (kW/kWh/yr)								
	%COOL	= Equivalent percentage	e of homes with full electric cooling equipment (%)							
	0.003412	= Conversion factor (MN	/lBtu/kWh)							
	1000	= Conversion factor (kW	//MW)							
	SQFT	= Area of wall insulation	n (ft ²) assumed in temperature bin analysis							
	RVALPRE	= Pre-upgrade R-value (1	ft ² -°F-hr/Btu) assumed in temperature bin analysis							
	RVALPOST	= Post-upgrade R-value	(ft ² -°F-hr/Btu) assumed in temperature bin analysis							
	$\Delta CFM50$	= Change in air leakage	resulting from improved air sealing assumed in							
		temperature bin analysi	S							

⁴⁴³ Heating fuel distribution is used to allocate savings to different fuels because the savings achieved through insulation impact the home's heating energy consumption.

Wall Insulation (BW,	LBW)											
EFFICIENCY ASSUMPTI	ONS											
Baseline Efficiency The baseline is the existing (pre-upgrade) insulation												
Efficient Measure The high-efficiency case is the upgraded insulation												
PARAMETER VALUES (DEEMED)											
Measure	$\Delta MMBtu_{HEAT}$	Δ MMBtu _{co}	OL	EFF	EE	ER	%F	UEL	%CO	OL	ΔC	FM50
Wall Insulation	57.551 ⁴⁴⁴	1.693444	1.693 ⁴⁴⁴ 80.5 ⁴⁴⁵ 9					e E-1	53%	447	8	16 ⁴⁴⁸
Measure	SQFT	RVALPRE		RVAL POS	т	LS	FSP	Life (yrs)		(Cost	(\$)
Wall Insulation	1,148 ⁴⁴⁹	3.6 ⁴⁵⁰		16.4 ⁴⁵¹		0.00	176 ⁴⁵²	2	5 ⁴⁵³	2	2,73	5 ⁴⁵⁴
IMPACT FACTORS												
Program	ISR	RR _E		RR_{D}		CF	s	CFv	v	FR ^{455, 45}	6	SO
HESP	100%/457	00%/457 100%/458 100%/423 100%/459 100%/424 25% 0%/460									09/ 460	
LIHESP	100%	100%		100%		1007	0	100%		0%		070

 ⁴⁴⁴ Heat loss/gain changes based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) and the factors defined in this TRM entry. Heat transfer calculated as area insulated * delta temperature * hours per year for the delta temperature * (1/R value_pre – 1/R value_post). Delta temperature defined as ambient minus 65 degrees F for heating season and 70 degrees F minus ambient temperature for cooling season.
 ⁴⁴⁵ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁴⁴⁶ Average existing cooling efficiency is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F: <u>http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1</u>. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is about 9 years, most units will meet this standard.

⁴⁴⁷ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put_power_rates_on_ice_that_s_a_cool_idea_/</u>. In 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21 percent have no cooling equipment installed. Assuming that the 39 percent of homes with 1 or 2 window units are equivalent to 33 percent of whole home cooling, the resulting equivalent cooling for all homes is 53 percent (40%*100% + 39%*33%).

⁴⁴⁸ Based on RHA data for HESP1 project in 2010 and 2011. Average CFM50 reduction across all insulation types was 1712 CFM50. From this 514 CFM50 was subtracted to account for the air-sealing reduction based on RDI evaluation and the result divided in half to account for multiple zones per project. 600 CFM50 per insulation zone assumed in the temperature bin analysis. CFM50 converted to CFH natural using 14.8 LBNL factor. Btu savings estimated using 0.018 Btu/CFH natural/delta temperature* hours per year for each delta temperature.

⁴⁴⁹ Representative square footage for a footprint of 32 ft x 40 ft, 1.5 stories, 23 percent framing and 183 square feet of windows and doors. Representative footprint and stories based on average square footage from NMR Residential Baseline Study, 2015 and General Housing Data - All Occupied Units (National) 2013 American Housing Survey.

⁴⁵⁰ Average pre and post cavity R-values from FY16 projects consisting of only air sealing and wall insulation.
⁴⁵¹ Ibid.

⁴⁵² Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins.

⁴⁵³ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁴⁵⁴ Average cost of sampled 2016 projects where wall insulation was itemized separately on contractor invoice (N=42)

⁴⁵⁵ Program not yet evaluated, assume default FR of 25%.

 $^{^{\}rm 456}$ Program assumes no free ridership for the LIHESP program

 $^{^{\}rm 457}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁴⁵⁸ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁴⁵⁹ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁴⁶⁰ Program not yet evaluated, assume default SO of 0%.
Basement Insulation	(BB, LBB)								
Last Revised Date	7/1/2016								
MEASURE OVERVIEW									
Description	This measure involve and cooling losses. T savings below reflect	is measure involves the insulation of basement walls or floor exposed to exterior to decrease heating id cooling losses. The participant must also complete a comprehensive air-sealing project. The total wings below reflect savings due to the added insulation and improved air sealing.							
Energy Impacts	Electric, Natural Ga	as, Oil, Propane, Wood, Ke	erosene						
Sector	Residential								
Program(s)	Home Energy Savir	ngs Program							
End-Use	Heating, Cooling								
Decision Type	Retrofit								
DEEMED GROSS ENER	GY SAVINGS (UNIT S	AVINGS)							
Demand savings	$\Delta kW_{SP} = 0.011$								
	$\Delta kW_{WP} = 0.0$								
Annual energy	E la . la . la		If fuel is unknown distribute savings based on %						
savings	For electric heat:		Fuel						
	$\Delta kWh = 11,175$		Δ kWh = 96						
	Foundation also takes in the	.	Δ MMBtu _{GAS} = 3.471						
	For non-electric ne	281:	Δ MMBtu _{OIL} = 25.071						
	$\Delta KWN = 6$		Δ MMBtu _{WOOD} = 4.629						
	Δ MMBtu = 38.130		$\Delta MMBtu_{PROP} = 2.314$						
			$\Delta MMBtu_{KERO} = 2.314$						
GROSS ENERGY SAVIN	S ALGORITHMS (UNIT SAVINGS)								
Demand savings	$\Delta kW = \Delta kWh_{COOL} x$	LSF _{SP} x %COOL							
Annual Energy	For known fuel and	d non-electric heat: Δ MM	$Btu_{FUEL} = \Delta MMBtu_{HEAT} / EFF$						
savings	$\Delta kWh = \Delta MMBtu_{C}$	00L / EER x 1000 x %COOL							
	For known electric %COOL	heat: $\Delta kWh = \Delta MMBtu_{HI}$	$_{\sf EAT}$ / 0.003412 / EFF + Δ MMBtu _{COOL} / EER x 1000 x						
	For unknown fuel:	$\Delta MMBtu_{FUFL} = \Delta MMBtu_{H}$	_{FAT} / EFF x %FUEL						
	$\Delta kWh = \Delta MMBtu_{H}$	_{EAT} / 0.003412 / EFF x %FU	JEL + Δ MMBtu _{COOL} / EER x 1000 x %COOL						
Definitions	Unit	= Exterior walls insulation	on project						
	$\Delta MMBtu_{HEAT}$	= Reduction in annual h	eat loss due to improved insulation and associated						
		air sealing derived from	temperature bin analysis using TMY3						
	$\Delta MMBtu_{COOL}$	= Reduction in annual h	eat gain due to improved insulation and associated						
		air sealing derived from	temperature bin analysis using TMY3						
	EFF	= Efficiency factor of rep	presentative heating system (Btu/Btu)						
	EER	= Energy-efficiency ratio	o of representative cooling system (Btu/Wh)						
	%FUEL	= Home heating fuel dis	tribution excluding coal and other ⁴⁶¹						
	LSF _{SP}	= Summer peak load sha	ape factor (kW/kWh/yr)						
	%COOL	= Equivalent percentage	e of homes with full electric cooling equipment (%)						
	0.003412	= Conversion factor (MN	//Btu/kWh)						
	1000	= Conversion factor (kW	//MW)						
	SQFT	= Area of basement insu	llation (ft ²) assumed in temperature bin analysis						
	RVAL _{PRE}	= Pre-upgrade R-value (It ² -"F-hr/Btu) assumed in temperature bin analysis						
	RVALPOST	= Post-upgrade R-value	(ft ² - ² F-hr/Btu) assumed in temperature bin analysis						

⁴⁶¹ Heating fuel distribution is used to allocate savings to different fuels because the savings achieved through insulation impact the home's heating energy consumption.

Basement Insulation	(BB, LBB)												
EFFICIENCY ASSUMPTI	ONS												
Baseline Efficiency	The baseline is	s the existing	(pre	e-upgrade)	ins	ulation							
Efficient Measure	The high-effici	iency case is t	he :	upgraded i	nsu	lation							
PARAMETER VALUES (DEEMED)												
Measure	$\Delta MMBtu_{HEAT}$	Δ MMBtu _{co}	OL	EFF	EE	EER %		%FUEL %C		OL ΔC		FM50	
Basement Insulation	30.677 ⁴⁶²	0.119463		80.5 ⁴⁶⁴		9.8 ⁴⁶⁵		le E-1	53%	466 2		98 ⁴⁶⁷	
Measure	SQFT	RVALPRE		RVAL POST		LSF _{SP}		Life (yrs)			Cost (\$)		
Basement Insulation	432 ⁴⁶⁸	1.4 ⁴⁶⁹		15.4 ⁴⁷⁰	15.4 ⁴⁷⁰ 0.002		176 ⁴⁷¹ 25 ⁴		5 ⁴⁷²	2,68		8 ⁴⁷³	
IMPACT FACTORS													
Program	ISR	RR _E		RR_{D}		CF	s	CFv	v	FR ^{474, 4}	475	SO ⁴⁷⁶	
HESP	1000/477	1000/478	200/478			1000	/ 480	100%	481	25%)	0%	
LIHESP	100%	100%		100%473		100%	0	100%		0%		0%	

⁴⁶⁸ Representative square footage for a footprint of 32 ft x 40 ft with equivalent of 3 ft exposed to ambient temperature (1 ft above grade, 4 ft below grade). Representative footprint based on average square footage from NMR Residential Baseline Study, 2015 and General Housing Data - All Occupied Units (National) 2013 American Housing Survey.

⁴⁶⁹ Average pre- and post-cavity R-values from FY16 projects consisting of only air sealing and basement insulation.

⁴⁷¹ Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins.

⁴⁷³ Average cost of sampled 2016 projects where attic insulation was itemized separately on contractor invoice (N=42)

⁴⁷⁴ Program not yet evaluated, assume default FR of 25%.

⁴⁶² Heat loss changes based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) and the factors defined in this TRM entry. Heat transfer calculated as area insulated * delta temperature * hours per year for the delta temperature * (1/R value_pre – 1/R value_post). Delta temperature defined as ambient minus 50 degrees F for heating season.

⁴⁶³ Cooling load for basement assumed to be zero since it is rare for a home in Maine to provide cooling in a basement.

⁴⁶⁴ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁴⁶⁵ Average existing cooling efficiency is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F:

http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is about 9 years, most units will meet this standard.

⁴⁶⁶ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /</u>. In 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21 percent have no cooling equipment installed. Assuming that the 39 percent of homes with 1 or 2 window units are equivalent to 33 percent of whole home cooling, the resulting equivalent cooling for all homes is 53% (40%*100% + 39%*33%).

⁴⁶⁷ Based on RHA data for HESP1 project in 2010 and 2011. Average CFM50 reduction across all insulation types was 1712 CFM50. From this 514 CFM50 was subtracted to account for the air sealing reduction based on RDI evaluation and the result divided in half to account for multiple zones per project. 600 CFM50 per insulation zone assumed in the temperature bin analysis. CFM50 converted to CFH natural using 14.8 LBNL factor. Btu savings estimated using 0.018 Btu/CFH natural/delta temperature* hours per year for each delta temperature.

⁴⁷⁰ Ibid.

⁴⁷² GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007, Table 1.

 $^{^{\}rm 475}$ Program assumes no free ridership for the LIHESP program

⁴⁷⁶ Program not yet evaluated, assume default SO of 0%.

⁴⁷⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁴⁷⁸ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁴⁷⁹ Ibid.

⁴⁸⁰ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁴⁸¹ Ibid.

Mobile Home Unde	rbelly Insulation (Component of LUB)								
Last Revised Date	7/1/2016								
MEASURE OVERVIEW									
Description	This measure involves the installation of insulati	his measure involves the installation of insulation on the underbelly of mobile homes that							
	separates conditioned space and unconditioned	space (including unconditioned basements,							
	unconditioned garages and crawl spaces). This n	neasure only has heating savings associated with							
	it.								
Energy Impacts	Electric, Natural Gas, Oil, Propane, Wood, Keros	ene							
Sector	Residential								
Program(s)	Home Energy Savings Program								
End-Use	Heating								
Decision Type	Retrofit								
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS)								
Demand savings	For electric heat: $\Delta kW_{WP} = 3.40$								
Annual energy		If fuel is unknown distribute savings based on							
savings	For electric heat:	% Fuel							
	∆kWh = 5,962	Δ kWh = 48							
		∆MMBtu _{GAS} = 2.274							
	For non-electric heat:	$\Delta MMBtu_{PROP} = 1.516$							
	∆MMBtu = 25.270	∆MMBtu _{OIL} = 16.729							
		$\Delta MMBtu_{KERO} = 1.516$							
		$\Delta MMBtu_{WOOD} = 3.032$							
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)	•							
Demand savings	$\Delta kW_{WP} = \Delta kWh \times LSF_{WP}$								
Annual Energy	Δ MMBtu _{HEAT} = ((1/(0.55 x RVAL _{PRE} + 3.9) - 1/(1.0)) x RVAL _{POST} + 3.9)) x HDD x 24 x F _{ADJ} x SQFT x GF)							
savings	/ 1,000,000								
	For non-electric heat								
	AMMBtu = AMMBtuurat / FEF								
	For electric heat								
	Δ kWh = Δ MMBtu _{HEAT} / 0.003412								
	For unknown fuel								
	Δ MMBtu _{FUEL} = Δ MMBtu _{HEAT} / EFF X %FUEL								
	Δ kWh = Δ MMBtu _{HEAT} / 0.003412 X %FUEL								

Mobile Home Unde	rbelly Insulat	ion (Compo	nen	t of LUB)							
Definitions	Unit	= Floor	insu	lation projec	t						
	$\Delta MMBtu_{HEAT}$	= Annu	ial he	eat loss reduc	ction (MMBtu)					
	RVALPRE	= Pre-u	ıpgra	ade floor insu	lation R-value	e (ft²-°F-hr/Btu	ר)				
	RVAL POST	= Post-	upgr	ade floor ins	ulation R-valu	e (ft²-°F-hr/Bt	tu)				
	HDD	= Heati	ing D	egree Days, I	Maine state a	verage ⁴⁸⁶					
	F _{ADJ}	= ASHR	RAE a	idjustment fa	ictor						
	SQFT	= Area	of flo	oor insulatior	n (ft²)						
	GF	= Grou	nd Fa	actor, based	on percent of	unconditione	ed sp	ace walls	abo	ove	
		grade (grade (%)								
	EFF	= Effici	ency	factor of rep	oresentative h	eating system	ı (Bti	u/Btu)			
	%FUEL	= Home	e hea	ating fuel dist	tribution exclu	uding coal and	d oth	er ⁴⁸²			
	LSF _{WP}	= Winte	er pe	eak load shap	e factor (kW/	kWh/yr)					
	0.55	= Assumed factor to account for typical floor structure/framing and poor									
		insulat	ion iı	nstallation							
	1.0	= Assumed factor to account for continuous, well installed insulation								۱	
	3.9	= Assur	med	R-value of ex	isting floor m	aterials					
	0.003412	= Conv	ersio	on factor (kW	h/MMBtu)						
	1,000,000	= Conv	ersio	on factor (Btu	/MMBtu)						
	24	= Conv	ersio	on factor (hrs,	/day)						
EFFICIENCY ASSUMPTI	ONS										
Baseline Efficiency	The baseline is	s the existing	(pre-	-upgrade) ins	sulation						
Efficient Measure	The high-effici	iency case is t	the u	pgraded insu	llation						
PARAMETER VALUES (DEEMED)										
Measure	RVAL _{PRE} 483	RVAL _{POST} ⁴	.84	SQFT ⁴⁸⁵	HDD ⁴⁸⁶	F _{ADJ} ⁴⁸⁷	Li	fe (yrs) 488	C	Cost (\$)	
Underbelly Insulation	0	12		880	7,777	0.64		25		Actual	
Measure	GF ⁴⁸⁹	EFF ⁴⁹⁰		%FUEL	LSF _{SP} ⁴⁹¹						
Underbelly Insulation	1	80.5 Table E-1 0.00176									
IMPACT FACTORS	•										
Measure	ISR ⁴⁹²	RR_{E}^{493}		RR_{D}^{493}	CF ₅ ⁴⁹⁴	CFw ⁴⁹⁴		FR ⁴⁹⁵		SO ⁴⁹⁶	
Underbelly Insulation	100%	100%		100%	100%	100%		25%		0%	

⁴⁸² Heating fuel distribution is used to allocate savings to different fuels because the savings achieved through insulation impact the home's heating energy consumption.

⁴⁸³ Engineering estimate of no insulation or poorly installed, ineffective insulation.

⁴⁸⁴ Based on standard practice of 2 inch spray foam or 2 inch rigid insulation.

⁴⁸⁵ Estimated average size of mobile homes in Maine.

⁴⁸⁶ Based on a population-weighted average HDD of Caribou, Bangor, and Portland from TMY3 dataset.

⁴⁸⁷ ASHRAE degree-day correction. 1989 ASHRAE Handbook – Fundamentals, 28.2, Fig 1.

⁴⁸⁸ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁴⁸⁹ It is assumed that the floor is 100% above grade.

⁴⁹⁰ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁴⁹¹ Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins.

⁴⁹² EMT assumes 100% installation.

⁴⁹³ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁴⁹⁴ Peak coincidence factors for this measure are embedded in the calculated peak demand impacts.

⁴⁹⁵ Program not yet evaluated, assume default FR of 25%.

⁴⁹⁶ Program not yet evaluated, assume default SO of 0%.

Insulate Attic Oper	nings (Component of L	.UB)							
Last Revised Date	7/1/2016								
MEASURE OVERVI	EW								
Description	This measure involve	s the installation of a the	ermal barrier on attic hatche	es, attic stairs, or whole					
	house fans. The infilt	ration savings can only b	e claimed if they are indepe	endent of the air sealing					
	measure.								
Energy Impacts	Electric, Natural Gas,	Oil, Propane, Wood, Kei	rosene						
Sector	Residential								
Program(s)	Home Energy Savings	s Program							
End-Use	Heating								
Decision Type	Retrofit								
DEEMED GROSS EN	NERGY SAVINGS (UNIT	'SAVINGS)							
Demand savings		Attic hatch insulation	Attic pull down stairs	Whole house fan					
			insulation	insulation					
	For homes with non-	electric heating	I	1					
		$\Delta kW_{WP} = 0.0$	$\Delta kW_{WP} = 0.0$	$\Delta kW_{WP} = 0.0$					
	For homes with elect	ric resistance heating	1	1					
	With infiltration	'ith infiltration $\Delta k W_{WP} = 0.087$ $\Delta k W_{WP} = 0.203$ $\Delta k W_{WP} = 0.094$							
	Without infiltration	Vithout infiltration $\Delta k W_{WP} = 0.061$ $\Delta k W_{WP} = 0.114$ $\Delta k W_{WP} = 0.053$							
			Γ						
Annual energy		Attic hatch insulation	Attic pull down stairs	Whole house fan					
savings ⁴⁹⁷			insulation	insulation					
	For homes with non-	electric heating	I	1					
	With infiltration	Δ MMBtu = 0.646	∆MMBtu = 1.508	∆MMBtu = 0.699					
	Without infiltration	Δ MMBtu = 0.453	ΔMMBtu = 0.845	ΔMMBtu = 0.397					
	For homes with elect	ric resistance heating	1	1					
	With infiltration	∆kWh = 152	ΔkWh = 356	∆kWh = 165					
	Without infiltration	Δ kWh = 107	∆kWh = 199	∆kWh = 94					
GROSS ENERGY SA	VINGS ALGORITHMS (UNIT SAVINGS)							
Demand savings	$\Delta kW_{WP} = \Delta kWh \times LSF$	WP							
Annual Energy	$\Delta MMBtu_{COND} = SQFT$	x (1/RVAL _{PRE} – 1/RVAL _{POS}	_{st}) x HDD x 24 x F _{ADJ} / 1,000,0	000					
savings	$\Delta MMBtu_{INFIL} = Deeme$	ed value							
	For homes with non-	For homes with non-electric heating							
	Δ MMBtu = (Δ MMBtu	I _{COND} + ΔMMBtu _{INFIL})/EFF							
	For homes with elect	ric resistance heating							
	$\Delta kWh = \Delta MMBtu / 0$.003412							

⁴⁹⁷ If fuel type is unknown, savings are to be allocated across fuel types using the home heating fuel distribution excluding coal and others found in Table E-1.

