D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 0 of 435

Massachusetts Technical Reference Manual

for Estimating Savings from Energy Efficiency Measures

2016-2018 Program Years - Plan Version

October 2015

Table of Contents

TABLE OF CONTENTS	1
INTRODUCTION	5
TRM UPDATE PROCESS	6
Overview	6
KEY STAKEHOLDERS AND RESPONSIBILITIES	6
TRM UPDATE CYCLE	7
MEASURE CHARACTERIZATION STRUCTURE	8
IMPACT FACTORS FOR CALCULATING ADJUSTED GROSS AND NET SAVINGS	12
TYPES OF IMPACT FACTORS	12
STANDARD NET-TO-GROSS FORMULAS	
RESIDENTIAL EFFICIENCY MEASURES	
APPLIANCES – CLOTHES DRYER	
APPLIANCES – EARLY RETIREMENT CLOTHES WASHERS	
APPLIANCES – REFRIGERATOR (LOST OPPORTUNITY)	23
APPLIANCES – REFRIGERATOR (RETROFIT)	25
APPLIANCES – REFRIGERATOR REPLACEMENT	
APPLIANCES – REFRIGERATOR REPLACEMENT	
APPLIANCES – REFRIGERATOR REPLACEMENT	
APPLIANCES – FREEZERS (LOST OPPORTUNITY)	
APPLIANCES – FREEZER REPLACEMENT	
APPLIANCES – REFRIGERATOR/FREEZER RECYCLING	40
APPLIANCES – APPLIANCE REMOVAL	
BUILDING SHELL – WEATHERIZATION	44
BUILDING SHELL – AIR SEALING	47
BUILDING SHELL – AIR SEALING	
BUILDING SHELL – INSULATION	53
BUILDING SHELL – INSULATION	56
HVAC – CENTRAL AIR CONDITIONING	60
HVAC – Down Size ½ Ton	62
HVAC – EARLY RETIREMENT OF CENTRAL AIR CONDITIONING	64
HVAC – WINDOW AC REPLACEMENT (RETROFIT)	67
HVAC – AIR SOURCE HEAT PUMP	
HVAC – DUCTLESS MINISPLIT HEAT PUMP	
HVAC – EARLY RETIREMENT OF HEAT PUMP UNIT	
HVAC – CENTRAL AC QUALITY INSTALLATION VERIFICATION (QIV)	
HVAC – HEAT PUMP QUALITY INSTALLATION VERIFICATION (QIV)	80
HVAC – MINI SPLIT HEAT PUMP QUALITY INSTALLATION VERIFICATION (QIV)	
HVAC – HEAT PUMP DIGITAL CHECK-UP/ I UNE-UP	
HVAC – DUCT SEALING	86
HVAC – QUALITY INSTALLATION WITH DUCT MODIFICATION	
HVAC – DUCT SEALING	
$\Pi V A C = D U C I DEALING$	
$\Pi V A C = D U C I INSULATION$ HV A C = FUDNACE FAN MOTODS (ELECTDICALLY EEELCIENT FAN MOTODS)	
HVAC = FURNACE FAN WOTURS (ELECTRICALLY EFFICIENT FAN MUTURS)	
Η ΥΛΟ - Η ΗΓΕ WKAP	
$HV\Delta C = W_{L}F_{1} THE pMOSTATS$	104
HVAC = WITTTHERWOSTATS HVAC = Boil ed Reset Control	107
II VAC – DOILER RESEI CONTROL	10/

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Page 2 of 435

HVAC – HEAT RECOVERY VENTILATOR	
HVAC – ECM CIRCULATOR PUMP	
HVAC – COMBO CONDENSING BOILER/WATER HEATER	
HVAC – BOILER, GAS FORCED HOT WATER	
HVAC – BOILER, OIL/PROPANE FORCED HOT WATER	
HVAC – FURNACE, GAS	
HVAC – FURNACE, OIL/PROPANE	
HVAC – EARLY RETIREMENT BOILER, FORCED HOT WATER	
HVAC – EARLY RETIREMENT BOILER, STEAM	
HVAC – EARLY KETIREMENT FURNACE	
HVAC – BOILER KETROFIT	
HVAC – FURNACE RETROFIT	
HVAC – HEATING SYSTEM	
LIGHTING – CFL BULBS	
LIGHTING – CFL FIXTURES	
LIGHTING – LED BULBS	
LIGHTING – LED FIXTURES	
LIGHTING – BULBS	
LIGHTING - FIXTURES	
LIGHTING - OCCUPANCY SENSORS	
MOTORS/DRIVES – POOL PUMP	
PLUG LOAD – KOOM AIR CLEANER	
PLUG LOAD – SMART STRIPS.	
PLUG LOAD – ADVANCED SMART STRIPS	
PLUG LOAD – DEHUMIDIFIER	
PLUG LOAD – DEHUMIDIFIER RECYCLING.	
WATER HEATING – PIPE WRAP	
WATER HEATING - SHOWERHEADS	
WATER HEATING - FAUCET AERATOR	
WATER HEATING - SHOWERHEAD WITH THERMOSTATIC VALVE	
WATER HEATING - THERMOSTATIC VALVE	
WATER HEATING – WATERBED MATTER HEATER	
WATER HEATING - INDIRECT WATER HEATER	
WATER HEATING - ON DEMAND/ IANKLESS WATER HEATER	
WATER HEATING - STAND ALONE STOKAGE WATER HEATER	
WATER HEATING - CONDENSING WATER HEATER (EXECTING)	
WATER HEATING – HEAT FUMP WATER HEATER (ELECTRIC)	
WHOLE HONE. HEATING COOLING AND DHW MEAGUIDES	
WHOLE HOME – HEATHERIZATION AND HEATING AND WATER HEATING SVETENC	
WHOLE HOME – WEATHERIZATION AND REATING AND WATER REATING SYSTEMS	
WHOLE HOME – DASIC EDUCATIONAL MEASURES	
WHOLE HOME - EDUCATION KITS	
WHOLE HOME - HOME ENERGY REPORTS	
whole nome - Code Compliance Support Initiative (CCSI)	
COMMERCIAL AND INDUSTRIAL ELECTRIC EFFICIENCY MEASURES	
LIGHTING - A DVANCED LIGHTING DESIGN (PEDEODMANCE LIGHTING)	214
LIGHTING – ADVANCED EIGHTING DESIGN (TERFORMANCE EIGHTING)	
LIGHTING - LIGHTING STSTEMS	
LIGHTING – EIGHTING CONTROLS I IGHTING – EØFEZED/COOLED I EDS	
HVAC – UNITADV AID CONDITIONEDS	
HVAC = HEAT PIMD SVETEMS	
HVAC = DEMAND CONTROL VENTUATION (DCV)	
$HV \Delta C = DEMAND CONTROL VENTILATION (DCV)HV \Delta C = DUAL ENTHALDY ECONOMIZED CONTROL & (DEEC)$	
HVAC = FCM FAN MOTORS	
HVAC – ENERGY MANAGEMENT SVSTEM	240 242

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 3 of 435

	245
HVAC – HIGH EFFICIENCY CHILLER.	
HVAC – HOTEL OCCUPANCY SENSORS	
HVAC – PROGRAMMABLE THERMOSTATS	
REFRIGERATION – DOUR HEATER CONTROLS	
REFRIGERATION - NOVELTY COOLER SHUTOFF	
REFRIGERATION – EUM EVAPORATOR FAN MOTORS FOR WALK–IN COOLERS AND FREEZERS	
REFRIGERATION – CASE MOTOR REPLACEMENT	
REFRIGERATION – COOLER NIGHT COVERS	
REFRIGERATION – ELECTRONIC DEFROST CONTROL	
REFRIGERATION – EVAPORATOR FAN CONTROLS	
KEFRIGERATION – VENDING MISERS	
FOOD SERVICE - COMMERCIAL ELECTRIC OVENS	
FOOD SERVICE - COMMERCIAL ELECTRIC STEAM COOKER	
FOOD SERVICE - COMMERCIAL ELECTRIC GRIDDLE	
FOOD SERVICE – LOW TEMPERATURE COMMERCIAL DISHWASHER	
FOOD SERVICE – FIIGH TEMPERATURE COMMERCIAL DISHWASHER	
FOOD SERVICE – COMMERCIAL ICE MACHINE	
FOOD SERVICE – COMMERCIAL FRYERS	
FOOD SERVICE - FOOD HOLDING CABINETS	
COMPRESSED AIR – REEDICEDATED AIR COMPRESSORS	
COMPRESSED AIR – KEFKIGERATED AIR DRYEKS	
COMPRESSED AIR – LOW PRESSURE DROP FILTERS	
COMPRESSED AIR – ZERO LOSS CONDENSATE DRAINS	
MOTODS/DRIVES – VARIABLE FREQUENCY DRIVES	
WIGHE DUILDING DUILDING OPERATOR CERTIFICATION	
WHOLE DUILDING - DUILDING OPEKATOR CERTIFICATION	
CODE COMPLIANCE SUPPORT INITIATIVE (CCSI) - COMMERCIAL	
CUSTOM MEASURES (LARGE C&I)	
CUSTOM MEASURES (SMALL CCI)	
$\mathbf{D}_{D} \mathbf{E}_{S} \mathbf{C}_{D} \mathbf{D}_{T} \mathbf{C}_{S} \mathbf{U} \mathbf{M} \mathbf{U} \mathbf{T} \mathbf{E}_{A} \mathbf{M} \mathbf{U} \mathbf{V} \mathbf{V}$	
I RESCRIPTIVE MEASURES (C&I MULTIFAMILI)	
COMMERCIAL AND INDUSTRIAL GAS EFFICIENCY MEASURES	
FOOD SERVICE – COMMERCIAL OVENS	
FOOD SERVICE – COMMERCIAL GRIDDLE	
FOOD SERVICE – COMMERCIAL FRYER	
FOOD SERVICE – COMMERCIAL STEAMER	
HVAC – Boilers	
HVAC – Boiler Reset Controls	
HVAC – Combo Water Heater/Boiler	
HVAC – Condensing Unit Heaters	
HVAC – FURNACES	
HVAC – INFRARED HEATERS	
HVAC – THERMOSTATS	
HVAC – DUCT SEALING AND INSULATION	
HVAC – PIPE WRAP (HEATING)	
PROCESS – STEAM TRAPS	
WATER HEATING – PIPE WRAP (WATER HEATING)	351
WATER HEATING – INDIRECT WATER HEATER	353
WATER HEATING – TANKLESS WATER HEATER	355
WATER HEATING – CONDENSING WATER HEATER	357
WATER HEATING – STAND ALONE WATER HEATER	359
WATER HEATING – PRE-RINSE SPRAY VALVE	
WATER HEATING – LOW-FLOW SHOWER HEADS	
WATER HEATING – FAUCET AERATOR	
WHOLE BUILDING - BUILDING OPERATOR CERTIFICATION	

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 4 of 435

CUSTOM MEASURES	
APPENDICES	
APPENDIX A: COMMON LOOKUP TABLES	
APPENDIX B: NET TO GROSS IMPACT FACTORS	
APPENDIX C: NON-RESOURCE IMPACTS	
APPENDIX D: TABLE OF REFERENCED DOCUMENTS	
APPENDIX E: ACRONYMS	
Appendix F: Glossary	

Introduction

This *Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures* ("TRM") documents for regulatory agencies, customers, and other stakeholders how the energy efficiency Program Administrators ("PAs") consistently, reliably, and transparently calculate savings from the installation of efficient equipment, collectively called "measures." This reference manual provides methods, formulas and default assumptions for estimating energy, peak demand and other resource impacts from efficiency measures.

Within this TRM, efficiency measures are organized by the sector for which the measure is eligible and by the primary energy source associated with the measure. The two sectors are Residential and Commercial & Industrial ("C&I").¹ The primary energy sources addressed in this TRM are electricity and natural gas.

Each measure is presented in its own section as a "measure characterization." The measure characterizations provide mathematical equations for determining savings (algorithms), as well as default assumptions and sources, where applicable. In addition, any descriptions of calculation methods or baselines are provided as appropriate. The parameters for calculating savings are listed in the same order for each measure.

Algorithms are provided for estimating annual energy and peak demand impacts for primary and secondary energy sources if appropriate. In addition, algorithms or calculated results may be provided for other non-energy impacts (such as water savings or operation and maintenance cost savings). Data assumptions are based on Massachusetts PA data where available. Where Massachusetts-specific data is not available, assumptions may be based on, 1) manufacturer and industry data, 2) a combination of the best available data from jurisdictions in the same region, or 3) credible and realistic factors developed using engineering judgment.

The TRM will be reviewed and updated annually to reflect changes in technology, baselines and evaluation results.

¹ In this document, the Residential and Low Income programs are represented in a single "Residential" sector due to the degree of overlap in savings assumptions for similar measures in the standard income programs.

TRM Update Process

Overview

This section describes the process for updating the TRM. The update process is synchronized with the filing of program plans and Plan Year Reports by the PAs with the DPU.

Updates to the TRM can include:

- additions of new measures,
- updates to existing TRM measures due to:
 - changes in baseline equipment or practices, affecting measure savings
 - o changes in efficient equipment or practices, affecting measure savings
 - changes to deemed savings due the revised assumptions for algorithm parameter values (e.g., due to new market research or evaluation studies)
 - o other similar types of changes,
- updates to impact factors (e.g., due to new impact evaluation studies),
- discontinuance of existing TRM measures, and
- updates to the glossary and other background material included in the TRM.

Each TRM is associated with a specific program year, which corresponds to the calendar year. This results in two main versions of the TRM for each program year:

- the "Plan Version" is filed with the PA program plans prior to the program year, and
- the "Report Version" includes updates to the "Plan Version" document as needed and is filed with the PA Plan Year Reports, with the final savings algorithms and factors used to report actual savings.

The TRM for each program year is updated over time as needed to both plan for future program savings and to report actual savings.

Key Stakeholders and Responsibilities

Key stakeholders and their responsibilities for the TRM updates are detailed in the following table.

Stakeholder	Responsibilities
TRM Coordinating Committee	 Administrative coordination of TRM activities, including: Assure collaboration and consensus by the PAs regarding TRM updates Assure updates are compiled from the PAs and incorporated into the TRM Coordinate with related program activities (e.g., evaluation and program reporting processes)
Program Administrators	 Provide one or two representatives each to the TRM Coordinating Committee, either by direct representation or through a proxy (e.g., GasNetworks). Both the planning and evaluation functions should be represented on the Committee. Identify needed updates to the TRM Coordinate with other PAs on all TRM updates File TRM updates with the DPU

Stakeholder	Responsibilities
Department of Energy Resources	 Provide one representative to the TRM Coordinating Committee Assure coordination with PA submissions of program plans and reported savings

D.P.U. 15-160 to D.P.U. 15-169

TRM Update Cycle

The timeline below shows the main milestones of the TRM update cycle over a period of two years. The milestones for the program year ("PY") 2016-2018 TRM Plan and Report versions are described below the timeline.

OCTOBER 2015: The 2016-2018 PY – Plan Version TRM is filed with the PAs' program plans.

The 2016-2018 Program Year – Plan Version TRM is filed with the DPU jointly with the PAs' energy efficiency program plans. With regard to the program plans, the TRM is considered a "planning document" in that it provides the documentation for how the PAs *plan* to count savings for that program year. The TRM is not intended to fully document how the PAs develop their plan estimates for savings.

OCTOBER 2015 - JUNE 2017: The 2016 Program Year TRM will be updated as needed based on evaluation studies and any other updates that will affect reported savings for PY 2016.

After the 2016-2018 Program Year – Plan Version TRM has been filed, there may be updates to the TRM to reflect how savings are actually calculated for PY 2016. The most common updates to the TRM will result from new evaluation studies. Results of evaluation studies will be integrated into the working version of the TRM as the studies are completed. Other updates may include the results of working group discussions to achieve greater consistency among PA assumptions.

JANUARY 2016: PAs begin to track savings based on the 2016-2018 TRM

Beginning in January 2016, the PAs will track savings for PY 2016-2018 based on the 2016-2018 Program Year – Plan Version TRM.

JUNE 2017: The 2016 Program Year – Report Version TRM will be filed with the PY 2016 Plan Year Reports

The 2016 Program Year – Report Version TRM, including any updates relative to the Program Plan version, will be filed with the PAs' Plan Year Reports. Updates from the Plan Version may include new evaluation results or changes based on working group discussions, and will be clearly identified in the Report Version

Measure Characterization Structure

This section describes the common entries or inputs that make up each measure characterization. A formatted template follows the descriptions of each section of the measure characterization.

Source citations: The source of each assumption or default parameter value should be properly referenced in a footnote. New source citations should be added to Appendix D: Table of Referenced Documents, which serves as a cross-reference to digital versions of the referenced documents.

Measure Name

A single device or behavior may be analyzed as a range of measures depending on a variety of factors which largely translate to where it is and who is using it. Such factors include hours of use, location, and baseline (equipment replaced or behavior modified). For example, the same screw-in compact fluorescent lamp will produce different savings if installed in an emergency room waiting area than if installed in a bedside lamp.

Version Date and Revision History

This section will include information regarding the history of the measure entry including when the data for that measure is effective, and the last date that the measure is offered.

Effective Date:1/1/2016End Date:TBD

Measure Overview

This section will include a plain text description of the efficient and baseline technology and the benefit(s) of its installation, as well as subfields of supporting information including:

Description: <Description of the energy efficiency measure> Primary Energy Impact: < Natural Gas, Propane, Oil, Electric > Secondary Energy Impact: <e.g., Natural Gas, Propane, Oil, Electric, None> Non-Energy Impact: <e.g., Water Resource, O&M, Non-Resource, None> Sector: <Residential, Low Income or Commercial and Industrial> Market: <Lost Opportunity, Retrofit and/or Products and Services> End-Use: <Per ISO-NE efficiency reporting tool – see list below> Core Initiative: <Per PA definition>

End-Uses:

Lighting HVAC Motors /Drives Refrigeration Hot Water Compressed Air Behavior Envelope Custom Measures

Energy Star Homes Home Energy Services Process Food Service

Notes

This is an optional section for additional notes regarding anticipated changes going forward. For example, this section would not if there were upcoming statewide evaluations affecting the measure, or any plans for development of statewide tool for calculating measure savings.

Algorithms for Calculating Primary Energy Impacts

This section will describe the method for calculating the primary energy savings in appropriate units, i.e., kWh for electric energy savings or MMBtu for natural gas energy savings. The savings algorithm will be provided in a form similar to the following:

$\Delta kWh = \Delta kW \times Hours$

Similarly, the method for calculating electric demand savings will be provided in a form similar to the following:

 $\Delta kW = (Watts_{BASE} - Watts_{EE})/1000$

Below the savings algorithms, a table contains the definitions (and, in some cases, default values) of each input in the equation(s). The inputs for a particular measure may vary and will be reflected as such in this table (see example below).

ΔkWh	=	gross annual kWh savings from the measure
ΔkW	Π	gross connected kW savings from the measure
Hours	Π	average hours of use per year
Watts _{BASE}	Π	baseline connected kW
Watts _{EE}	Π	energy efficient connected kW

Baseline Efficiency

This section will include a statement of the assumed equipment/operation efficiency in the absence of program intervention. Multiple baselines will be provided as needed, e.g., for different markets. Baselines may refer to reference tables or may be presented as a table for more complex measures.

High Efficiency

This section will describe the high efficiency case from which the energy and demand savings are determined. The high efficiency case may be based on specific details of the measure installation, minimum requirements for inclusion in the program, or an energy efficiency case based on historical participation. It may refer to tables within the measure characterization or in the appendices or efficiency standards set by organizations such as ENERGY STAR[®] and the Consortium for Energy Efficiency.

Hours

This section will note operating hours for equipment that is either on or off, or equivalent full load hours for technologies that operate at partial loads, or reduced hours for controls. Reference tables will be used as needed to avoid repetitive entries.

Measure Life

Measure Life includes equipment life and the effects of measure persistence. Equipment life is the number of years that a measure is installed and will operate until failure. Measure persistence takes into account business turnover, early retirement of installed equipment, and other reasons measures might be removed or discontinued.

Secondary Energy Impacts

This section described any secondary energy impacts associated with the energy efficiency measure, including all assumptions and the method of calculation.

Non-Energy Impacts

This section describes any non-energy impacts associated with the energy efficiency measure, including all assumptions and the method of calculation.

Impact Factors for Calculating Adjusted Gross Savings

The section includes a table of impact factor values for adjusting gross savings. Impact factors for calculating net savings (free ridership, spillover and/or net-to-gross ratio) are Appendix B: Net to Gross Impact Factors. Further descriptions of the impacts factors and the sources on which they are based are described below the table.

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}

Abbreviated program names may be used in the above table. The mapping of full program names to abbreviated names is given below.

	Full Core Initiative Name	Abbreviation
Residential-	Residential New Construction	RNC
Electric	Residential Heating & Cooling Equipment	RHVAC
	Residential Multi-Family Retrofit	MF Retrofit
	Residential Home Energy Services	HES
	Residential Behavior/Feedback Program	Behavior/Feedback
	Residential Lighting	Res Lighting
	Residential Consumer Products	Res Products
Low Income-	Low-Income Single Family Retrofit	LI Retrofit 1-4
Electric	Low-Income Multi-Family Retrofit	LI MF Retrofit
C&I –	C&I New Buildings & Major Renovations	NB
Electric	C&I Initial Purchase & End of Useful Life	EUL
	C&I Existing Building Retrofit	Large Retrofit
	C&I Multifamily Retrofit	C&I MF Retrofit
	C&I Upstream Lighting	Upstream
	C&I Small Business	Small Retrofit
Residential –	Residential New Construction	RNC
Gas	Residential Heating & Cooling Equipment	RHVAC
	Residential Home Energy Services	HES
	Residential Multi-Family Retrofit	MF Retrofit
	Residential Behavior/Feedback	Behavior/Feedback
Low Income -	Low-Income Single Family Retrofit	LI Retrofit 1-4
Gas	Low-Income Multi-Family Retrofit	LI MF Retrofit
C&I - Gas	C&I New Buildings & Major Renovations	NB
	C&I Initial Purchase & End of Useful Life	EUL
	C&I Existing Building Retrofit	Large Retrofit
	C&I Multifamily Retrofit	C&I MF Retrofit
	C&I Small Business	Small Retrofit
L		

Impact Factors for Calculating Adjusted Gross and Net Savings

PAs use the algorithms in the Measure Characterization sections to calculate the gross savings for energy efficiency measures. Impact factors are then applied to make various adjustments to the gross savings estimate to account for the performance of individual measures or energy efficiency programs as a whole in achieving energy reductions as assessed through evaluation studies. Impacts factors address both the technical performance of energy efficiency measures and programs, accounting for the measured energy and demand reductions realized compared to the gross estimated reductions, as well as the programs' effect on the market for energy efficient products and services.

This section describes the types of impact factors used to make such adjustments, and how those impacts are applies to gross savings estimates. Definitions of the impact factors and other terms are also provided in Appendix F: Glossary.

Types of Impact Factors

The impact factors used to adjust savings fall into one of two categories:

Impact factors used to adjust gross savings:

- In-Service Rate ("ISR")
- Realization Rate ("RR")
- Summer and Winter Peak Demand Coincidence Factors ("CF").

Impact factors used to calculate net savings:

- Free-Ridership ("FR") and Spillover ("SO") Rates
- Net-to-Gross Ratios ("NTG").

The **in-service rate** is the actual portion of efficient units that are installed. For example, efficient lamps may have an in-service rate less than 1.00 since some lamps are purchased as replacement units and are not immediately installed. The ISR is 1.00 for most measures.

The **realization rate** is used to adjust the gross savings (as calculated by the savings algorithms) based on impact evaluation studies. The realization rate is equal to the ratio of measure savings developed from an impact evaluation to the estimated measure savings derived from the savings algorithms. The realization rate does not include the effects of any other impact factors. Depending on the impact evaluation study, there may be separate realization rates for energy (kWh), peak demand (kW), or fossil fuel energy (MMBtu).

A **coincidence factor** adjusts the connected load kW savings derived from the savings algorithm. A coincidence factor represents the fraction of the connected load reduction expected to occur at the same time as a particular system peak period. The coincidence factor includes both coincidence and diversity factors combined into one number, thus there is no need for a separate diversity factor in this TRM.

Coincidence factors are provided for both the on-peak and seasonal peak periods as defined by the ISO New England for the Forward Capacity Market ("FCM"), and are calculated consistently with the FCM methodology. Electric demand reduction during the ISO New England peak periods is defined as follows:

On-Peak Definition:

- <u>Summer On-Peak</u>: average demand reduction from 1:00-5:00 PM on non-holiday weekdays in June July, and August
- <u>Winter On-Peak</u>: average demand reduction from 5:00-7:00 PM on non-holiday weekdays in December and January

Seasonal Peak Definition:

- <u>Summer Seasonal Peak</u>: demand reduction when the real-time system hourly load is equal to or greater than 90% of the most recent "50/50" system peak forecast for June-August
- <u>Winter Seasonal Peak</u>: demand reduction when the real-time system hourly load is equal to or greater than 90% of the most recent "50/50" system peak load forecast for December-January.

The values described as Coincidence Factors in the TRM are not always consistent with the strict definition of a Coincidence Factor (CF). It would be more accurate to define the Coincidence Factor as "the value that is multiplied by the Gross kW value to calculate the average kW reduction coincident with the peak periods." A coincidence factor of 1.00 may be used because the coincidence is already included in the estimate of Gross kW; this is often the case when the "Max kW Reduction" is not calculated and instead the "Gross kW" is estimated using the annual kWh reduction estimate and a loadshape model.

A **free-rider** is a customer who participates in an energy efficiency program (and gets an incentive) but who would have installed some or all of the same measure(s) on their own, with no change in timing of the installation, if the program had not been available. The **free-ridership rate** is the percentage of savings attributable to participants who would have installed the measures in the absence of program intervention.

The **spillover rate** is the percentage of savings attributable to a measure or program, but additional to the gross (tracked) savings of a program. Spillover includes the effects of 1) participants in the program who install additional energy efficient measures outside of the program as a result of participating in the program, and 2) non-participants who install or influence the installation of energy efficient measures as a result of being aware of the program. These two components are the **participant spillover** (SO_P) and **non-participant spillover** (SO_{NP}).

The **net savings** value is the final value of savings that is attributable to a measure or program. Net savings differs from gross savings because it includes the effects of the free-ridership and/or spillover rates.

The **net-to-gross** ratio is the ratio of net savings to the gross savings adjusted by any impact factors (i.e., the "adjusted" gross savings). Depending on the evaluation study, the NTG ratio may be determined from the free-ridership and spillover rates, if available, or it may be a distinct value with no separate specification of FR and SO values.

Standard Net-to-Gross Formulas

The TRM measure entries provide algorithms for calculating the gross savings for those efficiency measures. The following standard formulas show how the impact factors are applied to calculate the

	D.P.U. 15-160 to D.P.U. 15-169
	Three-Year Plan 2016-2018
	October 30, 2015
Massachusetts Technical Reference Manual	Exhibit 1, Appendix V
	Page 14 of 435

adjusted gross savings, which in turn are used to calculate the net savings. These are the calculations used by the PAs to track and report gross and net savings. The gross savings reported by the PAs are the unadjusted gross savings without the application of any impact factors.

Calculation of Net Annual Electric Energy Savings

 $adj_gross_kWh = gross_kWh \times RR_E \times ISR$ net_kWh = $adj_gross_kWh \times NTG$

Calculation of Net Summer Electric Peak Demand Coincident kW Savings

 $\begin{array}{l} adj_gross_kW_{SP} = gross_kW \times RR_{SP} \times ISR \times CF_{SP} \\ net_kW_{SP} = adj_gross_kW_{SP} \times NTG \end{array}$

Calculation of Net Winter Electric Peak Demand Coincident kW Savings

 $adj_gross_kW_{WP} = gross_kW \times RR_{WP} \times ISR \times CF_{WP}$ net_kW_{WP} = adj_gross_kW_{WP} \times NTG

Calculation of Net Annual Natural Gas Energy Savings

 $adj_gross_MMBtu = gross_MMBtu \times RR_E \times ISR$ net_MMbtu = $adj_gross_MMBtu \times NTG$

Depending on the evaluation study methodology:

- NTG is equal to $(1 FR + SO_P + SO_{NP})$, or
- NTG is a single value with no distinction of FR, SO_P, SO_{NP}, and/or other factors that cannot be reliably isolated.

Where:

Gross_kWh	=	Gross Annual kWh Savings
adj_gross_kWh	=	Adjusted Gross Annual kWh Savings
net_kWh	=	Net Annual kWh Savings
Gross_kW _{SP}	=	Gross Connected kW Savings (summer peak)
adj_gross_kW _{SP}	=	Adjusted Gross Connected kW Savings (summer peak)
Gross_kW _{WP}	=	Gross Connected kW Savings (winter peak)
adj_gross_kW _{WP}	=	Adjusted Gross Connected kW Savings (summer peak)
net_kW _{SP}	=	Adjusted Gross Connected kW Savings (winter peak)
net_kW _{WP}	=	Net Coincident kW Savings (winter peak)
Gross_MMBtu	=	Gross Annual MMBtu Savings
adj_gross_MMBtu	=	Adjusted Gross Annual MMBtu Savings
net_MMBtu	=	Net Annual MMBtu Savings
ISR	=	In-Service Rate
CF _{SP}	=	Peak Coincidence Factor (summer peak)
CF _{WP}	=	Peak Coincidence Factor (winter peak)
RR _E	=	Realization Rate for energy (kWh, MMBtu)
RR _{SP}	=	Realization Rate for summer peak kW
RR _{WP}	=	Realization Rate for winter peak kW

 D.P.U. 15-160 to D.P.U. 15-169

 Three-Year Plan 2016-2018

 October 30, 2015

 Exhibit 1, Appendix V

 Page 15 of 435

=	Net-to-Gross Ratio
=	Free-Ridership Factor
=	Participant Spillover Factor
=	Non-Participant Spillover Factor
-	= = =

Calculations of Coincident Peak Demand kW Using "Seasonal Peak" Coincidence Factors

The formulas above for peak demand kW savings use the "on-peak" coincidence factors (CF_{SP} , CF_{WP}), which apply the "on-peak" coincidence methodology as allowed for submission to the FCM. The alternative methodology is the "seasonal peak" methodology, which uses the identical formulas, but substituting the "seasonal peak" coincidence factors for the "on-peak" coincidence factors:

- CF_{SSP} = Peak Coincidence Factor for Summer Seasonal Peak
- CF_{WSP} = Peak Coincidence Factor for Winter Seasonal Peak

Residential Efficiency Measures

Appliances – Clothes Dryer

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Clothes Dryers exceeding minimum qualifying efficiency standards established as ENERGY STAR with drum moisture sensors and associated moisture sensing controls achieve greater energy savings over clothes dryers that do not have moisture sensors. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Measure Type: Clothes Dryers Core Initiative: Electric - Residential Consumer Products

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

Annual kWh Savings = Annual kWh usage baseline – Annual kWh usage Energy Star Annual kWh usage baseline= (lbs/load) / Baseline CEF * loads/yr Annual kWh usage ENERGY STAR= (lbs/load) / ENERGY STAR CEF * loads/yr

Where:		
Baseline Combined Energy Factor (CEF) (lbs/kWh)	=	3.11 ²
ENERGY STAR CEF	=	3.93 ³
Lbs/load	=	8.45 ⁴
Loads/Year	=	283 ⁵

Energy Star Dryer Savings

Measure Name	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{6}$
Dryer (Energy Star)	Res Products	160	0.02

 ² DOE (2015). 10 CFR Part 431 March 27, 2015. Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers. Table II.7. http://www.gpo.gov/fdsys/pkg/FR-2015-03-27/pdf/2015-07058.pdf
 ³ Ibid.

⁴ DOE (2013). 10 CFR Parts 429 and 430 August 14, 2013. Energy Conservation Program: Test Procedures for Residential

Clothes Dryers; Final Rule. Table 11.1. http://www.gpo.gov/fdsys/pkg/FR-2013-08-14/pdf/2013-18931.pdf ⁵ Ibid.

⁶ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Baseline Efficiency

The baseline efficiency case is a new electric resistance dryer that meets the federal standard as of January 1, 2015 which is an Energy Factor (EF) of 3.73 for a vented standard dryer. Different testing procedures were used in setting the federal standard (DOE Test Procedure Appendix D1) and the Energy Star standard (DOE Test Procedure Appendix D2). To enable comparison a baseline CEF of 3.11 is used. This was derived from ENERGY STAR Version 1.0 Estimated Baseline which multiplies the 2015 federal standard by the average change in electric dryers' assessed CEF between Appendix D1 and Appendix D2: 3.73-(3.73*0.166).

High Efficiency

The high efficiency case is a new electric resistance dryer that meets the Energy Star standard as of January 1, 2015. The ENERGY STAR CEF (Combined Energy Factor) is 3.93.

Measure Life

The measure life is 12 years.⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Dryer (Energy Star)	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.90

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.⁸

⁷ MA Common Assumptions

⁸ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Appliances – Early Retirement Clothes Washers

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The replacement and recycling of a working top-loading clothes washer with an agitator with an Energy Star rated front-loading washing machine. Primary Energy Impact: Electric Secondary Energy Impact: Oil, Propane, Gas Non-Energy Impact: Sector: Residential Market: Retrofit End Use: Process, Hot Water Measure Type: Clothes Washers Core Initiative: Electric – Residential Home Energy Services, Gas – Residential Home Energy Services

Notes

Collectively the MA PAs decided that the gas PAs will claim all the gas savings while the electric PAs claim all the other savings.

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

\[\Delta kWh = [(Capacity * 1/IMEFbase * Ncycles) * (%CWkwhbase + %DHWkwhbase + %Dryerkwhbase)] - [(Capacity * 1/IMEFeff * Ncycles) * (%CWkwheff + %DHWkwheff + %Dryerkwheff)]

ΔMMBTUs = [(Capacity * 1/MEFbase * Ncycles) * ((%DHWffbase *r_eff) + %Dryerffbase] - [(Capacity * 1/MEFeff * Ncycles) * (%DHWffeff * r eff) + %Dryergaseff]*MMBTU convert

Where:

where.		
Capacity	=	washer volume in ft ^{3.} Existing top loading washer is 3.09 ft ³ , new standard efficiency top loading washer is 3.38 ft ³ , ENERGY STAR front loading is 3.90 ft ³
IMEF	=	Integrated Modified Energy Factor and is measured in ft ³ /kWh/cycle
Ncycles	=	283 loads per year ⁹
%CWkwh	=	% of total kWh energy consumption for clothes washer operation (different for baseline and efficient unit). See table below
%DHWkwh	=	% of total kWh energy consumption used for water heating (different for baseline and efficient unit). See table below. If water is heated by gas or propane this is 0%

⁹ Department of Energy 10 CFR Parts 429 and 430 August 14, 2013. *Energy Conservation Program: Test Procedures for Residential Clothes Dryers; Final Rule.* Table 11.1. http://www.gpo.gov/fdsys/pkg/FR-2013-08-14/pdf/2013-18931.pdf

Massachusetts Technic	al Refe	rence Manual	D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 20 of 435	Residential Efficiency Measures
%Dryerkwh	=	% of total kW and efficient u	Th energy consumption for during the construction of the construct	lryer operation (different for baseline ne dryer is gas this is 0%
%DHWff	=	% of total fost baseline and e is 0%.	sil fuel energy consumption efficient unit). See table bel	used for water heating (different for ow. If water is heated by electric this
%Dryerff	=	% of total fost baseline and e	sil fuel energy consumption efficient unit). See table bel	for dryer operation (different for ow. If the dryer is electric this is 0%.
r_eff	=	recovery ener efficiencies of heaters are 10 ratio is 1.33 (gy factor used to account fo f electric and gas/oil/propan 0% efficient while other wa 100%/75%)	or the difference in recovery e hot water heaters. Electric water ater heaters are 75% efficient. The
$MMBTU_convert$	=	Conversion fa	ctor from kWh to MMBTU	is 0.003412

Efficiency Ratings and Percentage of Total Energy Consumption¹⁰

	% Energy used for			IMEF	IWF	Volume
	Washer	Water		ft ³ /kWh/	gallons/	
	operation	heating	Drying	cycle	cycle/ft ³	ft
Existing-Top Loading CW	8%	34%	59%	0.84	9.92	3.09
New-Federal Standard Top Loading CW	5%	37%	58%	1.29	8.44	3.38
New-Energy Star Front Loading CW	8%	20%	72%	2.38	3.70	3.90

Savings from Early Retirement of Clothes Washers

Measure Name	Energy Type	∆kWh	$\Delta \mathbf{kW}$	∆ MMBtu
Early Retirement CW (Retire) Elec DHW & Elec Dryer	Electric	302	0.05	0
Early Retirement CW (EE) Elec DHW & Elec Dryer	Electric	275	0.04	0
Early Retirement CW (Retire) Gas DHW & Elec Dryer	Electric/Gas	224	0.03	0.35
Early Retirement CW (EE) Gas DHW & Elec Dryer	Electric/Gas	94	0.01	0.82
Early Retirement CW (Retire) Elec DHW & Gas Dryer	Electric/Gas	118	0.02	0.63
Early Retirement CW (EE) Elec DHW & Gas Dryer	Electric/Gas	180	0.03	0.32
Early Retirement CW (Retire) Gas DHW & Gas Dryer	Electric/Gas	41	0.01	0.98
Early Retirement CW (EE) Gas DHW & Gas Dryer	Electric/Gas	-0.1	0.00	1.14
Early Retirement CW (Retire) Oil DHW & Elec Dryer	Electric/Oil	224	0.03	0.35
Early Retirement CW (EE) Oil DHW & Elec Dryer	Electric/Oil	94	0.01	0.82
Early Retirement CW (Retire) Propane DHW & Elec Dryer	Electric/Propane	224	0.03	0.35
Early Retirement CW (EE) Propane DHW & Elec Dryer	Electric/Propane	94	0.01	0.82

Baseline Efficiency

It is assumed that the existing top loading clothes washer met the 2007 federal standard which was an $MEF^{11} > 1.262$ and $WF^{12} < 9.53$. This is equivalent to an IMEF of 0.84 and IWH¹³ of 9.92. A new standard efficiency clothes washer meets the federal standard for top loading washers effective 3/7/2015 which requires an IMEF> 1.29 and an IWF < 8.4.