Insulate Attic Open	ings (Compone	nt of LUB)										
Definitions	Unit	= Insu	ilation p	project	:							
	$\Delta MMBtu_{COND}$	= Ann	iual con	ductio	n heat loss	reduction						
	$\Delta MMBtu_{INFIL}$	= Ann	ual infil	tratio	n heat loss	reduction						
	SQFT	= Are	a of insu	ulatior	1 (ft²)							
	RVALPRE	= Pre-	-upgrad	e R-va	lue (ft²-°F-l	nr/Btu)						
	RVALPOST	= Pos	t-upgra	de R-v	alue (ft²-°F	-hr/Btu)						
	HDD	= Hea	ting De	gree D	ays, Maine	population-w	eighted state	avera	ge ⁵⁰⁰			
	F _{ADJ}	= ASH	IRAE ad	justme	ent factor ⁵⁰	2						
	EFF	= Effic	ciency fa	actor o	of represen	tative heating	system (Btu/	Btu)				
	LSF _{WP}	= Win	iter pea	k load	shape fact	or (W/kWh/yr)504					
	0.003412	= Con	version	factor	r (kWh/MN	1Btu)						
	1,000,000	= Con	version	factor	r (Btu/MMI	Btu)						
	24	= Con	version	factor	r (hours/da	y)						
EFFICIENCY ASSUM	PTIONS											
Baseline Efficiency	The baseline i	s the existir	ng (pre-	upgrad	de) insulati	on						
Efficient Measure	The high-effic	iency case i	ncy case is the upgraded insulation									
PARAMETER VALUE	ES (DEEMED)											
Measure	ΔMMBtu _{INFIL} 498	SQF	Г ⁴⁹⁹	RV	AL _{PRE} 499	RVAL _{POST} 499	HDD ⁵⁰⁰	Life 50	(yrs)	Cost (\$)		
Attic Hatch Insulation	0.154876	5.0	5		1.69	21.7						
Attic Pull-Down	0.533461	11.2	25		1.69	11.7	7,777	2	5	Actual		
Stairs Insulation												
Whole House Fan	0.243195	4.0	0		1.32	11.3						
Insulation	- 502	FFF 502	1.05	504								
Measure	F _{ADJ} ⁵⁰²	EFF	LSFw	/P								
Insulate Attic Openings	0.64	80.5	0.00	057								
IMPACT FACTORS												
Measure	ISR ⁵⁰⁵	RR_{E}^{506}	R R _D	506	CFs ⁵⁰⁷	CFw ⁵⁰⁷	FR ⁵⁰⁸		9	50 ⁵⁰⁹		
Insulate Attic Openings	100%	100%	100)%	100%	100%	25%	25%		0%		

⁴⁹⁸ ASHRAE 1997 Handbook – Fundamentals, p. 25.16, was used to calculate infiltration of these measures using data from evaluation of WRAP and Helps Program, KEMA, 2010.

⁴⁹⁹ UI/CL&P C&LM Program Savings Documentation – 2015 p. 235, 4.4.11 Insulate Attic Openings measure, Table 1.

⁵⁰⁰ Based on a population-weighted average of Caribou, Bangor, and Portland from TMY3 dataset.

⁵⁰¹ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁵⁰² ASHRAE degree-day correction. 1989 ASHRAE Handbook – Fundamentals, 28.2, Fig 1.

⁵⁰³ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

 $^{^{\}rm 504}$ Evaluation of WRAP and Helps Program, KEMA, 2010, Table ES-8, p. 1-10 divided by 1000 W/kW.

 $^{^{\}rm 505}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁵⁰⁶ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵⁰⁷ Peak coincidence factors for this measure are embedded in the calculated peak demand impacts.

 $^{^{\}rm 508}$ Program not yet evaluated, assume default FR of 25%.

⁵⁰⁹ Program not yet evaluated, assume default SO of 0%.

Duct Insulation (Co	omponent of LUB)			
Last Revised Date	7/1/2016			
MEASURE OVERVIEW	1			
Description	This measure involves t	he installation of insulat	ion with an R-value grea	ter than or equal to 6 on
	uninsulated heating or	cooling ducts in uncondi	tioned space (i.e. attic, u	inconditioned basement)
	in order to reduce heat	ing and cooling losses.		
Energy Impacts	Electric, Natural Gas, O	il, Propane, Wood, Keros	sene	
Sector	Residential			
Program(s)	Home Energy Savings P	rogram		
End-Use	Heating, Cooling			
Decision Type	Retrofit			
DEEMED GROSS ENER	RGY SAVINGS (UNIT SAV	INGS)	-	
Demand savings	Basement Supply	Basement Return	Attic Supply	Attic Return
	For homes with non-elect	ric heating		
	$\Delta kW_{WP} = 0.0$	$\Delta kW_{WP} = 0.0$	$\Delta kW_{WP} = 0.0$	$\Delta kW_{WP} = 0.0$
	$\Delta kW_{SP} = 0.136$	$\Delta kW_{SP} = 0.041$	$\Delta kW_{SP} = 0.251$	$\Delta kW_{SP} = 0.144$
		1	1	I
	For homes with electric re	esistance heating	i	i
	ΔkW_{WP} = 1.310	$\Delta kW_{WP} = 0.316$	ΔkW_{WP} = 1.453	$\Delta kW_{WP} = 0.421$
	ΔkW_{SP} = 0.136	$\Delta kW_{SP} = 0.041$	ΔkW_{SP} = 0.251	$\Delta kW_{SP} = 0.144$
			I	
Annual energy	Basement Supply	Basement Return	Attic Supply	Attic Return
savings ⁵¹⁰		1	,	I
	For homes with non-elect	ric heating		
	Δ MMBtu = 9.743	∆MMBtu = 2.352	∆MMBtu = 10.802	∆MMBtu = 3.132
	Δ kWh = 8	$\Delta kWh = 2$	Δ kWh = 15	$\Delta kWh = 8$
	For homes with electric re	esistance heating		
	$\Lambda kWh = 2307$	Λ kWh = 557	$\Delta kWh = 2563$	∆kWh = 747
GROSS ENERGY SAVI	NGS ALGORITHMS (UNIT	SAVINGS)		
Demand savings	$\Delta kW_{WP} = \Delta kWh_H x LSF_W$	'P		
Annual Energy	$\Delta kWh_{H} = SQFT x F_{H} / 0.0$	003412		
savings	$\Delta kWh_{c} = AKW_{c} \times SQFT$	x %COOL		
	$\Delta kWh = \Delta kWh_{H} + \Delta kWl$	h _c		
	Δ MMBtu = SQFT x F _H /	EFF		

⁵¹⁰ If fuel type is unknown, savings are to be allocated across fuel types using the home heating fuel distribution excluding coal and others found in Table E-1.

Duct Insulation (Compon	ent of	LUB)											
Definition	s Unit		=	Duct	insulation proj	ject								
	∆kWh	н	= /	= Annual energy savings for residences with electric heat (kWh)										
	∆kWh	с	= /	= Annual energy savings for electric cooling (kWh)										
	SQFT		= 9	= Surface area of ducts being insulated (ft ²)										
	F _H		= /	= Annual heating fuel savings per square foot of duct insulation for										
			re	residences with fuel heating (MMBtu/ft ²)										
	EFF		=	Effici	ency factor of	rep	resent	ative heati	ng system (Btu/Btu)				
	%COO	L	=	Equiv	alent percenta	age	of hoi	mes with fu	ull electric c	ooling equipm	ent (%)			
	AKW _c		= /	Annu	al electric savi	ngs	per so	quare foot	for residenc	es with electri	ic cooling			
			(k)	Wh/f	ťť)									
	LSF _{SP}		= 9	Sumr	ner Peak elect	ric l	oad sł	hape factor	, for reside	nces with elect	ric			
			co	COOIIng (W/KWN)										
	LSF _{WP}		= \	Wint	er peak electri	c lo	ad sha	pe factor,	for residence	es with all ele	ctric			
		heat			g (W/kWh)									
	0.0034	412	= (Conv	ersion factor (I	kWł	h/MM	Btu)						
EFFICIENCY ASSUM	PTIONS													
Baseline Efficienc	y The ba	aseline	is the exis	ting ι	uninsulated du	cts								
Efficient Measur	e The hi	gh-effic	ciency case	e is tł	ne existing duc	ts v	vith in	sulation in	stalled					
PARAMETER VALUE	ES (DEEM	ED)							1					
Measure	SQFT ⁵¹¹	F _H ⁵¹²	² AKW	/c ⁵¹³	%COOL ⁵¹⁴	E	FF ⁵¹⁵	LSF _{SP} ⁵¹⁶	LSF _{WP} ⁵¹⁷	Life (yrs) 518	Cost (\$)			
Basement Supply		0.156	69 0.30)16	_									
Basement Return	50	0.037	79 0.09	909	52%	c	20 5	0.017	0.00057	25	Actual			
Attic Supply	50	0.173	39 0.55	566	5576	C	50.5	0.017	0.00037	25	Actual			
Attic Return		0.050	0.32	206										
IMPACT FACTORS														
Measure	ISR ⁵²	ISR ⁵¹⁹ RR _E ⁵²⁰			RR_{D}^{520}		C	CFs ⁵²¹	CFw ⁵²¹	FR ⁵²²	SO ⁵²³			
Duct Insulation	1009	%	100%)	100%		1	.00%	100%	25%	0%			

⁵¹⁷ Evaluation of WRAP and Helps Program, KEMA, 2010, Table ES-8, p. 1-10 divided by 1000 W/kW.

⁵¹¹ Program assumption.

⁵¹² Adapted from UI/CL&P C&LM Program Savings Documentation – 2015 p. 156, 4.2.15 Duct Insulation, Table 2. Provided value multiplied by ratio of HDD of Maine and Connecticut, 7,777/5,885. Maine HDD based on a population-weighted average of Caribou, Bangor, and Portland from TMY3 dataset.

⁵¹³ Adapted from UI/CL&P C&LM Program Savings Documentation – 2015 p. 156, 4.2.15 Duct Insulation, Table 1. Provided value multiplied by ratio of CDD of Maine and Connecticut, 207/530. Degree day data from the National Climactic Data Center, State Data, ME state & CT state, Jan 1979 to Dec 2008, yearly average. http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp

⁵¹⁴ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /</u>. In 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21 percent have no cooling equipment installed. Assuming that the 39 percent of homes with 1 or 2 window units are equivalent to 33 percent of whole home cooling, the resulting equivalent cooling for all homes is 53 percent (40%*100% + 39%*33%).

⁵¹⁵ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁵¹⁶ Evaluation of the Weatherization Residential Assistance Partnership (WRAP) and Helps Programs, conducted by KEMA, September 2010, table ES-9 p. 1-11.

⁵¹⁸ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁵¹⁹ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁵²⁰ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵²¹ Peak coincidence factors for this measure are embedded in the calculated peak demand impacts.

⁵²² Program not yet evaluated, assume default FR of 25%.

⁵²³ Program not yet evaluated, assume default SO of 0%.

Duct Sealing (Comp	onent of LUB)
Last Revised Date	7/1/2016
MEASURE OVERVIEW	
Description	This measure involves duct sealing to improve air distribution from HVAC systems.
Energy Impacts	Electric, Natural Gas, Oil, Propane, Wood, Kerosene
Sector	Residential
Program(s)	Home Energy Savings Program
End-Use	Heating, Cooling
Decision Type	Retrofit
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS)
Demand savings	$\Delta kW_{SP} = 0.140$ For homes with electric resistance heating: $\Delta kW_{WP} = 1.817$
Annual energy	For homes with non-electric heating
savings ⁵²⁴	ΔMMBtu = 6.607
	$\Delta kWh = 192$
	For homes with electric resistance heating
	$\Delta kWh = 1,194$
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)
Demand savings	$\Delta kW_{SP} = REM_{SP} \times (CFM_{PRF} - CFM_{POST}) \times (COOL)$
	For homes with electric resistance heating
	$\Delta kW_{WP} = REM_{WP} \times (CFM_{PRE} - CFM_{POST})$
	For homos with non-alastric heating
Annual Energy	For nonness with non-electric reaching $AAAAAB+\mu = BEAA + \mu (CEAA + CEAA +) (EEE$
savings	$\Delta W W D L U = REWIHEAT X (CFIVIPRE = CFIVIPOST) / EFF$
	AKVVII – KEIVICOOL X (CFIVIPRE – CFIVIPOST) X 70COOL + KEIVIFAN X (CFIVIPRE – CFIVIPOST)
	For homes with electric resistance heating
	$AkWh = REM_{COOL} \times (CEM_{RRS} - CEM_{ROST}) \times \% COOL + REM_{RR} \times (CEM_{RRS} - CEM_{ROST})$
Definitions	Unit = Duct sealing project
Demitions	$REM_{HEAT} = Heat loss reduction per CEM reduction in duct leakage (MMBtu/CEM)$
	CEM _{PRE} = Air leakage rate before duct sealing at 25 Pa (CEM) ⁵²⁵
	CFM _{POST} = Air leakage rate after duct sealing at 25 Pa (CFM) ⁵²⁶
	EFF = Efficiency factor of representative heating system (Btu/Btu)
	REM _{COOL} = Cooling savings per CFM reduction in duct leakage (kWh/CFM)
	%COOL = Equivalent percentage of homes with full electric cooling equipment (%)
	REM _{FAN} = Fan energy savings per CFM reduction in duct leakage (kWh/CFM)
	REM _{ER} = Energy savings per CFM reduction in duct leakage (kWh/CFM)
	REM _{SP} = Summer peak electric demand savings factor (kW/CFM)
	REM _{WP} = Winter peak electric demand savings factor (kW/CFM)
EFFICIENCY ASSUMPTI	ONS
Baseline Efficiency	The baseline is the existing (pre-upgrade) ducts
Efficient Measure	The high-efficiency case is the existing ducts with sealing applied

⁵²⁴ If fuel type is unknown, savings are to be allocated across fuel types using the home heating fuel distribution excluding coal and other found in Table E-1.

⁵²⁵ From UI/CL&P C&LM Program Savings Documentation – 2015 p. 140, 4.2.9 Duct Sealing measure, Note 1, actual pre-case CFM leakage measured with duct blaster test should be used, otherwise estimated pre-case leakage rate of 0.195 CFM/SQFT can be used.

⁵²⁶ From UI/CL&P C&LM Program Savings Documentation – 2015 p. 140, 4.2.9 Duct Sealing measure, Note 2, actual post-case CFM leakage measured with duct blaster test should be used, otherwise estimated post-case leakage rate of 0.080 CFM/SQFT can be used.

Duct Sealing	Duct Sealing (Component of LUB)														
PARAMETER \	ALUES (D	EEME	D)												
Measure	REM _{HEAT} ⁵	27	CFM _{PRE} ⁵²⁸	CFN	Л _{POST} 529	΄ Ε	EFF ⁵³⁰	RI	EM _{COOL} 531	%CO	OL ⁵³²	Life	(yrs) ⁵	33	Cost (\$) ⁵³⁴
Duct Sealing	0.046		195		80	8	80.5%		0.414	53	%		25		Actual
Measure	REMFAN	535	REM	536 ER	536 REM _{WP}		P ⁵³⁷ REM SP ⁵³								
Duct Sealing	1.454	ŀ	10.1	.66	0.0	158	0.0023								
IMPACT FACT	ORS														
N	/leasure	ISR	X ⁵³⁸	RR_{E}^{539}		RF	R _D ⁵³⁹		CF ₅ ⁵⁴⁰	CFw ⁵⁴		^D FR ⁵		₹ ⁵⁴¹	SO ⁵⁴²
Duct	Sealing	10	0%	100%	100%		100%		100%		100%		25%		0%

⁵²⁷ Adapted from UI/CL&P C&LM Program Savings Documentation – 2015 p. 138, 4.2.9 Duct Sealing measure, Table 2. Provided value multiplied by ratio of HDD of Maine and Connecticut, 7,777/5,885. Maine HDD based on a population-weighted average of Caribou, Bangor, and Portland from TMY3 dataset. ⁵²⁸ UI/CL&P C&LM Program Savings Documentation – 2015 p. 140, 4.2.9 Duct Sealing measure, Note 1.

⁵²⁹ UI/CL&P C&LM Program Savings Documentation – 2015 p. 140, 4.2.9 Duct Sealing measure, Note 1.

⁵³⁰ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁵³¹ Adapted from UI/CL&P C&LM Program Savings Documentation – 2015 p. 138, 4.2.9 Duct Sealing measure, Table 1. Provided value multiplied by ratio of CDD of Maine and Connecticut, 207/530. Degree day data from the National Climactic Data Center, State Data, ME state & CT state, Jan 1979 to Dec 2008, yearly average. http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp

⁵³² Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put_power_rates_on_ice_that_s_a_cool_idea_/</u>. In 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39% of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21 percent have no cooling equipment installed. Assuming that the 39 percent of homes with 1 or 2 window units are equivalent to 33 percent of whole home cooling, the resulting equivalent cooling for all homes is 53 percent (40%*100% + 39%*33%).

⁵³³ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁵³⁴ Cost of service where duct sealing was the sole service performed.

⁵³⁵ Adapted from UI/CL&P C&LM Program Savings Documentation – 2015 p. 138, 4.2.9 Duct Sealing measure, Table 1. Provided value multiplied by ratio of HDD of Maine and Connecticut, 7,777/5,885. Maine HDD based on a population-weighted average of Caribou, Bangor, and Portland from TMY3 dataset.

⁵³⁶ Adapted from UI/CL&P C&LM Program Savings Documentation – 2015 p. 138, 4.2.9 Duct Sealing measure, Table 1. Provided value multiplied by ratio of HDD of Maine and Connecticut, 7,777/5,885. Maine HDD based on a population-weighted average of Caribou, Bangor, and Portland from TMY3 dataset.

⁵³⁷ UI/CL&P C&LM Program Savings Documentation – 2015 p. 139, 4.2.9 Duct Sealing measure, Table 3.

⁵³⁸ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁵³⁹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵⁴⁰ Peak coincidence factors for this measure are embedded in the calculated peak demand impacts.

⁵⁴¹ Program not yet evaluated, assume default FR of 25%.

⁵⁴² Program not yet evaluated, assume default SO of 0%.

Hydronic Heating Pi	pe Insulatio	n (Compone	nt of LUB)						
Last Revised Date	7/1/2016								
MEASURE OVERVIEW									
Description	This measure	e involves insu	lation of hea	ating	pipes to reduce	heat loss. This n	neasure does	s not	
	include pipe	insulation for	electric hyd	ronic	heating system	s.			
Energy Impacts	Natural Gas,	Oil, Propane,	Wood, Kero	sene					
Sector	Residential								
Program(s)	Home Energy	y Savings Prog	ram						
End-Use	Heating								
Decision Type	Retrofit								
DEEMED GROSS ENERG	GY SAVINGS (L	JNIT SAVINGS							
Demand savings	N/A								
Annual energy	Δ MMBtu = 4	.807							
savings									
GROSS ENERGY SAVIN	IGS ALGORITHMS (UNIT SAVINGS)								
Demand savings	N/A								
Annual Energy		$\Delta MMBtu = \Delta E_{u} \times 1 / EEE$							
savings									
Definitions	Unit	= Pipe	insulation p	roject	:				
	AF _H	= Annı	ual fuel savir	ngs foi	r residences wit	th fossil fuel hot	water heatin	ıg	
	L	= Leng	th of pipe in	sulate	ed				
	EFF	= Effici	ency factor	of rep	presentative hea	ating system (Btu	u/Btu)		
EFFICIENCY ASSUMPTI	ONS								
Baseline Efficiency	The baseline	is heating pip	es with no ii	nsulat	ion.				
Efficient Measure	The high-effi	ciency case is	the existing	hot w	ater or heating	pipes with insul	ation installe	ed.	
	Insulation m	ust be R-3 or g	greater.						
PARAMETER VALUES (DEEMED)								
Measure	L(ft) ⁵⁴³	E	FF ⁵⁴⁴		АF _H ⁵⁴⁵	Life (yrs) ⁵⁴⁶	Cost	t (\$)	
Pipe Insulation	100	100 80.5 0.0387 25 Actual							
IMPACT FACTORS					1	1			
Measure	ISR ⁵⁴⁷	RR_{E}^{548}	RR_{D}^{548}	3	CFs	CFw	FR ⁵⁴⁹	SO ⁵⁵⁰	
Duct Sealing	100%	100%	100%	1	N/A	N/A	25%	0%	

⁵⁴³ Program estimate.