¹⁰ DOE (2012). Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Clothes Washers. http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0019-0047 Chapter 7. Energy and Water Use Determination (corrected)

¹¹ MEF is Modified Energy Factor and is measured in ft³/kWh/cycle

¹² WF is Water Factor and is measured in gallons/cycle/ft³

¹³ IWF is Integrated Water Factor and is measured in gallons/cycle/ft³

High Efficiency

The new high efficiency washer is a front loading Energy Star rated washer with a minimum IMEF > 2.38 and IWF < 3.7.

Measure Life

The effective useful life of the new clothes washer is assumed to be 12 years. The remaining useful life of the existing clothes washer is assumed to be 1/3 of the effective useful life which is 4 years.

Secondary Energy Impacts

Secondary energy impacts are described in the same section as primary energy impacts.

Non-Energy Impacts

 Δ Water (gallons) = (Capacity * (IWFbase - IWFeff)) * Ncycles

Where:

Capacity	=	washer volume in ft ³
IWF	=	IWF is Integrated Water Factor and is measured in gallons/cycle/ft ³
Ncycles	=	283 loads per year ¹⁴

Benefit Type	Description	Savings
Residential Water	Early Retirement CW (Retire) Water Savings	603 Gallons/Unit
Residential Water	Early Retirement CW (EE) Water Savings	3,984 Gallons/Unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Early Retirement CW (Retire) Elec DHW & Elec Dryer	HES	All	1.00	1.00	1.00	1.00	1.00	0.90
Early Retirement CW (EE) Elec DHW & Elec Dryer	HES	All	1.00	1.00	1.00	1.00	1.00	0.90
Early Retirement CW (Retire) Gas DHW & Elec Dryer	HES	All	1.00	1.00	1.00	1.00	1.00	0.90
Early Retirement CW (EE) Gas DHW & Elec Dryer	HES	All	1.00	1.00	1.00	1.00	1.00	0.90
Early Retirement CW (Retire) Elec DHW & Gas Dryer	HES	All	1.00	1.00	1.00	1.00	1.00	0.90
Early Retirement CW (EE) Elec DHW & Gas Dryer	HES	All	1.00	1.00	1.00	1.00	1.00	0.90
Early Retirement CW (Retire) Gas DHW & Gas Dryer	HES	All	1.00	1.00	1.00	1.00	1.00	0.90
Early Retirement CW (EE) Gas DHW & Gas Dryer	HES	All	1.00	1.00	1.00	1.00	1.00	0.90

¹⁴ DOE (2013). 10 CFR Parts 429 and 430 August 14, 2013. *Energy Conservation Program: Test Procedures for Residential Clothes Dryers; Final Rule.* Table 11.1. http://www.gpo.gov/fdsys/pkg/FR-2013-08-14/pdf/2013-18931.pdf

Measure Name Core PA ISR RR_E RR_{SP} **RR**_{WP} **CF**_{WP} **CF**_{SP} Initiative Early Retirement CW (Retire) Oil DHW & Elec HES All 1.00 1.00 1.00 1.00 1.00 0.90 Dryer Early Retirement CW (EE) Oil DHW & Elec HES All 1.00 1.00 1.00 1.00 1.00 0.90 Dryer Early Retirement CW (Retire) Propane DHW & HES 1.00 1.00 1.00 1.00 0.90 All 1.00 Elec Dryer Early Retirement CW (EE) Propane DHW & Elec HES 1.00 1.00 1.00 1.00 0.90 All 1.00 Dryer

D.P.U. 15-160 to D.P.U. 15-169

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.¹⁵

¹⁵ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Appliances – Refrigerator (Lost Opportunity)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Rebates for purchase of ENERGY STAR® Most Efficient qualified refrigerators. The ENERGY STAR Most Efficient designation recognizes the most efficient products among those that qualify for the ENERGY STAR program. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Measure Type: Refrigerators Core Initiative: Electric - Residential Consumer Products

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithm which uses averaged inputs based on data published by the EPA¹⁶:

$$\Delta kWh = \Delta kWh_{BASE} - \Delta kWh_{ES}$$

Where:

Unit=Installed ENERGY STAR® Most Efficient refrigerator ΔkWh_{BASE} =Average usage of a new refrigerator meeting federal standards, by model type ΔkWh_{ES} =Average usage of a new refrigerator meeting ENERGY STAR® Most Efficient standards , by model type

Tier	$\Delta \mathbf{kWh}^{17}$	$\Delta \mathbf{k} \mathbf{W}^{18}$
Refrigerator (Most Efficient)	118	0.01

Baseline Efficiency

The baseline efficiency case is a residential refrigerator that meets the federal minimum standard for energy efficiency.

¹⁶ https://data.energystar.gov/Active-Specifications/ENERGY-STAR-Most-Efficient-Residential-Refrigerato/hgxv-ux9b

¹⁷ Apex Analytics (2015). 2015 Refrigerator Savings Modeling.xls.

¹⁸ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

High Efficiency

The high efficiency case is an ENERGY STAR® Most Efficient residential refrigerator.

Hours

Not applicable.

Measure Life

The measure life is 12 years.¹⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerator Rebate	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.93

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.²⁰

¹⁹ Environmental Protection Agency (2014). Savings Calculator for Energy Star Qualified Appliances.

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

²⁰ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Appliances – Refrigerator (Retrofit)

Version Date and Revision History

Effective Date: 1/1/2016 TBD End Date:

Measure Overview

Description: This measure covers the replacement of an existing inefficient refrigerator with a new ENERGY STAR® rated refrigerator. ENERGY STAR certified refrigerators are 9 percent more energy efficient than models that meet the federal minimum standard for energy efficiency. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: Process Measure Type: Refrigerators **Core Initiative:** Electric - Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and averaged inputs:

$$\Delta kWh = \Delta kWh_{RETIRE} + \Delta kWh_{EE}$$
$$\Delta kW = \Delta kW_{RETIRE} + \Delta kW_{EE}$$

Where:

Unit	=	Replacement of existing refrigerator with new ENERGY STAR® Refrigerator
ΔkWh_{RETIRE}	=	Annual energy savings over remaining life of existing equipment: 661 kWh ²¹
ΔkWh_{EE}	=	Annual energy savings over full life of new ES refrigerator: 53 kWh ²²
ΔkW_{RETIRE}	=	Average demand reduction over remaining life of existing equipment: 0.082 kW ²³
$\Delta \mathrm{kW}_{\mathrm{EE}}$	=	Average demand reduction over full life of new ES refrigerator: 0.007 kW ²⁴

²¹ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts. 714 kWh minus 53 kWh = 661 kWh²² Apex Analytics (2015). 2015 Refrigerator Savings Modeling.xls. Using data published by the EPA.

https://www.energystar.gov/productfinder/product/certified-residential-refrigerators/results²³ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

²⁴ Ibid

Savings for Refrigerators

Tier	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{25}$
Refrigerator (Savings Over Remaining Life)	661	0.08
Refrigerator (Savings Compared to Baseline)	53	0.01

Baseline Efficiency

The baseline efficiency case is an existing refrigerator for savings over the remaining life of existing equipment. The baseline efficiency case is a full-sized refrigerator that meets the federal minimum standard for energy efficiency for savings for the full life.²⁶

High Efficiency

The high efficiency case is an ENERGY STAR® rated refrigerator that meets the ENERGY STAR® criteria for full-sized refrigerators, using at least 9% less energy than models meeting the minimum federal government standard.

Hours

Savings are based on 8,760 operating hours per year.

Measure Life

The effective useful life of the new refrigerator is 12 years.²⁷ The remaining useful life of the existing refrigerator is estimated to be 4 years 28 .

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerator	HES	All	1.00	1.00	1.00	1.00	1.00	0.93

In-Service Rates

In-service rates are 100% as it is assumed all refrigerators are in-use.

²⁵ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

²⁶ Apex Analytics (2015). 2015 Refrigerator Savings Modeling.xls. Using data published by the EPA. https://www.energystar.gov/productfinder/product/certified-residential-refrigerators/results 27 Environmental Protection Agency (2014). Savings Calculator for Energy Star Qualified Appliances..

http://www.energystar.gov/sites/default/files/asset/document/appliance calculator.xlsx

²⁸ MA Common Assumptions: RUL is 1/3 of the EUL

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.²⁹

²⁹ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Appliances – Refrigerator Replacement

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure covers the replacement of an existing inefficient refrigerator with a new refrigerator.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Low Income
Market: Retrofit
End Use: Process
Measure Type: Refrigerators
Core Initiative: Electric - Low-Income Single Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results³⁰.

Savings for Refrigerator Replacement

Measure	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{31}$
Refrigerator Replacement	LI 1-4 Retrofit	762	0.09

Baseline Efficiency

The baseline efficiency case for both the replaced and baseline new refrigerator is an existing refrigerator. It is assumed that low-income customers would otherwise replace their refrigerators with a used inefficient unit.

High Efficiency

The high efficiency case is a new refrigerator.

Hours

Savings are based on 8,760 operating hours per year.

Measure Life

The measure life is 12 years.³²

³⁰ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³¹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerator Replacement	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	1.00	0.93

In-Service Rates

In-service rates are 100% as it is assumed all refrigerators are in-use.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.³³

³² Savings Calculator for Energy Star Qualified Appliances.

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

³³ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Appliances – Refrigerator Replacement

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: Removal of old inefficient refrigerator or freezer with the installation of new efficient refrigerator or freezer. **Primary Energy Impact:** Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: Process Measure Type: Refrigerators Core Initiative: Electric - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using the following algorithms and assumptions:

$$\Delta kWh = \left[\left(\left(kWh_{pre} - kWh_{ES} \right) \times \frac{RUL}{EUL} \right) + \left(\left(\frac{kWh_{std} + kWh_{used}}{2} - kWh_{ES} \right) \times \frac{EUL - RUL}{EUL} \right) \right] \times F_{occ}$$

 $\Delta kW = \Delta kWh \times kW / kWh$

Where:		
kWh _{pre}	=	Annual kWh consumption of existing equipment. Value is based on metering
		or AHAM database. The default value is 874 kWh.
kWh _{ES}	=	Annual kWh consumption of new ENERGY STAR qualified refrigerator or
		freezer. This is from the nameplate on the new unit. The default value is 358
		kWh.
STD		Average annual consumption of equipment meeting federal standard:
		Calculated by dividing the kWh _{ES} by 0.9 (i.e., the Energy Star units are
		assumed to be 10% more efficient than the kWh _{std} units). The default value is
		398 kWh.
kWh _{used}		Average annual consumption of used equipment. Default value is 475 kWh. ³⁴
RUL	=	Remaining Useful life assumed to be 6 years
EUL	=	Estimated useful life for a new refrigerator is 12 years ³⁵
Focc	=	Occupant adjustment factor used to adjust the energy savings according to the
		number of occupants in the dwelling unit. See table below. Default is 2.3
		occupants per tenant unit
ΔkWh	=	330, using the default assumptions

³⁴ Association of Home Appliance Manufacturers (2014 Revised Feb. 2015), *Technical Support Document: Early Replacement Program*, (Value estimated based on Figure 9 on page 23) ³⁵ Environmental Protection Agency (2014). *Savings Calculator for Energy Star Qualified Appliances*.

Massachusetts Technical Reference Manual	D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V	Residential Efficiency Measures
	Page 31 of 435	

kW/kWh =	Average kW reduction	per kWh reduction:	0.00013 kW/kWh ³⁶
----------	----------------------	--------------------	------------------------------

ΔkW	=	0.042, using the default assumptions
-------------	---	--------------------------------------

37

Occupant Adjustment Factor ³⁷				
Number of Occupants	Focc			

	000
0 occupants	1.00
1 occupants	1.05
1.8 occupants	1.09
2 occupants	1.10
2.3 occupants	1.11
3 occupants	1.13
4 occupants	1.15
5 occupants	1.16

Baseline Efficiency

The baseline efficiency case is an existing refrigerator for which the annual kWh may be looked up in a refrigerator database. If the manufacturer and model number are not found, the refrigerator is metered for 1.5 hours in order to determine the annual kWh.

High Efficiency

The high efficiency case is a new more efficiency refrigerator. The manufacturer and model number is looked up in a refrigerator database to determine annual kWh.

Measure Life

The measure life is 12 years^{38} .

Hours

Not applicable.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

³⁶ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for

Massachusetts Program Administrators. Loadshape: Res Multi Family Electric Refrigeration (REFRIGERATOR) Normal ³⁷ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for the

Massachusetts Electric and Gas Program Administrators. ³⁸ Environmental Protection Agency (2014). *Savings Calculator for Energy Star Qualified Appliances*.

http://www.energystar.gov/sites/default/files/asset/document/appliance calculator.xlsx

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerator Replacement	LI MF Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.86

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

D.P.U. 15-160 to D.P.U. 15-169

Realization Rates

Realization rates are set to 100% since this measure has not been evaluated.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.³⁹

³⁹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Appliances – Refrigerator Replacement

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Removal of old inefficient refrigerator or freezer with the installation of new efficient refrigerator or freezer. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: Process Measure Type: Refrigerators Core Initiative: Electric - Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using the following algorithms and assumptions:

$$\Delta kWh = \left[\left(\left(kWh_{pre} - kWh_{ES} \right) \right) \times \frac{(12 - 8)}{12} + \left(\left(kWh_{std} - kWh_{ES} \right) \right) \times \frac{8}{12} \right] \times F_{occ}$$

 $\Delta kW = \Delta kWh \times kW / kWh$

Where:

kWh _{pre}	=	Annual kWh consumption of existing equipment. Value is based on metering
		or AHAM database
kWh _{std}	=	Annual kWh consumption of a refrigerator meeting federal standards.
		Calculated by dividing the kWh _{ES} by 0.9 (i.e., the Energy Star units are
		assumed to be 10% more efficient than the kWh _{std} units).
kWh _{ES}	=	Annual kWh consumption of new Energy Star qualified refrigerator or freezer.
		This is from the nameplate on the new unit.
Age	=	Age of the existing refrigerator is 8 years
12	=	Measure life for a new refrigerator ⁴⁰
Focc	=	Occupant adjustment factor used to adjust the energy savings according to the
		number of occupants in the dwelling unit. See below.
kW/kWh	=	Average kW reduction per kWh reduction: 0.00013 kW/kWh ⁴¹

⁴⁰ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Residential Refrigerator*.

⁴¹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators. Loadshape: Res Multi Family Electric Refrigeration (REFRIGERATOR) Normal

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 34 of 435

Occupant Adjustment Factor⁴²

Number of Occupants	F _{occ}
0 occupants	1.00
1 occupants	1.05
1.8 occupants	1.09
2 occupants	1.10
3 occupants	1.13
4 occupants	1.15
5 occupants	1.16

Baseline Efficiency

The baseline efficiency case is an existing refrigerator for which the annual kWh may be looked up in a refrigerator database. If the manufacturer and model number are not found, the refrigerator is metered for 1.5 hours in order to determine the annual kWh.

High Efficiency

The high efficiency case is a new more efficiency refrigerator. The manufacture and model number is looked up in a refrigerator database to determine annual kWh.

Measure Life

The measure life is 12 years^{43} .

Hours

Not applicable.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerator	MF Retrofit	All	1.00	0.60	0.60	0.60	1.00	0.86

In-Service Rates

⁴² The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for the Massachusetts Electric and Gas Program Administrators.

⁴³ Environmental Protection Agency (2014). Savings Calculator for Energy Star Qualified Appliances. http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Realization Rates

Realization rates are based on draft evaluation results.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.⁴⁴

⁴⁴ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.
Appliances – Freezers (Lost Opportunity)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Rebates provided for the purchase of ENERGY STAR® freezers. ENERGY STAR® qualified freezers use at least 10% less energy than new, non-qualified models and return even greater savings compared to old models. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Measure Type: Freezers Core Initiative: Electric - Residential Consumer Products

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithms which use averaged inputs based on data published by the EPA⁴⁵:

$$\Delta kWh = \Delta kWh_{BASE} - \Delta kWh_{ES}$$

Where:

Unit	=	Installed ENERGY STAR® freezer
kWh _{BASE}	=	Average usage of a new freezer meeting federal standards
kWh _{ES}	=	Average usage of a new freezer meeting ENERGY STAR® standards

Savings for Freezers

Measure Name	$\Delta \mathbf{kWh}^{46}$	$\Delta \mathbf{k} \mathbf{W}^{47}$
Freezer (Energy Star)	43.7	0.01

Baseline Efficiency

The baseline efficiency case is a residential freezer that meets the Federal minimum standard for energy efficiency.

⁴⁵ http://www.energystar.gov/productfinder/product/certified-residential-freezers/results

⁴⁶ Ibid.

⁴⁷ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

High Efficiency

The high efficiency case is based on an ENERGY STAR® rated freezer that uses 10% less energy than models not labeled with the ENERGY STAR® logo.

Hours

Not applicable.

Measure Life

The measure life is 12 years.⁴⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Freezer (Energy Star)	Res Products	All	1.00	1.00	1.00	1.00	1.00	0. 93

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.⁴⁹

⁴⁸ Environmental Protection Agency (2014) Savings Calculator for Energy Star Qualified Appliances.

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

⁴⁹ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Appliances – Freezer Replacement

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure covers the replacement of an existing inefficient freezer with a new energy efficient model. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: Process Measure Type: Freezers Core Initiative: Electric - Low-Income Single Family Retrofit, Electric - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁵⁰.

Savings for Freezer	· Replacement	
Maagura Nama	Core Initiative	

Measure Name	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{31}$
Freezer Replacement	LI 1-4 Retrofit	239	0.03
Freezer Replacement	LI MF Retrofit	158	0.02

Baseline Efficiency

The baseline efficiency case for both the replaced and baseline new freezer is represented by the existing freezer. It is assumed that low-income customers would replace their freezers with a used inefficient unit.

High Efficiency

The high efficiency case is a new high efficiency freezer.

Hours

Not applicable.

⁵⁰ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

⁵¹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Measure Life

The measure life is 12 years⁵²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Freezer Replacement	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	1.00	0.93
Freezer Replacement	LI MF Retrofit	Eversource (NSTAR), Eversource (WMECO), CLC, Unitil	1.00	1.00	1.00	1.00	1.00	0.73

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.⁵³

⁵² Environmental Protection Agency (2014). Savings Calculator for Energy Star Qualified Appliances.

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

⁵³ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Appliances – Refrigerator/Freezer Recycling

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The retirement of old, inefficient secondary refrigerators and freezers. Refrigerator Recycling (Primary) - Participants who retired and replaced a primary refrigerator; Refrigerator Recycling (Secondary Replaced)- Participants who retired and replaced a secondary refrigerator; Refrigerator Recycling (Secondary Not Replaced)- Participants who retired, but did not replace, a secondary refrigerator; Refrigerator; Refrigerator Recycling (Combined) – combination of secondary replaced and secondary not replaced

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: Process Measure Type: Recycling Core Initiative: Electric - Residential Consumer Products

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed and are obtained from the referenced study⁵⁴.

Measure Name	Core Initiative	∆kWh	ΔkW^{55}
Refrigerator Recycling (Primary)	Res Products	533	0.07
Refrigerator Recycling (Secondary Replaced)	Res Products	696	0.09
Refrigerator Recycling (Secondary Not Replaced)	Res Products	835	0.10
Refrigerator Recycling (Combined)	Res Products	755	0.09
Freezer Recycling	Res Products	663	0.08

Savings for Refrigerator/Freezer Recycling

Baseline Efficiency

The baseline efficiency case is an old, inefficient secondary working refrigerator or freezer. Estimated average usage is based on combined weight of freezer energy use and refrigerator energy use.

High Efficiency

The high efficiency case assumes no replacement of secondary unit.

⁵⁴ NMR Group, Inc. (2011). Massachusetts Appliance Turn-In Program Evaluation Integrated Report Findings – FINAL.

Prepared for National Grid, Eversource (NSTAR) Electric, Cape Light Compact, and Western Massachusetts Electric Company. ⁵⁵ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Hours

Refrigerator and freezer operating hours are 8,760 hours/year.

Measure Life

The measure life is 8 years.⁵⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerator Recycling (Primary)	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.93
Refrigerator Recycling (Secondary Replaced)	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.93
Refrigerator Recycling (Secondary Not Replaced)	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.93
Refrigerator Recycling (Combined)	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.93
Freezer Recycling	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.93

In-Service Rates

All installations have 100% in service rate.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.⁵⁷

⁵⁶ NMR Group, Inc. (2011). Massachusetts Appliance Turn-In Program Evaluation Integrated Report Findings – FINAL.

Prepared for National Grid, Eversource (NSTAR) Electric, Cape Light Compact, and Western Massachusetts Electric Company.

⁵⁷ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Appliances – Appliance Removal

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Removal of second working refrigerator or freezer. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: Process Measure Type: Recycling Core Initiative: Electric - Low-Income Single Family Retrofit, Low-Income Multifamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁵⁸.

Measure Name	∆kWh	ΔkW^{59}
Appliance Removal	874	0.11

Baseline Efficiency

The baseline efficiency case is the old, inefficient secondary working refrigerator or freezer.

High Efficiency

The high efficiency case assumes no replacement of secondary unit.

Hours

Not applicable.

Measure Life

The measure life is 5 years.⁶⁰

⁵⁸ The Cadmus Group, Inc. (2015). Massachusetts *Low-Income Multifamily Initiative Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

⁵⁹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

⁶⁰ Massachusetts Common Assumption.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Appliance Removal	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	1.00	0.93
Appliance Removal	LI MF Retrofit	CLC	1.00	1.00	1.00	1.00	1.00	0.93

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

<u>Coincidence Factors</u> Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.⁶¹

⁶¹ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Building Shell – Weatherization

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of weatherization measures such as air sealing and insulation Primary Energy Impact: Electric, Oil, Propane, Natural Gas (Residential Heat) Secondary Energy Impact: Electric Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: Envelope Measure Type: Insulation & Air Sealing Core Initiative: Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family Retrofit

Algorithms for Calculating Primary Energy Impact

Measure Name	Core Initiative	PA Type	Energy Type	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{63}$	ΔMMBtu
Weatherization, Electric	LI 1-4 Retrofit	Elec	Electric	1,616	0.86	
Weatherization, Oil	LI 1-4 Retrofit	Elec	Oil			28.1
Weatherization, Other	LI 1-4 Retrofit	Elec	Propane			26.3
Weatherization	LI 1-4 Retrofit	Gas	Gas			26.3
Air Sealing, Electric	LI 1-4 Retrofit	Elec	Electric	501	0.27	
Air Sealing, Oil	LI 1-4 Retrofit	Elec	Oil			9.9
Air Sealing, Other	LI 1-4 Retrofit	Elec	Propane			10.5
Air Sealing	LI 1-4 Retrofit	Gas	Gas			10.5
Insulation, Electric	LI 1-4 Retrofit	Elec	Electric	1,115	0.60	
Insulation, Oil	LI 1-4 Retrofit	Elec	Oil			18.2
Insulation, Other	LI 1-4 Retrofit	Elec	Propane			15.8
Insulation	LI 1-4 Retrofit	Gas	Gas			15.8

Unit savings are per home and deemed based on study results⁶².

Baseline Efficiency

The baseline efficiency case is any existing home shell measures.

⁶² The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

⁶³ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

High Efficiency

The high efficiency case includes the installation of weatherization measures (air sealing & insulation).

Hours

Not applicable.

Measure Life

For the combined weatherization measure the measure life is 20 years.⁶⁴ For insulation the measure life is 25 years and for air sealing the measure life is 15 years.

Secondary Energy Impacts

Electric savings are achieved from reduced fan run time for heating and from reduced cooling.

Measure	Core Initiative	PA Type	ΔkWh^{65}	$\Delta \mathbf{k} \mathbf{W}^{66}$
Weatherization, Oil	LI 1-4 Retrofit	Elec	377	0.30
Weatherization, Other	LI 1-4 Retrofit	Elec	344	0.31
Weatherization	LI 1-4 Retrofit	Gas	344	0.31

Non-Energy Impacts

Benefit Type	Description	Savings		
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts		
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts		

⁶⁴ Massachusetts Common Assumption.

⁶⁵ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

⁶⁶ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Measure Name	Core Initiative	PA Type	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	$CF_{WP} \\$
Weatherization, Electric	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	0.00	1.00
Weatherization, Oil	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	1.00	0.44
Weatherization, Other	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	1.00	0.44
Weatherization	LI 1-4 Retrofit	Gas	1.00	1.00	1.00	1.00	1.00	0.44
Air Sealing, Electric	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	0.00	1.00
Air Sealing, Oil	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	1.00	0.00
Air Sealing, Other	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	1.00	0.00
Air Sealing	LI 1-4 Retrofit	Gas	1.00	1.00	1.00	1.00	1.00	0.00
Insulation, Electric	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	0.00	1.00
Insulation, Oil	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	1.00	0.44
Insulation, Other	LI 1-4 Retrofit	Elec	1.00	1.00	1.00	1.00	1.00	0.44
Insulation	LI 1-4 Retrofit	Gas	1.00	1.00	1.00	1.00	1.00	0.44

Impact Factors for Calculating Adjusted Gross Savings

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

D.P.U. 15-160 to D.P.U. 15-169

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.⁶⁷

⁶⁷ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Building Shell – Air Sealing

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Air sealing installed through the Home Energy Services (MassSAVE) program. Air sealing will decrease the infiltration of outside air through cracks and leaks in the home Primary Energy Impact: Electric, Oil, Propane, Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: Envelope Measure Type: Air Sealing Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

The Program Administrators currently use vendor calculated energy savings for these measures in the Residential Home Energy Services electric program. These savings values are calculated using vendor proprietary software where the user inputs a minimum set of technical data about the house and the software calculates building heating and cooling loads and other key parameters. The proprietary building model is based on thermal transfer, building gains, and a variable-based heating/cooling degree day/hour climate model. This provides an initial estimate of energy use that may be compared with actual billing data to adjust as needed for existing conditions. Then, specific recommendations for improvements are added and savings are calculated using measure-specific heat transfer algorithms.

Rather than using a fixed degree day approach, the building model estimates both heating degree days and cooling degree hours based on the actual characteristics and location of the house to determine the heating and cooling balance point temperatures. Savings from shell measures use standard U-value, area, and degree day algorithms. Infiltration savings use site-specific seasonal N-factors to convert measured leakage to seasonal energy impacts. HVAC savings are estimated based on changes in system and/or distribution efficiency improvements, using ASHRAE 152 as their basis. Lighting, appliance, and water heating savings are based on standard algorithms, taking into account operating conditions and pre- and post-retrofit energy consumption. Interactivity between architectural and mechanical measures is always included, to avoid overestimating savings due to incorrectly "adding" individual measure results.

The PAs calculate demand (kW) savings by applying a kW/kWh factor to the vendor-estimated electric energy savings. The kW/kWh factors are provided in the table below.

kW Factors for HES Vendor Measures

Measure	kW/kWh Factor ⁶⁸
Air Sealing (Electric)	0.00053
Air Sealing (Gas, Oil, Propane)	0.00222

Baseline Efficiency

The baseline efficiency case is the existing conditions of the participating household.

High Efficiency

The high efficiency case is a home that has air sealing performed.

Hours

Hours are project-specific.

Measure Life

The measure life is 15 years.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

⁶⁸ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators. For electric measures the heating loadshape was used for non-electric the central AC loadshape was used.

Impact	Factors	for	Calculating	Adjusted	Gross	Savings
1						

Measure Name	Core Initiative	РА Туре	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Air Sealing, Electric	HES	Elec	CLC	1.00	0.51	0.51	0.51	0.0	1.00
Air Sealing, Electric	HES	Elec	National Grid	1.00	0.60	0.60	0.60	0.0	1.00
Air Sealing, Electric	HES	Elec	Eversource (NSTAR)	1.00	0.54	0.54	0.54	0.0	1.00
Air Sealing, Electric	HES	Elec	Unitil	1.00	0.54	0.54	0.54	0.0	1.00
Air Sealing, Electric	HES	Elec	Eversource (WMECO)	1.00	1.00	1.00	1.00	0.0	1.00
Air Sealing, Oil	HES	Elec	CLC	1.00	1.00	1.00	1.00	1.0	0.00
Air Sealing, Oil	HES	Elec	National Grid	1.00	0.88	1.00	1.00	1.0	0.00
Air Sealing, Oil	HES	Elec	Eversource (NSTAR)	1.00	0.85	1.00	1.00	1.0	0.00
Air Sealing, Oil	HES	Elec	Unitil	1.00	0.85	1.00	1.00	1.0	0.00
Air Sealing, Oil	HES	Elec	Eversource (WMECO)	1.00	0.55	1.00	1.00	1.0	0.00
Air Sealing, Other	HES	Elec	CLC	1.00	0.86	1.00	1.00	1.0	0.00
Air Sealing, Other	HES	Elec	National Grid	1.00	0.88	1.00	1.00	1.0	0.00
Air Sealing, Other	HES	Elec	Eversource (NSTAR)	1.00	0.95	1.00	1.00	1.0	0.00
Air Sealing, Other	HES	Elec	Unitil	1.00	0.95	1.00	1.00	1.0	0.00
Air Sealing, Other	HES	Elec	Eversource (WMECO)	1.00	0.44	1.00	1.00	1.0	0.00
Air Sealing	HES	Gas	Berkshire	1.00	0.85	n/a	n/a	n/a	n/a
Air Sealing	HES	Gas	Columbia	1.00	0.79	n/a	n/a	n/a	n/a
Air Sealing	HES	Gas	National Grid	1.00	0.74	n/a	n/a	n/a	n/a
Air Sealing	HES	Gas	Eversource (NSTAR)	1.00	0.84	n/a	n/a	n/a	n/a
Air Sealing	HES	Gas	Liberty	1.00	1.11	n/a	n/a	n/a	n/a
Air Sealing	HES	Gas	Unitil	1.00	0.84	n/a	n/a	n/a	n/a

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on evaluation results⁶⁹.

Coincidence Factor

Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.⁷⁰

⁶⁹ The Cadmus Group (2013). HES Realization Rate Results Memo. June 2013

⁷⁰ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Building Shell – Air Sealing

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: Air sealing will decrease the infiltration of outside air through cracks and leaks in the building. **Primary Energy Impact**: Electric, Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low Income Market: Retrofit End Use: Envelope Measure Type: Air Sealing Core Initiative: Electric - Multi-Family Retrofit, Electric - Low-Income Multi-Family Retrofit, Gas - Multi-Family Retrofit, Gas - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using the following algorithms and assumptions:

 $\Delta kWh = \frac{Vol \times \Delta ACH \times 0.018 \times HDD \times \frac{24}{\eta_{heating}}}{2440}$ 3413 $Vol \times \Delta ACH \times 0.018 \times HDD \times \frac{24}{\eta_{heating}}$ 1,000,000

 $\Delta kW = \Delta kWh \times kW / kWh$

Where:

Vol ΔACH	=	[ft3] This is the air volume of the treated space, calculated from the dimensions of the space, which could include the number of floors, the floor area per floor, and the floor-to-ceiling height, or the dwelling floor area and number of dwellings. The treated space can be the entire building including the common areas, or just the individual dwelling units. (Auditor Input) [°F-day] Infiltration reduction in Air Changes per Hour, natural infiltration basis. This will typically be a default value, but the source of the assumption should be transparent and traceable, or it could come from a blower door test. (Stipulated Value or Blower Door
	=	Test) Heating degree-days, base 60 from TMV3 weather data. See table below
nhoating	_	[AELIE COP thermal efficiency (%)] Efficiency of the heating system as determined on
queating	_	site (Auditor Input)
24	=	Conversion factor: 24 hours per day
0.018	=	[Btu/ft3- °F] Air heat capacity: The specific heat of air (0.24 Btu/°F.lb) times the density
October 20	15	50

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 51 of 435

		of air (0.075 lb/ft3)
1,000,000	=	Conversion factor: 1,000,000 Btu per MMBtu
3413	=	Conversion factor: 3413 Btu/kWh
kW/kWh	=	Average kW reduction per kWh reduction: 0.00050 kW/kWh ⁷¹

Baseline Efficiency

The baseline efficiency case is the existing building before the air sealing measure is implemented. The baseline building is characterized by the existing air changes per hour (ACHPRE) for multi-family facilities, which is measured prior to the implementation of the air sealing measure. This will typically be a default value of a baseline/pre-retrofit ACH = 0.5

High Efficiency

The baseline efficiency case is the existing building after the air sealing measure is implemented. The high efficiency building is characterized by the new air changes per hour (ACH_{POST}) for multi-family facilities, which is measured after the air sealing measure is implemented. This will typically be a default value of a baseline/pre-retrofit ACH =0.4.

Hours

Heating hours are characterized by the heating degree days for the facility. The heating degree days are looked up based on the nearest weather station to the customer, as selected by the program vendor.

TMY3 City	HDD	CDH
Barnstable Muni Boa	4379	1349
Beverly Muni	5329	3432
Boston Logan Int'l Arpt	4550	4329
Chicopee Falls Westo	5016	4116
Lawrence Muni	4640	3978
Marthas Vineyard	4312	1345
Nantucket Memorial AP	3988	362
New Bedford Rgnl	4434	4232
North Adams	5234	2524
Norwood Memorial	4872	4763
Otis ANGBb	4718	2588
Plymouth Municipal	4559	2138
Provincetown (AWOS)	4368	2195
Westfield Barnes Muni AP	5301	3784
Worcester Regional Arpt	5816	1753

HDD₆₀ Values by Weather Station⁷²

Measure Life

The measure life is 15 years.⁷³

⁷¹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

 ⁷² The Cadmus Group (2012). Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis. Prepared for the Massachusetts Electric and Gas Program Administrators.
⁷³ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures.