⁵⁴⁴ Representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁵⁴⁵ Hot water heating values for 0.75" pipe adapted from UI/CL&P C&LM Program Savings Documentation – 2015 p. 279, 4.5.9 Pipe Insulation measure, Table 4.

Provided values in CCF were converted to MMBtu heat loss reduction using 103,200 Btu/CCF and heating system efficiency of 75 percent.

⁵⁴⁶ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁵⁴⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁵⁴⁸ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵⁴⁹ Program not yet evaluated, assume default FR of 25%.

⁵⁵⁰ Program not yet evaluated, assume default SO of 0%.

Seal/Insulate Pipes/	Ducts (Component of LUB)
Last Revised Date	10/1/2016 (effective 7/1/2016)
MEASURE OVERVIEW	
Description	This measure involves insulation and/or sealing of heating pipes or ducts to reduce heat loss.
	This measure does not include pipe insulation for electric hydronic heating systems.
Energy Impacts	Electric, Natural Gas, Oil, Propane, Wood, Kerosene
Sector	Residential
Program(s)	Home Energy Savings Program
End-Use	Heating
Decision Type	Retrofit
DEEMED GROSS ENERG	GY SAVINGS (UNIT SAVINGS)
Demand savings	For homes with non-electric heating
	$\Delta kW_{SP} = 0.035$
	For homes with electric resistance heating
	$\Delta k W_{SP} = 1.614 \qquad \Delta k W_{SP} = 0.138$
Annual energy	For homes with non-electric heating
savings	Δ MMBtu = 5.57 Δ kWh = 30
	For homes with electric resistance heating
	∆kWh = 1,639
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)
Demand savings	For homes with non-electric heating
_	$\Delta kW_{SP} = W_{DI} X CDS_{DI} + W_{DS} X CDS_{DS}$
	For homes with electric resistance heating
	$\Delta kW_{WP} = W_{DI} X HDS_{DI} + W_{DS} X HDS_{DS} / (W_{DI} + W_{DS})$
	$\Delta kW_{SP} = W_{DI} \times CDS_{DI} + W_{DS} \times CDS_{DS} / (W_{DI} + W_{DS})$
Annual Energy	For homes with non-electric heating
savings	$\Delta MMBtu = W_{DI} X FS_{DI} + W_{DS} X FS_{DS} + W_{PI} X FS_{PI}$
	$\Delta kWh = W_{DI} X ECS_{DI} + W_{DS} X ECS_{DS}$
	For homes with electric resistance heating
	$\Delta kWh = W_{DI} X EHS_{DI} + W_{DS} X EHS_{DS} / (W_{DI} + W_{DS})$
Definitions	Unit = Duct/Pipe Sealing/Insulation project
	W _{DI} = percent of projects performing duct insulation
	W _{DS} = percent of projects performing duct sealing alone
	W _{PI} = percent of projects performing pipe insulation
	CDS _{DI} = cooling demand reduction associated with duct insulation
	CDS _{DS} = cooling demand reduction associated with duct sealing
	HDS _{DI} = heating demand reduction associated with duct insulation
	HDS _{DS} = heating demand reduction associated with duct sealing
	FS _{DI} = fuel savings associated with duct insulation
	FS _{DS} = fuel savings associated with duct sealing
	FS _{PI} = fuel savings associated with pipe insulation
	ECS _{DI} = electric cooling savings associated with duct insulation
	ECS _{DS} = electric cooling savings associated with duct sealing alone
	EHS _{DI} = electric heating savings associated with duct insulation
	EHS _{DS} = electric heating savings associated with duct sealing alone

Seal/Insulate Pipes/	Seal/Insulate Pipes/Ducts (Component of LUB)											
EFFICIENCY ASSUMPTIONS												
Baseline Efficiency	See bas	See baseline assumptions under Duct Insulation, Duct Sealing and Hydronic Heating Pipe										
	Insulation	nsulation measures										
Efficient Measure	See effi	cient me	easure assu	mptions ur	nder Du	ict Insul	ation, D	ouct Sea	aling and I	Hydro	nic Hea	ating
	Pipe Ins	pe Insulation measures										
PARAMETER VALUES (DEEMED)												
Mea	sure W _{DI} ⁵⁵¹ W _{DS} ⁵⁵² W _{PI} ⁵⁵³ Life (yrs) ⁵⁵⁴ Cost (\$: (\$)				
Seal/Insulate Pipes/D	ucts	10%		15%		75%			25		Act	ual
Mea	sure	CDS _{DI} 555	5 CDS	DS 556	HDS _{DI} 557		HDS	558)S	ECS _{DI}	559	EC	S DS ⁵⁶⁰
Seal/Insulate Pipes/D	ucts	0.136	0.	140	1.31	0	1.817		8			192
Mea	sure	FS_{DI}^{561}	FS	562 DS	FS _{PI} ⁵	63	EHS	564 01	EHS	565		
Seal/Insulate Pipes/D	ucts	9.743	6.	607	4.80	7	2,3	07	1,19	4		
IMPACT FACTORS												
Measure	ISR ⁵⁶	ISR ⁵⁶⁶ RR _E ⁵⁶⁷ RR _D ⁵⁴⁸ CF _s CF _w FR ⁵⁶⁸ SO ⁵⁶⁹									SO ⁵⁶⁹	
Duct Sealing	100%	6	100%	1009	6	N	/A	1	N/A	25	%	0%

⁵⁵⁸ Winter peak demand reduction for duct sealing. See Duct Sealing.

⁵⁶⁰ Electric savings for cooling for duct sealing. See Duct Sealing.

⁵⁵¹ Program estimate.

⁵⁵² Program estimate.

⁵⁵³ Program estimate.

⁵⁵⁴ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁵⁵⁵ Summer peak demand reduction for duct insulation basement supply. See Duct Insulation.

⁵⁵⁶ Summer peak demand reduction for duct sealing. See Duct Sealing.

⁵⁵⁷ Winter peak demand reduction for duct insulation basement supply. See Duct Insulation.

⁵⁵⁹ Electric savings for cooling for duct insulation basement supply. See Duct Insulation.

⁵⁶¹ Fuel savings for heating for duct insulation basement supply. See Duct Insulation.

⁵⁶² Fuel savings for heating for duct sealing. See Duct Sealing.

⁵⁶³ Fuel savings for heating for pipe insulation. See Hydronic Heating Pipe Insulation.

⁵⁶⁴ Electric savings for heating for duct insulation basement supply. See Duct Insulation.

 $^{^{\}rm 565}$ Electric savings for heating for duct sealing. See Duct Sealing.

⁵⁶⁶ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁵⁶⁷ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵⁶⁸ Program not yet evaluated, assume default FR of 25%.

⁵⁶⁹ Program not yet evaluated, assume default SO of 0%.

Ductless Heat Pump	(CH)					
Last Revised D	ate	9/16/2016					
MEASURE OVERVIEW							
Descript	ion	This measure involves the purchase and ins pump (DHP) system, instead of a standard e heating system.	tallation of a high-efficiency ductless heat efficiency DHP system, as a supplemental				
Energy Impa	acts	Electric					
Sec	tor	Residential					
Progran	n(s)	Home Energy Savings Program					
End-I	Jse	Heating, Cooling					
Decision Type New Construction, Replace on Burnout							
DEEMED GROSS ENER	GY S	AVINGS (UNIT SAVINGS)					
Demand savings For single head unit For multi-head or multiple units							
	$\Delta kW_{max} = 1.33$						
		$\Delta kW_{WP} = 0.40$	$\Delta kW_{WP} = 0.785$				
		$\Delta kW_{SP} = 0.05$	$\Delta kW_{SP} = 0.05$				
Annual energy savi	ngs	For single head unit	For multi-head or multiple units				
	_	∆kWh/yr = 1,902	∆kWh/yr = 3,603				
		Δ kWh _H /yr = 1,815	$\Delta kWh_H/yr = 3,516$				
		$\Delta kWh_c/yr = 88$	$\Delta kWh_c/yr = 88$				
GROSS ENERGY SAVIN	IGS /	ALGORITHMS (UNIT SAVINGS)	· · ·				
Demand Savings	Мо	deled ⁵⁷⁰					
Annual Energy Savings	Mo Hea Res Sav	deled ⁵⁷⁰ ating and cooling savings are modeled using T sults are weighted based on population (71.29 ings were calculated based on a model emplo • Average annual heat Loss is 92 MMBtu c	^T MY3 data for Portland, Bangor and Caribou. % Portland, 23.4% Bangor, 5.4% Caribou). ⁵⁷¹ oying the following key assumptions: corresponding to an average UA of 493				
	 Average annual heat Loss is 92 MMBtu corresponding to an average UA of 493 MMBtu/h/deg F. A single head DHP unit's contribution to heating does not exceed 35 percent of the home's heating load in any temperature bin. Even in temperature bins in which 100 percent of the home's heating load can be supplied by the DHP, the DHP supplies 35 percent of the heating load, and the remaining 65 percent is supplied by the existing heating system to account for distribution and behavior effects.⁵⁷² For DHP units with multiple heads or multiple units, the DHP contribution to heating is capped at 70 percent of the home's heating load in any temperature bin to account for more effective distribution.⁵⁷³ DHP heating output capacity and DHP heating efficiency (both baseline and efficient units) vary with outside air temperature as defined by performance curves. Baseline unit heating capacity is the same as the efficient unit. Heating is called for when outside air temperature is less than or equal to 65°F. 						

 $^{^{\}rm 570}$ Based on Excel Workbook for Ductless Heat Pump

⁵⁷¹ Calculated based on population of each region; U.S. Census Bureau Census 2010 Summary File 1 population by census tract

⁵⁷² Heat load offset of 35 percent is consistent with other findings. Ecotope, NEEA Final Summary Report for the Ductless Heat Pump Impact and Process Evaluation, February 19, 2014 reported savings were analyzed to be equivalent to 30%-40% heat load offset.

⁵⁷³ Program assumption to be validated and refined during next evaluation.

Ductless Heat Pump) (CH												
Definitions	Uni	t = 1 si	ngle-he	ad [OHP. Multiple	-head syst	tems	s or mo	re than	one sing	gle he	ead unit	
		insta	lled cou	nt a	is 2 units. No	o more than 2 units can be claimed per dwelling.							
	HSF	PF _B = Hea	= Heating seasonal performance factor of the baseline DHP (P (Btu/W	'att-h	ır)	
	HSF	PF _{EE} = Hea	ating sea	asor	nal performan	ce factor o	of th	e high-	efficien	cy DHP (Btu/	Watt-hr)	
	CAF	P _{Cool} = Rat	ed cooli	ing	capacity of the	e DHP (kBt	u/h)					
	CAF	P _{Heat} = Rat	ed heat	ing	capacity of th	e DHP (kB	tu/h)					
	SEE	R _B = Sea	isonal ei	nerg	gy-efficiency r	atio for ba	seli	ne DHP	(Btu/W	/att-hr)			
	SEE	$R_E = Sea$	= Seasonal energy-efficiency ratio for high-efficiency DHP (Btu/Watt-hr)										
EFFICIENCY ASSUMPT	IONS	5											
Baseline Efficie	ncy	The baseline	e case as	ssur	mes the home	retains its	s exi	sting h	eating s	ystem ar	nd ad	ds a new	
		ductless heat pump that meets Federal minimum efficiency requirement for units							nits				
		manufactur	ed on o	r aft	ter January 1,	2015: HSP	F=8	2 and	SEER=14	1.0.			
Efficient Meas	ure	The high-ef	ficiency	case	e assumes the	home ret	ains	its exis	sting hea	ating sys	tem	and adds	
		a new high-efficiency DHP that meets minimum efficiency requirements for program											
		rebate: HSP	F=12.0 a	and	SEER=18.0.								
PARAMETER VALUES	(DEE	MED)											
Meas	ure	CAP _{Hea}	t			$HSPF_{B}$	H	SPFe	Life	(yrs)	(Cost (\$)	
Ductless Heat Pu	Imp	17.5 ⁵⁷	4		14.2 ⁵⁷⁴	8.2 ⁵⁷⁵	13	3.2 ⁵⁷⁴	18	576		5682 ⁵⁷⁷	
Meas	ure	SEER			SEER _E								
Ductless Heat Pu	Imp	np 14 ⁵⁷⁵ 25.6 ⁵⁷⁴											
IMPACT FACTORS													
Meas	ure	ISR	RR _E		RR_{D}	CFs		C	Fw	FR		SO	
Ductless Heat Pu	Imp	100% ⁵⁷⁸	100%5	579	100% ⁵⁷⁹	100%5	80	100)% ⁵⁸⁰	25% ⁵	81	0% ⁵⁸²	

⁵⁷⁴ Weighted average values of the most popular units that have been incentivized under the Efficiency Maine program.

⁵⁷⁵ Federal minimum efficiency requirement for units manufactured on or after January 1, 2015 (changes to 8.8 HSPF and 15 SEER January 1, 2023).

⁵⁷⁶ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1.

⁵⁷⁷ The incremental cost is the difference in cost between a typical high-efficiency unit (\$1,645 based on Fujitsu model 12RLS2, ecomfort.com) and a typical baseline unit (\$963 based on LG model LS093HE, ecomfort.com).

⁵⁷⁸ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

⁵⁷⁹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵⁸⁰ The on-peak summer and winter kW savings are calculated directly from the modeling.

⁵⁸¹ Program not yet evaluated, assume default FR of 25%.

⁵⁸² Program not yet evaluated, assume default SO of 0%.

High-Efficiency Fu	rnaces and Boilers (DB, DF)
Last Revised Date	7/1/2016
MEASURE OVERVIE	W
Description	This measure involves the installation of a high-efficiency furnace, boiler or combination boiler plus domestic hot water (Combi) instead of a code-compliant furnace or boiler of the same fuel type and capacity (i.e. no fuel switching). In the case of combi units, the combi also replaces a standalone water heater.
Energy Impacts	Natural Gas. Heating Oil, Kerosene, Propane
Sector	Residential
Program(s)	Home Energy Savings Program
End-Use	Heating
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS EN	ERGY SAVINGS (UNIT SAVINGS)
Demand Savings	$\Delta kW = 0.000$
Annual Energy	NG Boiler Savings
Savings	$\Delta MMBtu_{GAS} = 14.841$
	NG Furnace Savings
	$\Delta MMBtu_{GAS} = 18.361$ Propane Boiler Savings
	$\Delta MMBtu_{PROP} = 15.149$
	Heating Oil/Kerosene Boiler Savings
	Heating Oil/Kerosene Eurnace Savings Δ MMBtu _{OIL/KERO} = 4.140
	$\Delta MMBtuot (KERO = 5.940)$
	NG Combi Savings
	$\Delta MMBtu_{GAS} = 21.969$
GROSS ENERGY SAV	/INGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	$\Delta kW = 0.0000$
Annual Energy	For Boiler and Furnaces
Savings	$\Delta MMBtu/yr = AHL \times (AFUE_{EE} / AFUE_{BASE} - 1)$
	For Combination Boiler and Domestic Hot Water
Definitions	$\Delta IVIVIBTU/Yr = AHL \times (AFUE_{EE} / AFUE_{BASE} - 1) + GPU \times 365 \times 8.33 \times 1 \times (I_{WH} - I_{in}) \times (EF_{EE}/EF_{BASE})$
Definitions	AFL = Annual field (MMBlu/y)
	$AFUE_{BASE}$ = Rated efficiency of the bigb-efficiency unit (AFUE %)
	GPD = Average amount of hot water consumed annually per Maine household
	365 = Constant: 365 days per year
	8.33 = Density of water: 8.33 lb/gallon water
	1 = Specific heat of water: 1 Btu/lb-°F
	T_{WH} = Water heater temperature set point (°F)
	T _{in} = Temperature of water mains (water into the water heater) (°F)
	EF _{BASE} = Energy factor for baseline stand alone tank water heater (%)
	EF _{EE} = Energy factor for high-efficiency unit (%)
EFFICIENCY ASSUM	PTIONS
Baseline Efficiency	The baseline case is a new boiler or furnace (and a new water heater in the case of a combi) that
	meets the federal minimum efficiency requirements.
Efficient Measure	The high-efficiency equipment exceeds the federal minimum efficiency.

High-Efficiency Furnaces an	High-Efficiency Furnaces and Boilers (DB, DF)									
PARAMETER VALUES (DEEME	D)									
	AHL ⁵⁸³								$c_{c+} (c)^{587}$	
Measure			AFU	IE _{BASE} 584	AFUE _{EE} 585	Life (yr	s) ⁵⁸⁶	, c	.USL (\$)	
Oil/Kerosene Furnace			8	83%	87.7%				668	
Natural Gas Furnace			8	80%	95.2%				1,438	
Propane Furnace	02		80%		95.5%	25			742	
Oil/Kerosene Boiler	92		8	84%	87.3%	25			326	
Natural Gas Boiler/Combi				82%	94.5%				1,785	
Propane Boiler				82%	94.8%			2,030		
Measure	GPD ⁵⁸⁸		٦	589 in	Т wн ⁵⁹⁰	EFBAS	591 E		EF_{EE}^{592}	
Natural Gas Combi Unit	51.1		Ξ,	50.8	126.2	60%	6		94.5%	
IMPACT FACTORS	IMPACT FACTORS									
Measure	ISR	F	RRE	RR_{D}	CFs	CFw	FR		SO	
High Eff. Furnaces/Boilers	100% ⁵⁹³	10	0% ⁵⁹⁴	100%594	NA	NA	25%	595	0% ⁵⁹⁶	

⁵⁸³ NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁵⁸⁴ Table E-2. Minimum Efficiency Requirements for Furnaces and Boilers- based on Code of Federal Regulations: <u>http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10</u>

⁵⁸⁵ Average AFUE for new high-efficiency equipment are based on average EMT program tracking data from November 2014 to April 2016.

⁵⁸⁶ GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1, value for new construction.

⁵⁸⁷ Oil/Kerosene and Propane unit costs based on incremental costs reported in Efficiency Vermont Technical Reference User Manual (TRM) 2014-87, 1/1/2014, p.

^{533.} Natural Gas unit costs based on incremental costs reported in Illinois Statewide Technical Reference Manual for Energy Efficiency Version 4.0, 1/23/2015, Boiler AFUE 95% p. 572 and Furnace AFUE 95 percent p. 578.

⁵⁸⁸ Daily household consumption of hot water calculated based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev., Lawrence Berkeley Laboratory, 1996.

⁵⁸⁹ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

⁵⁹⁰ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

⁵⁹¹ Federal water heater standard, DOE Standard 10 CFR 430.32(d), effective 4/16/2015. EF assumes a 50 gallon storage tank (EF = 0.675-(0.0015*50)) = 0.60. <u>http://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=23d182b583bbfb7d624f02a8d30ccc30&mc=true&n=pt10.3.430&r=PART&ty=HTML#sp10.3.430.c</u>

 ⁵⁹² Average AFUE for new high-efficiency equipment are based on average EMT program tracking data from November 2014 to April 2016.
 ⁵⁹³ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

 $^{^{533}}$ EIVIT assumes that all purchased units are installed (i.e. ISR = 100%).

⁵⁹⁴ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵⁹⁵ Program not yet evaluated, assume default FR of 25%.

⁵⁹⁶ Program not yet evaluated, assume default SO of 0%.