⁷³ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core	PA Type	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
	Initiative								
Air Sealing	MF Retrofit	Elec	All	1.00	0.60	0.60	0.60	0.01	1.00
Air Sealing	MF Retrofit	Gas	All	1.00	0.60	n/a	n/a	n/a	n/a
Air Sealing	LI MF Retrofit	Elec	All	1.00	1.00	1.00	1.00	0.01	1.00
Air Sealing	LI MF Retrofit	Gas	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Air Sealing	LI MF Retrofit	Gas	Liberty	1.00	0.80	n/a	n/a	n/a	n/a
Air Sealing	LI MF Retrofit	Gas	Berkshire	1.00	0.80	n/a	n/a	n/a	n/a
Air Sealing	LI MF Retrofit	Gas	Eversource	1.00	1.05	n/a	n/a	n/a	n/a
Air Sealing	LI MF Retrofit	Gas	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Air Sealing	LI MF Retrofit	Gas	Unitil	1.00	0.96	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Realization Rates

MF Retrofit realization rates are based on MA Common Assumptions. LI MF Retrofit realization rates are based on evaluation results.⁷⁴

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.⁷⁵

⁷⁴ The Cadmus Group, Inc. (2015). Massachusetts Low-Income Multifamily Initiative Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts. ⁷⁵ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for

Massachusetts Program Administrators.

Building Shell – Insulation

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Shell insulation installed through the Home Energy Services (MassSAVE) program. Primary Energy Impact: Electric, Oil, Propane, Natural Gas (Residential Heat) Secondary Energy Impact: Electric Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: Envelope Measure Type: Air Sealing Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

The Program Administrators currently use vendor calculated energy savings for these measures in the Residential Home Energy Services electric program. These savings values are calculated using vendor proprietary software where the user inputs a minimum set of technical data about the house and the software calculates building heating and cooling loads and other key parameters. The proprietary building model is based on thermal transfer, building gains, and a variable-based heating/cooling degree day/hour climate model. This provides an initial estimate of energy use that may be compared with actual billing data to adjust as needed for existing conditions. Then, specific recommendations for improvements are added and savings are calculated using measure-specific heat transfer algorithms.

Rather than using a fixed degree day approach, the building model estimates both heating degree days and cooling degree hours based on the actual characteristics and location of the house to determine the heating and cooling balance point temperatures. Savings from shell measures use standard U-value, area, and degree day algorithms. Infiltration savings use site-specific seasonal N-factors to convert measured leakage to seasonal energy impacts. HVAC savings are estimated based on changes in system and/or distribution efficiency improvements, using ASHRAE 152 as their basis. Lighting, appliance, and water heating savings are based on standard algorithms, taking into account operating conditions and pre- and post-retrofit energy consumption. Interactivity between architectural and mechanical measures is always included, to avoid overestimating savings due to incorrectly "adding" individual measure results.

The PAs calculate demand (kW) savings by applying a kW/kWh factor to the vendor-estimated electric energy savings. The kW/kWh factors are provided in the table below.

kW Factors for HES Vendor Measures

Measure	kW/kWh Factor ⁷⁶
Insulation (Electric)	0.00053
Insulation (Gas, Oil, Other FF)	0.00071

Baseline Efficiency

The baseline efficiency case is the existing conditions of the participating household.

High Efficiency

The high efficiency case is a home with added insulation.

Hours

Hours are project-specific.

Measure Life

The measure life is 25 years.

Secondary Energy Impacts

Electric savings are from reduced furnace fan runtime and reduced cooling due to installed insulation. The kWh savings values are deemed based on study results⁷⁷.

Measure Name	ΔkWh	$\Delta k W^{78}$
Insulation, Gas	209	0.15
Insulation, Oil	224	0.16
Insulation, Other	209	0.15

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

⁷⁶ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators. For electric measures the heating loadshape was used for non-electric the central AC loadshape was used.

⁷⁷ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts. ⁷⁸ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for

Massachusetts Program Administrators

Impact Factors fo	Calculating Adjusted	Gross Savings
-------------------	----------------------	----------------------

Measure Name	Core Initiative	РА Туре	PA 1		RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Insulation, Electric	HES	Elec	CLC 1		0.51	0.51	0.51	0.0	1.00
Insulation, Electric	HES	Elec	National Grid	1.00	0.60	0.60	0.60	0.0	1.00
Insulation, Electric	HES	Elec	Eversource (NSTAR)	1.00	0.54	0.54	0.54	0.0	1.00
Insulation, Electric	HES	Elec	Unitil	1.00	0.54	0.54	0.54	0.0	1.00
Insulation, Electric	HES	Elec	Eversource (WMECO)	1.00	1.00	1.00	1.00	0.0	1.00
Insulation, Oil	HES	Elec	CLC	1.00	1.00	1.00	1.00	1.0	0.44
Insulation, Oil	HES	Elec	National Grid	1.00	0.88	1.00	1.00	1.0	0.44
Insulation, Oil	HES	Elec	Eversource (NSTAR)	1.00	0.85	1.00	1.00	1.0	0.44
Insulation, Oil	HES	Elec	Unitil	1.00	0.85	1.00	1.00	1.0	0.44
Insulation, Oil	HES	Elec	Eversource (WMECO)	1.00	0.55	1.00	1.00	1.0	0.44
Insulation, Other	HES	Elec	CLC	1.00	0.86	1.00	1.00	1.0	0.51
Insulation, Other	HES	Elec	National Grid	1.00	0.88	1.00	1.00	1.0	0.51
Insulation, Other	HES	Elec	Eversource (NSTAR)	1.00	0.95	1.00	1.00	1.0	0.51
Insulation, Other	HES	Elec	Unitil	1.00	0.85	1.00	1.00	1.0	0.51
Insulation, Other	HES	Elec	Eversource (WMECO)	1.00	0.44	1.00	1.00	1.0	0.51
Insulation	HES	Gas	Berkshire	1.00	0.85	1.00	1.00	1.0	0.51
Insulation	HES	Gas	Columbia	1.00	0.79	1.00	1.00	1.0	0.51
Insulation	HES	Gas	National Grid	1.00	0.74	1.00	1.00	1.0	0.51
Insulation	HES	Gas	Eversource (NSTAR)	1.00	0.84	1.00	1.00	1.0	0.51
Insulation	HES	Gas	Liberty	1.00	1.11	1.00	1.00	1.0	0.51
Insulation	HES	Gas	Unitil	1.00	0.84	1.00	1.00	1.0	0.51

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on evaluation results⁷⁹.

Coincidence Factor

Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.⁸⁰

 ⁷⁹ The Cadmus Group (2013). *HES Realization Rate Results Memo*. June 2013
⁸⁰ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Building Shell – Insulation

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Insulation upgrades are applied in existing multifamily facilities. Primary Energy Impact: Electric, Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low Income Market: Retrofit End Use: Envelope Measure Type: Insulation Core Initiative: Electric - Multi-Family Retrofit, Electric - Low-Income Multi-Family Retrofit, Gas - Multi-Family Retrofit, Gas - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

$$MMBTu_{annual} = \frac{\left(\frac{1}{R_{exist}} - \frac{1}{R_{new}}\right) \times HDD \times 24 \times Area}{1,000,000 \times \eta_{heat}}$$

 $kWh_{annual} = MMBTu_{annual} x 293.1$

 $kW = kWh_{annual} x kW/kWh_{heating}$

Where:

R _{exist}	=	Existing effective R-value (R-ExistingInsulation + R-Assembly),
		ft ² -°F/Btuh
R _{new}	=	New total effective R-value (R-ProposedMeasure + R-ExistingInsulation
		+ R-Assembly), ft^2 -°F/Btuh
Area	=	Square footage of insulated area
η_{heat}	=	Efficiency of the heating system (AFUE or COP)
293.1	=	Conversion constant (1MMBtu = 293.1 kWh)
24	=	Conversion for hours per day
HDD	=	Heating Degree Days; dependent on location, see table below
1,000,000	=	Conversion from Btu to MMBtu
kW/kWh heating	=	Average annual kW reduction per kWh reduction: 0.00050 kW/kWh ⁸¹

⁸¹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 57 of 435

Baseline Efficiency

The baseline efficiency case is characterized by the total R-value of the existing attic, basement or sidewall (R_{exisit}). This is calculated as the R-value of the existing insulation, estimated by the program contractor, plus the R-value of the ceiling, floor, or wall (for all projects: $R_{CEILING} = 3.36$; $R_{FLOOR} = 6.16$; $R_{WALL} = 6.65$)⁸².

High Efficiency

The high efficiency case is characterized by the total R-value of the attic after the installation of additional attic, basement or sidewall insulation. This is calculated as the sum of the existing R-value (R_{exisit}) plus the R-value of the added insulation.

Hours

Heating hours are characterized by the heating degree days for the facility. The heating degree days are looked up based on the nearest weather station to the customer, as selected by the program vendor.

TMY3 City	HDD	CDH
Barnstable Muni Boa	4379	1349
Beverly Muni	5329	3432
Boston Logan Int'l Arpt	4550	4329
Chicopee Falls Westo	5016	4116
Lawrence Muni	4640	3978
Martha's Vineyard	4312	1345
Nantucket Memorial AP	3988	362
New Bedford Rgnl	4434	4232
North Adams	5234	2524
Norwood Memorial	4872	4763
Otis ANGBb	4718	2588
Plymouth Municipal	4559	2138
Provincetown (AWOS)	4368	2195
Westfield Barnes Muni AP	5301	3784
Worcester Regional Arpt	5816	1753

HDD₆₀ Values by Weather Station⁸³

Measure Life

The measure life is 25 years.⁸⁴

Secondary Energy Impacts

If Facility has central cooling then also calculate air conditioning savings:

⁸² Assumptions from National Grid program vendor.

⁸³ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for Massachusetts Program Administrators.

⁸⁴ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group.

Massachusetts Technical Reference Manual

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 58 of 435

$$kWh_{annual} = \frac{\left(\frac{1}{R_{exist}} - \frac{1}{R_{new}}\right) \times CDH \times DUA \times Area}{1,000 Btu/kBtu \times \eta_{cool}} \times 293.1$$

 $kW = kWh_{annual} x kW/kWh_{cooling}$

Where:

=	Existing effective R-value (R-ExistingInsulation + R-Assembly), ft ² -°F/Btuh
=	New total effective R-value (R-ProposedMeasure + R-ExistingInsulation + R-Assembly), $ft^2 \circ F/Btuh$
=	Discretionary Use Adjustment to account for the fact that people do not always operate their air conditioning system when the outside temperature is greater than $75^{\circ}F = 0.75^{85}$
=	Square footage of insulated area
=	Efficiency of Air Conditioning equipment (SEER or EER)
=	Conversion constant (1MMBtu = 293.1 kWh)
=	Conversion for hours per day
=	Cooling Degree Hours; dependent on location, see table below
=	Average annual kW reduction per kWh reduction: 0.00222 kW/kWh ⁸⁶

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA Type	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Insulation	MF Retrofit	Elec	All	1.00	0.60	0.60	0.60	0.00	1.00
Insulation	MF Retrofit	Gas	All	1.00	0.60	n/a	n/a	n/a	n/a
Insulation	LI MF Retrofit	Elec	National Grid	1.00	1.00	1.00	1.00	0.00	1.00
Insulation	LI MF Retrofit	Gas	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Insulation	LI MF Retrofit	Gas	Liberty	1.00	0.80	n/a	n/a	n/a	n/a
Insulation	LI MF Retrofit	Gas	Berkshire	1.00	0.80	n/a	n/a	n/a	n/a
Insulation	LI MF Retrofit	Gas	Columbia	1.00	.96	n/a	n/a	n/a	n/a
Insulation	LI MF Retrofit	Gas	Unitil	1.00	0.96	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

⁸⁵ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for the Massachusetts Electric and Gas Program Administrators.

⁸⁶ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators. Loadshape: Res Multi Family Electric Cooling (UNIT_CENTRAL_AC) Normal

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 59 of 435

Realization Rates

- MF Retrofit realization rates are based on MA Common Assumptions. •
- LI MF Retrofit realization rates are based on evaluation results.⁸⁷ •

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.⁸⁸

⁸⁷ The Cadmus Group, Inc. (2015). Massachusetts Low-Income Multifamily Initiative Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts. ⁸⁸ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for

Massachusetts Program Administrators.

HVAC – Central Air Conditioning

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of high efficiency Central AC systems. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Cooling Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}}\right) \times Hours$$
$$\Delta kW = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}}\right)$$

Where:

Tons	=	Cooling capacity of AC equipment
SEER _{BASE}	=	Seasonal Energy Efficiency Ratio of baseline AC equipment
SEER _{EE}	=	Seasonal Energy Efficiency Ratio of new efficient AC equipment.
EER _{BASE}	=	Energy Efficiency Ratio of base AC equipment
EER _{EE}	=	Energy Efficiency Ratio of new efficient AC equipment.
Hours	=	Equivalent full load hours

Savings for Residential Central Air Conditioners⁸⁹

Surings for Residential Central fill Conditioners					
Measure Name	Average Size (tons)	SEER	EER	$\Delta \mathbf{k} \mathbf{W}$	∆kWh
Central Air SEER 16.0 EER 13	2.6	16	13	0.55	198.8

Baseline Efficiency

The baseline efficiency case is a 2.6 ton central air-conditioning system with SEER = 13 and EER = 11 for replace on failure and SEER = 10 and EER = 8.5 for early retirement.

⁸⁹ Savings have been adjusted to reflect the mix of replace on failure and early replacement. Percentage of early retirement is from The Cadmus Group (2013). 2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 61 of 435

High Efficiency

The high efficiency case is an ENERGY STAR® qualified Central AC system.

Hours

The equivalent full load cooling hours are 360 hours per year.⁹⁰

Measure Life

The measure life is 16 years.⁹¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Central Air SEER 16.0 EER 13	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results.⁹²

⁹⁰ ADM Associates, Inc. (2009), Residential Central AC Regional Evaluation, Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3. ⁹¹ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures.*

Prepared for The New England State Program Working Group; Page 1-3, Table 1. Lifetime has been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). 2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook ⁹² ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut

Light & Power and United Illuminating; Page 4-12 Table 4-9.

HVAC – Down Size ½ Ton

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Reduction in system size consistent with manual J calculations. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Cooling Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on results of DOE2 modeling:

Units	=	Completed job
$\Delta kW/Ton$	=	Average demand reduction per ton: 0.30 kW ⁹³
$\Delta kWh/Ton$	=	Average annual energy reduction per ton: 203 kWh ⁹⁴

Baseline Efficiency

The baseline efficiency case is a system that is not sized in accordance with manual J calculation.

High Efficiency

The high efficiency case is a system that is sized in accordance with manual J calculation.

Hours

Not applicable.

Measure Life

The measure life is 18 years.⁹⁵

⁹³ RLW Analytics (2002). *Market Research for the Rhode Island, Massachusetts, and Connecticut Residential HVAC Market.* Prepared for National Grid, Northeast Utilities, NSTAR, Fitchburg Gas and Electric Light Company and United Illuminating; Page 3, Table 2

⁹⁴ ibid.

⁹⁵ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Secondary-Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Down Size ¹ / ₂ Ton	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results⁹⁶.

⁹⁶ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-12 Table 4-9.

HVAC – Early Retirement of Central Air Conditioning

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Early replacement of Central Air Conditioning Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: HVAC Measure Type: Cooling Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \, kBtu/hr}{Ton} \times \left[\left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right) \times Hours_{C} + \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \right) \times Hours_{H} \right]$$

$$\Delta kW = \max(\Delta kW_{COOL}, \Delta kW_{HEAT})$$

$$\Delta kW_{COOL} = Tons \times \frac{12 \, kBtu/hr}{Ton} \times \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

Where:

Unit	=	Replacement of existing inefficient system with new efficient system
Tons	=	Capacity of AC equipment: Current default is 2.6 tons
SEER _{BASE}	=	Seasonal efficiency of baseline AC equipment
SEER _{EE}	=	Seasonal efficiency of new efficient AC equipment
EER _{BASE}	=	Peak efficiency of base AC equipment
EER _{EE}	=	Peak efficiency of new efficient AC equipment
Hours _C	=	EFLH for cooling

Savings for Early Retirement Air Conditioners⁹⁷

Measure Name	EER BASE	SEER BASE	EER _{EE}	SEER EE	$\Delta \mathbf{k} \mathbf{W}_{\mathbf{C}}$	$\Delta \mathbf{k} \mathbf{W}_{\mathbf{H}}$	∆kWh
Early Retirement Central Air (Retire)	8.5	10	11	13	0.83	0.00	259
Early Retirement Central Air (EE) SEER 16	11	13	13	16	0.44	0.00	162

Baseline Efficiency

The baseline efficiency case is assumed to be a typical 10-12 year-old central air-conditioning unit with SEER 10, EER 8.5

High Efficiency

For the retirement savings over the remaining life of existing AC unit, the efficient case is a SEER 13, EER 11 unit. For the high efficiency savings over lifetime of the new unit, the efficient case is a new high efficiency SEER 16, EER 13 unit.

Hours

The equivalent full load hours are 360 hours per year for cooling.⁹⁸

Measure Life

The remaining life for the existing unit is 6 years⁹⁹, and the measure life of new equipment is 18 years¹⁰⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Early Retirement Central Air (Retire)	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.00
Early Retirement Central Air (EE)	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.00

⁹⁷ The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook.

⁹⁸ ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3. ⁹⁹ Massachusetts Common Assumption: RUL is 1/3 of the EUL.

¹⁰⁰ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results¹⁰¹ and Massachusetts Common Assumptions.¹⁰²

¹⁰¹ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-12 Table 4-9.

¹⁰² The coincidence factors included in the BC model do not match the coincidence factors that are in the TRM because the B/C model only allows for a single max kW reduction to be entered for each measure and the TRM provides separate summer and winter kW reductions for some measures. An adjustment was made to the coincidence factors in the BC model in order to get the model to calculate the correct summer and winter kW reductions.

HVAC – Window AC Replacement (Retrofit)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Replacement of existing inefficient room air conditioners with more efficient models. This is only offered as a measure when an AC timer would not reduce usage during the peak period. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: HVAC Measure Type: Cooling Core Initiative: Electric - Low-Income Single Family Retrofit, Electric - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results for all programs and PAs except for National Grid's Low Income Multi-Family initiative¹⁰³.

Measure Name	Core Initiative	РА	∆kWh	$\Delta \mathbf{k} \mathbf{W}$
Window AC Replacement	LI Retrofit 1-4	All	113	0.32
Window AC Replacement	LI MF Retrofit	Eversource, Unitil, CLC	113	0.32

For National Grid's Low Income Multi-Family initiative unit savings are calculated using the following algorithms and assumptions:

 $\Delta kWh = (Capacity_{existing} / EER_{existing} - Capacity_{new} / EER_{new}) * hours / 1000$ $\Delta kW = (Capacity_{existing} / EER_{existing} - Capacity_{new} / EER_{new}) / 1000$

Where:

Capacity _{exisitng}	=	size of existing unit in BTUs/hour
Capacity _{new}	=	size of new unit in BTUs/hour
EER _{exisitng}	=	Energy Efficiency Ratio of base AC equipment
EER _{new}	=	Energy Efficiency Ratio of new efficient AC equipment
Hours	=	Equivalent full load hours= 200 ¹⁰⁴

¹⁰³ The Cadmus Group, Inc. (2015). *Massachusetts Low-Income Multifamily Initiative Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

¹⁰⁴ RLW Analytics (2008). *Coincidence Factor Study: Residential Room Air Conditioners*. Prepared for Northeast Energy Efficiency Partnerships' New England Evaluation and State Program Working Group; Page 32, Table 22 - found by averaging the EFLH values for MA states (Boston and Worcester): (228+172)/2 = 200.

Baseline Efficiency

The baseline efficiency case is the existing air conditioning unit.

High Efficiency

The high efficiency case is the high efficiency room air conditioning unit.

Hours

Not applicable.

Measure Life

The measure life is 9 years.¹⁰⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Window AC Replacement	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	1.00	0.00
Window AC Replacement	LI MF Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.¹⁰⁶

¹⁰⁵ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Room Air Conditioner*. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls.

¹⁰⁶ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

HVAC – Air Source Heat Pump

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: The installation of high efficiency Air Source Heat Pumps. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Heat Pumps Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \, kBtu/hr}{Ton} \times \left[\left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right) \times Hours_{C} + \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \right) \times Hours_{H} \right]$$

$$\Delta kW = \max(\Delta kW_{COOL}, \Delta kW_{HEAT})$$

$$\Delta kW_{COOL} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}}\right)$$
$$\Delta kW_{H} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}}\right)$$

Where:		
Unit	=	Installation of heat pump system
Tons	=	Capacity of HP equipment
SEER _{BASE}	=	Seasonal efficiency of baseline HP equipment
SEER _{EE}	=	Seasonal efficiency of new efficient HP equipment.
EER _{BASE}	=	Peak efficiency of base HP equipment
EER _{EE}	=	Peak efficiency of new efficient HP equipment.
HSPF _{BASE}	=	Heating efficiency of baseline HP equipment
$HSPF_{EE}$	=	Heating efficiency of new efficient HP equipment.
Hours _C	=	EFLH for cooling
Hours _H	=	EFLH for heating

Savings for Residential Air-Source Heat Pumps¹⁰⁷

Measure Name	Size (tons)	SEER	EER	HSPF	$\Delta \mathbf{k} \mathbf{W}_{\mathbf{C}}$	$\Delta \mathbf{k} \mathbf{W}_{\mathbf{H}}$	∆kWh
Heat Pump SEER 16.0 HSPF 8.5	2.8	16	13.5	8.5	0.31	0.19	450.3
Heat Pump SEER 18.0 HSPF 9.6	2.8	18	13.8	9.6	0.36	0.65	1,077.8

Baseline Efficiency

The baseline efficiency case is a 2.8 ton air-source heat pump with SEER = 14, EER = 12.2 and HSPF = 8.2 for replace on failure and SEER = 10, EER = 8.5 and HSPF = 7.0 for early retirement.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified Air Source Heat Pump.

Hours

Equivalent full load hours are 1200 hours/year for heating¹⁰⁸ and 360 hours/year for cooling.¹⁰⁹

Measure Life

Measure	Measure Life ¹¹⁰
Heat Pump SEER 16.0 HSPF 8.5	14
Heat Pump SEER 18.0 HSPF 9.6	16

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Pump SEER 16.0 HSPF 8.5	RHVAC	All	1.00	1.00	1.00	1.00	0.29	0.31

¹⁰⁷ Savings have been adjusted to reflect the mix of replace on failure and early replacement. Percentage of early retirement is from The Cadmus Group (2013). 2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook.

¹⁰⁹ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for Eversource (NSTAR), National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3.

¹¹⁰ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1. Lifetime has been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). 2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook

Massachusetts Technical Reference Manual	D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V
	Page 71 of 435

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Pump SEER 18.0 HSPF 9.6	RHVAC	All	1.00	1.00	1.00	1.00	0.17	0.54

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results and Massachusetts Common Assumptions.¹¹¹

¹¹¹ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for Eversource (NSTAR), National Grid, Connecticut Light & Power and United Illuminating; Page 4-12 Table 4-9. Coincidence factors have been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). 2012 Residential Heating, *Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing*. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook
HVAC – Ductless MiniSplit Heat Pump

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of a more efficient Ductless Mini Split HP system. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Heat Pumps Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh_{HP} = Tons \times \frac{12 \ kBtu/hr}{Ton} \left[\left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right) \times Hours_{C} + \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \right) \times Hours_{H} \right]$$

$$\Delta kW_{cool} = Tons \times \frac{12 \ kBtu/hr}{Ton} \times \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

$$\Delta kW_{HEAT} = Tons \times \frac{12 \ kBtu/hr}{Ton} \times \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \right)$$

Where:

Unit	=	Installation of high efficiency ductless Mini Split System
ΔkWh_{HP}	=	Reduction in annual kWh consumption of HP equipment
$\Delta \mathrm{kW}_{\mathrm{HP}}$	=	Reduction in electric demand of HP equipment
Tons	=	Capacity of HP equipment
SEER _{BASE}	=	Seasonal efficiency of baseline HP equipment
SEER _{EE}	=	Seasonal efficiency of new efficient HP equipment
EER _{BASE}	=	Peak efficiency of base HP equipment ¹¹²
EER _{EE}	=	Peak efficiency of new efficient HP equipment
HSPF _{BASE}	=	Heating efficiency of baseline HP equipment
$HSPF_{EE}$	=	Heating efficiency of new efficient HP equipment
Hours _C	=	EFLH for cooling
Hours _H	=	EFLH for heating

¹¹² AHRI (Air Conditioning, Heating, and Refrigeration Institute) (2011). Average EER of current in-market equipment with from website at <u>http://www.ahridirectory.org/ahridirectory/pages/home.aspx</u>. Under Directory of Certified Product Performance>Residential>Variable Speed Mini-Split and Multi-Split Heat Pumps. Specified Model Status = Active, Indoor Type = Mini-Splits, and SEER Min and Max of 13 for 2013 and 2014 and Min and Max of 14 for 2015.

Savings for Residential Ductless MiniSplit Heat Pumps¹¹³

Measure Name	Average Size (ton	e Average s) SEER	Average EER	Average HSPF	$\Delta \mathbf{k} \mathbf{W}_{\mathbf{C}}$	$\Delta \mathbf{k} \mathbf{W}_{\mathbf{H}}$	∆kWh
Mini Split HP SEER 18.0 HSPF 9	1.36	20.5	13.3	9.9	0.11	0.34	286
Mini Split HP SEER 20.0 HSPF 11	0.98	24.2	13.8	12.0	0.11	0.45	330

Baseline Efficiency

The baseline efficiency case is a non- ENERGY STAR® rated ductless mini split heat pump with SEER 14, EER 10 and HSPF 8.2.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified Ductless Mini Split System. The 2014 rebated average size and efficiency by measure is shown in the table above. The program qualifications are SEER 18.0 and HSPF 9.0 and SEER 20 and HSPF 11. 0.

Hours

The equivalent full load hours are 447 hours/year for heating¹¹⁴ and 360 hours/year for cooling.¹¹⁵

Measure Life

The measure life is 18 years.¹¹⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

¹¹³ The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook.

¹¹⁴ The Cadmus Group (2015). *Ductless Mini-Split Heat Pump (DMSHP) Final Heating Season Results*. Prepared for The Electric and Gas Program Administrators of Massachusetts.

¹¹⁵ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for Eversource (NSTAR), National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3.

¹¹⁶ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Mini Split HP SEER 18.0 HSPF 9	RHVAC	All	1.00	1.00	1.00	1.00	0.08	0.50
Mini Split HP SEER 20.0 HSPF 11	RHVAC	All	1.00	1.00	1.00	1.00	0.06	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

D.P.U. 15-160 to D.P.U. 15-169

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results and Massachusetts Common Assumptions.¹¹⁷

¹¹⁷ The coincidence factors included in the BC model do not match the coincidence factors that are in the TRM because the B/C model only allows for a single max kW reduction to be entered for each measure and the TRM provides separate summer and winter kW reductions for some measures. An adjustment was made to the coincidence factors in the BC model in order to get the model to calculate the correct summer and winter kW reductions.

HVAC – Early Retirement of Heat Pump Unit

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Early replacement of Heat Pump Units Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: HVAC Measure Type: Heat Pumps Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \, kBtu/hr}{Ton} \times \left[\left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right) \times Hours_{C} + \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \right) \times Hours_{H} \right]$$

$$\Delta kW = \max(\Delta kW_{COOL}, \Delta kW_{HEAT})$$

$$\Delta kW_{COOL} = Tons \times \frac{12 \, kBtu/hr}{Ton} \times \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

$$\Delta kW_{HEAT} = Tons \times \frac{12 \, kBtu/hr}{Ton} \times \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \right)$$

Where:

Unit	=	Replacement of existing inefficient system with new efficient system
Tons	=	Capacity of AC/HP equipment: Current default is 2.8 tons
SEER _{BASE}	=	Seasonal efficiency of baseline AC equipment
SEER _{EE}	=	Seasonal efficiency of new efficient AC equipment
EER _{BASE}	=	Peak efficiency of base AC equipment
EER _{EE}	=	Peak efficiency of new efficient AC equipment
HSPF _{BASE}	=	Heating efficiency of baseline HP equipment
$\mathrm{HSPF}_{\mathrm{EE}}$	=	Heating efficiency of new efficient HP equipment
Hours _C	=	EFLH for cooling
Hours _H	=	EFLH for heating

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 76 of 435

Measure Name	EER _{BASE}	SEER _{BASE}	HSPF _{BASE}	EER _{EE}	SEER _{EE}	HSPF _{EE}	$\Delta \mathbf{k} \mathbf{W}_{\mathbf{C}}$	$\Delta \mathbf{k} \mathbf{W}_{\mathbf{H}}$	$\Delta \mathbf{kWh}$
Early Retirement Heat Pump (Retire)	8.5	10	7.0	12.2	14	8.2	1.20	0.7	1189
Early Retirement Heat Pump (EE) SEER 16	12.2	14	8.2	13.5	16	8.5	0.27	0.145	282
Early Retirement Heat Pump (EE) SEER 18	12.2	14	8.2	13.8	18	9.6	0.32	0.598	909

Savings for Early Retirement Heat Pumps¹¹⁸

Baseline Efficiency

The baseline efficiency case for the retire portion is assumed to be a typical 10-12 year-old heat pump unit with SEER 10, EER 8.5, HSPF 7.0. The baseline efficiency case for EE portion is a standard efficiency SEER 14, EER 12.2, HSPF 8.2.

High Efficiency

For the retirement savings over the remaining life of existing AC unit, the efficient case is a SEER 14, EER 12.2, HSPF 8.2 unit. For the high efficiency savings over lifetime of the new unit, the efficient case is either a new high efficiency SEER 16, EER 13.5, 8.5 HSPF unit or a new high efficiency SEER 18, EER 13.8, 9.6 HSPF unit.

Hours

The equivalent full load hours are 1,200 hours per year for heating¹¹⁹ and 360 hours per year for cooling.¹²⁰

Measure Life

The remaining life for the existing unit is 6 years¹²¹, and the measure life of new equipment is 18 years¹²²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

¹¹⁸ The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook.

¹¹⁹ Massachusetts Common Assumption.

¹²⁰ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for Eversource (NSTAR), National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3.

¹²¹ Massachusetts Common Assumption: Assume the RUL is 1/3 of the EUL.

¹²² GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Early Retirement Heat Pump (Retire)	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.293
Early Retirement Heat Pump (EE) SEER 16	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.273
Early Retirement Heat Pump (EE) SEER 18	RHVAC	All	1.00	1.00	1.00	1.00	0.134	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results¹²³ and Massachusetts Common Assumptions.¹²⁴

 ¹²³ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-12 Table 4-9.
 ¹²⁴ The coincidence factors included in the BC model do not match the coincidence factors that are in the TRM because the B/C

¹²⁴ The coincidence factors included in the BC model do not match the coincidence factors that are in the TRM because the B/C model only allows for a single max kW reduction to be entered for each measure and the TRM provides separate summer and winter kW reductions for some measures. An adjustment was made to the coincidence factors in the BC model in order to get the model to calculate the correct summer and winter kW reductions.

HVAC – Central AC Quality Installation Verification (QIV)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The verification of proper charge and airflow during installation of new Central AC system. **Primary Energy Impact**: Electric

Secondary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: HVAC O&M Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

 $\Delta kWh = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \frac{1}{SEER} \times Hours \times 5\%$ $\Delta kW = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \frac{1}{EER} \times 5\%$

Where:

Units	=	Completed QIV
Tons	=	Cooling capacity of AC equipment: Current default is 2.6 tons
SEER	=	Seasonal efficiency of AC equipment: Default = 16
EER	=	Peak efficiency of AC equipment: Default = 13.0
Hours	=	Equivalent full load hours
5%	=	Average percent demand reduction: 5.0% ¹²⁵

Savings for Central Air QIV¹²⁶

Measure Name	∆kWh	∆kW
Central Air QIV	35	0.12

Baseline Efficiency

The baseline efficiency case is a cooling system with SEER = 16 and EER = 13.0 whose installation is inconsistent with manufacturer specifications.

¹²⁵ Massachusetts Common Assumption.

¹²⁶ The calculation can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook.

High Efficiency

The high efficiency case is the same cooling system whose installation is consistent with manufacturer specifications.

Hours

Equivalent full load cooling hours are 360 hours per year.¹²⁷

Measure Life

The measure life is 18 years.¹²⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Central Air QIV	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.00

In-Service Rates

All installations have 100% in service rate.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results¹²⁹.

¹²⁷ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3.

¹²⁸ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

¹²⁹ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-12 Table 4-9.

HVAC – Heat Pump Quality Installation Verification (QIV)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The verification of proper charge and airflow during installation of new Heat Pump systems.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: HVAC O&M Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu \ / \ hr}{Ton} \times \left(\frac{1}{SEER} \times Hours_{C} + \frac{1}{HSPF} \times Hours_{H}\right) \times 5\%$$

$$\Delta kW = \max(\Delta kW_{COOL}, \Delta kW_{HEAT})$$

$$\Delta kW_{COOL} = Tons \times \frac{12 \ kBtu \ / \ hr}{Ton} \times \left(\frac{1}{EER}\right) \times 5\%$$

$$\Delta kW_{HEAT} = Tons \times \frac{12 \ kBtu \ / \ hr}{Ton} \times \left(\frac{1}{HSPF}\right) \times 5\%$$

Where:

Unit	=	Completed QIV
Tons	=	Cooling capacity of HP equipment: Current default is 2.8 tons
SEER	=	Seasonal cooling efficiency of HP equipment
EER	=	Peak cooling efficiency of HP equipment
HSPF	=	Heating efficiency of HP equipment
Hours _C	=	EFLH for cooling
Hours _H	=	EFLH for heating
5%	=	Average demand reduction: 5% ¹³⁰

¹³⁰ Massachusetts Common Assumption.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 81 of 435

Savings for Heat Pump QIV¹³¹

Measure Name	∆kWh	ΔkW
Heat Pump QIV	275	0.20

Baseline Efficiency

The baseline efficiency case is a heating and cooling system with SEER = 16, EER = 13.5 and HSPF = 8.5) whose installation is inconsistent with manufacturer specifications.

High Efficiency

The high efficiency case is the same heating and cooling system whose installation is consistent with manufacturer specifications.

Hours

The equivalent full load heating hours are 1,200 hours per year and the equivalent full load cooling hours are 360 hours per year.¹³²

Measure Life

The measure life is 18 years.¹³³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Pump QIV	RHVAC	All	1.00	1.00	1.00	1.00	0.157	0.50

In-Service Rates

All installations have 100% in service rate.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

¹³¹ The calculation can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook.

¹³² ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3.

¹³³ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC – Mini Split Heat Pump Quality Installation Verification (QIV)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The verification of proper charge and airflow during installation of new Ductless Heat Pump systems. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: HVAC O&M Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{SEER} \times Hours_{C} + \frac{1}{HSPF} \times Hours_{H}\right) \times 5\%$$

$$\Delta kW = \max(\Delta kW_{COOL}, \Delta kW_{HEAT})$$

$$\Delta kW_{COOL} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{EER}\right) \times 5\%$$

$$\Delta kW_{HEAT} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{HSPF}\right) \times 5\%$$

Where:
Unit = Completed QIV

Unit	=	Completed QIV
Tons	=	Cooling capacity of HP equipment: Current default is 1.36 tons
SEER	=	Seasonal cooling efficiency of HP equipment
EER	=	Peak cooling efficiency of HP equipment
HSPF	=	Heating efficiency of HP equipment
Hours _C	=	EFLH for cooling
Hours _H	=	EFLH for heating
5%	=	Average demand reduction: 5% ¹³⁴

Savings for Mini Split Heat Pump QIV¹³⁵

Measure Name	∆kWh	∆kW
Mini Split Heat Pump QIV	51	0.08

¹³⁴ Massachusetts Common Assumption.

¹³⁵ The calculation can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook.

Baseline Efficiency

The baseline efficiency case is a ductless mini-split system with SEER = 18 and HSPF = 8.5) whose installation is inconsistent with manufacturer specifications.

High Efficiency

The high efficiency case is the same heating and cooling system whose installation is consistent with manufacturer specifications.

Hours

The equivalent full load heating hours are 447¹³⁶ hours per year and the equivalent full load cooling hours are 360 hours per year.¹³⁷

Measure Life

The measure life is 18 years.¹³⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Mini Split Heat Pump QIV	RHVAC	All	1.00	1.00	1.00	1.00	0.186	0.50

In-Service Rates

All installations have 100% in service rate.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

¹³⁶ The Cadmus Group (2015). *Ductless Mini-Split Heat Pump (DMSHP) Final Heating Season Results*. Prepared for The Electric and Gas Program Administrators of Massachusetts

¹³⁷ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for Eversource (NSTAR), National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3.

¹³⁸ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC – Heat Pump Digital Check-up/Tune-up

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Tune-up of an existing heat pump system. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: HVAC O&M Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{SEER} \times Hours_{C} + \frac{1}{HSPF} \times Hours_{H}\right) \times 5\%$$

$$\Delta kW = \max(\Delta kW_{COOL}, \Delta kW_{HEAT})$$

$$\Delta kW_{COOL} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{EER}\right) \times 5\%$$

$$\Delta kW_{HEAT} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{HSPF}\right) \times 5\%$$

Where:

Unit	=	Completed tune-up
Tons	=	Cooling capacity of HP equipment: Current default is 2.8 tons
SEER	=	Seasonal cooling efficiency of HP equipment
EER	=	Peak cooling efficiency of HP equipment
HSPF	=	Heating efficiency of HP equipment
Hours _C	=	EFLH for cooling
Hours _H	=	EFLH for heating
5%	=	Average demand reduction: 5% ¹³⁹

Savings for Heat Pump Digital Check-up/Tune-Up¹⁴⁰

Measure Name	∆kWh	$\Delta \mathbf{k} \mathbf{W}$
Heat Pump Digital Check-up/Tune-Up	312	0.24

¹³⁹ Massachusetts Common Assumption.

¹⁴⁰ The calculation can be found in MA PAs (2015). 2016-2018 Cool Smart Savings Workbook.

Baseline Efficiency

The baseline efficiency case is a system baseline heating and cooling system (SEER = 13 and HSPF = 7.7) that does not operating according to manufacturer specifications.

High Efficiency

The high efficiency case is the same heating and cooling system that does operate according to manufacturer specifications.

Hours

The equivalent full load hours are 1200 hours per year for heating¹⁴¹ and 360 hours per year for cooling.¹⁴²

Measure Life

The measure life is 5 years¹⁴³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Pump Digital Check-up/Tune-Up	RHVAC	All	1.00	1.00	1.00	1.00	0.21	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results and Massachusetts Common Assumptions.¹⁴⁴

¹⁴¹ Massachusetts Common Assumption.

¹⁴² ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-5, Table 4-3.

¹⁴³ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

¹⁴⁴ The coincidence factors included in the BC model do not match the coincidence factors that are in the TRM because the B/C model only allows for a single max kW reduction to be entered for each measure and the TRM provides separate summer and winter kW reductions for some measures. An adjustment was made to the coincidence factors in the BC model in order to get the model to calculate the correct summer and winter kW reductions.

HVAC – Duct Sealing

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: A 66% reduction in duct leakage from 15% to 5% of supplied CFM. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Ducting Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on results of DOE2 modeling where unit equals a completed job¹⁴⁵.

Savings for Duct Sealing

Measure Name	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{146}$
Duct Sealing	212	0.30

Baseline Efficiency

The baseline efficiency case is assumes a 15% leakage.

High Efficiency

The high efficiency case is a system with duct leakage reduced by 66% to 5% leakage.

Hours

Not applicable.

Measure Life

The measure life is 20 years.¹⁴⁷

¹⁴⁵ RLW Analytics (2002). *Market Research for the Rhode Island, Massachusetts, and Connecticut Residential HVAC Market.* Prepared for National Grid, Northeast Utilities, NSTAR, Fitchburg Gas and Electric Light Company and United Illuminating; Page 3, Table 2.

¹⁴⁶ Ibid

¹⁴⁷ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Duct Sealing	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results¹⁴⁸.

¹⁴⁸ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-12 Table 4-9.

HVAC – Quality Installation with Duct Modification

Version Date and Revision History

Effective Date: 1/1/2016 TBD End Date:

Measure Overview

Description: 50% reduction in duct leakage from 20% to 10%. This measure may also include duct modifications. **Primary Energy Impact:** Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Ducting Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on results of DOE2 modeling where unit is equal to a completed job¹⁴⁹.

Savings for Quality Installation with Duct Modification

Measure Name	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{130}$
QI w/ Duct modifications	513	0.85

Baseline Efficiency

The baseline efficiency case is a system with an installation that is inconsistent with manufacturer specifications and may include leaky ducts.

High Efficiency

The high efficiency case is a system with an installation that is consistent with manufacturer specifications and may have reduced duct leakage.

Hours

Not applicable.

Measure Life

The measure life is 18 years.¹⁵¹

¹⁴⁹ RLW Analytics (2002). Market Research for the Rhode Island, Massachusetts, and Connecticut Residential HVAC Market. Prepared for National Grid, Northeast Utilities, NSTAR, Fitchburg Gas and Electric Light Company and United Illuminating; Page 3, Table 2. ¹⁵⁰ Ibid

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
QI w/ Duct modifications	RHVAC	All	1.00	1.00	1.00	1.00	0.25	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on evaluation study results¹⁵².

¹⁵¹ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

¹⁵² ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation*. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating; Page 4-12 Table 4-9.

HVAC – Duct Sealing

Version Date and Revision History

Effective Date: 1/1/2016 TBD End Date:

Measure Overview

Description: For existing ductwork in non-conditioned spaces, seal ductwork. This could include sealing leaky fixed ductwork with mastic or aerosol. Primary Energy Impact: Natural Gas (Residential Heat), Oil, Propane, Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low Income Market: Retrofit End Use: HVAC Measure Type: Ducting Core Initiative: Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family Retrofit, Electric – Residential Home Energy Services, Gas – Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

Measure Name	Core Initiative	Energy Type	AMMBtu	∆kWh	$\Delta k W^{155}$
Duct Sealing	HES	Gas	3.6		
Duct Sealing	HES	Propane	3.6		
Duct Sealing	HES	Oil	4.1		
Duct Sealing	HES	Electric		428	0.23
Duct Sealing	LI 1-4 Retrofit	Gas	3.3		
Duct Seal, Other	LI 1-4 Retrofit	Propane	3.3		
Duct Seal, Oil	LI 1-4 Retrofit	Oil	3.3		

Unit savings are deemed based on study results. ^{153, 154}

Baseline Efficiency

The baseline efficiency case is existing, non-sealed (leaky) ductwork in unconditioned spaces (e.g. attic or basement)

High Efficiency

The high efficiency condition is air sealed ductwork in unconditioned spaces.

¹⁵³ The Cadmus Group (2012). Massachusetts Low Income Single Family Program Impact Evaluation. Prepared for The Electric and Gas Program Administrators of Massachusetts.

¹⁵⁴ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts. ¹⁵⁵ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for

Massachusetts Program Administrators

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 91 of 435

Hours

Not applicable.

Measure Life

The measure life is 20 years.¹⁵⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	Energy Type	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Duct Seal, Gas; Duct Sealing	HES	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Seal, Other	HES	Propane	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Seal, Oil	HES	Oil	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Seal, Electric	HES	Electric	All	1.00	1.00	1.00	1.00	0.59	1.00
Duct Sealing	LI 1-4 Retrofit	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Seal, Other	LI 1-4 Retrofit	Propane	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Seal, Oil	LI 1-4 Retrofit	Oil	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.¹⁵⁷

 ¹⁵⁶ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*.
 Prepared for The New England State Program Working Group; Page 1-3, Table 1.
 ¹⁵⁷ Ibid

HVAC – Duct Sealing

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Ducts are sealed by reconnecting disconnected duct joints and sealing gaps or seams with mastic and fiber-mesh tape as appropriate Primary Energy Impact: Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low Income Market: Retrofit End Use: HVAC Measure Type: Ducting Core Initiative: Gas – Residential Multi-Family Retrofit, Gas – Low Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

 $\Delta MMBtu = Annual Heating Consumption \times \% SAVE \times \frac{1}{1,000,000}$

Where:		
AnnualHeatingConsumption	=	The total annual heating consumption for the facility (Btu)
%SAVE	=	Average reduction in energy consumption.
1/1,000,000	=	Conversion from Btu to MMBtu

Savings Factors for Multifamily Duct Sealing

Measure Type	%SAVE ¹⁵⁸
Surface Area < 50 SQFT	7%
Surface Area > 50 SQFT and < 200 SQFT	3%
Surface Area > 200 SQFT	1%

Baseline Efficiency

The baseline efficiency case is the existing facility or equipment prior to the implementation of duct sealing.

High Efficiency

The baseline efficiency case is the existing facility or equipment after the implementation of duct sealing.

¹⁵⁸ Savings assumptions from National Grid program vendor.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 93 of 435

Hours

Not applicable.

Measure Life

The measure life is 20 years.¹⁵⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Duct Sealing	MF Retrofit	National Grid	1.00	1.00	n/a	n/a	n/a	n/a
Duct Sealing	LI MF Retrofit	National Grid	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Realization Rates

The energy realization rate is 100% based on no evaluations.

Coincidence Factors

There are no electric savings for this measure.

¹⁵⁹ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group.

HVAC – Duct Insulation

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: For existing ductwork in non-conditioned spaces, insulate ductwork. Primary Energy Impact: Natural Gas (Residential Heat), Oil, Propane, Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low Income Market: Retrofit End Use: HVAC Measure Type: Ducting Core Initiative: Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family Retrofit, Electric – Residential Home Energy Services, Gas – Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

Measure Name	Core Initiative	Energy Type	∆MMBtu	∆kWh	$\Delta k W^{162}$
Duct Insulation, Gas; Duct Insulation	HES	Gas	6.8		
Duct Insulation, Other	HES	Propane	6.8		
Duct Insulation, Oil	HES	Oil	7.7		
Duct Insulation, Electric	HES	Electric		1,613	0.90
Duct Insulation	LI 1-4 Retrofit	Gas	5.5		
Duct Insulation, Other	LI 1-4 Retrofit	Propane	5.5		
Duct Insulation, Oil	LI 1-4 Retrofit	Oil	4.3		

Unit savings are deemed based on study results.^{160, 161}

Baseline Efficiency

The baseline efficiency case is existing, non-sealed (leaky) ductwork in unconditioned spaces (e.g. attic or basement)

High Efficiency

The high efficiency condition is air sealed ductwork in unconditioned spaces.

¹⁶⁰ The Cadmus Group (2012). *Massachusetts Low Income Single Family Program Impact Evaluation*. Prepared for The Electric and Gas Program Administrators of Massachusetts.

¹⁶¹ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

¹⁶² Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 95 of 435

Hours

Not applicable.

Measure Life

The measure life is 20 years.¹⁶³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	Energy Type	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Duct Insulation, Gas; Duct Insulation	HES	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Insulation, Other	HES	Propane	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Insulation, Oil	HES	Oil	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Insulation, Electric	HES	Electric	All	1.00	1.00	1.00	1.00	0.59	1.00
Duct Insulation	LI 1-4 Retrofit	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Insulation, Other	LI 1-4 Retrofit	Propane	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Insulation, Oil	LI 1-4 Retrofit	Oil	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.¹⁶⁴

 ¹⁶³ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*.
 Prepared for The New England State Program Working Group; Page 1-3, Table 1.
 ¹⁶⁴ Ibid

HVAC – Furnace Fan Motors (electrically efficient fan motors)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of high efficiency motors on residential furnace fans, including electronically commutated variable speed air supply motors. Primary Energy Impact: Electric Secondary Energy Impact: Natural Gas (Residential Heat) Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Motors Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results¹⁶⁵.

Savings for Furnace Fan Motors

Measure Name	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{166}$
Furnace ECM	168	0.12

Baseline Efficiency

The baseline efficiency case is the installation of a furnace with a standard efficiency steady state motor.

High Efficiency

The high efficiency case is the installation of a furnace with an electronically commutated motor.

Hours

Not applicable.

¹⁶⁵ The Cadmus Group, Inc. (2012). *Brushless Fan Motors Impact Evaluation*. Prepared for: The Electric and Gas Program Administrators of Massachusetts. The savings values for the BFM come from Page 1, Table 1 of the BFM impact evaluation filed with the Annual Report. While this report was only to provide savings for the BFM --the original savings used by the PA's 600 kWh and .116 kW were used for both the BFM and electrically efficient fan motors. When the BFM study was almost complete we asked the evaluation team if it were possible to come up with savings for the electrically efficient fan motors motors motor; they calculated the 168 kWh using data from the BFM onsites, after several discussions the evaluation team determined the electrically efficient fan motors motor was a different measure than the BFM so the calculations were not 100% accurate. They note that while the 600 kWh was too high, the 168 may be on the low side but could not confirm without an evaluation of the electrically efficient fan motors. PA's determined while we did not have an evaluation for the 168 it was probably a more realistic number than the 600.

¹⁶⁶ Ibid

Measure Life

The measure life for the electrically efficient fan motors is assumed to be the same as the furnace it is installed on which is 18 years.¹⁶⁷

Secondary Energy Impacts

A heating penalty results due to reduced heat loss of the efficient furnace motor.

Measure	Core Initiative	PA Type	Energy Type	Δ MMBtu/Unit ¹⁶⁸
Furnace ECM	RHVAC	Elec	Natural Gas (Residential Heat)	-0.716

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Furnace ECM	RHVAC	All	1.00	1.00	1.00	1.00	0.00	0.16

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based evaluation results¹⁶⁹.

¹⁶⁷ Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Furnace.

¹⁶⁸ The Cadmus Group, Inc. (2012). *Brushless Fan Motors Impact Evaluation*. Prepared for: The Electric and Gas Program Administrators of Massachusetts

¹⁶⁹ Ibid.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 98 of 435

HVAC – Pipe Wrap

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Insulation upgrades to existing heating system pipes Energy Impact: Oil, Propane, Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low-Income Market: Retrofit End Use: HVAC Measure Type: Insulation Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Home Energy Services, Gas - Multi-Family Retrofit, Gas – Low Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results ^{170,171}. For HES unit is a household with pipe wrap installed on heating pipes. For Multifamily programs, units are in linear feet of insulation installed.

Measure Name	Core Initiative	Energy Type	∆ MMBtu/Unit
Pipe Wrap (Heating), Gas; Pipe Wrap (Heating)	HES	Gas	1.3
Pipe Wrap (Heating), Oil	HES	Oil	1.4
Pipe Wrap (Heating), Other	HES	Propane	1.3
Pipe Wrap (Heating)	MF Retrofit	Oil	0.16
Pipe Wrap (Heating)	MF Retrofit	Propane	0.16
Pipe Wrap (Heating)	MF Retrofit	Gas	0.16
Pipe Wrap (Heating)	LI MF Retrofit	Oil	0.16
Pipe Wrap (Heating)	LI MF Retrofit	Gas	0.16

Baseline Efficiency

The baseline efficiency case is the existing equipment prior to the implementation of additional insulation.

High Efficiency

The high efficiency case includes pipe insulation.

¹⁷⁰ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

¹⁷¹ Savings assumptions for Multifamily programs are from National Grid program vendor.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 99 of 435

Hours

Not applicable.

Measure Life

The measure life is 15 years.¹⁷²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Pipe Wrap (Heating)	HES	All	1.00	1.00	n/a	n/a	n/a	n/a
Pipe Wrap (Heating)	MF Retrofit	All	1.00	0.60	n/a	n/a	n/a	n/a
Pipe Wrap (Heating)	LI MF Retrofit	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Pipe Wrap (Heating)	LI MF Retrofit	Eversource	1.00	1.05	n/a	n/a	n/a	n/a
Pipe Wrap (Heating)	LI MF Retrofit	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Pipe Wrap (Heating)	LI MF Retrofit	Unitil	1.00	0.96	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

For HES the realization rate is set to 100% since deemed savings are based on evaluation results. For LI MF Retrofit the realization rates are based on evaluation results.¹⁷³ For MF Retrofit the realization rates are based on draft evaluation results.

Coincidence Factors

Coincidence factors are set to zero since there are no electric savings for this measure.

¹⁷² GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

¹⁷³ The Cadmus Group (2015). Massachusetts Low-Income Multifamily Initiative Impact Evaluation. Prepared for the Massachusetts Electric and Gas Program Administrators

HVAC – Programmable Thermostats

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a programmable thermostat, which gives the ability to adjust heating or air-conditioning operating times according to a pre-set schedule.
Primary Energy Impact: Electric, Oil, Propane, Natural Gas (Residential Heat)
Secondary Energy Impact: Electric
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Residential, Low Income
Market: Retrofit
End Use: HVAC
Measure Type: Controls
Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Home Energy
Services, Gas - Residential Heating & Cooling Equipment, Electric - Low-Income Single Family
Retrofit, Gas - Residential Multi-Family Retrofit, Gas - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit sayings are deemed based on study results ^{1/4,1/3,1/0}	Unit	savings	are deemed	based on	study results	174,175,176,17
---	------	---------	------------	----------	---------------	----------------

		PA	Energy		178	
Measure Name	Core Initiative	Туре	Туре	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{176}$	∆MMBtu
Programmable Thermostat, Electric	HES	Elec	Electric	330	0.18	
Programmable Thermostat, Oil	HES	Elec	Oil			3.4
Programmable Thermostat, Gas; Programmable Thermostat	HES	Both	Gas			3.2
Programmable Thermostat, Other	HES	Elec	Propane			3.2
Programmable Thermostat	RHVAC	Gas	Gas			3.2
Programmable Thermostat, Electric	LI Retrofit 1-4	Elec	Electric	330	0.18	
Programmable Thermostat, Other	LI Retrofit 1-4	Elec	Propane			3.1
Programmable Thermostat, Oil	LI Retrofit 1-4	Elec	Oil			3.1
Programmable Thermostat, Electric Resistance, No AC	MF Retrofit	Elec	Electric	257	0.13	

Savings for Programmable Thermostats

¹⁷⁴ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

¹⁷⁵ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

¹⁷⁶ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis. Page 18-2* Prepared for Massachusetts Program Administrators

¹⁷⁷ The Cadmus Group (2015). *Massachusetts Low-Income Multifamily Initiative Impact Evaluation*. Prepared for the Massachusetts Electric and Gas Program Administrators.

¹⁷⁸ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 101 of 435

		PA	Energy		150	
Measure Name	Core Initiative	Туре	Туре	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{178}$	ΔMMBtu
Programmable Thermostat, Electric Resistance, With AC	MF Retrofit	Elec	Electric	281	0.13	
Programmable Thermostat, AC Only	MF Retrofit	Elec	Electric	25	0.06	
Programmable Thermostat, Heat Pump	MF Retrofit	Elec	Electric	241	0.10	
Programmable Thermostat, Oil	MF Retrofit, LI MF Retrofit	Elec	Oil			2.3
Programmable Thermostat	MF Retrofit, LI MF Retrofit	Gas	Gas			2.3
Programmable Thermostat, Electric	LI MF Retrofit	Elec	Electric	257	0.13	

Baseline Efficiency

The baseline efficiency case is an HVAC system without a programmable thermostat.

High Efficiency

The high efficiency case is an HVAC system that has a programmable thermostat installed.

Hours

Not applicable.

Measure Life

The measure life is 15 years.¹⁷⁹ For Multifamily Retrofit the measure persistence was estimated to be $69\%^{180}$ so the effective measure life is 10 years (15 years * 69%).

Secondary Energy Impacts

For Gas - Residential Multi-Family Retrofit:

If facility has central cooling then also calculate air conditioning savings.

 $\Delta kWh = kWh_{cool} \times \% savings$

Where:

kWh _{cool}	=	Average kWh consumption of the air conditioning system: 397 kWh ¹⁸¹
%savings	=	Energy savings percent from installation of programmable thermostats, deemed
		at 6.2% . ¹⁸²

¹⁷⁹ Environmental Protection Agency (2010). *Life Cycle Cost Estimate for ENERGY STAR Programmable Thermostat.*.

¹⁸⁰ The Cadmus Group, Inc. (2012). *Massachusetts 2011Residential Retrofit Multifamily Program Analysis*. Prepared for the Massachusetts Program Administrators

¹⁸¹ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for the Massachusetts Electric and Gas Program Administrators.

¹⁸² Ibid.

Programmable Thermostat Cooling Savings

Measure Name	kWh Savings	$\Delta \mathbf{k} \mathbf{W}^{183}$
Programmable Thermostat (also controls elec cooling)	25	0.05

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	Energy Type	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Programmable Thermostat	HES	Electric	All	1.00	1.00	1.00	1.00	0.00	1.00
Programmable Thermostat	HES	Oil	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	HES	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	HES	Propane	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	RHVAC	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	LI Retrofit 1-4	Electric	All	1.00	1.00	1.00	1.00	0.00	1.00
Programmable Thermostat	LI Retrofit 1-4	Propane	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	LI Retrofit 1-4	Oil	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	LI MF Retrofit	Gas	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Programmable Thermostat	LI MF Retrofit	Gas	Eversource	1.00	1.05	n/a	n/a	n/a	n/a
Programmable Thermostat	LI MF Retrofit	Gas	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Programmable Thermostat	LI MF Retrofit	Gas	Unitil	1.00	0.96	n/a	n/a	n/a	n/a
Programmable Thermostat	MF Retrofit	Gas	All	1.00	0.60	n/a	n/a	n/a	n/a
Programmable Thermostat, Electric Resistance, No AC	MF Retrofit	Electric	All	1.00	0.60	0.60	0.60	0.01	1.00
Programmable Thermostat, Electric Resistance, w/AC	MF Retrofit	Electric	All	1.00	0.60	0.60	0.60	0.41	1.00
Programmable Thermostat, AC Only	MF Retrofit	Electric	All	1.00	0.60	0.60	0.60	1.00	0.00
Programmable Thermostat, Heat Pump	MF Retrofit	Electric	All	1.00	0.60	0.60	0.60	0.81	1.00
Programmable Thermostat, Oil	MF Retrofit	Elec	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat, Oil	LI MF Retrofit	Elec	All	1.00	1.00	n/a	n/a	n/a	n/a

¹⁸³ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

- For HES, HVAC, and LI Retrofit 1-4 realization rates are set to 100% since deemed savings are based on evaluation results.
- For LI MF Retrofit the realization rates are based on evaluation results.¹⁸⁴ •
- For MF Retrofit the realization rates are based on MA Common Assumptions. •

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.¹⁸⁵

¹⁸⁴ The Cadmus Group (2015). Massachusetts Low-Income Multifamily Initiative Impact Evaluation. Prepared for the Massachusetts Electric and Gas Program Administrators

¹⁸⁵ Ibid

HVAC – Wi-Fi Thermostats

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: A communicating thermostat which allows remote set point adjustment and control via remote application. System requires an outdoor air temperature algorithm in the control logic to operate heating and cooling systems Primary Energy Impact: Natural Gas (Residential Heat), Oil, Propane, Electric Secondary Energy Impact: Electric Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: HVAC

Measure Type: Controls Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Home Energy Services, Gas - Residential Heating & Cooling Equipment, Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family Retrofit, Gas - Residential Multi-Family Retrofit, Gas - Low-Income Multi-Family Retrofit, Electric - Residential Multi-Family Retrofit, Electric -Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results¹⁸⁶.

		PA	Energy			
Measure Name	Core Initiative	Туре	Туре	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{187}$	ΔMMBtu
Wi-Fi Thermostat (controls gas heat	RHVAC, HES, LI 1-4	Gas	Gas			6.6
only); Wi-Fi Thermostat	Retrofit	Gas	Gas			0.0
Wi-Fi Thermostat (controls elec						
cooling & gas heat); Wi-Fi	RHVAC, HES, LI 1-4	Gas	Gas	104	0.23	6.6
Thermostat (also controls elec	Retrofit				0.23	0.0
cooling)						
Wi-Fi Thermostat, Electric (AC Only)	HES, LI 1-4 Retrofit	Elec	Electric	104	0.23	
Wi-Fi Thermostat, Gas	HES, LI 1-4 Retrofit	Elec	Gas			6.6
Wi-Fi Thermostat, Gas with AC	HES, LI 1-4 Retrofit	Elec	Gas	104	0.23	6.6
Wi-Fi Thermostat, Oil	HES, LI 1-4 Retrofit	Elec	Oil			6.6
Wi-Fi Thermostat, Oil with AC	HES, LI 1-4 Retrofit	Elec	Oil	104	0.23	6.6
Wi-Fi Thermostat, Other	HES, LI 1-4 Retrofit	Elec	Propane			6.6
Wi-Fi Thermostat, Other with AC	HES, LI 1-4 Retrofit	Elec	Propane	104	0.23	6.6

Savings for Wi-Fi Thermostats

¹⁸⁶ The Cadmus Group (2011). Memo: Wi-fi Programmable Thermostat Billing Analysis. Prepared for Keith Miller and Whitney Domigan, National Grid

¹⁸⁷ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Maaraa	Com Latting	PA	Energy	A 1-XX/1-	AL-XX/187	
Measure Name	Core Initiative	Type	Type	ΔKWN	ΔKW	ΔΙΝΙΝΙΒτ
Wi-Fi Thermostat (controls gas heat	RHVAC, HES, LI 1-4	Gas	Gas			6.6
only); Wi-Fi Thermostat	Retrofit	Gas	Gas			0.0
Wi-Fi Thermostat (controls elec						
cooling & gas heat); Wi-Fi	RHVAC, HES, LI 1-4	C	C	104	0.22	
Thermostat (also controls elec	Retrofit	Gas	Gas	104	0.23	0.0
cooling)						
Wi Ei Thormostot Electric (AC Only)	MF Retrofit, LI MF	Elaa	Electric	74.9	0.155	
wi-Fi Inelmostal, Elecule (AC Only)	Retrofit	Elec	Electric	/4.0	0.155	
W: E: Thermontot Oil	MF Retrofit, LI MF	F1	0.1			4.7
wi-Fi Thermostat, Oli	Retrofit	Elec	Oli			4./
Wi-Fi Thermostat (controls gas heat	MF Retrofit, LI MF	C	0			4.7
only)	Retrofit	Gas	Gas			4./
Wi-Fi Thermostat (controls elec	MF Retrofit, LI MF	Car	Car	74.0	0.155	47
cooling & gas heat)	Retrofit	Gas	as Gas	/4.8	0.155	4./

Baseline Efficiency

The baseline efficiency case is an HVAC system with either a manual or a programmable thermostat.

High Efficiency

The high efficiency case is an HVAC system that has a Wi-Fi thermostat installed.

Hours

Not applicable.

Measure Life

The measure life is 15 years.¹⁸⁸

Secondary Energy Impacts

When the thermostat also controls the cooling system the electric savings are 104 kWh¹⁸⁹ and 0.231 kW¹⁹⁰ in Single-Family and 74.8 kWh and 0.155 kW in Multi-Family.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

¹⁸⁸ Assumed to have the same lifetime as a regular programmable thermostat. Environmental Protection Agency (2010). *Life Cycle Cost Estimate for ENERGY STAR Programmable Thermostat.* ¹⁸⁹ Electric savings based on staff analysis with savings assumptions from Cadmus.

¹⁹⁰ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Wi-Fi Thermostat (controls gas heat only); Wi-Fi Thermostat	RHVAC, HES, LI 1- 4 Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Wi-Fi Thermostat (controls elec cooling & gas heat); Wi-Fi Thermostat (also controls elec cooling)	RHVAC, HES, LI 1- 4 Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.00
Wi-Fi Thermostat, Electric (AC Only)	HES, LI 1-4 Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.00
Wi-Fi Thermostat, Gas	HES, LI 1-4 Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Wi-Fi Thermostat, Gas with AC	HES, LI 1-4 Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.00
Wi-Fi Thermostat, Oil	HES, LI 1-4 Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Wi-Fi Thermostat, Oil with AC	HES, LI 1-4 Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.00
Wi-Fi Thermostat, Other	HES, LI 1-4 Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Wi-Fi Thermostat, Other with AC	HES, LI 1-4 Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.00
Wi-Fi Thermostat, Electric (AC Only)	MF Retrofit, LI MF Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.00
Wi-Fi Thermostat, Oil	MF Retrofit, LI MF Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Wi-Fi Thermostat (controls gas heat only)	LI MF Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Wi-Fi Thermostat (controls gas heat only)	MF Retrofit	All	1.00	0.60	n/a	n/a	n/a	n/a
Wi-Fi Thermostat (controls elec cooling & gas heat)	LI MF Retrofit	All	1.00	1.00	1.00	1.00	1.00	0.00
Wi-Fi Thermostat (controls elec cooling & gas heat)	MF Retrofit	All	1.00	0.60	1.00	1.00	1.00	0.00

In-Service Rates

All PAs assume 100% in service rate.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results. For MF Retrofit the realization rate is based on draft evaluation results.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.¹⁹¹

¹⁹¹ Ibid

HVAC – Boiler Reset Control

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Boiler Reset Controls are devices that automatically control boiler water temperature based on outdoor or return water temperature using a software program. Primary Energy Impact: Oil, Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: HVAC Measure Type: Controls Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Heating & Cooling Equipment, Electric - Low-Income Single Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results. ^{192,193}

Measure Name	Core Initiative	Energy Type	∆MMBtu/Unit					
Boiler Reset Control, Oil	HES	Oil	4.7					
Boiler Reset Control, Other	HES	Propane	4.5					
Boiler Reset Control	RHVAC	Gas	4.5					
Boiler Reset Controls, Oil	LI Retrofit 1-4	Oil	4.4					

Savings for Boiler Reset Controls

Baseline Efficiency

The baseline efficiency case is a boiler without reset controls.

High Efficiency

The high efficiency case is a boiler with reset controls.

Hours

Not applicable.

¹⁹² The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

¹⁹³ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.
Measure Life

The measure life is 15 years.¹⁹⁴

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	PA Type	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Boiler Reset Controls	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a
Boiler Reset Controls	RHVAC	All	Gas	1.00	1.00	n/a	n/a	n/a	n/a
Boiler Reset Controls	LI Retrofit 1-4	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

¹⁹⁴ ACEEE (2006). Emerging Technologies Report: Advanced Boiler Controls. Prepared for ACEEE.

HVAC – Heat Recovery Ventilator

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Heat Recovery Ventilators (HRV) can help make mechanical ventilation more cost effective by reclaiming energy from exhaust airflows. Primary Energy Impact: Natural Gas (Residential Heat) Secondary Energy Impact: Electric Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Ventilation Core Initiative: Gas - Residential Heating & Cooling Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results¹⁹⁵.

Savings for Heat Recovery Ventilator

Measure Name	∆MMBtu/Unit
Heat Recovery Ventilator	7.7

Baseline Efficiency

The baseline efficiency case is an ASHRAE 62.2-compliant exhaust fan system with no heat recovery.

High Efficiency

The high efficiency case is an exhaust fan system with heat recovery.

Hours

Not applicable.

Measure Life

The measure life is 20 years.¹⁹⁶

Secondary Energy Impacts

An electric penalty results due to the electricity consumed by the system fans.

 ¹⁹⁵ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.
 ¹⁹⁶ Ibid.

Measure	Energy Type	$\Delta kWh/Unit^{197}$	∆kW/Unit ¹⁹⁸
Heat Recovery Ventilator	Electric	-133	-0.07

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Recovery Ventilator	Residential HEHE	All	1.00	1.00	1.00	1.00	0.00	1.00

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.¹⁹⁹

¹⁹⁷ Ibid

¹⁹⁸ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

¹⁹⁹ Ibid.

HVAC – ECM Circulator Pump

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of high efficiency residential boiler circulator pumps, including electronically commutated variable speed air supply motors. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: HVAC Measure Type: Motors Core Initiative: Electric - Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results²⁰⁰.

Savings for ECM Circulator Pump

Measure Name	ΔkWh	$\Delta k W^{201}$		
Circulator Pump	142	0.08		

Baseline Efficiency

The baseline efficiency case is the installation of a standard circulator pump.

High Efficiency

The high efficiency case is the installation of an ECM circulator pump.

Hours

Not applicable.

Measure Life

The measure life is 15 years.²⁰²

²⁰⁰ The Cadmus Group (2012). *Impact Evaluation of the 2011-2012 ECM Circulator Pump Pilot Program*. Savings Values shown in MA PAs (2015). ECM Circulator Pump Savings Calculations Workbook.

²⁰¹ Ibid

²⁰² Assumed to be consistent with C&I Electric Motors & Drives – Energy & Resources Solutions (2005). Measure Life Study. Prepared for The Massachusetts Joint Utilities; Table 1-1.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Circulator Pump	RHVAC	All	1.00	1.00	1.00	1.00	0.00	0.16

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based evaluation results²⁰³.

²⁰³ Ibid.

HVAC – Combo Condensing Boiler/Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure promotes the installation of a combined high-efficiency boiler and water heating unit. Combined boiler and water heating systems are more efficient than separate systems because they eliminate the standby heat losses of an additional tank. Primary Energy Impact: Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Heating Core Initiative: Gas - Residential Heating & Cooling Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results. ²⁰⁴

Savings for Combination Water Heater/Boiler

Measure Name	ΔMMBtu/Unit
Combo Condensing Boiler/Water Heater 90%	10.3
Combo Condensing Boiler/Water Heater 95%	12.8

Baseline Efficiency

The baseline efficiency case is an 82% AFUE rated boiler (79.3% AFUE actual) with a 0.6 EF water heater. The ER baseline is an 80% AFUE rated boiler (77.4% AFUE actual) with either an indirect water heater or with a 0.55 EF water heater. 80% were indirect and 20% were storage water heaters.

High Efficiency

The high efficiency case is either an integrated water heater/boiler unit with a 90% AFUE condensing boiler (actual was 87.2% and a 0.9 EF water heater (actual was 87.2%) or a 95% AFUE condensing boiler (actual was 89.4%) and a 0.95 EF water heater(actual was 89.4%).

²⁰⁴ The Cadmus Group (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts. Savings have been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). *2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing*. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 HEHE Savings Workbook.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 114 of 435

Hours

Not applicable.

Measure Life

The measure life is 19 years.²⁰⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings			
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts			
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts			

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Combo Condensing Boiler/Water Heater 90%	RHVAC	All	1.00	1.00	n/a	n/a	n/a	n/a
Combo Condensing Boiler/Water Heater 95%	RHVAC	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

²⁰⁵ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boiler*; measure life assumed to be the same as a boiler. Lifetime has been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). *2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing.* Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 HEHE Savings Workbook.

HVAC – Boiler, Gas Forced Hot Water

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a new high efficiency gas-fired boiler for space heating. Primary Energy Impact: Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Lost Opportunity End Use: HVAC Measure Type: Heating Core Initiative: Gas - Residential Heating & Cooling Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated based on deemed inputs and have been adjusted to reflect the mix of replace on failure and early replacement.²⁰⁶

Savings for Residential Boilers

Measure Name	Energy Type	ΔMMBtu
Boiler 90%	Gas	11.4
Boiler 95%	Gas	14.1

Baseline Efficiency

The baseline efficiency case is an 82% AFUE rated boiler (79.3% AFUE actual). The ER baseline is an 80% AFUE rated boiler (77.4% AFUE actual).

High Efficiency

The high efficiency case is a boiler with an AFUE rating of 90% or greater. Based on evaluation results the actual AFUE is 87.2% for a 90% AFUE rated boiler and 89.4% for a 95% AFUE rated boiler.

Hours

Not applicable.

²⁰⁶ The Cadmus Group (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts Savings have been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). *2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing*. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the savings including this adjustment can be found in MA PAs (2015). 2016-2018 HEHE Savings Workbook.

Measure Life

The measure life is 20 years.²⁰⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	PA Type	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Boiler 90%	RHVAC	All	Gas	1.00	1.00	n/a	n/a	n/a	n/a
Boiler 95%	RHVAC	All	Gas	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

²⁰⁷ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boiler*. Lifetime has been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). *2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing.* Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in MA PAs (2015). 2016-2018 HEHE Savings Workbook.

HVAC – Boiler, Oil/Propane Forced Hot Water

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a new high efficiency boiler for space heating. Primary Energy Impact: Oil, Propane Secondary Energy Impact: Electric Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: HVAC Measure Type: Heating Core Initiative: Electric - Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated based on deemed inputs.