Pellet/Wood Stove	(CPS, CWS)										
Last Revised Date	7/1/2014										
MEASURE OVERVIEW											
Description	This measure	nis measure involves purchase and installation of an eligible pellet/wood stove to provide									
	supplementa	I heat for the e	existing heating	g system. En	ergy savi	ngs are	achi	eved due t	o the		
	improved eff	iciency of eligi	ble pellet/woo	d stove and	the addit	ion of a	in ou	itdoor mal	e-up air kit	t.	
Energy Impacts	Wood										
Sector	Residential										
Program(s)	Home Energy	Savings Progr	am								
End-Use	Heating										
Decision Type	New Constru	ction, Replace	on Burnout								
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS	5)								
Demand savings	$\Delta kW_{SP} = NA$										
	$\Delta kW_{WP} = NA$										
Annual energy		- 21 079									
savings		$\Delta MMBtu_{WOOD} = 21.078$									
GROSS ENERGY SAVIN	IGS ALGORITH	MS (UNIT SAV	'INGS)								
Demand savings	$\Delta kW = NA$										
Annual Energy		11.4D+		1/666	1						
savings		IIVIBLUHEAT X 763	STOVE X (1/EFF	BASE - 1/EFFE	E)						
Definitions	Unit	= New pellet	t/wood stove								
	AHL	= Average he	eating energy l	load for Mair	ne house	hold (M	IMBt	u)			
	%STOVE	= Percentage	e of heat load	served by ne	w pellet/	'wood s	tove	(%)			
	EFF _{BASE}	= Baseline h	eating equipm	ent efficienc	y (%)						
	EFFEE	= Pellet/woo	od stove heatir	ng efficiency	(%)						
EFFICIENCY ASSUMPT	IONS										
Baseline Efficiency	The baseline	case is a non E	PA certified pe	ellet/wood s	tove to p	rovide s	suppl	lemental h	eat.		
Efficient Measure	The high-effi	ciency case ass	umes the hom	ne retains its	existing	heating	syst	em and ad	ds a new		
	pellet/wood	stove to provid	de supplement	al heat.							
PARAMETER VALUES											
Measure	AHL ⁵⁹⁷	%STOVE	EFF _{BASE}	EFF_{EE}				Life (yrs	Cost (\$	5)	
Pellet/Wood Stove	92	50% ⁵⁹⁸	53% ⁵⁹⁹	70% ⁶⁰⁰				25 ⁶⁰¹	3,000 ⁶⁰	02	
IMPACT FACTORS											
Measure	ISR	RRE	RR _D	CFs	С	Fw		FR	SO		
Pellet/Wood Stove	100% ⁶⁰³	100% ⁶⁰⁴	100% ⁶⁰⁴	NA	N	IA		25% ⁶⁰⁵	0%606		

⁵⁹⁷ NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁵⁹⁸ Estimate, comparison against RECS microdata for the New England census division found percentages in a similar range, though these data were not directly comparable. Primary data collection is the best method for refining this input.

⁵⁹⁹ Engineering judgment based on 60 percent combustion efficiency derated to account for distribution and heat losses associated with not having an outdoor makeup air kit.

⁶⁰⁰ U.S. DOE, conservative estimate of pellet stove efficiency: <u>http://energy.gov/energysaver/articles/wood-and-pellet-heating</u>

⁶⁰¹ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, prepared for the New England State Program Working Group, June 2007, Table 1; value for new construction.

⁶⁰² Average full cost of participant pellet/wood stove installation minus \$700 for standard efficiency stove. Represents installations where the stove was the sole upgrade installed.

⁶⁰³ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁶⁰⁴ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶⁰⁵ Program not yet evaluated, assume default FR of 25%.

⁶⁰⁶ Program not yet evaluated, assume default SO of 0%.

Pellet/Cord Wood B	oiler (APB)										
Last Revised Date	7/1/2016										
MEASURE OVERVIEW											
Description	This measu heating sys this measu to the char	his measure involves purchase and installation of a pellet or cord wood boiler as a whole-home eating system rather than a new fossil-fuel boiler. EMT estimates minimal energy savings for his measure, but the participating customer achieves overall GHG and fuel-cost reductions due o the change in fuel type.									
Energy Impacts	Wood, Oil	0 /1									
Sector	Residentia										
Program(s)	Home Ener	rgy Savings Pr	ogram								
End-Use	Heating	0, 0	0								
Decision Type	New Const	ruction, Repl	acement								
DEEMED GROSS ENER	GY SAVING	5 (UNIT SAVI	NGS)								
Demand savings	$\Delta kW_{SP} = N/$	4									
	$\Delta kW_{WP} = N$	A									
Annual energy	Δ MMBtu _w	_{00D} =-45.680									
savings	Δ MMB	tu _{PELLET} = – 41	108								
	Δ MMB	tu _{cord} =-4.5	58								
	$\Delta MMBtu_{PR}$	OPANE = 37.024	1								
	$\Delta MMBtu_{OI}$	L = 36.143									
GROSS ENERGY SAVIN	IGS ALGORI	THMS (UNIT S	SAVINGS)								
Demand savings	$\Delta kW = NA$										
Annual Energy	Δ MMBtu _{BA}	SEFUEL /yr = MN	ИBtu _{неат} x 1 /	EFF _{BASE} x %FUEL	BASE						
savings	$\Delta MMBtu_{NE}$	wFUEL/yr = - (I	MMBtu _{HEAT} x	1 / EFF _{PB}) x %FU	EL _{EE}						
Definitions	Unit	= New	pellet boiler								
	AHL	= Aver	age annual he	eating load for M	laine home (MMB	tu)					
	EFBASE	= Aver	age baseline l	neating system e	efficiency (%)						
	EF _{PB}	= Aver	age pellet boi	ler heating syste	em efficiency (%)						
	%FUEL _{BASE}	= Distr	ibution of fue	l types for basel	ine boilers						
	%FUEL _{EE}	= Distr	ibution of fue	l types for efficie	ent boilers						
EFFICIENCY ASSUMPT											
Baseline Efficiency	The baselir	ne case is a ne	ew standard e	efficiency fossil f	uel boiler.						
Efficient Measure	The high-e	fficiency case	assumes the	home replaces i	ts heating system	with a new pe	ellet boiler				
	that meets	the minimur	n efficiency r	equirements for	program rebate.						
				608	a/=	1:f= (
Ivieasure	AHL ⁰⁰⁷	EFFBASE	EFFPB		%FUELEE	Lite (yrs)	Lost (Ş)				
Boiler	92	84% ⁶¹⁰	85% ⁶¹¹	33% Propane 34% Wood	90% Pellets 10% Cord Wood	25 ⁶¹²	12,942 ⁶¹³				

⁶⁰⁷ NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁶⁰⁸ Program Assumption

⁶⁰⁹ Program Assumption

⁶¹⁰ Code of Federal Regulations: <u>http://www.ecfr.gov/cgi-bin/text-</u>

idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10

⁶¹¹ Average efficiency of residential pellet boiler, based on the following models: Pellergy KPS-100-5, Woodpecker Wood-Pellet Boiler, Froling P4, Kedel cord wood boiler and MeSys cord wood boiler.

⁶¹² GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, prepared for the New England State Program Working Group, June 2007, Table 1; value for new construction.

⁶¹³ Average incremental cost of participant pellet boiler. Represents installations where pellet boiler was the sole upgrade installed. Baseline cost reflects cost of a new, code-compliant, 80 kBtuh boiler. Baseline cost based on DEER 2008 cost workbook.

Pellet/Cord Wood Boiler (APB)									
IMPACT FACTORS									
Measure	ISR	RRE	RR _D	CFs	CFw	FR	SO		
Boiler	100% ⁶¹⁴	100% ⁶¹⁵	NA	NA	NA	25% ⁶¹⁶	0%617		

 $^{^{\}rm 614}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁶¹⁵ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶¹⁶ Program not yet evaluated, assume default FR of 25%.

⁶¹⁷ Program not yet evaluated, assume default SO of 0%.

Central Air-source H	eat Pump (ducted) (DHA)
Last Revised Date	7/1/2016
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of new high-efficiency air-source heat pump for central heating and cooling rather than a new standard-efficiency air-source heat pump. Energy savings are achieved by the improved efficiency of the installed equipment compared to federal standards.
Energy Impacts	Electric
Sector	Residential
Program(s)	Home Energy Savings Program
End-Use	Heating, Cooling
Decision Type	New Construction, Replacement
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS)
Demand savings	Δ kW _{SP} = 0.054 (0.013 after 1/1/17, based on updated EER baseline of 11.8)
	Δ kW _{WP} = 0.538 (0.395 after 1/1/17, based on updated HSPF baseline of 8.2)
Annual energy	Δ kWh/yr = 2,806 (2,062 after 1/1/17, based on updated SEER and HSPF baselines of 14 and 8.2
savings	respectively)
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)
Demand savings	$\Delta kW_{SP} = CAP_C \times (1 / EER_{BASE} - 1 / EER_{EE}) \times CF_{SP}$
	$\Delta kW_{WP} = CAP_{H} \times (1 / HSPF_{BASE} - 1 / HSPF_{EE}) \times CF_{WP}$
Annual Energy	$\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HEAT}$
savings	$\Delta kWh_{COOL} = ACL \times 1000 x (1 / SEER_{BASE} - 1 / SEER_{EE})$
	$\Delta kWh_{HEAT} = AHL \times 1000 x (1 / HSPF_{BASE} - 1 / HSPF_{EE})$
Definitions	Unit = New ASHP equipment
	CAP _c = Output cooling capacity of ASHP (kBtu/hr)
	CAP _H = Output heating capacity of ASHP (kBtu/hr)
	SEER _{BASE} = SEER of new code-compliant ASHP (Btu/w-hr) (baseline code updates 6/30/16)
	SEER _{EE} = SEER of new high-efficiency ASHP (Btu/w-hr)
	$HSPF_{BASE}$ = HSPF of new code-compliant ASHP (Btu/w-hr) (baseline code updates 6/30/16)
	HSPF _{EE} = HSPF of new high-efficiency ASHP (Btu/w-hr)
	EER _{BASE} = EER of new code-compliant ASHP (Btu/w-hr)
	EER _{EE} = EER of new high-efficiency ASHP (Btu/w-hr)
	CF _{SP} = Summer peak coincidence factor (%)
	CF _{WP} = Winter peak coincidence factor (%)
	AHL = Annual heating load (MMBtu)
	ACL = Annual cooling load (MMBtu)
	1000= Conversion factor MMBtu to kBtu
EFFICIENCY ASSUMPTI	ONS
Baseline Efficiency	The baseline case is a new code-compliant air-source heat pump to provide heating and cooling.
Efficient Measure	The high-efficiency case is a new high-efficiency air-source heat pump with a HSPF greater than
	or equal to 10.0 Btu/W-h to provide heating and cooling.

Central Air-source H	eat Pump (o	lucted) (DF	IA)									
PARAMETER VALUES												
Measure	CAPc	CAP _H	SEER _B	ASE	SEER _{EE}	HS	PFBASE	H	SPFEE	Life (y	rs)	Cost (\$)
Central ASHP	36 ⁶¹⁸	36 ⁶¹⁸	13 ⁶¹⁹	Ð	18 ⁶²⁰	7.	.7 ⁶¹⁹	1	0.0 ⁶²¹	25 ⁶²	2	2,000 ⁶²³
Measure	EER _{BASE}	EE	EEREE		EFLH HEAT		EFLH _{COOL}	-	Al	ΗL		ACL
Central ASHP	11.2 ⁶²⁴	12	625	2,706 ⁶²⁶		231 ⁶²⁶		92	627		2.7 ⁶²⁸	
IMPACT FACTORS												
Measure	ISR	RR _E	F	RD	CF _{SP}		CFw	Р	FR			SO
Central ASHP	100 ^{%629}	100% ⁶³⁰	100)% ⁶³⁰	25% ⁶³	31	50%6	31	25% ⁶³	2	0	% ⁶³³

628 Ibid.

⁶¹⁸ Assumed capacity.

⁶¹⁹ U.S. DOE Standard, effective in 2006: <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75</u>. A grace period is in place for an amendment to the 2006 standard, which delays the updated code until June 30, 2016.

⁶²⁰NY TRM 2010 p. 42, ASHP measure, SEER correlated to HSPF of 9.2 (closest HSPF value to 10).

⁶²¹ Minimum program requirement.

⁶²² GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1; value for new construction.

⁶²³ Survey of standard and high-efficiency system costs at ecomfort.com.

⁶²⁴ Converted baseline SEER to EER using the following conversion: EER = -0.02*SEER²+1.12*SEER. U.S. DOE Building America House Simulation Protocols, p. 47, Eq 22, http://www.nrel.gov/docs/fy11osti/49246.pdf.

⁶²⁵ ENERGY STAR database, EER correlated to HSPF of 10: most common EER associated with split ASHP systems with HSPF of 10, viewed 7/16/14.

⁶²⁶ Calculated based on 97.4 MMBTU average heating load for Maine household and 36 kBtuh Central GSHP heating capacity. Average heating load for Maine

household is a weighted average value based on estimated heating energy and population distribution for Portland (96, 71.2%), Bangor (96, 23.4%), and Caribou (122, 5.4%).

⁶²⁷ NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

 $^{^{\}rm 629}$ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁶³⁰ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

 $^{^{\}rm 631}$ MA TRM 2013 TRM 2010, Air-source heat pump peak coincidence factor.

⁶³² Program not yet evaluated, assume default FR of 25%.

⁶³³ Program not yet evaluated, assume default SO of 0%.

Central Geothermal (Ground source) Heat Pump (GCL, GOL)									
Last Revised Date	4/1/2017 (effe	ctive 3/1/2017)							
MEASURE OVERVIE	W								
Description	This measure i	nvolves the purchase and installation of new Tier 3 high-efficiency geothermal heat							
	pump instead	of a standard efficiency oil boiler							
Energy Impacts	Electric, Heatir	ng Oil							
Sector	Residential								
Program(s)	Home Energy S	Savings Program							
End-Use	Heating, Cooli	ng							
Decision Type	New Construct	ion, Replace on Burnout							
DEEMED GROSS EN	ERGY SAVINGS	UNIT SAVINGS)							
Demand savings	ΔkW_{c} = -0.	152 ΔkW_{SP} = -0.015							
	$\Delta kW_{H} = -2.$	573 ΔkW_{WP} = -2.048							
Annual energy	Δ kWh/yr = -65	88							
savings	$\Delta kWh_c/yr = -1$	1							
	$\Delta kWh_H/yr = -6$	577							
	ΔMMBTU _H /yr	= 109.524							
GROSS ENERGY SAV	/INGS ALGORITH	IMS (UNIT SAVINGS)							
Demand savings	$\Delta kW_{H} = CAP_{H}$	< (-1 / COP _{FF}) / 3.412							
	$\Delta kW_{c} = [\% COC$	$DL_{FULL} \times CAP_{C} \times (1/EER_{B} - 1/EER_{F}) + \%COOL_{NONF} \times CAP_{C} \times (-1/EER_{F})$							
Annual Energy	Heating Saving								
savings	$\Delta kWh_H/yr = AH$	- +L x 1000 × (- 1 / COP _{FF}) / 3.412							
	AMMBTU _H /vr	= AHL / AFUE _{BASE}							
	Cooling Saving	<u>S:</u>							
	$\Delta kWh_c/yr = AC$	$L \times 1000 \times [\%COOL_{FULL} \times (1/EER_B - 1/EER_E) + \%COOL_{NONE} \times (-1/EER_E)]$							
	Key Assumptio	ns							
	For hor	nes that have the equivalent of whole home A/C already installed, ground source heat pump							
	(GSHP)	will replace the cooling load equivalent to the GSHP's rated capacity.							
	For hor	nes that have existing partial cooling (i.e. 1 or 2 existing window A/C units), it is unknown if							
	the GH	SP will be used differently than the existing window A/C units. If the GHSP is used to cool the							
	same s	paces as existing window A/C units, the GHSP will replace the existing cooling load and result							
	in posit	ive savings due to increased efficiency. However, if the GHSP is used to cool the entire							
	nouse,	It may result in additional cooling load and hence negative savings. Without any in-situ data,							
	Eor hor	nes with no existing cooling equinment, it is assumed that the GSHP will be used to its full							
	cooling	capacity.							
Definitions	Unit	= New geothermal heat pump system							
	CAP _H	= Output heating capacity of geothermal heat pump at $47^{\circ}F$ (kBtu/hr)							
	CAPc	= Output cooling capacity of geothermal heat pump at 95°F (kBtu/hr)							
	COPEE	= Coefficient of performance of geothermal heat pump							
	EERB	= Assumed energy-efficiency ratio for existing cooling equipment (Btu/Watt-hr)							
	EER _E	= Rated energy-efficiency ratio for GSHP (Btu/Watt-hr)							
	%COOL _{FULL}	= Percentage of homes with existing cooling equipment equivalent of a whole							
		home air conditioner (equivalent of 3 window A/C units) (%)							
	%COOL _{NONE}	= Percentage of homes with no existing cooling equipment (%)							
	AHL	= Annual heating load (MMBtu)							
	ACL	= Annual cooling load (MMBtu)							
	1000	= Conversion factor MMBtu to kBtu							
		= Annual fuel utilization efficiency of the existing heating system (%)							

Central Geotherma	Central Geothermal (Ground source) Heat Pump (GCL, GOL)											
EFFICIENCY ASSUMP	EFFICIENCY ASSUMPTIONS											
Baseline Efficiency	The baseline case is a standard efficiency oil boiler and a mix of standard efficiency air conditioners											
	and no air conditioners.											
Efficient Measure	The high-efficiency case is a new Tier 3 geothermal heat pump system to provide heating and											
cooling.												
PARAMETER VALUES												
Measure	CAP _H	CAPc	COPEE	EER _B	EERE	Life (yrs)	Cost (\$)					
GSHP	36 ⁶³⁴	36 ⁶³⁵	4.1 ⁶³⁶	16.2 ⁶³⁷	21.1 ⁶³⁸	25 ⁶³⁹	31,000 ⁶⁴⁰					
Measure	%COOL _{FULL}	%COOL _{NONE}	EFLH _H	EFLH _c	AFUEBASE	AHL	ACL					
GSHP	40% ⁶⁴¹	21% ⁶⁴¹	2,706 ⁶⁴²	231 ⁶⁴³	84% ⁶⁴⁴	92 ⁶⁴⁵	2.7 ⁶⁴⁶					
IMPACT FACTORS												
Measure	ISR	ISR RR _E RR _D CF _S CF _W FR SO										
GSHP	100% ⁶⁴⁷	100%648	100% ⁶⁴⁸	10.2% ⁶⁴⁹	79.6% ⁶⁴⁹	25% ⁶⁵⁰	0%651					

idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10.

⁶³⁴ As referenced in MA 2013 TRM: ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; p. 4-12, Table 4-9.

⁶³⁵ As referenced in MA 2013 TRM: ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; p. 4-12, Table 4-9.

 $^{^{\}rm 636}$ ENERGY STAR* Geothermal Heat Pumps Key Product Criteria Open Loop Water-to-air Tier 3.

⁶³⁷ ENERGY STAR® Geothermal Heat Pumps Key Product Criteria Open Loop Water-to-air Tier 1.

⁶³⁸ ENERGY STAR[®] Geothermal Heat Pumps Key Product Criteria Open Loop Water-to-air Tier 3.

⁶³⁹ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1; value for new construction.

⁶⁴⁰ Average full cost of participant geothermal heat pump installation (\$38,000) minus assumed cost of standard efficiency system (\$7,000). Represents installations where geothermal heat pump was the sole upgrade installed.

⁶⁴¹ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /</u>. In 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21 percent have no cooling equipment installed. ⁶⁴² Calculated based on 97.4 MMBTU average heating load for Maine household and 36 kBtuh Central GSHP heating capacity. Average heating load for Maine

household is a weighted average value based on estimated heating energy and population distribution for Portland (96, 71.2%), Bangor (96, 23.4%), and Caribou (122, 5.4%).

 ⁶⁴³ NY TRM 2010, average EFLH for the New York cities of Binghamton and Massena. The hours for these cities were mapped to the Maine cities of Portland, Bangor (Binghamton) and Caribou (Massena). Hours were scaled by degree days for each city. Final hours represent an average weighted by city population.
 ⁶⁴⁴ Code of Federal Regulations: http://www.ecfr.gov/cgi-bin/text-

⁶⁴⁵ NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015

⁶⁴⁶ Ibid.

⁶⁴⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁶⁴⁸ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶⁴⁹ Factors for the Central GSHP measure were assumed to be identical to the factors of the Ductless Heat Pump Retrofit measure because of the similarity between the two measures.

⁶⁵⁰ Program not yet evaluated, assume default FR of 25%.

⁶⁵¹ Program not yet evaluated, assume default SO of 0%.

On-Demand Natura	l Gas Water H	leater (NGW	Н)				
Last Revised Date	4/1/2017 (ef	fective 3/1/20	17)				
MEASURE OVERVIEW							
Description	This measure	his measure involves purchase and installation of new on-demand (instantaneous) natural gas-					
	fired water h	eater rather th	nan a new stan	dard tank wat	er heater. Ene	rgy savings are	achieved by
	reducing the	standby losses	s from the tank	k water heater			
Energy Impacts	Natural Gas						
Sector	Residential						
Program(s)	Home Energy	/ Savings Progr	ram				
End-Use	Heating, Coo	ling					
Decision Type	New Constru	ction, Replace	ment				
DEEMED GROSS ENER	GY SAVINGS (UNIT SAVINGS	5)				
Demand savings	$\Delta kW = NA$						
Annual energy	$\Delta kWh/yr = 0$						
savings	Δ MMBtu/yr	= 5.37					
GROSS ENERGY SAVIN	IGS ALGORITH	MS (UNIT SAV	/INGS)				
Demand savings	$\Delta kW = NA$						
Annual Energy	$\Delta kWh/yr = 0$						
savings	Δ MMBtu/yr	= GPD x 365 x 3	8.33 х 1 х (Т _{WH}	- T _{in}) x (1/EF _{BA}	$_{\rm SE} - 1/{\rm EF_{EE}}) / 1$,000,000	
Definitions	Unit	= New on-de	mand natural ន្	gas water heat	er		
	GAL	= Average am	nount of hot w	ater consumed	d annually per	Maine househ	old
		(gal/yr/home	2)				
	Т _{WH}	= Water heat	er set-point te	mperature (°F)		
	T _{in}	= Average wa	ter at the mai	n (°F)			
	EF _{BASE}	= Energy fact	or for baseline	stand alone ta	ank water heat	:er (%)	
	EFEE	= Energy fact	or for on-dema	and water hea	ter (%)		
	365	= Days per ye	ar				
	8.33	= Density of v	water: 8.33 lb/	gallon water			
	1	= Specific hea	at of water: 1 E	Stu/lb-°F			
	1,000,000	= Conversion	: 1,000,000 Bti	u/MMBtu			
EFFICIENCY ASSUMPT					<u>.</u>		
Baseline Efficiency	The baseline	case is a new s	standard-effici	ency natural g	as fired tank w	ater heater.	
Efficient Measure	The high-effi	ciency case is a	a new on-dema	and (instantan	eous) natural g	gas fired water	heater with
	energy factor	r of at least 0.9	13.				
	CDD	–	т			Life (see	
Ivieasure	GPD	I WH	lin	EFBASE	EFEE	Life (yrs)	Cost (\$)
	51.1 ⁶⁵²	126.2 ⁶⁵³	50.8 ⁶⁵⁴	0.62 ⁶⁵⁵	0.87656	25 ⁶⁵⁷	242 ⁶⁵⁸
Gas water Heater							

⁶⁵² Daily household consumption of hot water calculated based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev., Lawrence Berkeley Laboratory, 1996.

⁶⁵³ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

⁶⁵⁴ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

⁶⁵⁵ Weighted average based on assumed market share of readily available water heaters that meet Federal water heater standard, DOE Standard 10 CFR 430.32(d), EF of 0.615 effective 4/16/2015. EF assumes a 40-gallon storage tank (EF = 0.675-(0.0015*40)).

⁶⁵⁶ Weighted average based on assumed program participation of eligible equipment (75% of measures with EF between 82 and 88% , 25% of measures with EF between 92-98%).

⁶⁵⁷ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, prepared for the New England State Program Working Group, June 2007, Table 1; value for new construction.

⁶⁵⁸ Difference of weighted averages based on assumed market share of readily available baseline water heaters (\$474) and program eligible models (\$716) using internet listed prices accessed on 12/21/2016.

On-Demand Natural Gas Water Heater (NGWH)							
IMPACT FACTORS							
Measure	ISR	RR _E	RR₀	CFs	CFw	FR	SO
On-Demand Natural Gas Water Heater	100% ⁶⁵⁹	100% ⁶⁵⁹	NA	NA	NA	25% ⁶⁶⁰	0%661

⁶⁵⁹ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

 ⁶⁶⁰ Program not yet evaluated, assume default FR of 25%.
 ⁶⁶¹ Program not yet evaluated, assume default SO of 0%.

Low-income Program

Air Sealing Direct Ins	Air Sealing Direct Install (LNAS)								
Last Revised Date	7/1/2016 (eff	ective 7/1/202	15)						
MEASURE OVERVIEW									
Description	This measure	involves seali	ng ai	r leaks ir	n windov	vs, do	oors, roof, ci	rawl spaces and	outside walls
	resulting in de	ecreased heat	ing a	nd cooli	ng loads				
Energy Impacts	Natural Gas								
Sector	Residential								
Program(s)	Low-income D	Direct Install							
End-Use	Heating, Cooli	ing							
Decision Type	Retrofit								
GROSS ENERGY SAVIN	GS ALGORITHN	1S (UNIT SAVI	NGS))					
Demand savings	$\Delta kW = 0$								
Annual Energy			/ 66	c					
savings			/ []						
Definitions	Unit	= Air-sealin	g pro	oject					
	HLF	= Heat loss	facto	or as a fu	unction c	of red	luction in CF	M50	
	$\Delta CFM50$	= Reduction	n in a	air infiltra	ation				
	EFF	= Efficiency	fact	or of rep	presenta	tive h	neating syste	em (Btu/Btu)	
EFFICIENCY ASSUMPTI	ONS								
Baseline Efficiency	The baseline of	case is the exis	sting	home b	efore the	e air-	sealing mea	sures are instal	ed. The
	program cont	ractor measu	res tł	he baseli	ne leaka	ige ra	ate (CFM50 _{PF}	RE) during the ho	ome audit.
Efficient Measure	The high-effic	iency case is t	he h	ome afte	er the aiı	r-seal	ling measure	es are installed.	The program
	contractor me	easures the po	ost-u	pgrade l	eakage r	ate (CFM50 _{POST}) a	after the air sea	ling installation
	is complete.								
PARAMETER VALUES (DEEMED)								
Measure	HLF ⁶⁶²	ΔCFM50)	EFF	663			Life (yrs)	Cost (\$)
Air Sealing	0.01362	actual		80	.5			15 ⁶⁶⁴	\$700 ⁶⁶⁵
IMPACT FACTORS									
Measure	ISR	RR _E		RR _D	CFs		CFw	FR	SO
Air Sealing	100% ⁶⁶⁶	100% ⁶⁶⁷	10)0% ⁴⁰²	N/A	4	N/A	25% ⁶⁶⁸	0%669

⁶⁶² Based on modeling of TMY3 data.

⁶⁶³ Representative heating system efficiency NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁶⁶⁴ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, prepared for the New England State Program Working Group, June 2007, Table 1.

⁶⁶⁵ Average cost of sampled 2016 projects where attic insulation was itemized separately on contractor invoice (N=51).

⁶⁶⁶ ISR is 100 percent because deemed savings results are based on evaluated results that include installation verification.

⁶⁶⁷ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶⁶⁸ Program not yet evaluated, assume default FR of 25%.

⁶⁶⁹ Program not yet evaluated, assume default SO of 0%.

Attic/Roof Insulation) Direct Install (LNAI)							
Last Revised Date	7/1/2016 (ef	7/1/2016 (effective 7/1/2015)							
MEASURE OVERVIEW									
Description	This measure i	involves the insu	ulation of the att	ic floor to decre	ease heating	and cool	ing losses i	n hc	omes
	heated with na	atural gas where	e the existing att	ic insulation is r	ated at R-8	or lower.			
Energy Impacts	Natural Gas								
Sector	Residential								
Program(s)	Low-income	Direct Install							
End-Use	Heating, Coo	ling							
Decision Type	Retrofit								
GROSS ENERGY SAVINGS	ALGORITHMS	6 (UNIT SAVIN	GS)						
Demand savings	$\Delta kW = 0$								
Annual Energy savings	Δ MMBtu = H	LF x (1/ RVAL _P	RE-1/ RVALPOST) x SQFT / EFF					
Definitions	Unit	Unit = Attic/roof insulation project							
	HLF	= Heat	loss factor as a	function of ch	nange in ins	ulation	R-value		
	SQFT	= Area	of attic insulati	on (ft ²) assum	ed in temp	erature	bin analys	is	
	RVALPRE	= Pre-u	pgrade attic R-	value (ft²-°F-h	r/Btu) assu	med in t	emperatu	ıre k	oin
		analysi	S						
	RVALPOST	= Post-	upgrade attic R	-value (ft ² -°F-	hr/Btu) ass	umed in	temperat	ure	bin
		analysi	S						
	EFF	= Effici	ency factor of r	epresentative	heating sy	stem (Bt	u/Btu)		
EFFICIENCY ASSUMPTION	NS								
Baseline Efficiency	The baseline	The baseline is the existing (pre-upgrade) insulation							
Efficient Measure	The high-effi	ciency case is t	he upgraded ir:	sulation					
PARAMETER VALUES (DE	EMED)								
Measure	HLF ⁶⁷⁰	SQFT	RVALPRE	RVALPOST	EFF ⁶⁷¹	Life	(yrs) ⁶⁷²	Сс	ost (\$) ⁶⁷³
Attic/Roof Insulation	0.192138	actual	actual	actual	80.5		25		2,617
IMPACT FACTORS									
Measure	ISR ⁶⁷⁴	RR _E ⁶⁷⁵	RR_{D}^{676}	CFs		CFw	FR ⁶⁷⁷		SO ⁶⁷⁸
Attic/Roof Insulation	100%	100%	100%	N/A	1	I/A	0%		0%

⁶⁷⁰ Based on modeling of TMY3 data and average annual heat loss of 92 MMBtu per home.

⁶⁷¹ Representative heating system efficiency based on preliminary results from NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015. ⁶⁷² GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁶⁷³ Average cost of sampled 2016 projects where attic insulation was itemized separately on contractor invoice (N=58).

⁶⁷⁴ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁶⁷⁵ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁶⁷⁶ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁶⁷⁷ Program assumes no free ridership for the low-income direct install program.

⁶⁷⁸ Program not yet evaluated, assume default SO of 0%.

Low-income Gas Heat	(Modeled)							
Last Revised Date	3/1/2015	3/1/2015						
MEASURE OVERVIEW	MEASURE OVERVIEW							
Description	This measure	involves the i	nstallation of	a new natura	l gas heating s	system and bu	uilding	
	weatherization	n measures to	o replace the e	existing natur	al gas heating	equipment.		
Energy Impacts	Natural Gas							
Sector	Low Income							
Program(s)	Low-income P	rogram						
End-Use	Heating							
Decision Type	Retrofit, Repla	ice on Burnou	ıt					
DEEMED GROSS ENERGY	' SAVINGS (UNI	T SAVINGS)						
Demand savings	$\Delta kW = NA$							
Annual energy savings	$\Delta kWh/yr = 0$							
	Δ MMBtu _{GAS} =	Calculated us	ing project-sp	ecific data				
GROSS ENERGY SAVINGS	GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)							
Demand Savings	The program of	loes not estin	nate demand	savings for th	ese projects.			
Annual Energy Savings	The program e	estimates ann	ual natural ga	ıs savings usir	ng project-spe	cific data and	building	
	modeling soft	ware.						
Definitions	Unit	= Low-incon	ne gas heat pr	oject				
	Δ MMBtu _{GAS}	= Modeled a	annual natura	l gas savings f	or weatheriza	ition and heat	ing system	
		upgrade (M	MBtu)					
EFFICIENCY ASSUMPTIO	NS							
Baseline Efficiency	The baseline s	cenario is the	existing low-	income buildi	ng and heatin	ig system equ	ipment.	
Efficient Measure	The high-effici	ency measure	es involves we	eatherizing th	e building and	l replacing the	e existing	
	natural gas he	ating equipm	ent with new	high-efficiend	cy natural gas	heating equip	oment.	
PARAMETER VALUES								
Measure	$\Delta MMBtu_{GAS}$					Life (yrs)	Cost (\$)	
Multifamily Gas Heat	Model					20 ⁶⁷⁹	Actual	
IMPACT FACTORS			1		1	1		
Measure	ISR	RRE	RRD	CFs	CFw	FR	SO	
Multifamily Gas Heat	100% ⁶⁸⁰	100% ⁶⁸¹	100% ⁶⁸¹	NA	NA	0% ⁶⁸²	0% ⁶⁸³	

⁶⁷⁹ GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007. Table 1, value for weatherization measures. ⁶⁸⁰ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁶⁸¹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶⁸² EMT assumes 100 percent NTG (0 percent free ridership) for the low-income sector.

⁶⁸³ Program not yet evaluated, assume default SO of 0%.

Furnace and Boiler	Retrofit (Pres	scriptive)						
Last Revised Date	7/1/2016	/1/2016						
MEASURE OVERVIEW	MEASURE OVERVIEW							
Description	This measure	involves the rep	lacement of a	in existing fur	nace or boiler	with a high-eff	ficiency	
	furnace or bo	oiler of the same	fuel type and	capacity (i.e.	no fuel switchi	ing).		
Energy Impacts	Natural Gas,	Heating Oil, Kero	sene, Propan	e, Wood, Pelle	et			
Sector	Residential, L	ow Income						
Program(s)	Low-income	Program, Home I	Energy Saving	s Program				
End-Use	Heating							
Decision Type	Retrofit							
GROSS ENERGY SAVI	NGS ALGORITH	IMS (UNIT SAVIN	IGS)					
Demand savings	$\Delta kW = 0$							
Annual Energy	$\Delta kWh/yr = 0$							
Savings	∆MMBtu/yr :	$\Delta MMBtu/yr = AHL \times (EF_{EE} / EF_{BASE} - 1)$						
Definitions	Unit	Unit = 1 new furnace or boiler						
	AHL	= Annual heat l	oad (MMBtu/	yr)				
	EF _{BASE}	= Rated efficien	cy of the base	eline existing u	unit (AFUE)			
	EFEE	= Rated efficien	cy of the high	-efficiency un	it (AFUE)			
EFFICIENCY ASSUMPT	IONS							
Baseline Efficiency	The baseline	is the existing fu	rnace or boile	r.				
Efficient Measure	The high-effi	ciency case is a n	ew furnace or	boiler that ex	ceeds the fed	eral minimum	efficiency	
	standards.							
PARAMETER VALUES	(DEEMED)					•		
Measure	AHL ⁶⁸⁴	EF _{BASE}	EFEE			Life (yrs)	Cost (\$)	
Furnace/Boiler	92	Actual	Actual			25 ⁶⁸⁵	Actual ⁶⁸⁶	
Retrofit	52	Actual	Actual			23	Actual	
IMPACT FACTORS					-	•		
Measure	ISR	RR _E	RR _D	CFs	CFw	FR	SO	
Furnace/Boiler Retrofit	100% ⁶⁸⁷	100%688	100% ⁶⁸⁸	NA	NA	0% ⁶⁸⁹	0% ⁶⁹⁰	

⁶⁸⁴ NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

 ⁶⁸⁵ GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, Table 1, value for new construction.
 ⁶⁸⁶ Full cost of installation.

⁶⁸⁷ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁶⁸⁸ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶⁸⁹ EMT assumes 100 percent NTG (0 percent free ridership) for the low-income sector.

⁶⁹⁰ Program not yet evaluated, assume default SO of 0%.

Ductless Heat Pump	Retrofit (LIDHP, LCH)				
Last Revised Date	7/1/2016				
MEASURE OVERVIEW					
Description	This measure involves the purchase and installation	ion of a high-efficiency ductless heat pump (DHP)			
	system to supplement the existing heating syster	m in electric-, gas-, oil-, kerosene-, and propane-			
	heated homes and to replace existing window air	r-conditioning units. The new DHP equipment may			
	have one (single-head) or multiple (multi-head) in	ndoor units per outdoor unit.			
Energy Impacts	Electric, Heating Oil, Propane, Kerosene				
Sector	Residential				
Program(s)	Low-income Program				
End-Use	Cooling, Heating	Cooling, Heating			
Decision Type	Retrofit				
DEEMED GROSS ENER	GY SAVINGS ALGORITHMS (UNIT SAVINGS)				
Demand Savings	If baseline electric heat	If baseline non-electric heat			
	ΔkW_{max} = 1.912	$\Delta kW_{max} = -2.266$			
	$\Delta kW_{WP} = 1.330$	$\Delta kW_{WP} = -0.654$			
	$\Delta kW_{SP} = -0.011$	$\Delta kW_{SP} = -0.011$			
Annual Energy	If baseline electric heat				
Savings	∆kWh/yr = 6,481				
	If baseline non-electric heat				
	Electric energy savings (negative values indicate	increased usage)			
	∆kWh/yr = -2,954				
	Fuel energy savings				
	Δ MMBtu/y = 40				
GROSS ENERGY SAVIN	GS ALGORITHMS (UNIT SAVINGS)				
Demand Savings	Modeled ⁶⁹¹				

 $^{^{\}rm 691}$ Based on Excel Workbook for Ductless Heat Pump

Ductless Heat Pump	Retrofit (LIDHP, LCH)
Annual Energy Savings	Modeled ⁶⁹¹ Heating and cooling savings are modeled using TMY3 data for Portland, Bangor and Caribou. Results are weighted based on population (71.2% Portland, 23.4% Bangor, 5.4% Caribou). ⁶⁹²
	 Savings were calculated based on a model employing the following key assumptions: Average annual Heat Loss is 92 MMBtu corresponding to an average UA of 493 MMBtu/h/deg F. DHP's contribution to heating does not exceed 35 percent of the home's heating load in any temperature bin. Even in temperature bins in which 100 percent of the home's heating load can be supplied by the DHP, the DHP supplies 35 percent of the heating load, and the remaining 65 percent is supplied by the existing heating system to account for distribution and behavior effects.⁶⁹³ DHP heating output capacity and DHP heating efficiency (both baseline and efficient units) vary linearly with outside air temperature is less than or equal to 65°F. Cooling is called for when outside air temperature is greater than or equal to 70°F. For homes that have equivalent of whole home A/C already installed, DHP will replace the cooling load equivalent to the DHP's rated capacity. For homes that have existing partial cooling (i.e. 1 or 2 existing window A/C units), it is unknown if the DHP will be installed in the same areas served by the existing window A/C units. If installed in the same area, the DHP will replace the existing cooling load and result in positive savings due to increased efficiency. However, if installed in a different area, DHP may result in additional cooling load and hence increased energy use. Without any in-situ data, zero-net savings is assumed for homes with existing partial cooling. For homes with no existing cooling equipment, it is assumed that the DHP will be used to its full cooling capacity.
Definitions	Unit= 1 ductless heat pump (DHP) systemHSPFEE= Heating seasonal performance factor of the high-efficiency DHP (Btu/Watt-hr)CAP _{Cool} = Rated cooling capacity of the DHP (kBtu/h)CAP _{Heat} = Rated heating capacity of the DHP (kBtu/h)SEER _B = Seasonal energy-efficiency ratio for baseline DHP (Btu/Watt-hr)SEER _E = Seasonal energy-efficiency ratio for high-efficiency DHP (Btu/Watt-hr)%COOL _{FULL} = Percentage of homes with existing cooling equipment equivalent of a whole home air conditioner (equivalent of 3 window A/C units)%COOL _{NONE} = Percentage of homes with no existing cooling equipment
EFFICIENCY ASSUMPTI	IONS
Baseline Efficiency	The baseline case assumes the home retains its existing electric resistance-, oil-, kerosene- or propane-heating system and uses a window air conditioning unit for cooling (or has no cooling). A weighted average of the blended baseline fuel-heating systems and electric resistance heating systems in Maine homes and single-package air conditioner are used in the model (see Table 5).
Efficient Measure	The high-efficiency case assumes the home retains its existing heating system and adds a new high- efficiency DHP that meets minimum efficiency requirements for program rebate: HSPF=13.0 Btu/W-h.

⁶⁹² Calculated based on population of each region; U.S. Census Bureau Census 2010 Summary File 1 population by census tract.