Δ MMBtu = heating load MMBTUs * (1/AFUE base - 1/AFUEee)

Where:

Heating load = $96.51 \text{ MMBTUs}^{208}$

Measure Name	Energy Type	ΔMMBtu/unit
Heating System Replacement (Boiler), Oil	Oil	2.7
Heating System Replacement (Boiler), Other	Propane	11.4

Baseline Efficiency

For oil the baseline efficiency case is a code compliant oil AFUE $84\%^{209}$ boiler. For propane the baseline is a code-compliant boiler (AFUE = 82%) adjusted by a degradation factor (0.967) to account for its metered efficiency (AFUE=79.3%).²¹⁰

High Efficiency

For oil the high efficiency case is a new 86% AFUE oil boiler. For propane the high efficiency case AFUE 93% adjusted by a degradation factor (0.941) to account for its metered efficiency (AFUE=87.5%).²¹¹

²⁰⁸ The Cadmus Group, Inc. (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²⁰⁹ http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/cacfurn_dfr.pdf

²¹⁰ The Cadmus Group, Inc. (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²¹¹ Ibid.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 118 of 435

Hours

Not applicable.

Measure Life

The measure life is 20 years.²¹²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heating System Replacement (Boiler), Oil	HES	All	1.00	1.00	n/a	n/a	n/a	n/a
Heating System Replacement (Boiler), Other	HES	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

²¹² Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Qualified Boiler.

HVAC – Furnace, Gas

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a new high efficiency space heating furnace with an electronically commutated motor (ECM) for the fan.
Primary Energy Impact: Natural Gas (Residential Heat)
Secondary Energy Impact: Electric
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Residential
Market: Lost Opportunity
End Use: HVAC
Measure Type: Heating
Core Initiative: Gas - Residential Heating & Cooling Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated based on deemed inputs and have been adjusted to reflect the mix of replace on failure and early replacement.²¹³

Savings for Residential Furnaces

Measure Name	Energy Type	ΔMMBtu
Furnace w/ECM 95%	Gas	8.1
Furnace w/ECM 97%	Gas	9.2

Baseline Efficiency

For the replace on failure portion the baseline efficiency case is an 85% AFUE furnace.²¹⁴ For the early retirement portion the baseline efficiency is a 78% AFUE furnace (Actual 78.9% AFUE).

High Efficiency

The high efficiency case is either a new furnace with AFUE $\geq 95\%$ (actual 95.4% AFUE) with an electronically commutated motor installed or AFUE $\geq 97\%$ (Actual 97.2% AFUE) with an electronically commutated motor installed.

²¹³ The Cadmus Group (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts Savings have been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). *2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing*. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the savings including this adjustment can be found in MA PAs (2015). 2016-2018 HEHE Savings Workbook.

²¹⁴ Agreed upon value with EEAC consultants

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 120 of 435

Hours

Not applicable.

Measure Life

The measure life is 17 years.²¹⁵

Secondary Energy Impacts

High efficiency furnaces equipped with ECM fan motors also save electricity from reduced fan energy requirements. See HVAC - Furnace Fan Motors (ECM).

ΔkWh	=	Average annual energy reduction per unit: 168 kWh
ΔkW	=	Average demand reduction per unit: 0.124 kW

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	PA	PA Type	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Furnace w/ECM 95%	RHVAC	All	Gas	1.00	1.00	1.00	1.00	1.00	0.00	0.16
Furnace w/ECM 97%	RHVAC	All	Gas	1.00	1.00	1.00	1.00	1.00	0.00	0.16

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Coincident factors are based on evaluation results. See HVAC - Furnace Fan Motors (ECM).

²¹⁵ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Furnace*. Lifetime has been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). *2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing*. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in the 2016-2018 HEHE Savings Workbook.

HVAC – Furnace, Oil/Propane

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a new high efficiency space heating furnace. Electric savings can be attributed to reduced fan run time. Primary Energy Impact: Oil, Propane Secondary Energy Impact: Electric Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: HVAC Measure Type: Heating Core Initiative: Electric - Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated based on deemed inputs.

Δ MMBtu = heating load MMBTUs * (1/AFUE base – 1/AFUEee)

Where: Heating load = 58.35 MMBTUs²¹⁶

Measure Name	Energy Type	ΔMMBtu/unit
Heating System Replacement (Furnace), Oil	Oil	2.5
Heating System Replacement (Furnace), Other	Propane	7.2

Baseline Efficiency

The baseline efficiency case is a code compliant oil furnace, AFUE 83%²¹⁷, or an 85% AFUE²¹⁸ propane furnace.

High Efficiency

The high efficiency case is a new 86% AFUE oil furnace or a 95% AFUE propane furnace.

Hours

Not applicable.

²¹⁶ The Cadmus Group, Inc. (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²¹⁷ http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/cacfurn_dfr.pdf

²¹⁸ Agreed upon value with EEAC consultants

Measure Life

The measure life is 18 years.²¹⁹

Secondary Energy Impacts

For oil furnaces electric savings can be attributed to reduced fan run time. The unit savings are deemed based on study results. Propane high efficiency furnaces equipped with ECM fan motors also save electricity from reduced fan energy requirements. See HVAC - Furnace Fan Motors (ECM).

Measure Name	∆kWh/unit	∆kW/unit
Heating System Replacement (Furnace), Oil	98^{220}	0.05^{221}
Heating System Replacement (Furnace), Other	168	0.12

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heating System Replacement (Furnace), Oil	HES	All	1.00	1.00	1.00	1.00	0.00	1.00
Heating System Replacement (Furnace), Other	HES	All	1.00	1.00	1.00	1.00	0.00	0.16

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

- For Heating System Replacement (Furnace), Oil the summer and winter coincidence factors are estimated using demand allocation methodology described the Cadmus Demand Impact Model.²²²
- Heating System Replacement (Furnace), Other the coincident factors are based on evaluation results. See HVAC - Furnace Fan Motors (ECM).

²¹⁹ Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Furnace.

²²⁰ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts. ²²¹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for

Massachusetts Program Administrators.

²²² Ibid

HVAC – Early Retirement Boiler, Forced Hot Water

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Early retirement of inefficient forced hot water boiler and the installation of new high efficiency forced hot water boiler.
Primary Energy Impact: Natural Gas (Residential Heat), Oil, Propane
Secondary Energy Impact: None
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Residential
Market: Retrofit
End Use: HVAC
Measure Type: Heating
Core Initiative: Gas - Residential Home Energy Services, Electric - Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

Unit savings for the early replacement of an existing boiler with a high efficiency boiler are counted in two parts: (1) early retirement savings for a code-compliant boiler compared to the existing boiler over the remaining lifetime of the existing boiler, and (2) efficiency savings for the high efficiency boiler compared to a code-compliant boiler for the full life of the new high efficiency boiler:

$\Delta MMBtu = \Delta MMBtu_{RETIRE} + \Delta MMBtu_{EE}$

 $\Delta MMBtu_{RETIRE}$ = heating load MMBTUs * (1/AFUE base – 1/AFUEee) $\Delta MMBtu_{EE}$ = heating load MMBTUs * (1/AFUE base – 1/AFUEee)

Where:

Unit	=	Removal of existing inefficient boiler and installation of new high efficiency boiler
$\Delta MMBtu_{RETIRE}$	=	Annual MMBtu savings of code-compliant boiler compared to existing boiler
$\Delta MMBtu_{EE}$	=	Annual MMBtu savings of high efficiency boiler compared to code-compliant boiler
Heating Load	=	96.51 MMBTUs for homes with boilers ²²³

²²³ The Cadmus Group (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 124 of 435

Measure Name	Energy Type	MMBTU/unit ²²⁴
Early Retirement Boiler, Forced Hot Water (EE)	Gas	11.4
Early Retirement Boiler, Forced Hot Water (Retire)	Gas	7.0
Early Retirement Boiler, Forced Hot Water (EE), Oil	Oil	2.7
Early Retirement Boiler, Forced Hot Water (Retire), Oil	Oil	13.8
Early Retirement Boiler, Forced Hot Water (EE), Other	Propane	11.4
Early Retirement Boiler, Forced Hot Water (Retire), Other	Propane	7.0

Baseline Efficiency

For the retirement savings over the remaining life of existing boiler, the baseline is the existing inefficient boiler estimated to be 75% AFUE for a forced hot water boiler. For the high efficiency unit savings over lifetime of the new boiler, the baseline for gas and propane boilers is a code-compliant boiler (AFUE = 82%) adjusted by a degradation factor (0.967) to account for its metered efficiency (AFUE=79.3%)²²⁵. For oil boilers the baseline is a code-compliant 84% AFUE boiler.

High Efficiency

For the retirement savings over the remaining life of existing boiler, the efficient case for gas and propane boilers is a code-compliant boiler (AFUE = 82%) adjusted by a degradation factor (0.967) to account for its metered efficiency (AFUE = 79.3%). For oil boilers the efficient case is a code-compliant 84% AFUE boiler. For the high efficiency savings over lifetime of the new boiler, the efficient case for gas and propane boilers is a new high efficiency boiler AFUE >= 93%) adjusted by a degradation factor (0.941) to account for its metered efficiency (AFUE >= 87.5%)²²⁶. For oil the efficient case is an 86% AFUE boiler.

Hours

Not applicable.

Measure Life

The remaining life for the existing unit is 10 years²²⁷, and the measure life of new equipment is 20 years.²²⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

²²⁴ Calculated using information provided in The Cadmus Group (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²²⁵ The Cadmus Group (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²²⁶ Ibid.

²²⁷ Agreed upon with EEAC consultants as a reasonable approximation for the number of years an existing boiler would continue to operate if it had not been replaced early due to the program.

²²⁸ Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers.

One-Time Non-Resource See Appendix C: Non-Resource Impacts

See Appendix C: Non-Resource Impacts

Measure	Core Initiative	PA	РА Туре	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Early Retirement Boiler, Forced Hot Water (EE)	HES	All	Gas	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Forced Hot Water (Retire)	HES	All	Gas	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Forced Hot Water (EE), Oil	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Forced Hot Water (Retire), Oil	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Forced Hot Water (EE), Other	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Forced Hot Water (Retire), Other	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a

D.P.U. 15-160 to D.P.U. 15-169

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

HVAC – Early Retirement Boiler, Steam

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Early retirement of inefficient steam boiler and the installation of new high efficiency steam boiler.
Primary Energy Impact: Natural Gas (Residential Heat), Oil, Propane
Secondary Energy Impact: None
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Residential
Market: Retrofit
End Use: HVAC
Measure Type: Heating
Core Initiative: Gas - Residential Home Energy Services, Electric - Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

Unit savings for the early replacement of an existing boiler with a high efficiency boiler are counted in two parts: (1) early retirement savings for a code-compliant boiler compared to the existing boiler over the remaining lifetime of the existing boiler, and (2) efficiency savings for the high efficiency boiler compared to a code-compliant boiler for the full life of the new high efficiency boiler:

$\Delta MMBtu = \Delta MMBtu_{RETIRE} + \Delta MMBtu_{EE}$ $\Delta MMBtu_{RETIRE} = heating load MMBTUs * (1/AFUE base - 1/AFUEee)$ $\Delta MMBtu_{EE} = heating load MMBTUs * (1/AFUE base - 1/AFUEee)$

Where:

Unit	=	Removal of existing inefficient boiler and installation of new high efficiency boiler
$\Delta MMBtu_{RETIRE}$	=	Annual MMBtu savings of code-compliant boiler compared to existing boiler
$\Delta MMBtu_{EE}$	=	Annual MMBtu savings of high efficiency boiler compared to code-compliant boiler
Heating Load	=	96.51 MMBTUs for homes with boilers ²²⁹

²²⁹ The Cadmus Group (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 127 of 435

Measure Name	Energy Type	MMBTU/unit ²³⁰
Early Retirement Boiler, Steam (EE)	Gas	2.9
Early Retirement Boiler, Steam (Retire)	Gas	8.0
Early Retirement Boiler, Steam (EE), Oil	Oil	2.8
Early Retirement Boiler, Steam (Retire), Oil	Oil	11.0
Early Retirement Boiler, Steam (EE), Other	Propane	2.9
Early Retirement Boiler, Steam (Retire), Other	Propane	8.0

Baseline Efficiency

For the retirement savings over the remaining life of existing boiler, the baseline is the existing inefficient boiler estimated to be 75% AFUE for a forced hot water boiler. For the high efficiency unit savings over lifetime of the new boiler, the baseline for gas and propane boilers is a code-compliant 80% AFUE boiler. For oil boilers the baseline is a code-compliant 82% AFUE boiler.

High Efficiency

For the retirement savings over the remaining life of existing boiler, the efficient case for gas and propane boilers is a code-compliant 80% AFUE boiler and for oil boilers it is a code-compliant 82% AFUE boiler. For the high efficiency savings over lifetime of the new boiler, the efficient case for gas and propane boilers is a new high efficiency 82% AFUE boiler and for oil it is an 84% AFUE boiler.

Hours

Not applicable.

Measure Life

The remaining life for the existing unit is 10 years²³¹, and the measure life of new equipment is 20 vears.²³²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

²³⁰ Calculated using information provided in The Cadmus Group (2015). High Efficiency Heating Equipment Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²³¹ Agreed upon with EEAC consultants as a reasonable approximation for the number of years an existing boiler would continue to operate if it had not been replaced early due to the program. ²³² Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers*.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	РА Туре	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Early Retirement Boiler, Steam (EE)	HES	All	Gas	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Steam (Retire)	HES	All	Gas	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Steam (EE), Oil	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Steam (Retire), Oil	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Steam (EE), Other	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a
Early Retirement Boiler, Steam (Retire), Other	HES	All	Elec	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

HVAC – Early Retirement Furnace

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Early retirement of inefficient furnace and installation of new high efficiency furnace Primary Energy Impact: Oil, Propane, Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: HVAC Measure Type: Heating Core Initiative: Gas - Residential Home Energy Services, Electric - Residential Home Energy Services

Algorithms for Calculating Primary Energy Impact

Unit savings for the early replacement of an existing furnace with a high efficiency furnace are counted in two parts: (1) early retirement savings for a code-compliant furnace compared to the existing furnace over the remaining lifetime of the existing furnace, and (2) efficiency savings for the high efficiency furnace compared to a code-compliant furnace for the full life of the new high efficiency furnace:

 $\Delta MMBtu = \Delta MMBtu_{RETIRE} + \Delta MMBtu_{EE}$ $\Delta MMBtu_{RETIRE} = heating load MMBTUs * (1/AFUE base - 1/AFUEee)$ $\Delta MMBtu_{EE} = heating load MMBTUs * (1/AFUE base - 1/AFUEee)$

Where:

Unit	=	Removal of existing inefficient furnace and installation of new high efficiency furnace
$\Delta MMBtu_{RETIRE}$	=	Annual MMBtu savings of code-compliant furnace compared to existing furnace
$\Delta MMBtu_{EE}$	=	Annual MMBtu savings of high efficiency furnace compared to code-compliant furnace
Heating Load	=	58.3 MMBTUs for homes with furnace ²³³

²³³ The Cadmus Group (2015). *High Efficiency Heating Equipment Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 130 of 435

Measure Name	Energy Type	MMBTU/unit ²³⁴
Early Retirement Furnace, (EE)	Gas	7.2
Early Retirement Furnace, (Retire)	Gas	6.2
Early Retirement Furnace (EE), Oil	Oil	2.5
Early Retirement Furnace (Retire), Oil	Oil	4.5
Early Retirement Furnace (EE), Other	Propane	7.2
Early Retirement Furnace (Retire), Other	Propane	6.2

Savings for Early Retirement Furnaces

Baseline Efficiency

For the retirement savings over the remaining life of existing furnace, the baseline is the existing inefficient furnace estimated to be 78% AFUE. For the high efficiency unit savings over lifetime of the new furnace, for gas and propane the baseline is an 85% AFUE furnace and for oil the baseline is an 83% AFUE furnace.

High Efficiency

For the retirement savings over the remaining life of existing furnace, the efficient case for gas and propane is an 85% AFUE furnace for oil it is an 83% AFUE furnace. For the high efficiency savings over the lifetime of the new furnace, the efficient case for gas and propane is a new high efficiency AFUE 95% furnace and for oil it is an 86% AFUE furnace.

Hours

Not applicable.

Measure Life

The remaining life for the existing unit is 6 years²³⁵, and the measure life of new equipment is 18 years.²³⁶

Secondary Energy Impacts

High efficiency furnaces equipped with ECM fan motors also save electricity from reduced fan energy requirements. See HVAC - Furnace Fan Motors.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

²³⁴ Calculated using information provided in The Cadmus Group (2015). High Efficiency Heating Equipment Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²³⁵ Agreed upon with EEAC consultants as a reasonable approximation for the number of years an existing furnace would continue to operate if it had not been replaced early due to the program. ²³⁶ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Furnace*.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	РА Туре	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Early Retirement Furnace, (EE)	HES	All	Gas	1.00	1.00	1.00	1.00	0.00	0.16
Early Retirement Furnace, (Retire)	HES	All	Gas	1.00	1.00	1.00	1.00	0.00	0.16
Early Retirement Furnace (EE), Oil	HES	All	Elec	1.00	1.00	1.00	1.00	0.00	0.16
Early Retirement Furnace (Retire), Oil	HES	All	Elec	1.00	1.00	1.00	1.00	0.00	0.16
Early Retirement Furnace (EE), Other	HES	All	Elec	1.00	1.00	1.00	1.00	0.00	0.16
Early Retirement Furnace (Retire), Other	HES	All	Elec	1.00	1.00	1.00	1.00	0.00	0.16

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Coincident factors are based on evaluation results. See HVAC - Furnace Fan Motors

HVAC – Boiler Retrofit

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Replacement of an old inefficient space heating boiler with a new boiler. Primary Energy Impact: Oil, Propane, Natural Gas (Residential Heat) Secondary Energy Impact: Electric Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: HVAC Measure Type: Heating Core Initiative: Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family Retrofit, Gas- Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results.²³⁷

Measure Name	PA	РА Туре	Energy Type	ΔMMBtu
Heating System Retrofit, Boiler, Oil	All	Elec	Oil	20.4
Heating System Retrofit, Boiler, Other	All	Elec	Propane	19.4
Heating System Retrofit, Boiler	All	Gas	Gas	19.4

Baseline Efficiency

The baseline efficiency case is the existing inefficient furnace

High Efficiency

The high efficiency case is the new efficient furnace.

Hours

Not applicable.

Measure Life

The measure life is 20 years.²³⁸

²³⁷ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²³⁸ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Boiler*.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings		
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts		
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts		

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heating System Retrofit, Boiler, Oil	LI 1-4 Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Heating System Retrofit, Boiler, Other	LI 1-4 Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Heating System Retrofit, Boiler	LI 1-4 Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Heating System Retrofit, Boiler	LI MF Retrofit	Liberty	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

HVAC – Furnace Retrofit

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Replacement of an old inefficient space heating furnace with a new furnace. Primary Energy Impact: Oil, Propane, Natural Gas (Residential Heat) Secondary Energy Impact: Electric Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: HVAC Measure Type: Heating Core Initiative: Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results.²³⁹

Measure Name	PA	PA Type	Energy Type	ΔMMBtu/unit
Heating System Retrofit, Furnace, Oil	All	Elec	Oil	14.3
Heating System Retrofit, Furnace, Other	All	Elec	Propane	20.7
Heating System Retrofit, Furnace	All	Gas	Gas	20.7

Baseline Efficiency

The baseline efficiency case is the existing inefficient furnace

High Efficiency

The high efficiency case is the new efficient furnace.

Hours

Not applicable.

Measure Life

The measure life is 18 years.²⁴⁰

²³⁹ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²⁴⁰ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Furnace*.

Secondary Energy Impacts

Electric savings can be attributed to reduced fan run time. The unit savings are deemed based on study results²⁴¹

Measure	PA Type	∆kWh/unit	ΔkW/Unit ²⁴²
Heating System Retrofit, Furnace, Oil	Elec	132	0.07
Heating System Retrofit, Furnace, Other	Elec	172	0.09
Heating System Retrofit, Furnace	Gas	172	0.09

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heating System Retrofit, Furnace, Oil	LI 1-4 Retrofit	All	1.00	1.00	1.00	1.00	0.00	1.00
Heating System Retrofit, Furnace, Other	LI 1-4 Retrofit	All	1.00	1.00	1.00	1.00	0.00	1.00
Heating System Retrofit, Furnace	LI 1-4 Retrofit	All	1.00	1.00	1.00	1.00	0.00	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.²⁴³

²⁴¹ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²⁴² Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

²⁴³ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

HVAC – Heating System

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of high efficiency heating equipment to replace the existing inefficient furnace, hydronic boiler or steam boiler. Primary Energy Impact: Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: HVAC Measure Type: Heating Core Initiative: Gas- Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

$$\Delta MMBtu = \frac{Btu}{hr} \times \left(\frac{1}{AFUE_{BASE}} - \frac{1}{AFUE_{EE}}\right) \times EFLH_{Heat} \times \frac{1}{1,000,000}$$

Where:

Btu/hr	=	Nominal heating capacity of the installed equipment (Btu/hr)
AFUE _{BASE}	=	Average fuel utilization efficiency of the existing equipment (%)
AFUE _{EE}	=	Average fuel utilization efficiency of the efficient equipment (%)
EFLH _{Heat}	=	Equivalent full load heating hours for the facility (Hr)
1/1,000,000	=	Conversion from Btu to MMBtu

Baseline Efficiency

The baseline efficiency is determined based on the type of heating equipment installed. For boilers it is 75% AFUE and for furnaces it is 78% AFUE..

High Efficiency

The high efficiency case is characterized by the rated efficiency (AFUE_{EE}) of the new high efficiency furnace or boiler.

Hours

The equivalent full load hours are assumed to be 1,418 for all multi-family residential facilities in Massachusetts.

Measure Life

Measure Name	Lifetime (years)
Heating System Retrofit, Boiler	20 ²⁴⁴
Heating System Retrofit, Furnace	18^{245}
Heating System Retrofit, Commercial Boiler	25

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type Description		Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heating System Retrofit, Boiler	LI MF Retrofit	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Heating System Retrofit, Furnace	LI MF Retrofit	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Heating System Retrofit, Boiler	LI MF Retrofit	Berkshire	1.00	0.80	n/a	n/a	n/a	n/a
Heating System Retrofit, Furnace	LI MF Retrofit	Berkshire	1.00	0.80	n/a	n/a	n/a	n/a
Heating System Retrofit, Boiler	LI MF Retrofit	Columbia, Unitil	1.00	0.96	n/a	n/a	n/a	n/a
Heating System Retrofit, Furnace	LI MF Retrofit	Columbia, Unitil	1.00	0.96	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

The realization rate is based on evaluation results²⁴⁶.

Coincidence Factors

There are no electric savings for this measure.

 ²⁴⁴ Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers.
 ²⁴⁵ Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Furnace.
 ²⁴⁶ The Cadmus Group, Inc. (2015). Massachusetts Low-Income Multifamily Initiative Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts.

Lighting – CFL Bulbs

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Compact fluorescent lamps offer comparable luminosity to incandescent and halogen lamps at significantly less wattage and significantly longer lamp lifetimes.
Primary Energy Impact: Electric
Secondary Energy Impact: Natural Gas (Residential Heat)
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Residential, Low-Income
Market: Lost Opportunity, Retrofit
End Use: Lighting
Measure Type: Interior
Core Initiative: Residential Lighting, Residential New Construction, Residential Home Energy
Services, Electric - Low-Income Single Family Retrofit, Electric - Multi-Family Retrofit, Electric

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using deemed inputs based on study results:

 $\Delta kW = \Delta watts / 1000$ $\Delta kWh = \Delta kW * hours$

Where: $\Delta kW = Average kW reduction^{247,248}$ hours = Hours of use²⁴⁹

Factors fo	or Colculating	Sovings for	Residential	CFI Rulhe
raciors it	of Calculating	Savings for	Residential	CFL Duibs

Maasura Nama	Core	РА	2016	2017	2018	
ivicasui e ivanie	Initiative	IA	Δ watts	Δ watts	Δ watts	Hours
CFL Bulb	Res Lighting	All	44.1	42.0	38.3	1,200
CFL Bulb (EISA Exempt)	Res Lighting	All	43.6	43.6	43.6	1,200
CFL Bulb (Hard to Reach)	Res Lighting	All	44.1	42.0	38.3	1,200
CFL Bulb (School Fundraiser)	Res Lighting	All	44.1	42.0	38.3	1,058
CFL Bulb	HES, RNC	All	44.1	42.0	38.3	986
CFL Bulb	LI Retrofit 1-4	All	44.1	42.0	38.3	986
CFL Bulb	MF Retrofit	Eversource	44.1	41.9	38.8	986
CFL Bulb	LI MF Retrofit	Eversource, CLC	44.1	38.9	35.9	986

 ²⁴⁷ NMR Group (2015). *Baseline Sensitivity Analysis Spreadsheet, 2016-2018 Plan Version*. Prepared for the Massachusetts PAs.
 ²⁴⁸ The Cadmus Group, Inc. (2015). *Massachusetts Low-Income Multifamily Initiative Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of MA.

²⁴⁹ NMR Group Inc. (2014). Northeast Residential Lighting Hours of Use Study.

Massachusetts Technical Reference Manual	
--	--

Measure Name	Core Initiative	РА	2016 ∆kW	2017 ∆kW	2018 ∆kW	2016 ∆kWh	2017 ∆kWh	2018 ∆kWh
CFL Bulb	Res Lighting	All	0.04	0.04	0.04	53.0	50.4	46.0
CFL Bulb (EISA Exempt)	Res Lighting	All	0.04	0.04	0.04	52.4	52.4	52.4
CFL Bulb (Hard to Reach)	Res Lighting	All	0.04	0.04	0.04	53.0	50.4	46.0
CFL Bulb (School Fundraiser)	Res Lighting	All	0.04	0.04	0.04	53.0	50.4	46.0
CFL Bulb	HES, RNC, LI Retrofit 1-4	All	0.04	0.04	0.04	43.4	41.3	37.8
CFL Bulb	MF Retrofit	Eversource	0.04	0.04	0.04	43.4	41.3	37.8
CFL Bulb	LI MF Retrofit	Eversource, CLC	0.04	0.04	0.04	40.8	38.3	35.3

Savings for Residential CFLs

Baseline Efficiency

The baseline efficiency case is a combination of an incandescent bulb and halogen bulb.

High Efficiency

The high efficiency case is an ENERGY STAR® rated CFL bulb.

Hours

Average annual operating hours for efficient bulbs in the Res Lighting program are 1,200 hours/year ((93%*2.9 hours/day + 7% *8.46 hours/day)* 365 days/year).^{250, 251,252} Average annual operating hours for all bulbs in the HES, RNC, LI Retrofit 1-4, MF Retrofit and LI MF Retrofit programs are 985.5 hours/year (2.7 hours/day * 365 days/year).^{253,}

Measure Life

The measure life for bulbs with an EISA exempt baseline is 7 years.²⁵⁴ For Residential Lighting the adjusted measure life is 4 years for screw-in bulbs in 2016 - 2018 and for all other initiatives the adjusted measure life is 5 years in 2016 and 4 years in 2017-2018.²⁵⁵

Secondary Energy Impacts

There is a heat loss of 2,237 Btu/kWh counted for bulbs sold upstream.²⁵⁶

²⁵⁰ NMR Group Inc. (2014). *Northeast Residential Lighting Hours of Use Study*. The study recommended the use of the regional lighting hours of use numbers for both the efficient and all bulb lighting values.

²⁵¹ The Cadmus Group, Inc. (2015). *Massachusetts Residential Lighting Cross-Sector Sales Research*.

²⁵² DNV-GL (2015). Massachusetts Commercial and Industrial Upstream Lighting Program: "In Storage" Lamps Follow-Up Study

²⁵³ NMR Group Inc. (2014). *Northeast Residential Lighting Hours of Use Study*. The study recommended the use of the regional lighting hours of use numbers for both the efficient and all bulb lighting values.

²⁵⁴ The calculated measure life for screw-in bulbs is 8, based on a component life of 8,000 and hours of use of 1,200.

²⁵⁵ MA PAs (2015). 2016-2018 MA Lighting Worksheet

²⁵⁶ The Cadmus Group, Inc. (2015). Lighting Interactive Effects Study Preliminary Results. For the upstream program only.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 140 of 435

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CFL Bulb	Res Lighting	All	0.95	1.00	1.00	1.00	0.14	0.18
CFL Bulb (EISA Exempt)	Res Lighting	All	0.95	1.00	1.00	1.00	0.14	0.18
CFL Bulb (Hard to Reach)	Res Lighting	All	1.00	1.00	1.00	1.00	0.14	0.18
CFL Bulb (School Fundraiser)	Res Lighting	All	0.50	1.00	1.00	1.00	0.14	0.18
CFL Bulb	RNC	All	0.99	1.00	1.00	1.00	0.13	0.16
CFL Bulb	HES	All	1.00	1.00	1.00	1.00	0.13	0.16
CFL Bulb	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	0.13	0.16
CFL Bulb	MF Retrofit	Eversource	0.97	0.60	0.60	0.60	0.13	0.16
CFL Bulb	LI MF Retrofit	Eversource, CLC	1.00	1.00	1.00	1.00	0.17	1.00

In-Service Rate

- Res Lighting: Baseline Sensitivity Analysis Spreadsheet, 2016-2018 Plan Version.²⁵⁷
- HTR, LI Retrofit 1-4, LI MF Retrofit: PAs assume a 100% installation rate.
- MF Retrofit: 2012 MF Impact Analysis.²⁵⁸
- RNC: 2006 ENERGY STAR® Homes New Homebuyer Survey Report²⁵⁹
- HES: Impact evaluation of the HES program²⁶⁰

Realization Rates

Realization rates are 100% since savings estimates are based on evaluation results except for MF Retrofit which is based on MA Common Assumptions.

Coincidence Factors

Coincidence factors are based on the 2014 Lighting Hours of Use Study for all initiatives except for LI MF Retrofit which is estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012).^{261,262}

²⁵⁷ MA PAs (2015). 2016-2018 MA Lighting Worksheet

 ²⁵⁸ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for the Massachusetts Electric and Gas Program Administrators.
 ²⁵⁹ Nexus Market Research & Dorothy Conant (2006). *Massachusetts ENERGY STAR*® Homes: 2005 Baseline Study: Part II:

²⁵⁹ Nexus Market Research & Dorothy Conant (2006). *Massachusetts ENERGY STAR*® *Homes: 2005 Baseline Study: Part II: Homeowner Survey Analysis Incorporating Inspection Data Final Report.* Prepared for the Massachusetts Joint Management Committee.

²⁶⁰ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²⁶¹ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

²⁶² NMR Group Inc. (2014). Northeast Residential Lighting Hours of Use Study.

Lighting – CFL Fixtures

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of ENERGY STAR® compact fluorescent (CFL) indoor or outdoor fixtures. Compact fluorescent fixtures offer comparable luminosity to incandescent or halogen fixtures at significantly less wattage and significantly longer lifetimes. Primary Energy Impact: Electric Secondary Energy Impact: Natural Gas (Residential Heat) Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low-Income Market: Lost Opportunity, Retrofit End Use: Lighting Measure Type: Interior Core Initiative: Electric – Residential Lighting

Algorithms for Calculating Primary Energy Impact

For Residential Lighting unit savings are deemed based on the following algorithms, which use averaged inputs.

$\Delta kW = Bulbs \times Save_{kW}$ $\Delta kWh = \Delta kW \times hours$

Where:

Bulbs	=	Average # of bulbs per indoor unit: 1.49^{263}
Save _{kw}	=	Average kW savings per bulb : See Lighting – CFL Bulbs
Hours	=	Annual hours of use : 1,200 for Res Lighting and 985.5 for RNC, LI RNC

Savings for CFL Fixtures

Measure Name	Core Initiative	РА	2016 ∆kW	2017 ∆kW	2018 ∆kW	2016 ∆kWh	2017 ∆kWh	2018 ∆kWh
Fixture	Res Lighting	All	0.07	0.06	0.06	78.9	75.1	68.6

Baseline Efficiency

The baseline efficiency case is an incandescent or halogen, screw-based fixture with an incandescent or halogen lamp.

²⁶³ NMR Group, Inc. (2013). *Results of the Massachusetts Onsite Lighting Inventory*. Prepared for the Massachusetts PAs.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified compact fluorescent light fixture wired for exclusive use with pin-based CFLs.

Hours

Average annual operating hours for efficient fixtures in the Residential Lighting program are 1,200 hours/year ((93%*2.9 hours/day + 7% *8.46 hours/day)* 365 days/year). ^{264, 265, 266}

Measure Life

The adjusted measure life is 4 years for Residential Lighting for 2016 - 2018.²⁶⁷

Secondary Energy Impact

There is a heat loss of 2,237 Btu/kWh counted for fixtures sold upstream.²⁶⁸.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Fixture	Res Lighting	All	0.95	1.00	1.00	1.00	0.14	0.18

In-Service Rates

2004 Impact Evaluation of MA, RI, VT Residential Lighting Program²⁶⁹

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are based on the 2014 Lighting Hours of Use Study²⁷⁰.

²⁶⁴ NMR Group Inc. (2014). *Northeast Residential Lighting Hours of Use Study*. The study recommended the use of the regional lighting hours of use numbers for both the efficient and all bulb lighting values.

²⁶⁵ The Cadmus Group, Inc. (2015). *Massachusetts Residential Lighting Cross-Sector Sales Research*.

²⁶⁶ DNV-GL (2015). Massachusetts Commercial and Industrial Upstream Lighting Program: "In Storage" Lamps Follow-Up Study

²⁶⁷ MA PAs (2015). 2016-2018 MA Lighting Worksheet

²⁶⁸ Cadmus (2015) Lighting Interactive Effects Study Preliminary Results; For the upstream program only.

 ²⁶⁹ Nexus Market Research and RLW Analytics (2004). *Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs*. Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, Eversource (NSTAR) and Unitil Energy Systems, Inc.; Page 11.
 ²⁷⁰ NNR Cream Inc. (2014). Northeast Besidential Lighting Human Glue State.

²⁷⁰ NMR Group Inc. (2014). Northeast Residential Lighting Hours of Use Study.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 143 of 435

Lighting – LED Bulbs

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of Light-Emitting Diode (LED) screw-in bulbs. LEDs offer comparable luminosity to incandescent and halogen bulbs at significantly less wattage and significantly longer lamp lifetimes. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low-Income Market: Lost Opportunity End Use: Lighting Measure Type: Interior Core Initiative: Residential Lighting, Electric - Residential Home Energy Services, Electric -Low-Income Single Family Retrofit, Electric - Low-Income Multi-Family Retrofit, Electric – Residential New Construction

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithms which use averaged inputs:

 $\Delta kW = \Delta watts / 1000$ $\Delta kWh = \Delta kW * hours$

Where:

 ΔkW = Average kW reduction^{271,272} hours = Hours of use

 ²⁷¹ NMR Group (2015). *Baseline Sensitivity Analysis Spreadsheet, 2016-2018 Plan Version*. Prepared for the Massachusetts PAs.
 ²⁷² The Cadmus Group, Inc. (2015). *Massachusetts Low-Income Multifamily Initiative Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of MA.
Factors for Calculating Savings for Residential LED Bulbs

			2016	2017	2018	Hours
Measure Name	Core Initiative	PA	Δ watts	Δ watts	Δ watts	
LED Bulb	Res Lighting	All	33.5	31.0	28.4	1200
LED (EISA Exempt)	Res Lighting	All	43.6	43.6	43.6	1200
LED Bulb (Hard to Reach)	Res Lighting	All	33.4	31.0	28.4	1200
LED Bulb (School Fundraiser)	Res Lighting	All	33.5	31.0	28.4	1,058
LED Bulb (Reflectors)	Res Lighting	All	47.6	47.6	47.6	1200
LED Bulb	HES	All	48.3	46.3	43.6	986
LED Bulb	LI Retrofit 1-4	All	48.3	46.3	43.6	986
LED Bulb	MF Retrofit	Eversource	48.3	46.3	43.6	986
LED Bulb	LI MF Retrofit	Eversource, CLC	55.9	53.1	50.0	986
LED Bulb	RNC	All	33.5	31.0	28.4	986

Savings for Residential LEDs

Measure Name	Core Initiative	РА	2016 ∆kW	2017 ∆kW	2018 ∆kW	2016 ∆kWh	2017 ∆kWh	2018 ∆kWh
LED Bulb	Res Lighting	All	0.03	0.03	0.03	40.2	37.3	34.1
LED (EISA Exempt)	Res Lighting	All	0.04	0.04	0.04	52.4	52.4	52.4
LED Bulb (Hard to Reach)	Res Lighting	All	0.03	0.03	0.03	40.2	37.3	34.1
LED Bulb (School Fundraiser)	Res Lighting	All	0.03	0.03	0.03	35.4	32.9	40.0
LED Bulb (Reflectors)	Res Lighting	All	0.05	0.05	0.05	57.2	57.2	57.2
LED Bulb	HES	All	0.05	0.05	0.04	47.6	45.6	43.0
LED Bulb	MF Retrofit	Eversource	0.05	0.05	0.04	47.6	45.6	43.0
LED Bulb	LI Retrofit 1-4	All	0.05	0.05	0.04	47.6	45.6	43.0
LED Bulb	LI MF Retrofit	Eversource, CLC	0.06	0.05	0.05	55.1	52.4	49.2
LED Bulb	RNC	All	0.03	0.03	0.03	33.0	30.6	28.0

Baseline Efficiency

The baseline efficiency case for the Res Lighting and RNC initiatives is a combination of an incandescent bulb, halogen bulb, and a compact fluorescent bulb. The baseline efficiency case for direct install retrofit initiatives is a combination of an incandescent bulb and halogen bulb.