⁶⁹³ Heat load offset of 35 percent is consistent with other findings. Ecotope, NEEA Final Summary Report for the Ductless Heat Pump Impact and Process Evaluation, February 19, 2014, reported savings were analyzed to be equivalent to 30%-40% heat load offset.

Ductless Heat Pump Retrofit (LIDHP, LCH)							
PARAMETER VALUES							
Measure	CAP _{Heat}	CAP	Cool	HSPF _E	SEER _E	%COOL _{FULL}	%COOL _{NONE}
DHP Retrofit	17.5 ⁶⁹⁴	14.2	694	13.2 ⁶⁹⁴	25.6 ⁶⁹⁴	40% ⁶⁹⁵	21% ⁶⁹⁵
Measure	SEER _B	AFL	JE _B			Life (yrs)	Cost (\$)
DHP Retrofit	9.8 ⁶⁹⁶	80.5	697			18 ⁶⁹⁸	\$Actual ⁶⁹⁹
IMPACT FACTORS							
Measure	ISR	RRE	RR_{D}	CFs	CFw	FR	SO
DHP Retrofit	100% ⁷⁰⁰	100% ⁷⁰¹	100% ⁷⁰¹	100% ⁷⁰²	100% ⁷⁰²	0% ⁷⁰³	0% ⁷⁰⁴

⁶⁹⁴ Weighted average values of the most popular units that have been incentivized under the Efficiency Maine program.

 ⁶⁹⁵ Portland Press Herald, <u>http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /</u>. In 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21percent have no cooling equipment installed.
 ⁶⁹⁶ Minimum EER for code-compliant room air conditioner effective June 1, 2014.

⁶⁹⁷ Representative heating system efficiency based on preliminary results from NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁶⁹⁸ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, Table 1.

⁶⁹⁹ Total cost to program which covers 100 percent of installation cost.

⁷⁰⁰ EMT assumes that all purchased units are installed (i.e. ISR = 100%).

⁷⁰¹ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate. ⁷⁰² See Appendix B.

⁷⁰³ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent NTG.

⁷⁰⁴ Program not yet evaluated, assume default SO of 0%.

Fuel	Baseline: Main Heating Equipment	Efficiency Measure	Share	Efficiency					
	Heating Baseli	ne Assumptions							
			Calculated						
Electric	Electric Baseboard	HSPF	Separately	3.4					
Gas	Gas-Fired Forced hot water boiler	AFUE	6%	75%					
Gas	Gas-Fired Steam boiler	AFUE	3%	75%					
Propane	Propane-Fired Forced hot water boiler	AFUE	8%	75%					
Propane	Propane-Fired Steam boiler	AFUE	4%	75%					
Oil	Oil-Fired Forced hot water boiler	AFUE	22%	75%					
Oil	Oil-Fired Steam boiler	AFUE	22%	75%					
Oil	Oil-Fired Ducted Furnace	AFUE * Duct Efficiency	22%	56%					
Wood	Wood Stove	AFUE	12%	60%					
Blended	Blended MMBtu Baseline	Blended Efficiency	100%	80.5%					
		Duct Efficiency		75%					
	Cooling Baseline Assumptions								
Electric	Single-Package Air Conditioner	SEER	40%	14					
Electric	Single-Package Air Conditioner	EER	40%	12					

Table 5. Parameters for Existing Heating Systems

Sources

DOE standards for boilers manufactured on or after September 1, 2012

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72)

DOE standards for furnaces manufactured on or after May 1, 2013

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72)

US DOE: Better Duct Systems for Home Heating and Cooling (<u>http://www.nrel.gov/docs/fy05osti/30506.pdf</u>) DOE standards for Central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015 (<u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75</u>) Maine Governor's Energy Office, SPACE HEATING FUEL COMPARISON CALCULATOR (<u>http://www.maine.gov/energy/fuel_prices/heating-calculator.php</u>)

DOE standards for AC and Heat Pump (on or after January 23, 2006, and before January 1, 2015) (http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75)

Heat Pump Water Hea	ter Direct Install (LIHPWH)
Last Revised Date	4/1/2017
MEASURE OVERVIEW	
Description	ENERGY STAR [®] -certified Heat Pump Water Heaters (HPWH) with a COP => 3.3 replacing a standard efficiency electric water heater.
Primary Energy Impact	Electric
Sector	Residential
Program(s)	Low-income Direct Install, Arrearage Management Program
End-Use	Domestic Hot Water
Decision Type	Retrofit
DEEMED GROSS ENERGY	(SAVINGS (UNIT SAVINGS)
Demand Savings	$\Delta k W_{SP} = 0.197$
Annual Energy Savings	$\Delta k V W P = 0.424$
GROSS ENERGY SAVINGS	
Demand Savings	$\Delta kW_{sP} = \Delta kW_{sP}/y_{Evaluated} *Scaling factor Demand - Summer Peak kW savings from a HPWH field-evaluation study scaled for a COP of 3.5 \Delta kW_{WP} = \Delta kW_{WP}/y_{Evaluated} *Scaling factor Demand - Winter Peak kW savings from a HPWH$
	Heater field-evaluation study scaled for a COP of 3.5
Annual Energy Savings	Δ kWh/yr = Δ kWh/y _{Evaluated} *Scaling factor Energy - Annual kWh savings from a HPWH field- evaluation study scaled for a COP of 3.5 Key assumptions include:
	 Key assumptions include: Average tank size for EMT's in-program HPWHs is 50 gallons.⁷⁰⁵ Typical HPWH set-point temperature in Maine households is expected to be comparable to the set-point temperature in Massachusetts and Rhode Island households metered.⁷⁰⁶ All of EMT's in-program HPWHs will be installed in conditioned spaces or partially conditioned spaces (i.e. regulated temperature and/or humidity), as was the case for most HPWH units studied in the evaluation⁷⁰⁷ Realized energy savings scale by COP and water use as follows: Scaling factor energy = (1/COP_{BASE} – 1/COP_{EE})/(1/COP_{BASE_STUDY} – 1/COP_{STUDY}) * WU_{ME}/WU_{STUDY} = 1.275 Realized demand savings scale by COP as follows: Scaling factor demand = (1/COP_{BASE} – 1/COP_{EE})/(1/COP_{BASE_STUDY} – 1/COP_{STUDY}) = 1.135 Where COP_{BASE_STUDY} = 0.904 – coefficient of performance for standard 50 gallon water heater included in the study⁷⁰⁸ COP_{BASE} = 0.945 – orefficient of performance for standard 50 gallon water heater COP_{EE} = 3.5 – rated coefficient of performance of water heaters to be installed under this program

⁷⁰⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-31; at least 89 percent of HPWH units in EMT program are 50 gallons units (with the remaining 11 percent with unknown tank size). Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012 included 10 units with 50-gallon tanks; 1 unit with a 60-gallon tank; and 3 units with 80-gallon tanks.

⁷⁰⁶ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-35; the average set-point temperature in Maine is 126.2°F, compared to the average set-point temperature of 127.6°F found in Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012.

⁷⁰⁷ Considering Maine's climate (winter), it can be anticipated that most if not all properly installed HPWHs will be installed in fully or partially conditioned spaces. ⁷⁰⁸ Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C.

⁷⁰⁹ Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012, Table 1.
Heat Pump Water Heater Direct Install (LIHPWH)										
	• WU _{ME} = 51	171	LO							
		= 45	5.5 ⁷¹¹							
EFFICIENCY ASSUMPTIO	EFFICIENCY ASSUMPTIONS									
Baseline Efficiency	Standard 50-	gall	on residen	tial wa	ter hea	iter with a	n AH	IRI Energy Facto	or = 0.945 ⁷¹²	
Efficient Measure	ENERGY STAF	R®-c	certified m	odel (E	F = 3.5)				
PARAMETER VALUES (DEEMED)										
Measure	ΔkWh/y _{Evaluated} ΔkW _{SP, Evaluated}		aluated	ΔkW	NP, Evaluated	So (en	caling factors ergy/demand)	Life (yrs)	Cost (\$)	
ENERGY STAR [®] HPWH	1,687		0.17	5	0	.374		1.275/1.135	13 ⁷¹³	Actual ⁷¹⁴
IMPACT FACTORS										
Measure	ISR		RR _E	RF	₹D	CFs		CFw	FR	SO
ENERGY STAR [®] HPWH	100%715	1	L00% ⁷¹⁶	1009	³⁷⁰	100%71	.7	100% ³⁷¹	0% ⁷¹⁸	0% ⁷¹⁹

⁷¹⁰ For Maine, 51.1 GPD is used based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev. Lawrence Berkeley Laboratory, 1996.

 ⁷¹¹ Average GPD found in the Steven Winter Associates Inc., Heat Pump Water Heaters, Evaluation of Field Installed Performance, June 26, 2012, was 45.5 GPD.
 ⁷¹² Federal Standard, Code of Federal Regulations, Title 10, Part 430, Subpart C. EF = 0.945 value is calculated for 50-gallon water heater.

⁷¹³ NREL, National Residential Efficiency Measure Database.

⁷¹⁴ Total cost to program which covers 100 percent of installation cost.

⁷¹⁵ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 60.

⁷¹⁶ Realization rates are 100 percent since savings estimates are based on evaluation results.

⁷¹⁷ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁷¹⁸ EMT assumes 0 percent free ridership and 0 percent spillover (i.e. NTG = 100%) for all measures implemented through the low-income program.

⁷¹⁹ Program not yet evaluated, assume default SO of 0%.

Domestic Water Heater	Temperatu	re Turn-Dov	wn					
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description	The hot wa	ter set-point	temperature	of the e	xistir	ng electric dom	nestic water he	ater (DWH) is
	reduced by	at least 10°F	. ⁷²⁰ Savings de	erive pri	mari	ly from reducin	ng the energy lo	ost to leaks,
	dishwasher	s and standb	y losses. The s	savings a	assur	me measures a	ire implemente	d on electric
	water heate	ers.						
Primary Energy Impact	Electric							
Sector	Residential							
Program(s)	Low-income	e Program						
End-Use	Domestic H	ot Water						
Decision Type	Retrofit							
DEEMED GROSS ENERGY SAVINGS (UNIT SAVINGS)								
Demand Savings	$\Delta kW = 0.01$	0						
Annual Energy Savings	Δ kWh/yr =	87						
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)								
Demand Savings	$\Delta kW = \Delta kW$	$\Delta kW = \Delta kWh/yr / Hours$						
Annual Energy Savings	Δ kWh/yr =	$\Delta kWh/yr = \Delta kWh_{EWHTD}$						
Definitions	Unit	= 10°F te	mperature tui	rndown	for 1	electric DHW		
	ΔkWh_{EWHTD}	= Average	e annual ener	gy savin	gs fo	or 10°F turndov	vn on electric v	vater heater
			(kWh/yr)					
	Hours	= Annual	operating ho	urs for w	/ater	^r heater (hrs/yı	r)	
EFFICIENCY ASSUMPTIONS	S							
Baseline Efficiency	Electric DW	'H at original	set-point tem	peratur	e of	130°F or great	er.	
Efficient Measure	Electric DW	'H at set-poir	nt temperatur	e 10°F b	elow	the original set	et-point tempe	rature. If the
	original tem	nperature is i	reduced by les	ss than 1	.0°F,	no savings sho	ould be claimed	l. The
	temperatur	e should not	be reduced b	elow 12	0°F.7	721		
PARAMETER VALUES (DEE	MED)						1	
Measure	∆kWh	EWHTD	Hours			Life (yrs)	Cos	st (\$)
DWH Turn-Down	87	722	8,760 ⁷²	3		4 ⁷²⁴	0	725
IMPACT FACTORS			T	1		ГТ		
Measure	ISR	RRE	RR _D	CFs		CFw	FR	SO
DWH Turn-Down	100% ⁷²⁶	100% ⁷²⁷	100% ⁷²⁷	9.6%7	28	13.3% ⁷²⁸	0% ⁷²⁹	0% ⁷³⁰

⁷²⁸Appendix B: Coincidence and Energy Period Factors.

⁷²⁰ Engineering assumption, conservative compared to Illinois 2012 TRM which claims 15°F setback.

⁷²¹ The risk of bacteria growing in the stored hot water increases when the set-point temperature is reduced below 120°F:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2094925/#B5

⁷²² Savings are captured by calculating energy savings from reducing the temperature of the water consumed by the following end uses: leaks, clothes washers and the use categorized by "other." No savings are claimed from hot water end uses such as showering or faucet use because it is assumed that the user will continue to operate the end use at the same temperature as prior to implementing this measure. By operating at the same temperature, the user uses water with the same amount of energy as before (thereby not reducing energy use directly). Daily water usages are based on EPA's WaterSense guide:

http://www.epa.gov/WaterSense/docs/home_suppstat508.pdf. Savings include reduced standby losses.

⁷²³ EMT assumes the water heater operates continuously to maintain the water heater set-point temperature.

⁷²⁴ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, Table 1.

⁷²⁵ Assumes temperature turn-down is performed as part of an audit or direct install program.

⁷²⁶ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

⁷²⁷ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁷²⁹ EMT assumes 0 percent free ridership for all measures implemented through the low-income program.

⁷³⁰ Program not yet evaluated, assume default SO of 0%.

Domestic Water Heater	[.] Pipe Insula	ation							
Last Revised Date	7/1/2013								
MEASURE OVERVIEW									
Description	Savings are	captured b	y installing 1	0 feet of pip	e insulation	on uninsula	ited water p	ipes	
	serving the	electric dor	nestic hot w	ater heater	(DWH). The	savings assu	ime measure	es are	
	implement	ed on electr	ic water hea	iters and that	it the tempe	erature turn-	down measu	lire has	
	been imple	emented.							
Primary Energy Impact	Electric								
Sector	Residential								
Program(s)	Low-incom	ow-income Program							
End-Use	Domestic H	omestic Hot Water							
Decision Type	Retrofit								
DEEMED GROSS ENERGY SAVINGS (UNIT SAVINGS)									
Demand Savings	$\Delta kW = 0.02$	12							
Annual Energy Savings	$\Delta kWh/yr=$	103							
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)									
Demand Savings	$\Delta kW = \Delta kV$	$\Delta kW = \Delta kWh/yr / Hours$							
Annual Energy Savings	$\Delta kWh/yr =$	$\Delta kWh/yr = [GPD \times 365 \times \rho_{H2O} \times C_{H2O} \times (T_{WH} - T_{in}) / 3,412 / RE_{EWH}] \times SF_{PI}$							
Definitions	Unit = 1 water heater								
	GPD	GPD = Average daily hot water consumption (gallons/day)							
	р _{H2O}	= Density o	f water (8.3	3 lb/gallon)					
	С _{H20}	= Specific h	eat of wate	r (1 Btu/lb-°l	=)				
	Т _{WH}	= Water he	ater temper	ature set po	int (°F)				
	T _{in}	= Temperat	ture of wate	r mains (wa	ter into the	water heate	r) (°F)		
	RE _{EWH}	= Recovery	Efficiency for	or baseline e	lectric wate	r heater			
	SF _{PI}	= Savings fa	actor for add	ling pipe ins	ulation				
	Hours	= Annual o	perating hou	irs for water	heater (hrs	/yr)			
	365	= Conversio	on: 365 days	per year					
	3,412	= Conversion	on: 3,412 Bti	u per kWh					
EFFICIENCY ASSUMPTION	S								
Baseline Efficiency	Uninsulate	d DHW heat	er pipes (bo	th hot and c	old). The DV	VH must hav	/e no heat tr	ар	
	installed.								
Efficient Measure	DHW heate	er pipes with	n 10 feet of p	pipe insulation	on installed.	Insulation n	nust be R-3 c	or	
· · · · · · · · · · · · · · · · · · ·	greater. ⁷³¹								
PARAMETER VALUES (DE	EMED)								
Measure	GPD	T _{WH}	Tin	REEWH	SFPI	Hours	Life (yrs)	Cost (\$)	
DWH Pipe Insulation	51.1 ^{/32}	125 ⁷³³	50.8 ⁷³⁴	0.98 ⁷³⁵	0.03736	8,760′3′	15 ⁷³⁸	\$70 ⁷³⁹	

⁷³¹ Complies with International Residential Code 2009 section N1103.3: mechanical system piping insulation.

⁷³² Daily household consumption of hot water calculated based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev., Lawrence Berkeley Laboratory, 1996.

⁷³³ The set-point temperature is 10 degrees below the typical set-point temperature of 135°F, assuming that the temperature turn-down measure is implemented.

⁷³⁴ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

⁷³⁵ NREL, Building America Research Benchmark Definition, 2009, p.12, <u>http://www.nrel.gov/docs/fy10osti/47246.pdf</u>

⁷³⁶ ACEEE Report Number E093, p. 117, April 2009, Potential for Energy Efficiency, Demand Response, and Onsite Solar Energy in Pennsylvania: "Insulating 10 feet of exposed pipe in unconditioned space, ¾" thick".

⁷³⁷ EMT assumes the water heater operates continuously to maintain the water heater set-point temperature.

⁷³⁸ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, Table 1.

⁷³⁹ NREL, National Residential Efficiency Measures Database, assuming R-5 insulation. The costs range from \$44 to \$92, with an average of \$70.

Domestic Water Heater Pipe Insulation										
IMPACT FACTORS										
Measure	ISR	RRE	RR _D	CFs	CFw	FR	SO			
DWH Pipe Insulation	100% ⁷⁴⁰	100% ⁷⁴¹	100% ⁷⁴¹	100% ⁷⁴²	100% ⁷⁴²	0% ⁷⁴³	0% ⁷⁴⁴			

⁷⁴⁰ EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

⁷⁴¹ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁷⁴² See Appendix B: Coincidence and Energy Period Factors.

⁷⁴³ EMT assumes 0 percent free ridership for all measures implemented through the low-income program.

⁷⁴⁴ Program not yet evaluated, assume default SO of 0%.

Domestic Water Heater	[.] Wrap							
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description	Savings are domestic w DWH must Conservati implement been imple	e captured b vater heater be an ineffi on Act that v ed on electr emented.	y installing a (DWH) in ar cient model went into ef ic water hea	in insulating n unconditio that does no fect in 1991. aters and tha	blanket (wr ned space. F ot meet the The savings at the tempe	ap) on an ex For savings to National Ap assume me erature turn-	isting electri o be capture pliance Ener asures are down measu	c d, the gy ure has
Primary Energy Impact	Electric							
Sector	Residentia							
Program(s)	Low-incom	e Program						
End-Use	Domestic H	lot Water						
Decision Type	Retrofit							
DEEMED GROSS ENERGY	SAVINGS (U		S)					
Demand Savings	$\Delta kW = 0.01$	LO	-					
Annual Energy Savings	Δ kWh/yr =	89						
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)								
Demand Savings	$\Delta kW = \Delta kWh/yr / Hours$							
Annual Energy Savings	Δ kWh/yr =	$\Delta kWh/yr = [GPD \times 365 \times \rho_{H2O} \times Cp_{H2O} \times (T_{WH} - T_{in}) / 3,412] \times (1/EF_{BASE} - 1 / EF_{EE})$						
Definitions	Unit	Unit = 1 water heater with tank wrap						
	GPD	= Average	daily hot wa	ter consump	tion (gallon	s/day)		
	365	= Conversio	on: 365 days	per year				
	р _{H2O}	= Density o	f water (8.3	3 lb/gallon)				
	Ср _{н20}	= Specific h	eat of wate	r (1 Btu/lb-°l	F)			
	T _{WH}	= Water he	ater temper	ature set po	oint (°F)			
	T _{in}	= Tempera	ture of wate	er mains (wa	ter into the	water heate	r) (°F)	
	3,412	= Conversio	on: 3,412 Bt	u per kWh				
	EFBASE	= Energy fa	ctor for bas	eline electrio	: water heat	er		
	EFEE	= Energy fa	ctor for bas	eline electrio	water heat	er with wrap)	
	Hours	= Annual o	perating hou	urs for water	r heater (hrs	/yr)		
EFFICIENCY ASSUMPTION	S							
Baseline Efficiency	Inefficient	DWH manuf	actured bef	ore 1991 wi	th no insulat	ing wrap in a	an unconditi	oned
	space.							
Efficient Measure	Inefficient	DWH manuf	actured bef	ore 1991 wi	th an insulat	ing wrap ins	talled in an	
	unconditio	ned space.						
PARAMETER VALUES (DEI		-	–			11	1:fo (Cost (c)
IVIeasure		1 _{WH}	Ι _{in}			HOURS	LITE (Yrs)	COST (\$)
EWH with tank wrap	51.17	125/70	50.8'"	0.86/70	0.88'	8,760'	1,30	\$30, ₂₇

⁷⁴⁵ Daily household consumption of hot water calculated based on average number of people per household (Nppl): 16.286 x Nppl + 13. The relationship is used in NY and Indiana TRMs and is based on: Lutz, James D., Liu, Xiaomin, McMahon, James E., Dunham, Camilla, Shown, Leslie J.McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev., Lawrence Berkeley Laboratory, 1996.