High Efficiency

The high efficiency case is an ENERGY STAR® rated LED bulb.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 145 of 435

Hours

Average annual operating hours for efficient bulbs in the Res Lighting program are 1,200 hours/year ((93%*2.9 hours/day + 7%*8.46 hours/day)*365 days/year).^{273, 274,275} Average annual operating hours for all bulbs in the HES, RNC, LI RNC, LI Retrofit 1-4, MF Retrofit and LI MF Retrofit programs are 985.5 hours/year (2.7 hours/day * 365 days/year).²⁷⁶

Measure Life

The measure life for LED EISA Exempt Baseline and Reflectors is 17 years.²⁷⁷ In the Res Lighting program the adjusted measure life for LED bulbs is 8 years. In the HES, RNC, LI RNC, LI Retrofit 1-4, MF Retrofit and LI MF Retrofit programs the adjusted measure life is 9 years.²⁷⁸

Secondary Energy Impacts

There is a heat loss of 2,237 Btu/kWh counted for bulbs sold upstream.²⁷⁹

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
LED Bulb	Res Lighting	All	0.98	1.00	1.00	1.00	0.14	0.18
LED (EISA Exempt)	Res Lighting	All	0.98	1.00	1.00	1.00	0.14	0.18
LED Bulb (Hard to Reach)	Res Lighting	All	1.00	1.00	1.00	1.00	0.14	0.18
LED Bulb (School Fundraiser)	Res Lighting	All	0.50	1.00	1.00	1.00	0.14	0.18
LED Bulb (Reflectors)	Res Lighting	All	0.98	1.00	1.00	1.00	0.14	0.18
LED Bulb	HES, LI Retrofit 1-4, RNC	All	1.00	1.00	1.00	1.00	0.13	0.16
LED Bulb	MF Retrofit	Eversource	0.97	0.60	0.60	0.60	0.13	0.16
LED Bulb	LI MF Retrofit	Eversource, CLC	1.00	1.00	1.00	1.00	0.17	1.00
LED Bulb	RNC	All	1.00	1.00	1.00	1.00	0.13	0.16

²⁷³ NMR Group Inc. (2014). *Northeast Residential Lighting Hours of Use Study*. The study recommended the use of the regional lighting hours of use numbers for both the efficient and all bulb lighting values.

²⁷⁴ The Cadmus Group (2015). *Massachusetts Residential Lighting Cross-Sector Sales Research*.

²⁷⁵ DNV-GL (2015). Massachusetts Commercial and Industrial Upstream Lighting Program: "In Storage" Lamps Follow-Up Study

²⁷⁶ NMR Group Inc. (2014). *Northeast Residential Lighting Hours of Use Study*. The study recommended the use of the regional lighting hours of use numbers for both the efficient and all bulb lighting values.

²⁷⁷ MA PAs (2015). 2016-2018 MA Lighting Worksheet

²⁷⁸ Ibid.

²⁷⁹ The Cadmus Group (2015) Lighting Interactive Effects Study Preliminary Results; for the upstream program only.

In-Service Rates

- Res Lighting: Baseline Sensitivity Analysis Spreadsheet, 2016-2018 Plan Version.²⁸⁰
- HTR, LI Retrofit 1-4 and LI MF Retrofit: PAs assume a 100% installation rate.
- RNC: 2006 ENERGY STAR® Homes New Homebuyer Survey Report²⁸¹
- MF Retrofit: MF Retrofit: 2012 MF Impact Analysis.²⁸²
- HES: Impact evaluation of the HES program²⁸³

Realization Rates

Realization rates are based on Massachusetts Common Assumptions except for MF Retrofit which is based on MA Common Assumptions.

Coincidence Factors

Coincidence factors are based on the 2014 Lighting Hours of Use Study for all initiatives except for LI MF Retrofit which is estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012), ^{284,285}

²⁸⁰ MA PAs (2015). 2016-2018 MA Lighting Worksheet

²⁸¹ Nexus Market Research & Dorothy Conant (2006). Massachusetts ENERGY STAR® Homes: 2005 Baseline Study: Part II: Homeowner Survey Analysis Incorporating Inspection Data Final Report, Prepared for the Massachusetts Joint Management Committee.

²⁸² The Cadmus Group (2012). Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis. Prepared for the Massachusetts Electric and Gas Program Administrators.

²⁸³ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts. ²⁸⁴ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

²⁸⁵ NMR Group Inc. (2014). Northeast Residential Lighting Hours of Use Study.

Lighting – LED Fixtures

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of Light-Emitting Diode (LED) fixtures. LEDs offer comparable luminosity to incandescent or halogen bulbs at significantly less wattage and significantly longer lamp lifetimes.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Residential, Low-Income
Market: Lost Opportunity
End Use: Lighting
Measure Type: Interior

Core Initiative: Residential Lighting, Electric – Low-Income Single Family Retrofit, Electric – Low-Income Multi-Family Retrofit, Electric - Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

For LI Retrofit 1-4 unit savings are deemed based on study results²⁸⁶.

Savings for Single Family Low-Income Fixtures

Measure Name	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{287}$
Indoor Fixture	LI Retrofit 1-4	140	0.14

For Residential Lighting MF Retrofit and LI MF Retrofit unit savings are based on the following algorithms which use averaged inputs.

 $\Delta kW = Bulbs \times Save_{kW}$ $\Delta kWh = \Delta kW \times hours$

 $\Delta k W n = \Delta k W \times not$

Where:

Bulbs	=	Average # of bulbs per unit for indoor is 1.49 and for outdoor it is 2.0^{288}
Save _{kw}	=	Average kW savings per bulb : See Lighting – LED Bulbs ²⁸⁹
Hours	=	Annual hours of use : 1,200 for Res Lighting and 985.5 for MF Retrofit and LI MF Retrofit

Savings for Residential LED Fixtures

²⁸⁶ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

²⁸⁷ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

 ²⁸⁸ NMR Group, Inc. (2013). *Results of the Massachusetts Onsite Lighting Inventory*. Prepared for the Massachusetts PAs.
 ²⁸⁹ NMR Group (2015). *Baseline Sensitivity Analysis Spreadsheet*, 2016-2018 Plan Version. Prepared for the Massachusetts PAs.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 148 of 435

Measure Name	Core Initiative	2016 ∆kW	2017 ∆kW	2018	2016 ∆kWh	2017 ∆kWh	2018 ∆kWh
LED Fixture	Res Lighting	0.05	0.05	0.04	59.9	55.5	50.8
In Unit Indoor LED Fixture	MF Retrofit	0.07	0.08	0.06	70.9	68.0	64.0
In Unit Outdoor LED Fixture	MF Retrofit	0.10	0.09	0.09	95.0	91.3	86.5
In Unit Indoor LED Fixture	LI MF Retrofit	0.07	0.07	0.06	70.9	68.0	64.0
In Unit Outdoor LED Fixture	LI MF Retrofit	0.10	0.09	0.09	95.0	91.3	86.5

Baseline Efficiency

The baseline efficiency case is a combination of an incandescent bulb, halogen bulb, and compact florescent bulb for Residential Lighting. The baseline efficiency case for LI MF Retrofit is an incandescent bulb, or a halogen bulb.

High Efficiency

The high efficiency case is an LED fixture.

Hours

Average annual operating hours for efficient bulbs in the Res Lighting program are 1,200 hours/year Average annual operating nours for efficient out of in the field $2^{290,291,292}$ The average annual operating ((93%*2.9 hours/day + 7%*8.46 hours/day)*365 days/year). hours for efficient bulbs in MF Retrofit and LI MF Retrofit is 985.5 (2.7 hours/day *365 days/year).²

Measure Life

The adjusted measure lives for LED Fixtures are²⁹⁴:

Measure Name	Core Initiative	2016	2017	2018
LED Fixture	Res Lighting	8	8	8
Indoor Fixture	LI Retrofit 1-4	9	9	9
In Unit Indoor LED Fixture	MF Retrofit	9	9	9
In Unit Outdoor LED Fixture	MF Retrofit	9	9	9
In Unit Indoor LED Fixture	LI MF Retrofit	9	9	9
In Unit Outdoor LED Fixture	LI MF Retrofit	9	9	9

Secondary-Energy Impacts

There is a heat loss of 2,237 Btu/kWh counted for bulbs and fixtures sold upstream.²⁹⁵

The Cadmus Group (2015). Massachusetts Residential Lighting Cross-Sector Sales Research.

²⁹⁰ NMR Group Inc. (2014). Northeast Residential Lighting Hours of Use Study. The study recommended the use of the regional lighting hours of use numbers for both the efficient and all bulb lighting values.

²⁹² DNV-GL (2015). Massachusetts Commercial and Industrial Upstream Lighting Program: "In Storage" Lamps Follow-Up Study

²⁹³ NMR Group Inc. (2014). Northeast Residential Lighting Hours of Use Study. The study recommended the use of the regional lighting hours of use numbers for both the efficient and all bulb lighting values.

²⁹⁴ MA PAs (2015). 2012-2018 MA Lighting Worksheet.

²⁹⁵ Cadmus (2015) Lighting Interactive Effects Study Preliminary Results; For the upstream program only.

Non-Energy Impacts

Benefit Type Description		Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
LED Fixture	Res Lighting	All	1.00	1.00	1.00	1.00	0.14	0.18
Indoor Fixture	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	0.17	1.00
In Unit Indoor LED Fixture	MF Retrofit	Eversource	0.97	0.60	0.60	0.60	0.13	0.16
In Unit Outdoor LED Fixture	MF Retrofit	Eversource	0.97	0.60	0.60	0.60	0.13	0.16
In Unit Indoor LED Fixture	LI MF Retrofit	Eversource, CLC	1.00	1.00	1.00	1.00	0.13	0.16
In Unit Outdoor LED Fixture	LI MF Retrofit	Eversource, CLC	1.00	1.00	1.00	1.00	0.13	0.16

In-Service Rates

Res Lighting: Baseline Sensitivity Analysis Spreadsheet, 2016-2018 Plan Version.²⁹⁶

• LI MF Retrofit: PAs assume a 100% installation rate.

MF Retrofit: MF Retrofit: 2012 MF Impact Analysis.²⁹⁷

Realization Rates

Realization rates are based on Massachusetts Common Assumptions except for MF Retrofit which is based on MA Common Assumptions.

Coincidence Factors

Coincidence factors are based on the 2014 Lighting Hours of Use Study²⁹⁸

²⁹⁶ MA PAs (2015). 2016-2018 MA Lighting Worksheet

²⁹⁷ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for the Massachusetts Electric and Gas Program Administrators.

²⁹⁸ NMR Group Inc. (2014). Northeast Residential Lighting Hours of Use Study.

Lighting – Bulbs

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Removal of existing inefficient bulbs with the installation of new efficient bulbs Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low-Income Market: Retrofit End Use: Lighting Measure Type: Interior, Exterior Core Initiative: Electric - Multi-Family Retrofit, Electric - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using the following algorithms and assumptions:

 $\Delta kWh = \left[\left(QTY_{PRE} \times Watts_{PRE} \times Hours_{PRE} \right) - \left(QTY_{EE} \times Watts_{EE} \times Hours_{EE} \right) \right] / 1000 \times 52$ $\Delta kW = \Delta kWh \times kW / kWh$

Where:

QTY _{PRE}	=	Quantity of pre-retrofit fixtures/bulbs
QTY _{EE}	=	Quantity of efficient fixtures/bulbs installed
Watts _{PRE}	=	Rated watts of pre-retrofit fixtures/bulbs
$Watts_{EE}$	=	Rated watts of efficient fixtures/bulbs installed
Hours _{PRE}	=	Weekly hours of operation for pre-retrofit case lighting fixtures/bulbs
Hours _{EE}	=	Weekly hours of operation for efficient lighting fixtures/bulbs
52	=	Weeks per year
kW/kWh	=	Average kW reduction per kWh reduction: 0.00030 kW/kWh ²⁹⁹

Baseline Efficiency

The baseline efficiency case is the existing bulbs.

High Efficiency

The high efficiency case is the new bulbs.

Measure Life

The estimated expected useful lives are as shown below 300 .

²⁹⁹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators. Loadshape: Res Multi Family Electric Lighting - Indoor (LIGHTING) Normal

Measure Name	2016 EUL	2017 EUL	2018 EUL
CFL Bulb	5	4	4
LED Bulb	9	9	9

Hours

Operating hours are estimated by the vendor for each facility. Typical assumptions are 24 hours/day for common area lighting, 12 hours/day for exterior lighting, and 2.7 hours/day for in-unit lighting, but may be adjusted based on type of housing. Study-determined hours of use by room type may also be applied.³⁰¹ Estimates are verified with facility maintenance staff when possible.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CFL Bulb	MF Retrofit	National Grid, CLC, Unitil	0.97	0.60	0.60	0.60	0.17	1.00
LED Bulb	MF Retrofit	National Grid, CLC, Unitil	0.97	0.60	0.60	0.60	0.17	1.00
CFL Bulb	LI MF Retrofit	National Grid, Unitil	1.00	1.00	1.00	1.00	0.17	1.00
LED Bulb	LI MF Retrofit	National Grid, Unitil	1.00	1.00	1.00	1.00	0.17	1.00

In-Service Rates

In service rate for MF Retrofit is from an evaluation study.³⁰²

Realization Rates

MF Retrofit is set to 60% based on draft evaluation results.³⁰³

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.³⁰⁴

³⁰⁰ MA PAs (2015). 2012-2018 MA Lighting Worksheet. The adjusted measure life accounts for changes in the baseline due to EISA standards.

³⁰¹ NMR Group, Inc. (2014) Northeast Residential Lighting Hours-of-Use Study. Table 3-1

³⁰² The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for the Massachusetts Electric and Gas Program Administrators.

³⁰³ Massachusetts Common Assumptions (2015).

³⁰⁴ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Lighting - Fixtures

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Removal of existing inefficient fixtures with the installation of new efficient fixtures Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low-Income Market: Retrofit End Use: Lighting Measure Type: Interior, Exterior Core Initiative: Electric - Multi-Family Retrofit, Electric - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using the following algorithms and assumptions:

 $\Delta kWh = \left[\left(QTY_{PRE} \times Watts_{PRE} \times Hours_{PRE} \right) - \left(QTY_{EE} \times Watts_{EE} \times Hours_{EE} \right) \right] / 1000 \times 52$ $\Delta kW = \Delta kWh \times kW / kWh$

Where:

QTY _{PRE}	=	Quantity of pre-retrofit fixtures/bulbs
QTY _{EE}	=	Quantity of efficient fixtures/bulbs installed
Watts _{PRE}	=	Rated watts of pre-retrofit fixtures/bulbs
$Watts_{EE}$	=	Rated watts of efficient fixtures/bulbs installed
Hours _{PRE}	=	Weekly hours of operation for pre-retrofit case lighting fixtures/bulbs
Hours _{EE}	=	Weekly hours of operation for efficient lighting fixtures/bulbs
52	=	Weeks per year
kW/kWh	=	Average kW reduction per kWh reduction: 0.00030 kW/kWh ³⁰⁵

Baseline Efficiency

The baseline efficiency case is the existing fixture.

High Efficiency

The high efficiency case is the new fixtures.

³⁰⁵ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators. Loadshape: Res Multi Family Electric Lighting - Indoor (LIGHTING) Normal

Measure Life

The estimated expected useful lives are as shown below³⁰⁶.

Measure Name	2016 EUL	2017 EUL	2018 EUL
In Unit Indoor LED Fixture	9	9	9
In Unit Outdoor LED Fixture	9	9	9
Common Area Int LED Fixture	4	4	4
Common Area Int Linear LED Fixture	9	9	9
Common Area Ext LED Fixture	11	11	11

Hours

Operating hours are estimated by the vendor for each facility. Typical assumptions are 24 hours/day for common area lighting, 12 hours/day for exterior lighting, and 2.7 hours/day for in-unit lighting, but may be adjusted based on type of housing. Study-determined hours of use by room type may also be applied.³⁰⁷ Estimates are verified with facility maintenance staff when possible.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type Description		Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
In Unit Indoor LED Fixture	MF Retrofit	National Grid, CLC, Unitil	0.97	0.60	0.60	0.60	0.17	1.00
In Unit Outdoor LED Fixture	MF Retrofit	National Grid, CLC, Unitil	0.97	0.60	0.60	0.60	0.00	1.00
Common Area Int LED Fixture	MF Retrofit	All	0.97	0.60	0.60	0.60	0.17	1.00
Common Area Int Linear LED Fixture	MF Retrofit	All	0.97	0.60	0.60	0.60	0.17	1.00
Common Area Ext LED Fixture	MF Retrofit	All	0.97	0.60	0.60	0.60	0.00	1.00
In Unit Indoor Fixture	LI MF Retrofit	National Grid, Unitil	1.00	1.00	1.00	1.00	0.17	1.00
In Unit Outdoor Fixture	LI MF Retrofit	National Grid, Unitil	1.00	1.00	1.00	1.00	0.00	1.00
In Unit Indoor LED Fixture	LI MF Retrofit	National Grid, Unitil	1.00	1.00	1.00	1.00	0.17	1.00

³⁰⁶ Measure Lives are based on ENERGY STAR and manufacturing rated measure lives, adjusted for changes in the baseline due to EISA standards. See 2016-2018 MA Lighting Worksheet

³⁰⁷ NMR Group, Inc. (2014) Northeast Residential Lighting Hours-of-Use Study. Table 3-1

Massachusetts Technical Reference Manual

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 154 of 435

Residential Efficiency Measures

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
In Unit Outdoor LED Fixture	LI MF Retrofit	National Grid, Unitil	1.00	1.00	1.00	1.00	0.00	1.00
Common Area Int Fixture	LI MF Retrofit	National Grid	1.00	1.01	1.01	1.01	0.17	1.00
Common Area Int Fixture	LI MF Retrofit	Unitil	1.00	0.97	0.97	0.97	0.17	1.00
Common Area Int Fixture	LI MF Retrofit	Eversource	1.00	0.96	0.96	0.96	0.17	1.00
Common Area Int Fixture	LI MF Retrofit	CLC	1.00	0.97	0.97	0.97	0.17	1.00
Common Area Int LED Fixture	LI MF Retrofit	National Grid	1.00	1.01	1.01	1.01	0.17	1.00
Common Area Int LED Fixture	LI MF Retrofit	Unitil	1.00	0.97	0.97	0.97	0.17	1.00
Common Area Int LED Fixture	LI MF Retrofit	Eversource	1.00	0.96	0.96	0.96	0.17	1.00
Common Area Int LED Fixture	LI MF Retrofit	CLC	1.00	0.97	0.97	0.97	0.17	1.00
Common Area Ext LED Fixture	LI MF Retrofit	National Grid	1.00	1.01	1.01	1.01	0.00	1.00
Common Area Ext LED Fixture	LI MF Retrofit	Unitil	1.00	0.97	0.97	0.97	0.00	1.00
Common Area Ext LED Fixture	LI MF Retrofit	Eversource	1.00	0.96	0.96	0.96	0.00	1.00
Common Area Ext LED Fixture	LI MF Retrofit	CLC	1.00	0.97	0.97	0.97	0.17	1.00
Common Area Ext Fixture	LI MF Retrofit	National Grid	1.00	1.01	1.01	1.01	0.00	1.00
Common Area Ext Fixture	LI MF Retrofit	Unitil	1.00	0.97	0.97	0.97	0.00	1.00
Common Area Ext Fixture	LI MF Retrofit	Eversource	1.00	0.96	0.96	0.96	0.00	1.00
Common Area Ext Fixture	LI MF Retrofit	CLC	1.00	0.97	0.97	0.97	0.17	1.00

In-Service Rates

In service rate for MF Retrofit is from an evaluation study.³⁰⁸

Realization Rates

- MF Retrofit is set to 60% based on draft evaluation results.³⁰⁹
- LI MF Retrofit realization rates are based on evaluation results.³¹⁰

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.³¹¹

³⁰⁸ The Cadmus Group (2012). Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis. Prepared for the Massachusetts Electric and Gas Program Administrators. ³⁰⁹ Massachusetts Common Assumptions (2015).

³¹⁰ The Cadmus Group (2015). *Massachusetts Low-Income Multifamily Initiative Impact Analysis*. Prepared for the Electric and Gas Program Administrators of Massachusetts. ³¹¹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for

Massachusetts Program Administrators.

Lighting - Occupancy Sensors

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of occupancy sensors for lighting fixtures. This measure involves installing an occupancy sensor that controls lighting fixtures and limits their use when the space is unoccupied Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: Lighting Measure Type: Controls Program: Electric - Multi-Family Retrofit, Electric - Low Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithms which use averaged inputs³¹²:

$$\Delta kWh = \frac{(Watts_{controlled}) \times Hrs \ \times svg}{1,000}$$

Where:

Watts controlled	=	Connected load wattage controlled by Occupancy Sensor
Hours	=	Assumed run time of fixture (before the installation of occupancy sensors
		(Auditor Input)
svg	=	Percentage of annual lighting energy saved by occupancy sensor is 30% ³¹³

Baseline Efficiency

The baseline condition for this measure is a lighting fixture that is not controlled by an occupancy sensor.

High Efficiency

The high efficiency case is a lighting fixture that operates with connected occupancy sensors.

Hours

Deemed values for hours may be used if auditor does not collect information.

³¹² The Cadmus Group, Inc. (2012). *Massachusetts Multifamily Program Impact Analysis*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³¹³ Ibid.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 156 of 435

Zone	Usage Category	Hours/Day (Calc.) ³¹⁴
Common Area (Exterior)	Exterior	10.3
Common Area (Interior)	Extended Hours & 24/7	24.0
Common Area (Interior)	Low Usage	3.4
Common Area (Interior)	Medium Usage	12.5
Common Area (Interior)	Non-Area Specific	16.2
Dwelling Unit	Unit	2.7

Measure Life

The measure life is 10 years.³¹⁵

Secondary-Energy Impacts

There are no secondary energy impacts counted for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Common Area Occupancy Sensors	MF Retrofit	All	1.00	0.60	0.60	0.60	0.00	0.00
Common Area Occupancy Sensors	LI MF Retrofit	All	1.00	1.00	1.00	1.00	0.00	0.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are set to 100% since this program has not been evaluated.

Coincidence Factors

Coincidence factors are set to zero since demand savings typically occur during off- peak periods.

³¹⁴ Ibid.

³¹⁵ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group.

Motors/Drives – Pool Pump

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of a 2-speed or variable speed drive pool pump. Operating a pool pump for a longer period of time at a lower wattage can move the same amount of water using significantly less energy. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Measure Type: Variable Speed Drive

Core Initiative: Electric - Residential Consumer Products

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on averaged results from the ENERGY STAR pool pump calculator.³¹⁶ The calculator was run for 6 scenarios; a two-speed replacement pump and a variable speed replacement pump, for 3 baseline sizes ranging from 1HP to 2HP.

Demand savings are deemed based on the following algorithms, which use averaged inputs aligning with the scenarios run for the calculator.

$$MD = \frac{FR^*60}{EF} \times \frac{RT}{24} \times \frac{1}{1000}$$

 $\begin{array}{ll} MD_{Efficient} = & MD_{High \ Flow} + MD_{Low \ Flow} \\ Demand \ Savings = MD_{Efficient} \ \text{---} \ MD_{Baseline} \end{array}$

Where:

- MD = Maximum Demand of Pump under given operating conditions
- FR = Maximum Flow Rate of Pump (gallons/minute); From EnergyStar calculator
- 60 = Minutes per hour
- RT = Pump run time (hours/day)
- 24 = Hours per day
- EF = Energy Factor (gallons/Watt-hour); From EnergyStar calculator

For each pump, the run time was set to achieve 1.5 turnovers per day, with 2 hours at high speed for cleaning.

For 1horsepower pumps, pool size was assumed to be 20,000 gallons

³¹⁶<u>http://www.energystar.gov/sites/default/files/asset/document/Pool%20Pump%20Calculator.xlsx</u>

For 1.5 horsepower pumps, pool size was assumed to be 22,500 gallons For 2 horsepower pumps, pool size was assumed to be 23,000 gallons

Savings for Pool Pumps

Measure Name	Core Initiative	PA Type	∆kWh	∆kW
Pool Pump (Two Speed)	Res Products	Elec	842	0.38
Pool Pump (Variable Speed)	Res Products	Elec	1,062	0.50

Baseline Efficiency

The baseline efficiency case is a single speed 1.5 horsepower pump that pumps 64 gallons per minute and runs 8.5 hours per day for 91 days a year. It has an EF = 2.1 and cycles 32,640 gallons per day.

High Efficiency

The high efficiency case is a 2-speed or variable speed pump.

For the two-speed pump the high efficiency case is a 2.0 HP pump rated at 66 gpm high speed (oversized motor compared to the base case). It has a 2.0 EF at high speed, a 5.2 EF at low speed (50% flow) and runs 2 hr/day at high speed for filter & cleaning and 12.5 hr/day for filtering alone to deliver the equivalent total gallons of cycling per day.

For the variable speed pump the high efficiency case is a variable speed pump rated at 50 gpm high speed. It has a 4.0 EF at high speed, a 8.8EF at low speed and runs 2 hr/day at high speed for filter & cleaning and 18 hr/day for filtering alone

Hours

Hours of use are dependent on the efficiency of the pump and the size of the pool, as described above. Pumps are assumed to be in use for 91 days per year.

Measure Life

The measure life is 10 years.³¹⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

³¹⁷ Davis Energy Group (2008). *Proposal Information Template for Residential Pool Pump Measure Revisions*. Prepared for Pacific Gas and Electric Company.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Pool Pump (Two Speed)	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.00
Pool Pump (Variable Speed)	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factor

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.³¹⁸

³¹⁸ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Plug Load – Room Air Cleaner

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Rebates provided for the purchase of an ENERGY STAR® qualified room air cleaner. ENERGY STAR® air cleaners are 40% more energy-efficient than standard models. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Measure Type: Room Air Cleaners Core Initiative: Electric - Residential Consumer Products

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on averaged inputs. ³¹⁹

Measure Name	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{320}$
Room Air Cleaner	Res Products	391	0.08

Baseline Efficiency

The baseline efficiency case is a conventional unit with clean air delivery rate (CADR) of 51-100.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified air cleaner with a CADR of 51-100.

Hours

The savings are based on 16 operating hours per day, 365 days per year.³²¹

Measure Life

The measure life is 9 years.³²²

³¹⁹ Environmental Protection Agency (2014). Savings Calculator for Energy Star Qualified Appliances.

³²⁰ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

³²¹ Environmental Protection Agency (2014). Savings Calculator for Energy Star Qualified Appliances.

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx 322 Ibid

⁵²² Ibid.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Room Air Cleaner	Res Products	All	1.00	1.00	1.00	1.00	0.73	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.³²³

³²³ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Plug Load – Smart Strips

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Switches off plug load using current sensors and switching devices which turn off plug load when electrical current drops below threshold low levels. Smart Strips can be used on electrical home appliances or in the workplace. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential, Low-Income Market: Lost Opportunity, Retrofit End Use: Process Measure Type: Smart Strips Core Initiative: Electric - Residential Consumer Products, Electric - Residential Home Energy Services, Electric - Low-Income Single Family Retrofit, Electric - Multi-Family Retrofit, Electric - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results³²⁴

Savings for Smart Strips

Measure Name	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{325}$
Smart Strip	Res Products, HES, LI Retrofit 1-4	75.1	0.02
Smart Strip	MF Retrofit, LI MF Retrofit	75.1	0.01

Baseline Efficiency

The baseline efficiency case is no power strip and leaving peripherals on or using a power surge protector.

High Efficiency

The high efficiency case is a Smart Strip Energy Efficient Power Bar

Hours

Since the power strip is assumed to be plugged in all year, the savings are based on 8,760 operational hours per year.

³²⁴ NEEP (2012). Advanced Power Strips Deemed Savings Methodology.

³²⁵ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 163 of 435

Measure Life

The measure life is 5 years³²⁶

Secondary-Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Smart Strip	Res Products	All	1.00	1.00	1.00	1.00	0.73	1.00
Smart Strip	HES	All	1.00	1.00	1.00	1.00	0.73	1.00
Smart Strip	MF Retrofit	All	1.00	1.00	1.00	1.00	0.77	1.00
Smart Strip	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	0.73	1.00
Smart Strip	LI MF Retrofit	All	1.00	1.00	1.00	1.00	0.77	1.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.³²⁷

 ³²⁶ Massachusetts Common Assumption.
 ³²⁷ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Plug Load – Advanced Smart Strips

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Advanced power strips can automatically eliminate standby power loads of electronic peripheral devices that are not needed (DVD player, computer printer, scanner, etc.) either automatically or when an electronic control device (typically a television or personal computer) is in standby or off mode. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential, Low-Income Market: Lost Opportunity, Retrofit End Use: Process Measure Type: Smart Strips Core Initiative: Electric - Residential Consumer Products

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results³²⁸

Savings for Smart Strips

Measure Name	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{329}$
Power Strip (Tier 2)	Res Products	346	0.07

Baseline Efficiency

The baseline efficiency case is no power strip and leaving peripherals.

High Efficiency

The high efficiency case is an Advanced Smart Strip Energy Efficient Power Bar

Hours

Since the power strip is assumed to be plugged in all year, the savings are based on 8,760 operational hours per year.

Measure Life

The measure life is 5 years³³⁰

³²⁸ California Plug Load Research Center (2014). Tier 2 Advanced PowerStrip Evaluation for Energy Savings Incentive.

³²⁹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Secondary-Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Power Strip (Tier 2)	Res Products	All	1.00	1.00	1.00	1.00	0.73	1.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described in the Cadmus Demand Impact Model.³³¹

³³⁰ Massachusetts Common Assumption.

³³¹ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Plug Load – Dehumidifier

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of an Energy Star dehumidifier. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Measure Type: Dehumidifiers Core Initiative: Electric - Residential Consumer Products

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Capacity \times \frac{0.473}{24} \times \left(\frac{1}{Eff_{BASE}} - \frac{1}{Eff_{EE}}\right) \times Hours$$

 $\Delta kW = \Delta kWh_{EE} / Hours$

Where:

Capacity	=	Average capacity of dehumidifier in Pints/24 Hours: 35 Pints/Day ³³²
Eff _{BASE}	=	Average efficiency of conventional model in Liters/kWh
$\mathrm{Eff}_{\mathrm{EE}}$	=	Average efficiency of ENERGY STAR® model in Liters/kWh
Hours	=	Dehumidifier annual operating hours
0.473	=	Conversion factor: 0.473 Liters/Pint
24	=	Conversion factor: 24 Hours/Day
CF	=	Summer Peak Coincidence Factor; 0.37 ³³³

Savings for Dehumidifiers

Measure Name	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}$
Dehumidifier	Res Products	239	0.04

Baseline Efficiency

The baseline efficiency is a unit meeting the current federal standard:³³⁴

³³³ Assumes usage is evenly distributed day vs. night, weekend vs. weekday and is used for 8 months per year (5760 possible hours). Coincidence during summer peak is therefore 2160/5760 = 37.5%

³³² 35 pints per day was the average capacity for units turned in at the Cape Light Compact's May 2010 event.

³³⁴ http://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf

Unit Size	EF
30 Pint/Day	1.35
50 Pint/Day	1.60
70 Pint/Day	1.70

High Efficiency

The high efficiency case is an ENERGY STAR® unit with an efficiency of 1.85 L/kWh³³⁵.

Hours

Average annual operating hours are 2,160 hours.³³⁶

Measure Life

The measure life is 12 years.³³⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Dehumidifier	Res Products	All	1.00	1.00	1.00	1.00	0.85	1.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

³³⁵ Energy Star Dehumidifiers Product List, posted to the Energy Star website on August 2, 2012.

³³⁶ The Cadmus Group, Inc. <u>http://aceee.org/files/proceedings/2012/data/papers/0193-000291.pdf</u>

³³⁷ Environmental Protection Agency (2014). *Savings Calculator for Energy Star Qualified Appliances*. http://www.energystar.gov/sites/default/files/asset/document/appliance calculator.xlsx

Plug Load – Dehumidifier Recycling

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Early retirement of existing dehumidifiers Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low-Income Market: Retrofit End Use: Process Measure Type: Dehumidifiers Core Initiative: Electric - Residential Consumer Products, Electric - Low-Income Single Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh_{RETIRE} = Capacity \times \frac{0.473}{24} \times \left(\frac{1}{Eff_{RETIRE}} - \frac{1}{Eff_{BASE}}\right) \times Hours$$

 $\Delta k W_{RETIRE} = \Delta k W h_{RETIRE} / Hours$

Where:

Unit	=	Replacement of existing dehumidifier with new ENERGY STAR® dehumidifier
Capacity	=	Average capacity of dehumidifier in Pints/24 Hours: 35 Pints/Day ³³⁸
Eff _{BASE}	=	Average efficiency of new conventional model in Liters/kWh
Eff _{RETIRE}	=	Average efficiency of existing model in Liters/kWh
Hours	=	Dehumidifier annual operating hours
0.473	=	Conversion factor: 0.473 Liters/Pint
24	=	Conversion factor: 24 Hours/Day

Savings for Dehumidifiers

The total savings are the result of a weighted average for the algorithm above for three sizes, 30 pint, 50 pint, and 70 pint.

Measure Name	∆kWh	$\Delta \mathbf{k} \mathbf{W}$
Dehumidifier Recycling (EE)	239	0.04
Dehumidifier Recycling (Retire)	152	0.03

The baseline efficiency case for a retired dehumidifier ($Eff_{RETIRED}$) is the pre-2012 federal standards:Unit SizePre-2012 EF

 ³³⁸ 35 pints per day was the average turn in at the Cape Light Compact's May 2010 event. This event retired 125 units.
 ³³⁹ United States Congress. <u>http://energy.gov/sites/prod/files/2013/10/f3/epact_2005.pdf</u>

30 Pint/Day	1.20
50 Pint/Day	1.30
70 Pint/Day	1.50

High Efficiency

The high efficiency case assumes replacement with a unit meeting the current minimum federal standard³⁴⁰.

Unit Size	EF
30 Pint/Day	1.35
50 Pint/Day	1.60
70 Pint/Day	1.70

Hours

Average annual operating hours are 2,106 hours.³⁴¹

Measure Life

The measure life is 5 years.³⁴²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Dehumidifier Recycling	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	0.85	0.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

³⁴⁰ Department of Energy. <u>https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/55#standards</u>

³⁴¹ The Cadmus Group, Inc. <u>http://aceee.org/files/proceedings/2012/data/papers/0193-000291.pdf</u>

³⁴² On average, turn-in units at the Cape Light Compact's May 2010 event were 7 years old. The full measure life of 12 years minus the average age of the retired equipment of 7 years equals a remaining life of 5 years.