⁷⁴⁶ The set-point temperature is 10 degrees below the typical set-point temperature of 135°F, assuming that the temperature turn-down measure is implemented. ⁷⁴⁷ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

⁷⁴⁸ The Oak Ridge study predicted that wrapping a 40-gal water heater would increase Energy Factor of a 0.86 electric DHW tank by 0.02 (to 0.88). "Meeting the

Challenge: The Prospect of Achieving 30 percent Energy Savings Through the Weatherization Assistance Program" by the Oak Ridge National Laboratory - May 2002. https://library.cee1.org/sites/default/files/library/1143/309.pdf

⁷⁴⁹ EMT assumes the water heater operates continuously to maintain the water heater set-point temperature.

⁷⁵⁰ DEER 2008

⁷⁵¹ <u>http://energy.gov/energysaver/projects/savings-project-insulate-your-water-heater-tank</u>

Domestic Water Heater Wrap										
IMPACT FACTORS										
Measure	ISR	RRE	RR _D	CFs	CFw	FR	SO			
EWH with tank wrap	100%752	100%753	100 ^{%753}	100 ^{%754}	100%754	0% ⁷⁵⁵	0% ⁷⁵⁶			

⁷⁵² EMT assumes that all purchased units are installed (i.e. ISR = 100%). This is consistent with the MA 2013-2015 TRM.

⁷⁵³ This measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁷⁵⁴ See Appendix B: Coincidence and Energy Period Factors.

⁷⁵⁵ EMT assumes 0 percent free ridership for all measures implemented through the low-income program.

⁷⁵⁶ Program not yet evaluated, assume default SO of 0%.

Appendix A: Glossary

Definitions are based primarily on the Northeast Energy Efficiency Partnerships (NEEP), Regional Evaluation, Measurement & Verification (EMV) Forum, Glossary of Terms, Version 2.0 (PAH Associates, March 2011), cited at the end of each definition as [NEEP EMV Glossary].

Adjusted Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated, adjusted for evaluation findings. It adjusts for such factors as data errors, installation and persistence rates and hours of use, but does not adjust for free-ridership or spillover. Adjusted Gross Savings can be calculated as an annual or lifetime value. [NEEP EMV Glossary, edited]

Actual: Actual means the project-specific value that is recorded in the Project Application/Documentation for this measure.

Algorithm: An equation or set of equations, more broadly a method, used to calculate a number. In this case, it is an estimate of energy use or energy savings tied to operation of a piece of equipment or a system of interacting pieces of equipment. An algorithm may include certain standard numerical assumptions about some relevant quantities, leaving the user to supply other data to calculate the use or savings for the particular measure or equipment. [NEEP EMV Glossary]

Annual Demand Savings: The maximum reduction in electric demand in a given year within defined boundaries. The demand reduction is typically the result of the installation of higher efficiency equipment, new controls, or behavioral change. The term can be applied at various levels, from individual projects and energy-efficiency programs to overall program portfolios. [NEEP EMV Glossary, edited]

Annual Energy Savings: The reduction in electricity usage (reported as ΔkWh) or in fossil-fuel use (reported as $\Delta MMBtu$) in a given year from the savings associated with an energy-saving measure, project, or program. [NEEP EMV Glossary, edited]

Average Annual Operating Hours: see Hours of Use.

Baseline Efficiency: The assumed efficiency condition of the baseline equipment that is being replaced by the subject energy-efficiency measure. It is used to determine the energy savings obtained by the more efficient measure. [NEEP EMV Glossary, edited]

Btu: A standard measure of heat energy, one Btu is required to raise the temperature of one pound of water one degree Fahrenheit from 58.5 to 59.5 degrees under standard pressure of 30 inches of mercury at or near its point of maximum density. [NEEP EMV Glossary, edited]

Coincident Demand: The demand of a device, circuit or building that occurs at the same time as the peak demand of a system load or some other peak of interest. The peak of interest should be specified. [NEEP EMV Glossary]

Coincidence Factor (CF): The ratio of the average hourly demand of a group of measures during a specified period of time to the sum of their individual maximum demands (or connected loads) within the same period. [NEEP EMV Glossary, edited]

Deemed Savings: An estimate of energy or demand savings for a single unit of an installed energy-efficiency measure that (a) has been developed from data sources and analytical methods that are widely considered acceptable for the measure and purpose, and (b) is applicable to the situation being evaluated. A measure with deemed savings will have

the same savings per unit. Individual parameters used to calculate savings and/or savings calculation methods can also be deemed. [NEEP EMV Glossary, edited]

Delta Watts: The difference in the wattage between existing or baseline equipment and its more efficient replacement or installation at a specific time, expressed in watts or kilowatts. [NEEP EMV Glossary]

Demand: The time rate of energy flow. Demand usually refers to the amount of electric energy used by a customer or piece of equipment at a specific time, expressed in kilowatts. [NEEP EMV Glossary]

ENERGY STAR®: A joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy designed to reduce energy use and its impact on the environment. The ENERGY STAR® label is awarded to products that meet applicable energy-efficiency guidelines as well as to homes and commercial buildings that meet specified energy-efficiency standards. [NEEP EMV Glossary, edited]

Free rider: A program participant who would have implemented the program measure or practice in the absence of the program. A free-rider can be: 1) total, in which the participant's activity would have completely replicated the program measure; 2) partial, in which the participant's activity would have partially replicated the program measure; or 3) deferred, in which the participant's activity would have completely replicated the program measure but at a future time beyond the program's timeframe. [NEEP EMV Glossary, edited]

Free ridership Rate (FR): The percent of energy savings through an energy-efficiency program attributable to free riders. [NEEP EMV Glossary, edited]

Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated and not adjusted for any factors. [NEEP EMV Glossary, edited]

Hours of Use (HOU) or Operating Hours: The average number of hours a measure is in use during a specified time period, typically a day or a year. [NEEP EMV Glossary]

Incremental Cost: The difference between the cost of existing or baseline equipment/service and the cost of energy-efficient equipment/service. [NEEP EMV Glossary]

In-Service Rate (ISR): The percentage of energy-efficiency measures adopted in response to program incentives that are actually installed and operating. The in-service rate is calculated by dividing the number of measures installed and operating by the number of incentives offered by an efficiency program in a defined period of time. [NEEP EMV Glossary, edited]

Interactive Effects (IE) - The influence of one technology's application on the energy required to operate another application. An example is the reduced heat in a facility as a result of replacing incandescent lights with CFLs, and the resulting need to increase space heating from another source, usually oil or gas fired. [NEEP EMV Glossary]

Kilowatt (kW): A measure of the rate of power used during a preset time period (e.g. minutes, hours, days or months) equal to 1,000 watts. [NEEP EMV Glossary]

Kilowatt-Hour (kWh): A common unit of electric energy; one kilowatt-hour is numerically equal to 1,000 watts used for one hour. [NEEP EMV Glossary]

Lifetime Energy Savings: The energy savings over the lifetime of an installed measure, calculated by multiplying the measure's annual energy usage reduction by its expected lifetime. [NEEP EMV Glossary, edited]

Measure Life: The length of time that a measure is expected to be functional. Measure Life is a function of: (1) *equipment life*—meaning the number of years that a measure is installed and will operate until failure; and (2) *measure persistence* which takes into account business turnover, early retirement of installed equipment, and other reasons that measures might be removed or discontinued. Measure Life is sometimes referred to as expected useful life (EUL). [adapted from NEEP EMV Glossary]

Meter-level Savings: Savings from energy-efficiency programs at the customer meter or premise level. [NEEP EMV Glossary, edited]

Net Present Value (NPV): Present value of benefits and costs that occur over the life of the measure taking the time value of money into account.

Net Savings: The savings attributable to an energy-efficiency program (which differs from gross savings because it includes the effects of free ridership and/or spillover rates).

Net-to-Gross Ratio (NTGR or NTG): The ratio of net savings to gross savings. The NTGR may be determined from the free ridership and spillover rates (NTGR=1-FR+SO), if available, or it may be a distinct value relating gross savings to the net effect of the program with no separate specification of FR and SO values. NTGR can be applied separately to either energy or demand savings.

Realization Rate (RR): The ratio of savings adjusted for data errors and for evaluated or verified results (verified) to initial estimates of project savings. RR_E (Energy Realization Rate) is applied to kWh and all fuels, while RR_D (Demand Realization Rate) is applied only to kW.

Seasonal Energy-efficiency Ratio (SEER): The total cooling output of a central AC unit in Btus (during its normal usage period for cooling) divided by the total electrical energy input in watt-hours during the same period, as determined using specified federal test procedures. [NEEP EMV Glossary]

Spillover (SO): Reductions in energy consumption and/or demand caused by the presence of an energy-efficiency program, beyond the program-related gross savings of the participants and without financial or technical assistance from the program. There can be participant and/or non-participant spillover. *Participant spillover* is the additional energy savings that occur when a program participant independently installs energy-efficiency measures or applies energy-saving practices in response to their participation in the efficiency program. *Non-participant spillover* refers to energy savings that occur when someone who did not participate in a program still installs energy-efficiency measures or applies energy savings practices as a result of a program's influence. [NEEP EMV Glossary, edited]

Spillover Rate (SO): Estimate of energy savings attributable to spillover effects expressed as a percent of savings installed by participants through an energy-efficiency program. [NEEP EMV Glossary]

Typical Meteorological Year 3: The TMY3s are data sets of hourly values of solar radiation and meteorological elements for a 1-year period published by the National Renewable Energy Laboratory. Their intended use is for computer simulations of solar energy conversion systems and building systems to facilitate performance comparisons of different system types, configurations, and locations in the United States and its territories. Because they represent typical rather than extreme conditions, they are not suited for designing systems to meet the worst-case conditions occurring at a location.

Waste Heat Factor (WHF): The interaction between a lighting measure's incidental heat output and installed HVAC systems.

Appendix B: Coincidence and Energy Period Factors

Coincidence factors are used to determine the average electric demand savings during the summer and winter on-peak periods as defined by the ISO-NE Forward Capacity Market (FCM). The on-peak demand periods are defined as follows:⁷⁵⁷

- Summer On-Peak: 1:00 to 5:00 PM on non-holiday weekdays in June, July and August.
- <u>Winter On-Peak</u>: 5:00 to 7:00 PM on non-holiday weekdays in December and January.

Energy period factors are used to allocate the annual energy savings into one of the four energy periods. This allocation is performed in order to apply the appropriate avoided cost values in the calculation of program benefits. The four energy periods are defined as follows:⁷⁵⁸

- <u>Winter Peak:</u> 7:00 AM to 11:00 PM on non-holiday weekdays during October through May (8 months).
- <u>Winter Off Peak</u>: 11:00 PM to 7:00 AM on non-holiday weekdays and all hours on weekends and holidays during October through May (8 months).
- Summer Peak: 7:00 AM to 11:00 PM on non-holiday weekdays during June through September (4 months).
- <u>Summer Off Peak:</u> 11:00 PM to 7:00 AM on non-holiday weekdays and all hours on weekends and holidays during June through September (4 months).

Table B-1 includes a listing of measure coincidence factors and energy period allocations.

⁷⁵⁷ http://www.iso-ne.com/markets-operations/markets/demand-resources/about

⁷⁵⁸ http://www.efficiencymaine.com/docs/2015-AESC-Report-With-Appendices-Attached.pdf, p. 2-71.

Nanana Nama	re Name End Lice		Coincidence Factor (CF)		Energy Period Factors (EPF)				Footnote Reference	
Measure Name	End-Use	Life	Winter	Summer	W	'inter	Sur	nmer	CE	EDE
			On-Peak	On-Peak	Peak	Off Peak	Peak	Off Peak	CF	CPF
LED Bulb – Retail	Lighting		18.6%	14.4%	40.8%	29.0%	17.5%	12.8%	759	760
LED Bulb – Distributor	Lighting		48.7%	56.1%	48.1%	20.0%	22.5%	9.4%	761	762
LED Bulb – Food										
Pantry/Direct	Lighting		16.8%	11.8%	39.0%	31.1%	16.3%	13.6%	763	764
Install/Appliance Pack										
LED Lamp Commercial	Lighting		62 0%	76.0%		10.0%	22 0%	0.0%	765	766
Interior	Lighting		05.0%	70.0%	30.0%	19.0%	25.0%	9.0%	705	700
LED Lamp Commercial	Lighting		70.2%	2 7%	20 5%	50.6%	61%	22.8%	767	769
Exterior	Lighting	70.27	5.770	20.3%	50.0%	0.170	22.0/0	/0/	708	
Refrigerator	Refrigeration		100.0%	100.0%	33.1%	33.5%	16.6%	16.8%	769	770
Freezer	Refrigeration		100.0%	100.0%	33.1%	33.5%	16.6%	16.8%	769	771
Room AC	Cooling		0.0%	11.1%	0.7%	2.8%	53.3%	43.2%	7	72
Room Air Purifier	Cooling		66.7%	66.7%	30.4%	36.2%	15.6%	17.9%	7	73
Dehumidifier	Cooling		0.0%	37.1%	17.9%	15.5%	33.9%	32.7%	769	770
Dishwasher	Process		4.0%	2.2%	39.7%	26.8%	20.3%	13.1%	7	74

Table B-1. Retail and Residential Coincidence Factors and Energy Period Factors

⁷⁵⁹ Composite summer coincidence factor: 96% of bulbs in residential sockets with summer CF at 11.8% and 4% of bulbs in commercial sockets with summer CF at 76%. Composite winter coincidence factor: 96% of bulbs in residential sockets with winter CF at 16.8% and 4% of bulbs in commercial sockets with winter CF at 63%. Residential Factors from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, page 19. Commercial Factors from Efficiency Maine Trust Commercial TRM, July 1, 2015.

⁷⁶⁰ Composite Energy Period Factors for Residential (96%) and Commercial (4%). Residential energy period allocations are from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015. Commercial energy period allocations from Central Maine Power, non-residential load profile for 3/1/08-2/28/09.

⁷⁶¹ Composite summer coincidence factor: 31 percent of bulbs in residential sockets with summer CF at 11.8 percent and 69 percent of bulbs in commercial sockets with summer CF at 76 percent. Composite winter coincidence factor: 31% of bulbs in residential sockets with winter CF at 16.8 percent and 69 percent of bulbs in commercial sockets with winter CF at 63 percent. Residential Factors from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19. Commercial Factors from Efficiency Maine Trust Commercial TRM, July 1, 2013.

⁷⁶² Composite Energy Period Factors for Residential (31%) and Commercial (69%). Residential energy period allocations are from NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015. Commercial energy period allocations from Central Maine Power, non-residential load profile for 3/1/08-2/28/09.

⁷⁶³ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015, p. 19.

⁷⁶⁴ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015.

⁷⁶⁵ KEMA, C&I Lighting Load Shape Project FINAL Report, July 2011.

⁷⁶⁶ Central Maine Power, Non-residential load profile for 3/1/08-2/28/09.

⁷⁶⁷ Efficiency Vermont TRM 2012, Commercial Outdoor Lighting.

⁷⁶⁸ Ibid.

⁷⁶⁹ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁷⁷⁰ Memo provided to supplement NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

⁷⁷¹ Assumed to be the same as refrigerator measure.

⁷⁷² RLW Analytics, Coincidence Factor Study, Residential Room Air Conditioners, June 2008. Values are based on TMY2 weather for Portland, Maine.

⁷⁷³ Values developed based on annual hours of use and equipment operating assumptions.

⁷⁷⁴ Values developed based on residential hot water usage profiles from: Aquacraft, Inc., The End Uses of Hot Water in Single Family Homes from Flow Trace Analysis.

mmer W Immer Peak 4.8% 40.0% 9.6% 40.9% 00.0% 35.8% 00.0% 58.4% 00.0% 56.5% 00.0% 56.5% 00.0% 56.8% 25.0% 56.5% 10.2% 56.5%	Vinter Off Peak 26.6% 25.7% 30.8% 33.7% 34.3% 34.3% 36.8% 36.5% 34.3%	Sur Peak 20.1% 20.9% 17.9% 3.5% 5.4% 5.4% 2.8% 3.6% 5.4%	Off Peak 13.3% 12.5% 15.5% 4.5% 3.8% 3.1% 3.1% 3.8% 3.1%	CF 7' 769 769 769 769 769 7' 7' 778	EPF 70 74 770 775 775 775 76 77
Peak Peak 4.8% 40.0% 9.6% 40.9% .00.0% 35.8% .00.0% 58.4% .00.0% 56.5% .00.0% 56.5% .00.0% 56.8% .00.0% 56.8% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5%	Off Peak 26.6% 25.7% 30.8% 33.7% 34.3% 34.3% 36.8% 36.5% 34.3%	Peak 20.1% 20.9% 17.9% 3.5% 5.4% 5.4% 2.8% 3.6% 5.4%	Off Peak 13.3% 12.5% 15.5% 4.5% 3.8% 3.1% 3.1% 3.8%	7 769 769 769 769 769 769 77 77	EPF 70 74 770 775 775 775 775 775 775 775 775 775 775 775 775
4.8% 40.0% 9.6% 40.9% .00.0% 35.8% .00.0% 58.4% .00.0% 56.5% .00.0% 56.5% .00.0% 56.8% .00.0% 56.8% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5%	26.6% 25.7% 30.8% 33.7% 34.3% 34.3% 36.8% 36.5% 34.3%	20.1% 20.9% 17.9% 3.5% 5.4% 2.8% 3.6% 5.4%	13.3% 12.5% 15.5% 4.5% 3.8% 3.1% 3.8% 3.8%	7 [°] 769 769 769 769 769 7 [°] 7 [°] 778	70 74 770 775 775 775 76 77
9.6% 40.9% .00.0% 35.8% .00.0% 58.4% .00.0% 56.5% .00.0% 56.5% .00.0% 56.8% .00.0% 56.8% .00.0% 56.5% .00.0% 56.8% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5%	25.7% 30.8% 33.7% 34.3% 34.3% 36.8% 36.5% 34.3%	20.9% 17.9% 3.5% 5.4% 2.8% 3.6% 5.4%	12.5% 15.5% 4.5% 3.8% 3.8% 3.1% 3.1% 3.1% 3.8%	77 769 769 769 769 77 77 77	74 770 775 775 775 76 77
.00.0% 35.8% .00.0% 58.4% .00.0% 56.5% .00.0% 56.5% .00.0% 57.3% .00.0% 56.8% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5%	30.8% 33.7% 34.3% 34.3% 36.8% 36.5% 34.3%	17.9% 3.5% 5.4% 2.8% 3.6% 5.4%	15.5% 4.5% 3.8% 3.8% 3.1% 3.1% 3.1% 3.8%	769 769 769 769 7' 7' 7'	770 775 775 775 76 77
.00.0% 58.4% .00.0% 56.5% .00.0% 56.5% .00.0% 57.3% .00.0% 56.8% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5% .00.0% 56.5%	33.7% 34.3% 34.3% 36.8% 36.5% 34.3%	3.5% 5.4% 5.4% 2.8% 3.6% 5.4%	4.5% 3.8% 3.8% 3.1% 3.1% 3.8%	769 769 769 7 [°] 7 [°] 778	775 775 775 76 77
.00.0% 56.5% .00.0% 56.5% .00.0% 57.3% .00.0% 56.8% 25.0% 56.5% 10.2% 56.5%	34.3% 34.3% 36.8% 36.5% 34.3%	5.4% 5.4% 2.8% 3.6% 5.4%	3.8% 3.8% 3.1% 3.1% 3.8%	769 769 7' 7' 778	775 775 76 77
.00.0% 56.5% .00.0% 57.3% .00.0% 56.8% 25.0% 56.5% 10.2% 56.5%	34.3% 36.8% 36.5% 34.3%	5.4% 2.8% 3.6% 5.4%	3.8% 3.1% 3.1% 3.8%	769 7 7 778	775 76 77
.00.0% 57.3% .00.0% 56.8% 25.0% 56.5% 10.2% 56.5%	36.8% 36.5% 34.3%	2.8% 3.6% 5.4%	3.1% 3.1% 3.8%	7 7 778	76 77
.00.0% 56.8% 25.0% 56.5% 10.2% 56.5%	36.5% 34.3%	3.6% 5.4%	3.1%	7: 778	77
25.0% <u>56.5%</u> 10.2% 56.5%	34.3%	5.4%	3.8%	778	
10.2% 56.5%					775
50.570	34.3%	5.4%	3.8%	769	775
11.8% 39.0%	31.1%	16.3%	13.6%	7	79
0.8% 39.7%	26.8%	20.3%	13.1%	7	74
0.3% 39.7%	26.8%	20.3%	13.1%	774	
0.5% 35.5%	31.1%	18.1%	15.3%	7	74
0.5% 35.5%	31.1%	18.1%	15.3%	7	74
9.6% 40.9%	25.7%	20.9%	12.5%	774	
.00.0% 30.4%	36.2%	15.6%	17.9%	7	73
.00.0% 30.4%	36.2%	15.6%	17.9%	7	73
NA NA	NA	NA	NA	NA	NA
. <u>00.0%</u> NA	30.4%	30.4% 36.2% NA NA	30.4% 36.2% 15.6% NA NA NA	30.4% 36.2% 15.6% 17.9% NA NA NA NA	30.4% 36.2% 15.6% 17.9% 77 NA NA NA NA NA NA

⁷⁷⁵ Values developed based on the bin analysis calculations for insulation savings using typical annual hours in each weather bin during each demand and energy period.