Water Heating – Pipe Wrap

Version Date and Revision History

Effective Date: 1/1/2016 TBD End Date:

Measure Overview

Description: Installation of DHW pipe wraps Energy Impact: Electric, Oil, Propane, Gas Secondary Energy Impact: None **Non-Energy Impact:** Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low Income Market: Retrofit End Use: Hot Water Measure Type: Insulation Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Home Energy Services, Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family Retrofit, Electric – Multi-Family Retrofit, Gas – Multi-Family Retrofit, Electric – Low Income Multi-Family Retrofit, Gas - Low Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results^{343,344,345} where unit is a household with pipe wrap installed on hot water pipes.

Measure Name	Core Initiative	Energy Type	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{346}$	∆MMBtu
Pipe Wrap (Water Heating), Electric	HES	Electric	64	0.01	
Pipe Wrap (Water Heating), Oil	HES	Oil			0.4
Pipe Wrap (Water Heating), Other	HES	Propane			0.3
Pipe Wrap (Water Heating), Gas; Pipe Wrap (Water Heating)	HES	Gas			0.3
Pipe Wrap (Water Heating), Electric	LI Retrofit 1-4	Electric	41	0.01	
Pipe Wrap (Water Heating), Oil	LI Retrofit 1-4	Oil			0.4
Pipe Wrap (Water Heating), Other	LI Retrofit 1-4	Propane			0.4
Pipe Wrap (Water Heating)	LI Retrofit 1-4	Gas			0.4
Pipe Wrap (Water Heating), Electric	MF Retrofit	Electric	129	0.02	
Pipe Wrap (Water Heating), Oil	MF Retrofit	Oil			1.14
Pipe Wrap (Water Heating), Other	MF Retrofit	Propane			1.14

Savings for Pine Wran (Water Heating)

³⁴³ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³⁴⁴ The Cadmus Group, Inc. (2012). Low Income Single Family Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts. ³⁴⁵ The Cadmus Group (2012). Massachusetts Multifamily Program Impact Analysis July 2012 – Revised May 2013. Prepared

for Massachusetts Program Administrators.

³⁴⁶ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 171 of 435

Measure Name	Core Initiative	Energy Type	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{346}$	AMMBtu
Pipe Wrap (Water Heating)	MF Retrofit	Gas			1.14
Pipe Wrap (Water Heating), Electric	LI MF Retrofit	Electric	129	0.02	
Pipe Wrap (Water Heating), Oil	LI MF Retrofit	Oil			1.14
Pipe Wrap (Water Heating), Other	LI MF Retrofit	Propane			1.14
Pipe Wrap (Water Heating)	LI MF Retrofit	Gas			1.14

Baseline Efficiency

The baseline efficiency case is the existing hot water equipment.

High Efficiency

The high efficiency case includes pipe wrap.

Hours

Not applicable.

Measure Life

The measure life is 15 years.³⁴⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

³⁴⁷ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 172 of 435

D.P.U. 15-160 to D.P.U. 15-169

Measure	Core Initiative	РА Туре	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Pipe Wrap (Water Heating)	HES	Electric	All	1.00	1.00	1.00	1.00	1.00	0.94
Pipe Wrap (Water Heating)	LI Retrofit 1-4	Electric	All	1.00	1.00	1.00	1.00	1.00	0.94
Pipe Wrap (Water Heating)	MF Retrofit	Electric	All	1.00	0.60	0.60	0.60	0.58	1.00
Pipe Wrap (Water Heating)	LI MF Retrofit	Electric	All	1.00	1.00	1.00	1.00	0.58	1.00
Pipe Wrap (Water Heating)	HES	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Pipe Wrap (Water Heating)	LI Retrofit 1-4	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Pipe Wrap (Water Heating)	MF Retrofit	Gas	All	1.00	0.60	n/a	n/a	n/a	n/a
Pipe Wrap (Water Heating)	LI MF Retrofit	Gas	Eversource	1.00	1.05	n/a	n/a	n/a	n/a
Pipe Wrap (Water Heating)	LI MF Retrofit	Gas	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Pipe Wrap (Water Heating)	LI MF Retrofit	Gas	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Pipe Wrap (Water Heating)	LI MF Retrofit	Gas	Unitil	1.00	0.96	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

- For HES, LI Retrofit 1-4 the realization rates are set to 100% since deemed savings are based on evaluation results.
- For LI MF Retrofit the realization rates are based on evaluation results. ³⁴⁸
- For MF Retrofit the realization rate is based on draft evaluation results.³⁴⁹

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.³⁵⁰

³⁴⁸ The Cadmus Group (2015). Massachusetts Low-Income Multifamily Initiative Impact Analysis. Prepared for the Electric and Gas Program Administrators of Massachusetts. ³⁴⁹ MA Common Assumptions (2015).

³⁵⁰ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Water Heating – Showerheads

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: An existing showerhead with a high flow rate is replaced with a new low flow showerhead. Primary Energy Impact: Electric, Oil, Propane, Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts, Residential Water Sector: Residential, Low Income Market: Retrofit End Use: Hot Water Measure Type: Flow Control Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Home Energy Services, Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family Retrofit, Electric – Multi-Family Retrofit, Gas – Multi-Family Retrofit, Electric – Low Income Multi-Family Retrofit, Gas - Low Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Measure Name Core Initiative		Energy Type	∆kWh	$\Delta \mathbf{kW}^{355}$	∆ MMBtu
Low-Flow Showerhead, Electric	HES	Electric	237	0.03	
Low-Flow Showerhead, Oil	HES	Oil			1.3
Low-Flow Showerhead, Other	HES	Propane			1.2
Low-Flow Showerhead, Gas; Low-Flow Showerhead	HES	Gas			1.2
Low-Flow Showerhead	LI Retrofit 1-4	Electric	188	0.03	
Low-Flow Showerhead, Oil	LI Retrofit 1-4	Oil			1.1
Low-Flow Showerhead, Other	LI Retrofit 1-4	Propane			0.9
Low-Flow Showerhead, Gas	LI Retrofit 1-4	Gas			0.9
Low-Flow Showerhead, Electric	MF Retrofit	Electric	129	0.02	
Low-Flow Showerhead, Other	MF Retrofit	Oil			1.14

Unit savings are deemed based on study results. 351,352,353,354

³⁵¹ The Cadmus Group, Inc. (2012). Home Energy Services Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts. ³⁵² The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program

Administrators of Massachusetts.

³⁵³ The Cadmus Group (2012). Massachusetts Multifamily Program Impact Analysis July 2012 – Revised May 2013. Prepared for Massachusetts Program Administrators.

³⁵⁴ The Cadmus Group, Inc. (2015). Massachusetts Low-Income Multifamily Initiative Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³⁵⁵ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Measure Name	Core Initiative	Energy Type	∆kWh	$\Delta \mathbf{kW}^{355}$	∆MMBtu
Low-Flow Showerhead, Other	MF Retrofit	Propane			1.14
Low-Flow Showerhead, Gas	MF Retrofit	Gas			1.14
Low-Flow Showerhead, Electric	LI MF Retrofit	Electric	217	0.04	
Low-Flow Showerhead, Oil	LI MF Retrofit	Oil			1.07
Low-Flow Showerhead, Gas	LI MF Retrofit	Gas			1.07

Baseline Efficiency

The baseline efficiency case is the existing showerhead with a baseline flow rate of 2.5 GPM.

High Efficiency

The high efficiency case is a low flow showerhead having a maximum flow rate between 1.5 and 1.7 GPM.

Hours

Not applicable.

Measure Life

The measure life is 7 years³⁵⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Residential Water	Residential water savings for low-flow showerheads ³⁵⁷	2,401 Gallons/Unit
Residential Water	Multifamily water savings for low-flow showerheads ³⁵⁸	2,165 Gallons/Unit
Residential Water	Low-Income Multifamily water savings for low-flow showerheads ³⁵⁹	1,759 Gallons/Unit
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

³⁵⁶ Massachusetts common assumption

³⁵⁷ Staff calculation based on methodology from The Cadmus Group, Inc. (2012). Home Energy Services Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³⁵⁸ Staff calculation based on methodology from The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts ³⁵⁹ The Cadmus Group (2015). *Massachusetts Low-Income Multifamily Initiative Impact Evaluation*. The Electric and Gas

Program Administrators of Massachusetts.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 175 of 435

Measure	Core Initiative	РА	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
		Туре							
Low-Flow Showerhead	HES	Electric	All	1.00	1.00	1.00	1.00	1.00	0.94
Low-Flow Showerhead	LI Retrofit 1-4	Electric	All	1.00	1.00	1.00	1.00	1.00	0.94
Low-Flow Showerhead	MF Retrofit	Electric	All	1.00	0.60	0.60	0.60	0.58	1.00
Low-Flow Showerhead	LI MF Retrofit	Electric	All	1.00	1.00	1.00	1.00	0.58	1.00
Low-Flow Showerhead	HES	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Low-Flow Showerhead	LI Retrofit 1-4	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Low-Flow Showerhead	MF Retrofit	Gas	All	1.00	0.60	n/a	n/a	n/a	n/a
Low-Flow Showerhead	LI MF Retrofit	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a

Impact Factors for Calculating Adjusted Gross Savings

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. For MF Retrofit, realization rate is based upon draft evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.³⁶⁰

³⁶⁰ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Water Heating – Faucet Aerator

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: An existing faucet aerator with a high flow rate is replaced with a new low flow aerator.
Primary Energy Impact: Electric, Oil, Propane, Gas
Secondary Energy Impact: None
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts, Residential Water
Sector: Residential, Low Income
Market: Retrofit
End Use: Hot Water
Measure Type: Flow Control
Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Home Energy
Services, Electric - Low-Income Single Family Retrofit, Gas - Low-Income Single Family
Retrofit, Electric - Low Income

Algorithms for Calculating Primary Energy Impact

Measure Name	Core Initiative	Energy Type	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{365}$	∆MMBtu
Faucet Aerator, Electric	HES	Electric	49	0.01	
Faucet Aerator, Oil	HES	Oil			0.3
Faucet Aerator, Other	HES	Propane			0.2
Faucet Aerator, Gas; Faucet Aerator	HES	Gas			0.2
Faucet Aerator, Electric	LI Retrofit 1-4	Electric	40	0.01	
Faucet Aerator, Oil	LI Retrofit 1-4	Oil			0.2
Faucet Aerator, Other	LI Retrofit 1-4	Propane			0.2
Faucet Aerator, Gas	LI Retrofit 1-4	Gas			0.2
Faucet Aerator, Electric	MF Retrofit	Electric	97	0.02	
Faucet Aerator, Oil	MF Retrofit	Oil			0.86
Faucet Aerator, Other	MF Retrofit	Propane			0.86

Unit savings are deemed based on study results. ^{361,362,363,364}

Multi-Family Retrofit, Gas - Low Income Multi-Family Retrofit

³⁶¹ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³⁶² The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³⁶³ The Cadmus Group (2012). *Massachusetts Multifamily Program Impact Analysis July 2012 – Revised May 2013*. Prepared for Massachusetts Program Administrators.

³⁶⁴ The Cadmus Group (2015). *Massachusetts Low-Income Multifamily Initiative Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³⁶⁵ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

Measure Name	Core Initiative	Energy Type	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{365}$	∆MMBtu
Faucet Aerator, Gas	MF Retrofit	Gas			0.86
Faucet Aerator, Electric	LI MF Retrofit	Electric	62	0.01	
Faucet Aerator, Oil	LI MF Retrofit	Oil			0.3
Faucet Aerator, Gas	LI MF Retrofit	Gas			0.3

Baseline Efficiency

The baseline efficiency case is the existing faucet aerator with a high flow.

High Efficiency

The high efficiency case is a low flow faucet aerator.

Hours

Not applicable.

Measure Life

The measure life is 7 years³⁶⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Residential Water	Residential water savings for faucet aerators ³⁶⁷	332 Gallons/Unit
Residential Water	LI Multifamily water savings for faucet aerators ³⁶⁸	708 Gallons/Unit
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

³⁶⁶ Massachusetts common assumption

³⁶⁷ NMR Group, Inc., Tetra Tech (2011). Massachusetts Special and Cross-Sector Studies Area, Residential and Low-Income Non-Energy Impacts (NEI) Evaluation, Prepared for Massachusetts Program Administrators ³⁶⁸ The Cadmus Group (2015). Massachusetts Low-Income Multifamily Initiative Impact Evaluation. Prepared for the Electric

and Gas Program Administrators of Massachusetts.

Impact Factors for	· Calculating	Adjusted	Gross	Savings
--------------------	---------------	----------	-------	---------

Measure	Core Initiative	РА	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
		Туре							
Faucet Aerator	HES	Electric	All	1.00	1.00	1.00	1.00	1.00	0.94
Faucet Aerator	LI Retrofit 1-4	Electric	All	1.00	1.00	1.00	1.00	1.00	0.94
Faucet Aerator	MF Retrofit	Electric	All	1.00	0.60	0.60	0.60	0.58	1.00
Faucet Aerator	LI MF Retrofit	Electric	All	1.00	1.00	1.00	1.00	0.58	1.00
Faucet Aerator	HES	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Faucet Aerator	LI Retrofit 1-4	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a
Faucet Aerator	MF Retrofit	Gas	All	1.00	0.60	n/a	n/a	n/a	n/a
Faucet Aerator	LI MF Retrofit	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. For MF Retrofit, realization rate is based upon draft evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.³⁶⁹

³⁶⁹ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Water Heating - Showerhead with Thermostatic Valve

Version Date and Revision History

Effective date: 1/1/2016 End date: TBD

Measure Overview

Description: An existing showerhead is replaced with a low-flow showerhead with an integrated thermostatic shut-off valve (TSV). Primary Energy Impact: Electric, Oil, Propane, Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts, Residential Water Sector: Residential Market: Retrofit End Use: Hot Water Measure Type: Flow Control Core Initiative: Electric - Residential Consumer Products, Electric - Multi-Family Retrofit, Gas -Multi-Family Retrofit

Notes

Thermostatic shut-off valve technology is known by the trademarked name ShowerStart[™].

Algorithms for Calculating Primary Energy Impacts

Measure Name	Core Initiative	Energy Type	$\Delta \mathbf{k} \mathbf{W}^{371}$	∆kWh	AMMBtu
Low-Flow Showerhead with TSV, Electric	Res Products	Electric	0.06	372	
Low-Flow Showerhead with TSV, Oil	Res Products	Oil			2.09
Low-Flow Showerhead with TSV, Other	Res Products	Propane			1.84
Low-Flow Showerhead with TSV, Gas	Res Products	Gas			1.84
Low-Flow Showerhead with TSV, Electric	MF Retrofit	Electric	0.06	335	
Low-Flow Showerhead with TSV, Oil	MF Retrofit	Oil			1.88
Low-Flow Showerhead with TSV, Other	MF Retrofit	Propane			1.66
Low-Flow Showerhead with TSV	MF Retrofit	Gas			1.66

Unit savings are deemed based on engineering analysis.³⁷⁰

Baseline Efficiency

The Baseline Efficiency case is an existing standard-flow showerhead (2.5 GPM) with no thermostatic shut-off valve.

³⁷⁰ National Grid (2014). *Review of ShowerStart evolve*.

³⁷¹ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.
High Efficiency

The high efficiency case is a low-flow showerhead (1.5 GPM) with integrated thermostatically actuated valve.

Hours

Not applicable.

Measure Life

The measure life is 7 years.³⁷²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Residential Water	Residential water savings for showerhead with integrated TSV	3,022 Gallons/Unit-year ³⁷³
Residential Water	Multifamily water savings for showerhead with integrated TSV	2,723 Gallons/Unit-year ³⁷⁴
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Low-Flow Showerhead with TSV	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.94
Low-Flow Showerhead with TSV	MF Retrofit	All	1.00	0.60	1.60	1.60	0.58	1.00

In-Service Rates

All installations have 100% in service rate.

Realization Rates

All PAs use 100% energy realization rate except for MF Retrofit where the realization rate is based on draft evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.³⁷⁵

³⁷² Massachusetts common assumption

³⁷³ National Grid (2014). *Review of ShowerStart evolve*.

³⁷⁴ National Grid (2014). *Review of ShowerStart evolve*.

³⁷⁵ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Water Heating - Thermostatic Valve

Version Date and Revision History

Effective date: 1/1/2016 End date: TBD

Measure Overview

Description: A stand-alone valve that may be used with existing showerhead. Primary Energy Impact: Electric, Oil, Propane, Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts, Residential Water Sector: Residential Market: Retrofit End Use: Hot Water Measure Type: Flow Control Core Initiative: Electric - Residential Consumer Products, Electric - Multi-Family Retrofit, Gas -Multi-Family Retrofit

Notes

Thermostatic shut-off valve technology is known by the trademarked name ShowerStart[™].

Algorithms for Calculating Primary Energy Impacts

Measure Name	Core Initiative	Energy Type	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{377}$	AMMBtu
Thermostatic Shut-off Valve, Electric	Res Products	Electric	76	0.01	
Thermostatic Shut-off Valve, Oil	Res Products	Oil			0.43
Thermostatic Shut-off Valve, Other	Res Products	Propane			0.38
Thermostatic Shut-off Valve, Gas	Res Products	Gas			0.38
Thermostatic Shut-off Valve, Electric	MF Retrofit	Electric	69	0.01	
Thermostatic Shut-off Valve, Oil	MF Retrofit	Oil			0.39
Thermostatic Shut-off Valve, Other	MF Retrofit	Propane			0.34
Thermostatic Shut-off Valve	MF Retrofit	Gas			0.34

The unit savings are deemed based on engineering analysis. 376

Baseline Efficiency

The Baseline Efficiency case is an existing standard-flow showerhead (2.5 GPM) with no thermostatic shut-off valve.

³⁷⁶ National Grid (2014). *Review of ShowerStart evolve*.

³⁷⁷ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

High Efficiency

The high efficiency case is a standard-flow showerhead (2.5 GPM) with the addition of the stand-alone thermostatic shut-off valve (the "Ladybug").

Hours

Not applicable.

Measure Life

The measure life is 7 years.³⁷⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Residential Water	Residential water savings for TSV	621 Gallons/Unit-year ³⁷⁹
Residential Water	Residential water savings for TSV	558 Gallons/Unit-year ³⁸⁰
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Thermostatic Shut-off Valve	Res Products	All	1.00	1.00	1.00	1.00	1.00	0.94
Thermostatic Shut-off Valve	MF Retrofit	All	1.00	0.60	0.60	0.60	0.58	1.00

In-Service Rates

All installations have 100% in service rate.

Realization Rates

All PAs use 100% energy realization rate.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2013). Prepared for Massachusetts Program Administrators.³⁸¹

³⁷⁸ Massachusetts common assumption

³⁷⁹ National Grid (2014). Review of ShowerStart evolve.

³⁸⁰ National Grid (2014). Review of ShowerStart evolve.

³⁸¹ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Water Heating – Waterbed Mattress Replacement

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Replacement of waterbed mattress with a standard mattress. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: Hot Water Measure Type: Flow Control Core Initiative: Electric - Low-Income Single Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results³⁸²:

Measure Name	Core Initiative	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{383}$
Waterbed	LI Retrofit 1-4	872	0.19

Baseline Efficiency

The baseline efficiency case is an existing waterbed mattress.

High Efficiency

The high efficiency case is a new standard mattress.

Hours

Not applicable.

Measure Life

The measure life is 10 years.³⁸⁴

³⁸² The Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid.

³⁸³ Estimated using demand allocation methodology described in: Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.

³⁸⁴ See the response to the question "How do I know when I need to buy a new mattress?" at the following link for more details: http://www.serta.com/#/best-mattress-FAQs-mattresses-Serta-Number-1-Best-Selling-Mattress.html (8/19/2010).

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Waterbed	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	0.73	1.00
Waterbed	LI MF Retrofit	All	1.00	1.00	1.00	1.00	0.67	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.³⁸⁵

³⁸⁵ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Water Heating – Indirect Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Indirect water heaters use a storage tank that is heated by the main boiler. The energy stored by the water tank allows the boiler to turn off and on less often, saving considerable energy.
Primary Energy Impact: Oil, Propane, Gas
Secondary Energy Impact: None
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Residential
Market: Retrofit
End Use: Hot Water
Measure Type: Water Heater
Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Heating & Cooling Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results.

Measure Name	Core Initiative	Energy Type	∆MMBtu/Unit
Indirect Water Heater, Oil	HES	Oil	6.4^{386}
Indirect Water Heater	RHVAC	Gas	8.0^{387}
Indirect Water Heater, Other	HES	Propane	8.0388

Baseline Efficiency

The baseline efficiency case is the existing water heater.

High Efficiency

The high efficiency case is an indirect water heater attached to an ENERGY STAR® rated forced hot water boiler.

Hours

Not applicable.

³⁸⁶ The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

³⁸⁷ The Cadmus Group, Inc. (2012) *Memo to HEHE Program Administrators Re: Impacts of Upcoming Federal Standards on HEHE Gas Space and Water Heating Measures*; June 8, 2012.

³⁸⁸ Ibid.

Measure Life

The measure life is 20 years.³⁸⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Indirect Water Heater	HES	All	1.00	1.00	n/a	n/a	n/a	n/a
Indirect Water Heater	RHVAC	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. Summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

³⁸⁹ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.

Water Heating – On Demand/Tankless Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Tankless water heaters circulate water through a heat exchanger to be heated for immediate use, eliminating the standby heat loss associated with a storage tank Primary Energy Impact: None Secondary Energy Impact: Propane, Gas Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: Hot Water Measure Type: Water Heater Core Initiative: Electric - Residential Home Energy Services, Gas - Residential Heating & Cooling Equipment

Algorithms for Calculating Primary Energy Impact

Measure Name	Core Initiative	Energy Type	∆MMBtu/Unit
On-Demand Water Heater, Other	HES	Propane	8.3
Tankless Water Heater 0.82	RHVAC	Gas	9.4
Tankless Water Heater 0.94	RHVAC	Gas	9.9

Unit savings are deemed based on study results³⁹⁰.

Baseline Efficiency

The baseline efficiency case is a standalone tank water heater with a 0.6 EF. For the early retirement portion, the baseline efficiency is an existing 0.55 EF standalone water heater.

High Efficiency

The high efficiency case is either an On Demand tankless water heater with an energy factor ≥ 0.82 or an On Demand tankless water heater with an energy factor ≥ 0.94 .

Hours

Not applicable.

Measure Life

The measure life is 19 years for gas equipment³⁹¹ and 20 years for propane equipment³⁹².

³⁹⁰ The calculation of the adjustment can be found in the 2016-2018 HEHE Savings Workbook.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
On Demand Water Heater, Other	HES	All	1.00	1.00	n/a	n/a	n/a	n/a
Tankless Water Heater 0.82	RHVAC	All	1.00	1.00	n/a	n/a	n/a	n/a
Tankless Water Heater 0.94	RHVAC	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% energy realization rate. Summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

³⁹¹ DOE (2008). *ENERGY STAR*® *Residential Water Heaters: Final Criteria Analysis*. Prepared for the DOE; Page 10. Lifetime has been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). 2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing. Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in the 2014 HEHE Application of Results Excel Workbook.

³⁹² DOE (2008). ENERGY STAR® Residential Water Heaters: Final Criteria Analysis. Prepared for the DOE; Page 10.

Water Heating – Stand Alone Storage Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Stand-alone storage water heaters are high efficiency water heaters that are not combined with space heating devices. Primary Energy Impact: Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Retrofit End Use: Hot Water Measure Type: Water Heater Core Initiative: Gas - Residential Heating & Cooling Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results³⁹³.

Measure Name	Core Initiative	Energy Type	∆MMBtu/Unit
Stand Alone Water Heater 0.67	RHVAC	Gas	3.6

Baseline Efficiency

The baseline efficiency case is a standalone tank water heater with an energy factor of 0.60. For the early retirement portion, the baseline efficiency is an existing 0.55 EF standalone water heater.

High Efficiency

The high efficiency case is a stand-alone storage water heater with an energy factor ≥ 0.67 .

Hours

Not applicable.

Measure Life

The measure life is 11 years. ³⁹⁴

³⁹³ The calculation of the adjustment can be found in the 2016-2018 HEHE Savings Workbook.

³⁹⁴ DOE (2008). *ENERGY STAR® Residential Water Heaters: Final Criteria Analysis.* Prepared for the DOE; Page 10. Lifetime has been adjusted to reflect the mix of replace on failure and early replacement based on: The Cadmus Group (2013). *2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing.* Prepared for the Electric and Gas Program Administrators of Massachusetts. The calculation of the adjustment can be found in the 2014 HEHE Application of Results Excel Workbook.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Stand Alone Water Heater 0.67	RHVAC	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% energy realization rate. Summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

Water Heating – Condensing Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Condensing water heaters recover energy by using either a larger heat exchanger or a second heat exchanger to reduce the flue-gas temperature to the point that water vapor condenses, thus releasing even more energy.
Primary Energy Impact: None
Secondary Energy Impact: Gas
Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts
Sector: Residential
Market: Retrofit
End Use: Hot Water
Measure Type: Water Heater
Core Initiative: Gas - Residential Heating & Cooling Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results.

Measure Name	Core Initiative	Energy Type	∆MMBtu/Unit
Condensing Water Heater 0.95	RHVAC	Gas	8.5 ³⁹⁵

Baseline Efficiency

The baseline efficiency case is a standalone tank water heater with an energy factor of 0.60.

High Efficiency

The high efficiency case is a condensing water heater with a TE>= 0.95.

Hours

Not applicable.

Measure Life

The measure life is 15 years.³⁹⁶

³⁹⁵ The Cadmus Group, Inc. (2012) *Memo to HEHE Program Administrators Re: Impacts of Upcoming Federal Standards on HEHE Gas Space and Water Heating Measures*; June 8, 2012.

³⁹⁶ DOE (2008). ENERGY STAR® Residential Water Heaters: Final Criteria Analysis. Prepared for the DOE; Page 10.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Condensing Water Heater 0.95	RHVAC	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% energy realization rate. Summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

Water Heating – Heat Pump Water Heater (Electric)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a heat pump water heater (HPWH) instead of an electric resistance water heater. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity, Low-Income End Use: Hot Water Measure Type: Water Heater Core Initiative: Electric - Residential Cooling & Heating Equipment, Electric - Low-Income Single Family Retrofit, Electric - Low Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results³⁹⁷:

Measure Name	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{398}$
Heat Pump Water Heater <55 gallon, Electric	1,654	0.34

Baseline Efficiency

The baseline efficiency case is a new, standard efficiency electric resistance hot water heater.

High Efficiency

The high efficiency case is a high efficiency heat pump water heater.

Hours

Not applicable.

Measure Life

The measure life is 10 years.³⁹⁹

³⁹⁷ Ibid.

³⁹⁸ Ibid.

³⁹⁹ Based on warranty of equipment.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Pump Water Heater <55 gallon, Electric	RHVAC	All	1.00	1.00	1.00	1.00	0.47	1.00
Heat Pump Water Heater <55 gallon, Electric	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	0.47	1.00
Heat Pump Water Heater <55 gallon	LI MF Retrofit	All	1.00	1.00	1.00	1.00	0.47	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are based on evaluation results.⁴⁰⁰ Winter coincidence equal to 1 since gross kW savings are equal to winter peak demand savings.

⁴⁰⁰ Steven Winter Associates, Inc (2012). *Heat Pump Water Heaters Evaluation of Field Installed Performance*. Sponsored by National Grid and Eversource (NSTAR).

Water Heating – Water Heating Systems

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of high efficiency water heating equipment to replace the existing inefficient water heater. Primary Energy Impact: Natural Gas (Residential DHW) Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: Hot Water Measure Type: Water Heater Core Initiative: Gas - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

$$\Delta MMBtu = Units \times \frac{18 \ MMBtu}{Unit} \times \left(\frac{1}{EF_{BASE}} - \frac{1}{EF_{EE}}\right)$$

Where:

Unit	=	Total number of dwelling units utilizing the water heater
18 MMBtu/Unit	=	Average annual water heating energy demand per dwelling unit ⁴⁰¹
EF _{BASE}	=	Energy Factor for the baseline water heater
EF _{EE}	=	Energy Factor for the new efficient water heater

Baseline Efficiency

The baseline efficiency case is a stand-alone tank water heater with an energy factor of 0.575.

High Efficiency

The high efficiency case includes the new efficient water heater with an Energy Factor > 0.60.

Hours

Not applicable.

⁴⁰¹ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.

Measure Life

Measure Name	Measure Life (years)
Indirect Water Heater	20^{402}
Stand Alone Water Heater	13 ⁴⁰³
Tankless Water Heater	20^{404}

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Indirect Water Heater	LI MF Retrofit	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Indirect Water Heater	LI MF Retrofit	Unitil	1.00	0.96	n/a	n/a	n/a	n/a
Stand Alone Water Heater	LI MF Retrofit	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Stand Alone Water Heater	LI MF Retrofit	Unitil	1.00	0.96	n/a	n/a	n/a	n/a
Tankless Water Heater	LI MF Retrofit	National Grid	1.00	0.75	n/a	n/a	n/a	n/a
Tankless Water Heater	LI MF Retrofit	Unitil	1.00	0.96	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates are based on evaluation results⁴⁰⁵.

Coincidence Factors

There are no electric savings for this measure.

⁴⁰² GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks.

 ⁴⁰³ DOE (2008). ENERGY STAR® Residential Water Heaters: Final Criteria Analysis. Prepared for the DOE; Page 10.
 ⁴⁰⁴ Ibid.

⁴⁰⁵ The Cadmus Group (2015). *Massachusetts Low-Income Multifamily Initiative Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts

Whole Home – Heating, Cooling, and DHW Measures

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: To capture lost opportunities, encourage the construction of energy-efficient homes, and drive the market to one in which new homes are moving towards net-zero energy. Primary Energy Impact: Electric, Natural Gas, Oil, Propane Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential, Low Income Market: Lost Opportunity End Use: Energy Star Homes, Hot Water Measure Type: Custom Core Initiative: Electric - Residential New Construction, Gas - Residential New Construction

Algorithms for Calculating Primary Energy Impact

Savings are derived from three components within this initiative: Low-Rise Performance Path, Low-Rise Prescriptive Path, and Multi-Family High-Rise Path.

The Program Administrators currently use vendor calculated energy savings for Low-Rise Performance Path projects. These savings are calculated using a RESNET accredited Rating Software Tool (REM/Rate) where a user inputs a detailed set of technical data about a project, comparing as-built projected energy consumption to that of a Baseline Home. This process is used to calculate electric and fossil fuel energy savings due to heating, cooling, and water heating for all homes, both single family and multifamily buildings (three stories and below).⁴⁰⁶

For homes participating in the program via the Low-Rise Prescriptive Path, deemed savings are applied to each unit completing the requirements of the Program. The deemed savings were derived by ICF International using energy simulation tools to create a sample set of 168 homes that represented every type of home that would typically participate in the initiative, including various building types, sizes, fuel types, HVAC system types and climate locations.⁴⁰⁷

For homes participating in the Multi-Family High-Rise Path, ICF International created 98 customized engineering formulas for energy conservation measures spanning the following: Domestic Hot Water, Envelope, HVAC, Lighting, Refrigeration/Appliances and Motors & Drives.⁴⁰⁸

⁴⁰⁶ ICF International (2008). *Energy/Demand Savings Calculation and Reporting Methodology for the Massachusetts ENERGY* STAR ® Homes Program. Prepared for Joint Management Committee.

⁴⁰⁷ ICF International (2012). 2013 Prescriptive Modeling Summary Final

⁴⁰⁸ ICF International (2012). Multi-Family Savings Methodology

Baseline Efficiency

The User Defined Reference Home was revised for 2012 as a result of the baseline study completed in 2012.^{409 410}

High Efficiency

The high efficiency case is represented by the specific energy characteristics of each "as-built" home completed through the program.

Hours

Not applicable.

Measure Life

Measure Name	Measure Life (years) ⁴¹¹
Cooling	25
Heating	25
Water Heating	15
Heating (High Rise)	25
Cooling (High Rise)	25
Water Heating (High Rise)	15
Lighting (High Rise)	4

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

 ⁴⁰⁹ NMR Group, Inc., KEMA, Inc., The Cadmus Group, Inc., Dorothy Conant (2012). *Massachusetts 2011 Baseline Study of Single-family Residential New Construction, Final Report.* ⁴¹⁰ NMR Group, Inc., KEMA, Inc., The Cadmus Group, Inc., Dorothy Conant (2012). *Final UDRH Inputs: Addendum to*

⁴¹⁰ NMR Group, Inc., KEMA, Inc., The Cadmus Group, Inc., Dorothy Conant (2012). *Final UDRH Inputs: Addendum to Massachusetts 2011 Baseline Study of Single-family Residential New Construction, Final Report.*

⁴¹¹ Massachusetts Common Assumption.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Cooling	RNC	All	1.00	1.00	1.00	1.00	1.00	0.00
Heating	RNC	All	1.00	1.00	1.00	1.00	0.00	1.00
Water Heating	RNC	All	1.00	1.00	1.00	1.00	1.00	0.94
Heating (High Rise)	RNC	All	1.00	1.00	1.00	1.00	0.01	1.00
Cooling (High Rise)	RNC	All	1.00	1.00	1.00	1.00	1.00	0.00
Water Heating (High Rise)	RNC	All	1.00	1.00	1.00	1.00	0.58	1.00
Lighting (High Rise)	RNC	All	1.00	1.00	1.00	1.00	0.17	1.00

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Realization Rates

Realization rates are 100% because energy and demand savings are custom calculated based on project specific detail.

Coincidence Factors

Coincidence factors are custom calculated based on project-specific detail.

Whole Home – Weatherization and Heating and Water Heating Systems

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Weatherization measures installed through the Low Income Multifamily program including insulation, air sealing, heating and water heating systems. Primary Energy Impact: Electric, Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: Envelope Measure Type: Custom Core Initiative: Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

The program delivery agency uses vendor calculated energy savings for all allowed measures. These savings values are calculated using vendor proprietary software where the user inputs a set of technical data about the house and the software calculates building heating and cooling loads and other key parameters. The proprietary building model is based on thermal transfer, building gains, and a variable-based heating/cooling degree day/hour climate model. This provides an initial estimate of energy use that may be compared with actual billing data to adjust as needed for existing conditions. Then, specific recommendations for improvements are added and savings are calculated using measure-specific heat transfer algorithms.

Rather than using a fixed degree day approach, the building model estimates both heating degree days and cooling degree hours based on the actual characteristics and location of the house to determine the heating and cooling balance point temperatures. Savings from shell measures use standard U-value, area, and degree day algorithms, (see attached for details). Infiltration savings use site-specific seasonal factors to convert measured leakage to seasonal energy impacts. HVAC savings are estimated based on changes in system and/or distribution efficiency improvements, using ASHRAE 152 and BPI recommendations as their basis. Interactivity between architectural and mechanical measures is always included, to avoid overestimating savings due to incorrectly "adding" individual measure results.

Baseline Efficiency

The baseline efficiency case is the existing conditions of the participating household.

High Efficiency

The high efficiency case includes installed energy efficiency measures that reduce heating energy use.

Hours

Not applicable.

Measure Life

Measure Name	Measure Life (years)
Insulation	25 ⁴¹²
Air Sealing	15 ⁴¹³
Boiler	20^{414}
Furnace	18 ⁴¹⁵
Indirect Water Heater	20^{416}
Stand Alone Water Heater	13 417
Tankless Water Heater	20 418

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

⁴¹² GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group.

⁴¹³ Ibid.

⁴¹⁴ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers*.

⁴¹⁵ Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Furnace.

⁴¹⁶ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks.

⁴¹⁷ DOE (2008). *ENERGY STAR*® *Residential Water Heaters: Final Criteria Analysis*. Prepared for the DOE; Page 10. ⁴¹⁸ Ibid.