⁷⁷⁶ Values developed based on the bin analysis calculations for DHP savings using typical annual hours in each weather bin during each demand and energy period.

⁷⁷⁷ Values developed based on the bin analysis calculations for DHP retrofit savings using typical annual hours in each weather bin during each demand and energy period.

⁷⁷⁸ MA TRM 2013 TRM 2010, Air-source heat pump peak coincidence factor.

⁷⁷⁹ NMR Group, Efficiency Maine Retail Lighting Program Overall Evaluation Report, April 16, 2015.

*Coincidence Factor and Energy Period Factors are not applicable for fossil-fuel measures, as avoided costs for fossil fuels do not account for time-of-use.

Appendix C: Carbon Dioxide Emission Factors

Fuel	Emission Factor	Units
Coal by Ran	k	
Anthracite	103.69	kg CO ₂ / MMBtu
Bituminous	93.28	kg CO ₂ / MMBtu
Sub-bituminous	97.17	kg CO ₂ / MMBtu
Lignite	97.72	kg CO ₂ / MMBtu
Natural Gas	5	
Pipeline Natural Gas	53.06	kg CO ₂ / MMBtu
	5.306	kg CO ₂ / therm
Flared Natural Gas	54.71	kg CO ₂ / MMBtu
	5.471	kg CO ₂ / therm
Petroleum Fu	els	
Middle Distillate Fuels (No. 1, No. 2, No. 4 fuel oil, diesel,	73.15	kg CO ₂ / MMBtu
home heating oil)	10.15	kg CO ₂ / gallon
Jet Fuel (Jet A, JP-8)	70.88	kg CO ₂ / MMBtu
	9.57	kg CO ₂ / gallon
Kerosene	72.31	kg CO ₂ / MMBtu
	9.76	kg CO ₂ / gallon
Heavy Fuel Oil (No. 5, 6 fuel oil), bunker fuel	78.80	kg CO ₂ / MMBtu
	11.80	kg CO ₂ / gallon
Ethane	59.59	kg CO ₂ / MMBtu
	4.14	kg CO ₂ / gallon
Propane	63.07	kg CO ₂ / MMBtu
	5.74	kg CO ₂ / gallon
Isobutane	65.07	kg CO ₂ / MMBtu
	6.45	kg CO ₂ / gallon
n-Butane	64.95	kg CO ₂ / MMBtu
	6.69	kg CO ₂ / gallon
Unspecified LPG	62.28	kg CO ₂ / MMBtu
	-	kg CO ₂ / gallon
Refinery (Still) Gas	64.20	kg CO ₂ / MMBtu
	9.17	kg CO ₂ / gallon
Crude Oil	74.54	kg CO ₂ / MMBtu
	10.29	kg CO ₂ / gallon
Petroleum Coke	102.12	kg CO ₂ / MMBtu
	14.65	kg CO ₂ / gallon
Other Fuels		
Tires/Tire Derived Fuel	85.97	kg CO ₂ / MMBtu
Waste Oil	9.98	kg CO ₂ / gallon
Waste Oil Blended with Residual Fuel Oil	66.53	kg CO ₂ / MMBtu
Waste Oil Blended with Distillate Fuel Oil	71.28	kg CO ₂ / MMBtu
Municipal Solid Waste	417.04	kg CO ₂ / short ton
Municipal Solid Waste	41.70	kg CO ₂ / MMBtu
Plastics Portion of MSW	2,539.80	kg CO ₂ / short ton
Electricity ⁷⁸⁰	1.029	Pounds per kWh

 $^{^{780}}$ From Avoided Energy Supply Cost in New England, 2015, Rick Hornby, et. al.

Appendix D: Retail Lighting EISA History

Lighting savings changed dramatically between 2011 and 2015 as a result of the Energy Independence and Security Act of 2007 (EISA). The following tables outline key assumptions and calculations that changed during that time. This appendix is for historical reference only and is no longer updated.

Bulb	Lumon Din	Proportion of Total Bulb	Average CFL	Baseline Wattage
Туре		Sales	wallage	(2011)
Standard	3301-4815	0.01%	55.00	200
Standard	2601-3300	0.09%	41.59	150
Standard	1490-2600	8.46%	24.51	100
Standard	1050-1489	3.35%	19.52	75
Standard	750-1049	78.72%	13.41	60
Standard	310-749	4.35%	9.51	40
Standard	0-309	0.02%	5.00	25
Specialty	3301-4815	0.01%	65.00	200
Specialty	1490-2600	0.65%	26.47	100
Specialty	1050-1489	0.23%	19.61	75
Specialty	750-1049	2.27%	14.50	60
Specialty	310-749	0.72%	10.08	40
Giveaway	1490-2600	1.13%	23.00	100
Weighted				
Average	N/A	100%	14.62	63.71

Table D-1. Retail Lighting Program: Baseline Wattages and CFL Wattages

Table D-2 describes the adjustments to baseline starting in 2012 due to the changing maximum wattages specified in EISA.

Lumen Range	Assumed Original Baseline	New Maximum Wattage	Effective Date
310-749	40	29	2014
750-1049	60	43	2014
1050-1489	75	53	2013
1490-2600	100	72	2012

Table D-2. EISA Adjustments by Lumen Range (Evaluation, Table 25)⁷⁸¹

Table D-3 shows the changes in the weighted average baseline wattage resulting from the EISA requirements becoming effective from 2011 through 2014. Weighted average wattage for CFL and LED bulbs are presented for 2011 and 2014 along with the resulting percentage change in savings compared to 2011 based on EISA impacts.

Year	Program Year (7/1/(YY-1)- 6/30/YY)	EISA Adjusted Weighted Average Baseline Wattage	Weighted Average CFL Wattage	Delta Watts	Weighted Average LED Wattage	Delta Watts
2011	2012	63.71	14.62	49.09	13	50.71
2012	2013	61.03	14.62	46.41	13	48.03
2013	2014	60.29	14.62	45.67	13	47.29
2014	2015	46.43	14.62	31.81	12	34.43

Table D-3. EISA Adjusted Weighted Average Baseline Wattage by Year

⁷⁸¹ The Cadmus Group, Efficiency Maine Trust Residential Lighting Program Evaluation, November 1, 2012, Table 25.

Appendix E: Standard Assumptions for Maine

Table E-1. Distribution of He	eating Fuel for Maine Res	dential Customers
-------------------------------	---------------------------	-------------------

Heating Fuel	Percentage of Homes	Distribution Excluding Coal and Other	Distribution Excluding Natural Gas, Coal and Other	Distribution Excluding Natural Gas, Coal, Wood and Other
Natural Gas	9%	9%	N/A	N/A
Oil	65%	66%	72%	83%
Wood	8%	8%	9%	N/A
Propane	6%	6%	7%	8%
Kerosene	6%	6%	7%	8%
Pellet	4%	4%	4%	N/A
Electricity	0.80%	0.80%	0.9%	1%
Coal	0.40%	N/A	N/A	N/A
Other	0.30%	N/A	N/A	N/A

Table E-2. Minimum Efficiency Requirements for Furnaces and Boilers⁷⁸²

Equipment Category	Equipment Type	Federal Code Minimum (AFUE)		
	Non-weatherized gas furnaces (not including mobile home furnaces)*	80%		
	Mobile home gas furnaces	80%		
Furnaces	Non-weatherized oil-fired furnaces (not including mobile home furnaces)*	83%		
	Mobile home oil-fired furnaces	75%		
	Weatherized gas furnaces	81%		
	Weatherized oil-fired furnaces	78%		
	Electric furnaces	78%		
	Gas-fired hot water boiler*	82%		
	Gas-fired steam boiler	80%		
Boilers	Oil-fired hot water boiler*	84%		
	Oil-fired steam boiler	82%		
	Electric hot water boiler	None		
* For the TRM, the highlighted equipment types have been selected as representative				
of the systems installed under the program. Gas entries are used for Natural Gas and				
Propane systems, Oil-fired are used for Oil and Kerosene systems.				

⁷⁸² Code of Federal Regulations: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?c=ecfr&sid=61b33caa9460da7b2e875b478972dfdc&rgn=div6&view=text&node=10:3.0.1.4.18.3&idno=10

Appendix F: Supplementary Information for Retail Products

Using the values in the IL TRM v.4.0 2015,⁷⁸³ and quantities from the FY2014 Efficiency Maine Program by type yields a value of 509.7 kWh for baseline units after the September 2014 federal standard change (as detailed in Table F-1 below).

IL TRM v.4.0 2015 for refrigerators after September 2014 federal standard change	FY2014 Maine Quantity	Baseline Unit	New Efficient ENERGY STAR®
1. Refrigerators and Refrigerator-freezers with	0	368.6	331.6
manual defrost			
2. Refrigerator-Freezerpartial automatic	1480	430.9	387.8
defrost			
3. Refrigerator-Freezersautomatic defrost	3174	441.7	397.4
with top-mounted freezer without through-			
the-door ice service and all-refrigerators			
automatic defrost			
4. Refrigerator-Freezersautomatic defrost	16	517.1	465.4
with side-mounted freezer without through-			
the-door ice service			
5. Refrigerator-Freezersautomatic defrost	2357	545.1	490.7
with bottom-mounted freezer without			
through-the-door ice service			
5A Refrigerator-freezer—automatic defrost	1214	713.8	651
with bottom-mounted freezer with through-			
the-door ice service			
6. Refrigerator-Freezersautomatic defrost	0	601.9	550.1
with top-mounted freezer with through-the-			
door ice service			
7. Refrigerator-Freezersautomatic defrost	9	652.9	596.1
with side-mounted freezer with through-the-			
door ice service			
Total	8250		
			-
	Weighted Average.:	509.7	460.0

Table F-1. Weighted Average Refrigerator Energy Use

⁷⁸³ Illinois Statewide Technical Reference Manual for Energy Efficiency Version 4.0 Final, February 24, 2015, p. 508.

Table F-2. Baseline Bulb Replacement Schedule and Avoided O&M

Commercial Hours/Year	Residential Hours/Year	Real Discount Rate
3771	730	6.50%

	Re	Retail		Residential		Distributor	
Life Category	>20,000 hr	<20,000 hr	>20,000 hr	< 20,000 hr	>20,000 hr	<20,000 hr	
Rated Hours	25,000	15,000	25,000	15,000	25,000	15,000	
% Commercial	4%	4%	0%	0%	69%	69%	
Hours/Year	851.64	851.64	730	730	2828.29	2828.29	
Rated Life (Years)	29	18	34	21	9	5	
Baseline Rated Hours	2000	2000	2000	2000	2000	2000	
Baseline Rated Life (Years)	2.35	2.35	2.74	2.74	0.71	0.71	
Baseline bulbs per EE life	12	8	12	8	13	7	
Check	12	8	12	8	13	7	
NPV of Bulbs	5.24	4.39	4.68	4.01	9.66	5.87	

	Baseline Replacement Schedule: Number of Bulbs Replaced per year					
Year	RetL	RetS	ResL	ResS	DisL	DisS
1	0	0	0	0	2	2
2	1	1	0	0	1	1
3	0	0	1	1	1	1
4	0	0	0	0	2	2
5	1	1	1	1	1	1
6	0	0	0	0	2	
7	1	1	0	0	1	
8	0	0	1	1	2	
9	1	1	0	0	1	
10	0	0	0	0		
11	0	0	1	1		
12	1	1	0	0		
13	0	0	0	0		
14	1	1	1	1		
15	0	0	0	0		
16	1	1	1	1		
17	0	0	0	0		
18	0	1	0	0		
19	1		1	1		
20	0		0	0		
21	1		0	1		
22	0		1		-	
23	1		0			
24	0		1			
25	0		0			
26	1		0			
27	0		1			
28	1		0			
29	0		0			
30		_	1			
31			0			
32			1			
33			0			
34			0			

Interactive Effects Derivation

More efficient lighting provides the same amount of lumens with fewer watts. Halogen and incandescent bulbs generate a lot of heat in addition to light. The wattage that produces heat rather than light is referred to as waste heat. When cooling is called for, the waste heat generated by inefficient lights requires the cooling system to work harder. By replacing inefficient lights with efficient lights less waste heat is produced which reduces the load on the cooling system. The magnitude of the reduced cooling load is proportional to the magnitude of the wattage reduction of the lights. Conversely, when heating is called for, the reduction in waste heat from the replacement of inefficient lights with efficient lights system. To calculate the interactive factors several factors must be considered as define below.

Factors included in the calculation of Interactive Effects Factors:

IGC = Internal Gain Contribution (%) – This factor accounts for some portion of the wattage reduction not contributing to the interactive effects. Some waste heat escapes through ceiling and wall penetrations without contributing to internal gains that affect the load on HVAC systems.

%**A** = Applicability (%) – Interactive effects are only applicable if the waste heat reduction interacts with a HVAC system. Lights installed in unconditioned spaces do not contribute to interactive effects. Applicability is calculated as the product of % of bulbs installed in interior sockets and the % of buildings with mechanical cooling. (%A = %I*%A/C)

 C_{HVAC} = Concurrency with Heating/Cooling – Waste heat only impacts HVAC systems when the lights and the systems are on concurrently. Cooling interactive effects only occur during the cooling season and heating interactive effects only occur during the heating season.

 Eff_{HVAC} = Efficiency of the HVAC system – The change in consumption of the HVAC system is determined by the efficiency of the system.

Cooling Demand Interactive Effects Factor

The following formula is used to calculate the cooling demand interactive effects factor. Total demand reduction is calculated by multiplying the demand reduction from the lighting change by the cooling demand factor. The values used in the formula are defined in the table below.

$$IE_{COOL_D} = 1 + \frac{IGC \times \%A \times C_{HVAC}}{Eff_{HVAC}}$$

Cooling Energy Interactive Effects Factor

The following formula is used to calculate the cooling energy interactive effects factor. Total energy savings is calculated by multiplying the energy savings from the lighting change by the cooling energy factor. The values used in the formula are defined in the table below.

$$IE_{COOL_{E}} = 1 + \frac{IGC \times \%A \times C_{HVAC}}{Eff_{HVAC}}$$

Heating Energy Interactive Effects Factor

The following formula is used to calculate the heating energy interactive effects factor. Heating energy increased used (in MMBtu) is calculated by multiplying the energy savings from the lighting change (in kWh) by the heating energy factor. The values used in the formula are defined in the table below.

$$IE_{HEAT_E} = \frac{IGC \times \%A \times C_{HVAC}}{Eff_{HVAC}} \times 0.003412 \ MMBtu/kWh$$

Input Factors	10	GC	%	6A	C	IVAC	Eff	IVAC	Interactiv Fac	ve Effects ctor
	Value	Note	Value	Note	Value	Note	Value	Note	Term	Value
Residential Cooling Demand	75%	[784]	46%	[785]	100%	[786]	400%	[787]	IE _{COOL_D}	1.085
Residential Cooling Energy	75%	[784]	46%	[785]	25%	[788]	400%	[787]	IE _{COOL_E}	1.021
Residential Heating	75%	[784]	86%	[789]	50%	[790]	80.5%	[791]	IE _{HEAT_E}	0.00137
Commercial Cooling Demand	75%	[784]	77%	[792]	100%	[786]	400%	[787]	IEcool_d	1.144
Commercial Cooling Energy	75%	[784]	77%	[792]	42%	[793]	400%	[787]	IE _{COOL_E}	1.060
Commercial Heating	75%	[784]	100%	[794]	50%	[790]	80.5%	[791]	IE _{HEAT_E}	0.00159

Table 7. Interactive Effects Input Factors and resulting IE Factors

For Retail and Distributor programs, the interactive effect factors are calculated based on the portion of bulbs installed in residential and commercial settings as presented in the table below.

	Residential	Commercial Retail		Retail	Distributor
			% Commercial	4%	69%
IE_cool_d	1.085	1.144		1.087	1.126
IE_cool_e	1.021	1.060		1.023	1.048
IE_heat_e	0.00137	0.00159		0.00138	0.00152

⁷⁸⁷ Cooling equipment efficiency is assumed to be 400% based on a SEER of 14 which is the current federal minimum efficiency standard.

⁷⁸⁸ Cooling season is assumed to be 3 months for residential applications. (3/12 = 25%)

⁷⁸⁴ Based on engineering judgment

⁷⁸⁵ Per 2015 Maine Residential Baseline Study, 86% of bulbs are installed in locations that are conditioned. According to Portland Press Herald,

http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /, in 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21percent have no cooling equipment installed. Assuming that a window A/C unit cools 1/3 of a home that works out to be 53% of residential homes are mechanical cooled. (%A = 46% = 86%*53%)

⁷⁸⁶ Maximum demand reduction occurs when lights and cooling systems are on concurrently. Coincidence factors are then applied to determine coincidence with peak hours.

 ⁷⁸⁹ Per 2015 Maine Residential Baseline Study 86% of bulbs are installed in locations that are conditioned. 100% of residences are heated. (%A = 86% = 86% *100%)
 ⁷⁹⁰ Heating season is assumed to be 6 months. (6/12=50%)

⁷⁹¹ Per 2015 Maine Residential Baseline Study, the average heating system efficiency is 80.5%. It is assumed that commercial heating systems have a similar average efficiency.

⁷⁹² For commercial applications, it is assumed that all bulbs are installed in interior sockets. The C&I Prescriptive program tracks exterior lights separately and interactive effect factors are not applied to those measures. Based on the cooling system type saturation in the 2012 EMT Baseline Opportunities Study and assuming that window unit A/C cools 1/3 of the conditioned space, 77% of commercial space is mechanically cooled in Maine. (%A = 77% = 100%*53%) ⁷⁹³ Cooling season is assumed to be 5 months for commercial applications due to higher internal gains. (5/12=42%)

⁷⁹⁴ For commercial applications, it is assumed that all bulbs are installed in interior sockets. The C&I Prescriptive program tracks exterior lights separately and interactive effect factors are not applied to those measures. It is assumed that 100% of commercial spaces are heated. (%A = 100% = 100% 100%)

Free Ridership Rate Estimates

A lighting pricing trial was conducted where incentive levels were changed over time to determine the price elasticity of retail bulbs. Price elasticity is a measure of how demand for a product is related to the price of the product. It was determined that the demand for LED bulbs was strongly influenced by the customer facing price after the mark down (incentive) was applied.

The weekly sales of a particular bulb can be estimated with the following formula.

Weekly Sales =
$$e^{C1+C2 \times \ln(Price)}$$

Price is the customer facing price (what the bulb will cost at the register).

C1 and C2 are coefficients determined from the statistical analysis of the pricing trial results.

The trial found that the coefficients were different for standard LED bulbs and specialty LED bulbs as presented in Table 8.

Bulb Type	C1	C2
Standard LED	-1.54502	7.348561
Specialty LED	-0.75971	5.019844

 Table 8. LED Bulb Price Elasticity Coefficients