Impact Factors	for Calculating	Adjusted	Gross S	Savings
----------------	-----------------	----------	----------------	---------

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Insulation	LI MF Retrofit	Eversource (NSTAR)	1.00	1.05	n/a	n/a	n/a	n/a
Air Sealing	LI MF Retrofit	Eversource (NSTAR)	1.00	1.05	n/a	n/a	n/a	n/a
Boiler	LI MF Retrofit	Eversource (NSTAR)	1.00	1.05	n/a	n/a	n/a	n/a
Furnace	LI MF Retrofit	Eversource (NSTAR)	1.00	1.05	n/a	n/a	n/a	n/a
Indirect Water Heater	LI MF Retrofit	Eversource (NSTAR)	1.00	1.05	n/a	n/a	n/a	n/a
Stand Alone Water Heater	LI MF Retrofit	Eversource (NSTAR)	1.00	1.05	n/a	n/a	n/a	n/a
Tankless Water Heater	LI MF Retrofit	Eversource (NSTAR)	1.00	1.05	n/a	n/a	n/a	n/a
Insulation	LI MF Retrofit	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Air Sealing	LI MF Retrofit	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Boiler	LI MF Retrofit	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Furnace	LI MF Retrofit	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Indirect Water Heater	LI MF Retrofit	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Stand Alone Water Heater	LI MF Retrofit	Columbia	1.00	0.96	n/a	n/a	n/a	n/a
Tankless Water Heater	LI MF Retrofit	Columbia	1.00	0.96	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Realization Rates

Realization rates are based on evaluation results⁴¹⁹.

Coincidence Factors

There are no electric savings for these measures.

⁴¹⁹ The Cadmus Group (2015). *Massachusetts Low-Income Multifamily Initiative Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts

Whole Home – Basic Educational Measures

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of basic educational measures during an audit to help customers become more aware of energy efficiency. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Low Income Market: Retrofit End Use: Behavior Measure Type: Audit Core Initiative: Electric - Low-Income Single Family Retrofit; Electric - Low-Income Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Measure Name	Core Initiative	PA	∆kWh	ΔkW^{421}
Participants/TLC Kit	LI Retrofit 1-4	National Grid, Eversource, Unitil	69	0.01
Participants/TLC Kit	LI Retrofit 1-4	CLC	126	0.03
Participants/TLC Kit	LI MF Retrofit	Eversource	69	0.01
Participant	LI MF Retrofit	CLC	126	0.03

Unit savings are deemed based on study results⁴²⁰.

Baseline Efficiency

The baseline efficiency case assumes no measures installed.

High Efficiency

The high efficiency case includes basic educational measures such as LED nightlights, refrigerator thermostats, hot water thermostats, refrigerator coil brush, wall plate stoppers (and low flow showerheads and aerators for CLC).

Hours

Not applicable.

⁴²⁰ The Cadmus Group, Inc. (2012). *Low Income Single Family Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts.

⁴²¹ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Measure Life

The measure life is 5 years.⁴²²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Participants/TLC Kit	LI Retrofit 1-4	All	1.00	1.00	1.00	1.00	0.73	1.00
Participant	LI MF Retrofit	All	1.00	1.00	1.00	1.00	0.77	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.⁴²³

 ⁴²² Massachusetts Common Assumption.
 ⁴²³ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Whole Home – Education Kits

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Through Cape Light Compacts Energy Education Outreach Program, we are reaching out to each town through existing school partnerships and will now include Energy Education kits for students to bring home. Each kit will includes 3 LED light bulbs, and a 2 faucet aerators for students to install as well as other non-savings measures such as hot water temperature and refrigerator/freezer thermometer cards to assist students in learning more about energy efficiency. **Primary Energy Impact:** Electric, Gas, Oil, Propane **Secondary Energy Impact:** None

Non-Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Residential Market: Lost Opportunity End Use: Lighting, Hot Water Measure Type: Education Core Initiative: Electric – Residential Behavior/Feedback

Algorithms for Calculating Primary Energy Impact

Measure Name	PA	∆kWh 2016	∆kWh 2017	∆kWh 2018	∆kW 2016	∆kW 2017	∆kW 2018	AMMBtu
Energy Education kit, Electric Hot Water	CLC	242.9	236.9	228.8	0.05	0.05	0.05	
Energy Education kit, Gas Hot Water	CLC	144.9	138.9	130.8	0.03	0.03	0.03	0.3
Energy Education kit, Oil Hot Water	CLC	144.9	138.9	130.8	0.03	0.03	0.03	0.2
Energy Education kit, Propane Hot Water	CLC	144.9	138.9	130.8	0.03	0.03	0.03	0.2

Unit savings are deemed.

Baseline Efficiency

The baseline efficiency case assumes no measures installed.

High Efficiency

The high efficiency case includes the savings measures in the Educational Kit: 3 LED Bulbs and 2 low flow faucet aerators. See: Lighting – LED Bulbs, Water Heating – Faucet Aerator.

Hours

Not applicable.

Measure Life

The measure life is 10 years⁴²⁴.

Secondary Energy Impacts

There are no secondary impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Residential Water	Residential water savings from kit	664 gallons/kit
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts
One-Time Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Energy Education, Electric	Behavior/ Feedback	CLC	0.50	1.00	1.00	1.00	0.73	1.00
Energy Education, Gas	Behavior/ Feedback	CLC	0.50	1.00	1.00	1.00	0.73	1.00
Energy Education, Oil	Behavior/ Feedback	CLC	0.50	1.00	1.00	1.00	0.73	1.00
Energy Education, Other	Behavior/ Feedback	CLC	0.50	1.00	1.00	1.00	0.73	1.00

In-Service Rates

All installations have 50% in service rates based on Massachusetts Common Assumptions.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.⁴²⁵

 ⁴²⁴ Massachusetts Common Assumptions
 ⁴²⁵ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

Whole Home – Home Energy Reports

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The Behavior/Feedback programs send energy use reports to participating electric and natural gas customers in order to change customers' energy-use behavior. Primary Energy Impact: Electric, Natural Gas (Residential Heat) Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Products and Services End Use: Behavior Measure Type: Behavior Core Initiative: Electric - Residential Behavior/Feedback, Gas - Residential Behavior/Feedback

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed and based on calculations from vendor prepared forecasts. ⁴²⁶ $\Delta kWh = (kWh_{BASE})(\% SAVE)$ $\Delta MMBtu = (MMBtu_{BASE})(\% SAVE)$

Where:

, nore.		
Unit	=	One participant household.
kWh/MMBTU _{BASE}	=	Baseline energy consumption kWh/MMBTu.
%SAVE	=	Energy savings percent per program participant.

Savings Factors for Home Energy Reports 2016

Measure Name	РА	РА Туре	kWh/ MMBTu base	% Save	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{427}$	∆MMBTu
Home Energy Reports	National Grid	Elec	8,305	1.494%	124.1	0.03	
Home Energy Reports	Eversource (NSTAR)	Elec	8,221	1.35%	111.0	0.02	
Home Energy Reports	Eversource (WMECO)	Elec	7,750	1.31%	101.3	0.02	
Home Energy Reports	CLC	Elec					
Home Energy Reports	National Grid	Gas	104.89	1.16%			1.213
Home Energy Reports	Eversource (NSTAR)	Gas	93.1	1.28%			1.19
Home Energy Reports	Berkshire	Gas					0.79

Savings Factors for Home Energy Reports 2017

⁴²⁶ Navigant Consulting and Illume Advising (2015). *Massachusetts Cross-Cutting Behavioral Program Evaluation Opower Results*. Prepared for the Massachusetts Program Administrators

⁴²⁷ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 208 of 435

Measure Name	РА	РА Туре	kWh/ MMBTu BASE	% Save	∆kWh	$\Delta \mathbf{k} \mathbf{W}^{428}$	∆MMBTu
Home Energy Reports	National Grid	Elec	8,278	1.494%	123.7	0.03	
Home Energy Reports	Eversource (NSTAR)	Elec	8,216	1.34%	110.0	0.02	
Home Energy Reports	Eversource (WMECO)	Elec	7,751	1.25%	96.9	0.02	
Home Energy Reports	CLC	Elec					
Home Energy Reports	National Grid	Gas	105.01	1.16%			1.212
Home Energy Reports	Eversource (NSTAR)	Gas	92.0	1.20%			1.10
Home Energy Reports	Berkshire	Gas					0.79

Savings Factors for Home Energy Reports 2018

Measure Name	РА	РА Туре	kWh/ MMBTu base	% Save	∆kWh	$\Delta \mathbf{kW}^{429}$	∆MMBTu
Home Energy Reports	National Grid	Elec	8,256	1.502%	124.1	0.03	
Home Energy Reports	Eversource (NSTAR)	Elec	8,158	1.37%	111.7	0.02	
Home Energy Reports	Eversource (WMECO)	Elec	7,751	1.24%	96.1	0.02	
Home Energy Reports	CLC	Elec					
Home Energy Reports	National Grid	Gas	105.07	1.15%			1.211
Home Energy Reports	Eversource (NSTAR)	Gas	90.7	1.09%			0.99
Home Energy Reports	Berkshire	Gas					0.79

Baseline Efficiency

The baseline efficiency case is a customer who does not receive a Home Energy Report.

High Efficiency

The high efficiency case is a customer who receives a Home Energy Report.

Hours

Not applicable.

Measure Life

The measure life is 1 year.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

 ⁴²⁸ The Cadmus Group, Inc. (2012). *Demand Impact Model*. Prepared for the Massachusetts Program Administrators.
 ⁴²⁹ Ibid

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	PA	ISR	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
			Туре						
Home Energy Reports	Behavior/Feedback	Eversource (NSTAR)	Elec	1.00	1.04	1.04	1.04	0.73	1.00
Home Energy Reports	Behavior/Feedback	National Grid	Elec	1.00	0.95	0.95	0.95	0.73	1.00
Home Energy Reports	Behavior/Feedback	Eversource (WMECO)	Elec	1.00	1.04	1.04	1.04	0.73	1.00
Home Energy Reports	Behavior/Feedback	CLC	Elec	1.00	1.04	1.00	1.00	0.73	1.00
Home Energy Reports	Behavior/Feedback	National Grid	Gas	1.00	0.98	n/a	n/a	n/a	n/a
Home Energy Reports	Behavior/Feedback	Eversource (NSTAR)	Gas	1.00	0.98	n/a	n/a	n/a	n/a
Home Energy Reports	Behavior/Feedback	Berkshire	Gas	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

In-services rates are 100% since the program tracks all participating customers.

Realization Rates

Realization rates are based on evaluation results.⁴³⁰

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the Cadmus Demand Impact Model (2012). Prepared for Massachusetts Program Administrators.⁴³¹

⁴³⁰ The savings factors listed are net numbers derived directly from Navigant Consulting and Illume Advising (2015).

Massachusetts Cross-Cutting Behavioral Program Evaluation Opower Results and already include the impact of the realization rates. The realization rates listed in the Impact Factors table were derived from the report cited above and will be applied to gross vendor estimates going forward.

⁴³¹ The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators.

Whole Home - Code Compliance Support Initiative (CCSI)

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: The MassSave Code Compliance Support Initiative (CCSI) is focused on improving the energy code compliance rates of residential and commercial buildings in the state. The initiative includes trainings, technical support, and the development of compliance documentation tools. This effort will support code officials, as well as design and construction professionals. **Primary Energy Impact**: Electric, Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Energy Star Homes Measure Type: Codes & Standards Core Initiative: Residential New Construction

Algorithms for Calculating Primary Energy Impact

Energy Savings = Gross Technical Potential * (((1 - Non-Compliance) – Baseline Compliance)/(1 – Baseline Compliance)) * Attribution Factor * Annual Ramp Factor.

Where:

Gross Technical Potential (GTP) - This represents the residential energy savings (kWh and Therms) through building simulations described below under Baseline Efficiency. The Gross technical potential for residential is the difference between homes modelled with the the same UDRH that was used for program activity in 2014 and homes modelled as 100% compliant with 2012 IECC multiplied by the total number of single family and multifamily new construction permits in MA.

Non-Compliance – represents the percentage of potential energy savings not realized at the end of an energy code cycle due to buildings on average not fully meeting code requirements, i.e. the difference between 100% compliance and actual compliance at the end of the energy code cycle⁴³².

Baseline Compliance – represents the percentage of energy savings realized at the beginning of a new code cycle⁴³³.

Attribution Factor – The percentage of potential energy savings above the normal compliance level, on average, at the end of a typical energy code cycle attributable to PA CCSI efforts⁴³⁴.

⁴³² This value is estimated at 17%.

⁴³³ A value of 63% is used based on the following study, NMR Group, Inc. (2014). Massachusetts Electric and Gas Program Administrators Code Compliance Results for Single-Family Non-Program Homes in Massachusetts. ⁴³⁴ A deemed rate of 35% is used.

Annual Ramp Factor – Factor used to simulate how quickly the CCSI reaches the target compliance goal across years. That is, since it takes time for the education efforts of the CCSI to take hold only a portion of the attributable savings are claimed each year during the initiative and ramped up to 100% over the entire three year term⁴³⁵.

Baseline Efficiency

The baseline efficiency case assumes energy consumption using a measured compliance level⁴³⁶. Inputs from the 2014 Massachusetts User Defined Reference Home (UDRH) were used to develop a building energy model, and simulations were run to compare energy consumption with that of the same building prototype built to 2012 IECC prescriptive code specifications. The energy impact was separated into estimates of kWh and Therms for HVAC, DHW, and Lighting (kWh), and then multiplied by the number of single family and low-rise multifamily residential new construction units for Massachusetts as estimated by the 2014 U.S. Census results.

High Efficiency

The high efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code.

Hours

Not Applicable.

Measure Life

20 years.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA Type	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Codes and Standards	RNC	Elec	All	1.00	1.00	1.00	1.00	n/a	n/a
Codes and Standards	RNC	Gas	All	1.00	1.00	n/a	n/a	n/a	n/a

⁴³⁵ The 2016 – 2018 term includes savings from 2015 – 2018 where the Annual Ramp Factor is 20% for 2015, 30% for 2016, 50% for 2017, and 100% for 2018.

⁴³⁶ NMR Group, Inc. (2014). Massachusetts Electric and Gas Program Administrators Code Compliance Results for Single-Family Non-Program Homes in Massachusetts.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 212 of 435

In-Service Rates

All PAs use 100% in service rate.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% realization rates as all adjustments are made via the factors listed in the algorithm above.

Coincidence Factors

Not applicable as no demand savings are counted.

Commercial and Industrial Electric Efficiency Measures

Lighting – Advanced Lighting Design (Performance Lighting)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Advanced lighting design refers to the implementation of various lighting design principles aimed at creating a quality and appropriate lighting experience while reducing unnecessary light usage. This is often done by a professional in a new construction situation. Advanced lighting design uses techniques like maximizing task lighting and efficient fixtures to create a system of optimal energy efficiency and functionality. Primary Energy Impact: Electric Secondary Energy Impact: Gas, Oil Non-Energy Impact: O&M Sector: Commercial and Industrial Market: Lost Opportunity End Use: Lighting Measure Type: Interior Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

$$\Delta kWh = \sum_{i=1}^{n} \left(\frac{LPD_{BASE,i} \times Area_i \times Hours_i}{1000} \right) - \sum_{j=1}^{m} \left(\frac{Count_{EE,j} \times Watts_{EE,j} \times Hours_j}{1000} \right)$$
$$\Delta kW = \sum_{i=1}^{n} \left(\frac{LPD_{BASE,i} \times Area_i}{1000} \right) - \sum_{j=1}^{m} \left(\frac{Count_{EE,j} \times Watts_{EE,j}}{1000} \right)$$

Where:

n	=	Total number of spaces in Space-by-Space Method or 1 for Building Area Method
m		Total number of efficient fixture types installed
LPD _{BASE,i}	=	Baseline lighting power density for building or space type i (Watts/ft ²)
Area _i	=	Area of building or space i (ft ²)
Hours _i	=	Annual hours of operation of the lighting equipment for building or space type <i>i</i>
Count _{EE,j}	=	Quantity of efficient fixture type j
Watts _{EE,j}	=	Wattage of fixture type j (Watts)
1000	=	Conversion factor: 1000 watts per 1 kW

Note on HVAC system interaction: Additional Electric savings from cooling system interaction are included in the calculation of adjusted gross savings for Lighting Systems projects. The HVAC interaction adjustment factor is determined from lighting project evaluations and is included in the energy realization rates and demand coincidence factors and realization rates.

Baseline Efficiency

The Baseline Efficiency assumes compliance with lighting power density requirements as mandated by Massachusetts State Building Code, which currently reflects IECC 2012. IECC 2012 offers two compliance paths, the Building Area Method and Space-by-Space Method. For completeness, the lighting power density requirements for both the Building Area Method and the Space-by-Space Method are presented in Appendix A: Common Lookup Tables, Table 1 and Table 2.

High Efficiency

The high efficiency scenario assumes lighting systems that achieve lighting power densities below those required by Massachusetts State Building Code. Actual site lighting power densities should be determined on a case-by-case basis. Please refer to the current year application form for minimum percentage better than code efficiency requirements.

Hours

The annual hours of operation for lighting systems are site-specific and should be determined on a caseby-case basis. If site-specific hours are unavailable, refer to the default hours in Table 5 in Appendix A: Common Lookup Tables.

Measure Life

The measure life for all new construction lighting installations is 15 years.⁴³⁷

Secondary Energy Impacts

Heating energy will be increased due to reduced lighting waste heat. This impact is estimated as an average impact in heating fossil fuel consumption per unit of energy saved.

Measure	Energy Type	Impact (MMBtu/\(\Delta kWh\)) ⁴³⁸
Interior Lighting	C&I Gas Heat	-0.000175

Non-Energy Impacts

Annual non-energy benefits are claimed due to the reduced operation and maintenance costs associated with the longer measure lived of lamps and ballasts as compared to the base or pre-retrofit case. See Appendix C: Non-Resource Impacts.

 ⁴³⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ⁴³⁸ DNV KEMA (2013). *Impact Evaluation of 2010 Prescriptive Lighting Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council
Impact Factors for Calculating Adjusted Gross Savings

	Core									
Measure	Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
All	NB and EUL	National Grid	1.00	0.98	1.16	0.85	custom	custom	n/a	n/a
All	NB and EUL	All PAs except National Grid	1.00	1.25	1.01	1.01	0.52	0.44	0.48	.044

Note: Realization Rates and Coincidence Factors have the HVAC Interactive Effect incorporated, see note in Algorithm section.

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

- National Grid: energy and demand RRs derived from impact evaluation of the PAs 2010 Custom Lighting programs. ⁴³⁹
- All Other PAs: Energy and demand RRs from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs⁴⁴⁰. Demand RR is the connected demand RR; energy RR includes connected kWh RR, hours of use RR and HVAC Interactive adjustment

Coincidence Factors

- National Grid, CFs are custom calculated based on site-specific information.
- All Other PAs: All CFs from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting program.⁴⁴¹

⁴⁴⁰ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installation.

⁴³⁹ KEMA, Inc. (2012). *Impact Evaluation of 2010 Custom Lighting Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council

⁴⁴¹ Ibid

Lighting – Lighting Systems

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure promotes the installation of efficient lighting including, but not limited to, efficient fluorescent lamps, ballasts, and fixtures, and solid state lighting. Primary Energy Impact: Electric Secondary Energy Impact: Gas, Oil Non-Energy Impact: O&M Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: Lighting Measure Type: Interior, Exterior Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit, C&I Small Business, C&I Upstream Lighting

Algorithms for Calculating Primary Energy Impact

$$\Delta kWh = \left[\sum_{i=1}^{n} \left(\frac{Count_{i} * Watts_{i}}{1000}\right)_{BASE} - \sum_{j=1}^{m} \left(\frac{Count_{j} * Watts_{j}}{1000}\right)_{EE}\right] (Hours)$$

$$\Delta kW = \sum_{i=1}^{n} \left(\frac{Count_i * Watts_i}{1000} \right)_{BASE} - \sum_{j=1}^{m} \left(\frac{Count_j * Watts_j}{1000} \right)_{EE}$$

Where:

n	=	Total number of fixture types in baseline or pre-retrofit case
m	=	Total number of installed fixture types
Count _i	=	Quantity of existing fixtures of type i (for lost-opportunity, $Count_i = Count_i$).
Watts _i	=	Existing fixture or baseline wattage for fixture type i
Count _j	=	Quantity of efficient fixtures of type j.
Watts _j	=	Efficient fixture wattage for fixture type j.
1000	=	Conversion factor: 1000 watts per kW.
Hours	=	Lighting annual hours of operation.

Note on HVAC system interaction: Additional Electric savings from cooling system interaction are included in the calculation of adjusted gross savings for Lighting Systems projects. The HVAC interaction adjustment factor is determined from lighting project evaluations and is included in the energy realization rates and demand coincidence factors and realization rates (See Impact Factors section).

Baseline Efficiency

For retrofit installations, the baseline efficiency case is project-specific and is determined using actual fixture counts from the existing space. For lost opportunity installations, the baseline efficiency case is determined using assumed baseline wattages for each of the installed fixtures.⁴⁴²

High Efficiency

For both new construction and retrofit installations, the high efficiency case is project-specific and is determined using actual fixture counts for the project and the MassSave Wattage Tables in Appendix A: Common Lookup Tables (Table 3 and Table 4).

Hours

The annual hours of operation for lighting systems are site-specific and should be determined on a caseby-case basis with the exception of measures offered via the Upstream Lighting initiative. Upstream Lighting measures use a deemed operating hours value based on the Upstream Lighting Impact evaluation⁴⁴³ with the exception of Stairwell fixtures which use a deemed operating hours of 8,760. If site-specific hours of operation are unavailable, refer to the default hours presented in Table 5 in Appendix A: Common Lookup Tables.

Measure Life

Lighting system measure lives vary by market sector and equipment type.

Measure Lives for Downstream C&I Lighting Systems⁴⁴⁴

	Measure Life (years)				
Equipment Type	Retrofit	Lost Opportunity			
Bulb – CFL screw base	5	N/A			
Fluorescent Fixture ⁴⁴⁵	13	15			
Hardwired CFL	13	15			
LED Exit Signs	13	15			
LED Lighting Fixtures	13	15			
LED Integral Replacement Lamps	13	15			
LED Low Bay – Garage & Canopy Fixtures	13	15			

⁴⁴² Massachusetts Common Assumption: Baseline wattage per fixture type based on comparable code-compliant installations and standard practice. ⁴⁴³ DNV-GL (2015). Massachusetts Commercial and Industrial Upstream Lighting Program: "In Storage" Lamps Follow-Up

Study, Final Report. 444 Energy & Resource Solutions (2005). Measure Life Study. Prepared for The Massachusetts Joint Utilities; Table 1-1 AND GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group; Table 2

⁴⁴⁵ To account for the effects of EISA (Energy Independence and Security Act of 2007), the lifetime of measures replacing T12s has been reduced for 2016 to 4.30. Beginning in 2007 and into the future T12s will no longer be used as a baseline measure.

Measure Lives for Upstream C&I Lighting Systems⁴⁴⁶

F	Measure Life (years)					
Equipment Type	2016	2017	2018			
PAR20	8.56	8.12	7.67			
PAR30	8.36	7.88	7.40			
PAR38	8.50	8.04	7.59			
MR16	8.42	7.95	7.48			
LED, A-Line	3.66	3.20	2.83			
LED, Decoratives	3.93	3.64	3.37			
LED Retrofit Kits	5.50	4.98	4.65			
LED Stairwell with Occupancy Sensors	7	7	7			
G24 LED lamps	13	13	13			
TLEDs	12	12	12			
T8/T5	10	10	10			
T8-28, 25 U-Bend	7	7	7			

Secondary Energy Impacts

Heating energy will be increased due to reduced lighting waste heat. This impact is estimated as an average impact in heating fossil fuel consumption per unit of energy saved.

Core Initiative	Measure	Energy Type	Impact (MMBtu/\(\Delta kWh\)) ⁴⁴⁷
NB, EUL, Large Retrofit	Interior Lighting	C&I Gas Heat	-0.00023
NB, EUL, Large Retrofit	Interior Lighting	Oil	-0.00046
Upstream LEDs	Interior Lighting	C&I Gas Heat	-0.00038
Upstream LEDs	Interior Lighting	Oil	-0.00073
Upstream T8/T5	Interior Lighting	C&I Gas Heat	-0.00030
Upstream T8/T5	Interior Lighting	Oil	-0.00059
Small Retrofit	Interior Lighting	Gas Heat	-0.001075
Small Retrofit	Interior Lighting	Oil Heat	-0.000120

Non-Energy Impacts

Annual non-energy benefits are claimed due to the reduced operation and maintenance costs associated with the longer measure lives of lamps and ballasts as compared to the base or pre-retrofit case. See Appendix C: Non-Resource Impacts.

⁴⁴⁶ For all Upstream measures estimate based on average life of eligible products and average annual operating hours derived from the 2014 Upstream Lighting Impact evaluation. The following measures in this table have been adjusted for the years 2016-2018 to account for the effects of EISA (Energy Independence and Security Act of 2007); PAR lamps, MR16s, LED A-Lines, LED Decoratives, and LED Retrofit Kits.

⁴⁴⁷ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations; DNV-GL (2015). Massachusetts Commercial and Industrial Upstream Lighting Program: "In Storage" Lamps Follow-Up Study, Final Report, (Percent split between gas and oil based on spreadsheet associated with Optimal 2008 MEMO: Non Electric Benefits Analysis Update); AND for Small Retrofit; The Cadmus Group (2012). Non-Controls Lighting Evaluation for the Massachusetts Small Business Direct Install Program: Multi-Season.

Моодино	Core Initiativo	D A	ICD	DD	DD	DD	CE	CE	CE	CE
Wicasuic		IA	ISK	KKE	KKSP	KKWP	Crsp	Crwp	CISSP	CTWSP
All	NB, EUL,	All	1.00	1.12	1.00	1.00	0.83	0.66	0.84	0.67
	Large Retrofit									
Upstream LED	Upstream	All	1.00	1.19	1.13	1.13	0.72	0.53	0.67	0.49
Upstream T8/T5	Upstream	All	1.00	0.92	0.85	0.85	0.76	0.51	0.68	0.45
Upstream LED										
Stairwell with	Upstream	All	1.00	1.00	1.00	1.00	0.78	0.86	0.78	0.86
Occ Sensor	_									
All	Small Retrofit	All except Eversource (WMECO)	1.00	1.02	0.99	0.99	0.73	0.44	n/a	n/a
All	Small Retrofit	Eversource (WMECO)	1.00	1.02	0.99	0.99	0.73	0.44	0.67	0.42

Impact Factors for Calculating Adjusted Gross Savings

Note: Realization Rates and Coincidence Factors have the HVAC Interactive Effect incorporated, see note in Algorithm section.

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

- C&I New Construction: For all measures except Upstream Lighting, all PAs Energy and Demand RRs from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs. ⁴⁴⁸. Demand RR is the Connected Demand RR; Energy RR includes connected kWh RR, Hours of Use RR and HVAC Interactive adjustment. For Upstream measures (except LED Stairwell fixtures) all PAs Energy and Demand RRs are from the 2015 Upstream Lighting "In Storage" Follow-up Impact evaluation⁴⁴⁹. Demand RR is the Connected Demand RR; Energy RR includes connected kWh RR and HVAC Interactive adjustment. Upstream LED Stairwell fixture RRs are estimates as these fixtures have not been evaluated yet.
- C&I Existing Building Retrofit: All PAs energy and demand RRs from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs.⁴⁵⁰. Demand RR is the connected demand RR; energy RR includes connected kWh RR, hours of use RR and HVAC Interactive adjustment
- C&I Small Business: Energy and demand RRs are the statewide results from the 2011 Small C&I Non-Controlled Lighting impact evaluation⁴⁵¹

Coincidence Factors

- C&I New Construction: For all measures except Upstream Lighting, all CFs are from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs.⁴⁵² For Upstream measures (except LED Stairwell fixtures) all PAs CFs are from the 2014 Upstream Lighting Impact evaluation.⁴⁵³ Upstream LED Stairwell fixture CFs are estimates as these fixtures have not been evaluated yet.
- C&I Existing Building Retrofit: All CFs are from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs.⁴⁵⁴
- C&I Small Business: All PAs use CF values from the 2012 the Cadmus Non-Controls Multi-Season Lighting Evaluation.⁴⁵⁵

⁴⁴⁸ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations

⁴⁴⁹ DNV-GL (2015). *Massachusetts Commercial and Industrial Upstream Lighting Program: "In Storage" Lamps Follow-Up Study, Final Report* (All PAs use the results from this study, but they may be applied in slightly different manners due to differences in individual tracking systems).

⁴⁵⁰ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations.

⁴⁵¹ The Cadmus Group. (2012). Non-Controls Lighting Evaluation for the Massachusetts Small Business Direct Install Program: Multi-Season Study. Prepared for Massachusetts Joint Utilities.

⁴⁵² DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations.

⁴⁵³ KEMA, Inc. (2014). Impact Evaluation of the Massachusetts Upstream Lighting Program, Final Report.

⁴⁵⁴ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations.

Lighting – Lighting Controls

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure promotes the installation of lighting controls in both lost-opportunity and retrofit applications. Promoted technologies include occupancy sensors and daylight dimming controls.

Primary Energy Impact: Electric Secondary Energy Impact: Heating energy (non-electric) Non-Energy Impacts: O&M Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: Lighting Measure Type: Controls Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impact⁴⁵⁶

C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit:

 $\Delta kWh = Controlled \ kW * Hours_{Base} * \% Sav$ $\Delta kW = (Controlled \ kW)$

C&I Small Business: $\Delta kWh = (Controlled \ kW)(Hours_{BASE} - Hours_{EE})$ $\Delta kW = (Controlled \ kW)$

Where:		
Controlled kW	=	Controlled fixture wattage
%Sav	=	Percentage of kWh that is saved by utilizing the control measure. ⁴⁵⁷
Hours _{BASE}	=	Total annual hours that the connected Watts operated in the pre-retrofit case (retrofit installations) or would have operated with code-compliance controls (new construction installations)
Hours _{EE}	=	Annual hours that the connect Watts operate with controls implemented.

⁴⁵⁵ The Cadmus Group. (2012). Non-Controls Lighting Evaluation for the Massachusetts Small Business Direct Install Program: Multi-Season Study. Prepared for Massachusetts Joint Utilities.

⁴⁵⁷ A percent savings value of 24% is used for Occupancy Sensors and a value of 28% for Daylight Dimming based on the following report: DNV KEMA (2014) *Retrofit Lighting Controls Measures Summary of Findings FINAL REPORT*

⁴⁵⁶ Note of HVAC system interaction: Additional Electric savings from cooling system interaction are included in the calculation of adjusted gross savings for Lighting Systems projects. The HVAC interaction adjustment factor is determined from lighting project evaluations and is included in the energy realization rates and demand coincidence factors and realization rates (See Impact Factors section).

Baseline Efficiency

The baseline efficiency case assumes no controls (retrofit) or code-compliant controls (new construction).

High Efficiency

The high efficiency case involves lighting fixtures connected to controls that reduce the pre-retrofit or baseline hours of operation.

Hours

The annual hours of reduction for lighting controls are site-specific and should be determined on a caseby-case basis.

Measure Life

Measure Lives for C&I Lighting Controls ⁴⁵⁸										
Measure	Retrofit	Lost Opportunity								
Occupancy Sensors	9	10								
Daylight Dimming	9	10								

Secondary Energy Impacts

Heating energy will be increased due to reduced lighting waste heat. This impact is estimated as an average impact in heating fossil fuel consumption per unit of energy saved.

Core Initiative	Measure	Energy Type	Impact (MMBtu/\Delta kWh) ⁴⁵⁹
NB, EUL, Large Retrofit	Interior Lighting	C&I Gas Heat	-0.00092 MMBtu/kWh
NB, EUL, Large Retrofit	Interior Lighting	Oil	-0.00180 MMBtu/kWh
Small Retrofit	Interior Lighting	Gas Heat	-0.000743 MMBtu/kWh
Small Retrofit	Interior Lighting	Oil	-0.000132 MMBtu/kWh

Non-Energy Impacts

Annual non-energy benefits are claimed due to the reduced operation and maintenance costs associated with the longer measure lives of lamps and ballasts as compared to the base or pre-retrofit case. See Appendix C: Non-Resource Impacts.

⁴⁵⁸ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

⁴⁵⁹ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations (Percent split between gas and oil based on spreadsheet associated with Optimal 2008 MEMO: Non Electric Benefits Analysis Update) AND The Cadmus Group, Inc. (2012), Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR	RRen	RRum	CEen	CFun	CEcon	CEwen
All	NB, EUL, Large Retrofit	All	1.00	0.72	0.94	0.94	0.15	0.13	0.14	0.14
Occupancy Sensors	Small Business	National Grid	1.00	0.42	0.92	0.92	0.18	0.12	n/a	n/a
All	Small Business	Eversource (NSTAR), CLC	1.00	0.42	0.92	0.92	0.18	0.12	n/a	n/a
All	Small Business	Unitil	1.00	0.42	0.92	0.92	0.18	0.12	n/a	n/a
All	Small Business	Eversource (WMECO)	1.00	0.42	0.92	0.92	0.18	0.12	custom	custom

Note: Realization Rates and Coincidence Factors have the HVAC Interactive Effect incorporated, see note in Algorithm section.

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

- Large C&I: energy and demand RRs from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs.⁴⁶⁰. Demand RR is the connected demand RR; energy RR includes connected kWh RR, hours of use RR and HVAC Interactive adjustment.
- Small C&I Existing Building Retrofit: RRs from statewide Pre/Post Occupancy Sensor study.⁴⁶¹

Coincidence Factors

- Large C&I: CFs are from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs.⁴⁶²
- C&I Small Business: CFs from statewide Pre/Post Occupancy Sensor study.⁴⁶³

⁴⁶⁰ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations.

⁴⁶¹ The Cadmus Group, Inc. (2012). Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study.

⁴⁶² DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations.

⁴⁶³ The Cadmus Group, Inc. (2012). Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study.

Lighting – Freezer/Cooler LEDs

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of LED lighting in freezer and/or cooler cases. The LED lighting consumes less energy, and results in less waste heat which reduces the cooling/freezing load. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Lighting Measure Type: Interior Core Initiative: C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impact

$$\Delta kWh = \Delta kWh_{LED} + \Delta kWh_{Heat}$$

$$\Delta kWh_{LED} = \sum_{i=1}^{n} \left(Count_{i} * kW_{i} * Hours_{i} \right)_{BASE} - \sum_{i=1}^{m} \left(Count_{j} * kW_{j} * Hours_{j} \right)_{LED}$$

$$\Delta kWh_{Heat} = \Delta kWh_{LED} * 0.28 * Eff_{RS}$$

$$\Delta kW = \Delta kWh / Hours_{i}$$

Where:

ΔkWh_{LED}	=	Reduction in lighting energy
ΔkWh_{Heat}	=	Reduction in refrigeration energy due to reduced heat loss from the lighting fixtures
Ν	=	Total number of lighting fixture types in the pre-retrofit case
М	=	Total number of lighting fixture types in the post-retrofit case
Count _i	=	Quantity of type i fixtures in the pre-retrofit case
kW_i	=	Power demand of pre-retrofit lighting fixture type i (kW/fixture)
Hours _i	=	Pre-retrofit annual operating hours of fixture type i
Count _j	=	Quantity of type j fixtures in the pre-retrofit case
kWj	=	Power demand of lighting fixture type j (kW/fixture)
Hours _j	=	Post-retrofit annual operating hours of fixture type j
0.28	=	Unit conversion between kW and tons calculated as 3,413 Btuh/kW divided by 12,000
		Btuh/ton
Eff _{RS}	=	Efficiency of typical refrigeration system: 1.6 kW/ton ⁴⁶⁴ for C&I Small Business; 1.9
		kW/ton for Large C&I ⁴⁶⁵

 ⁴⁶⁴ Select Energy (2004). Cooler Control Measure Impact Spreadsheet Users' Manual. Prepared for Eversource (NSTAR).
 ⁴⁶⁵ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations

Baseline Efficiency

The baseline efficiency case is the existing lighting fixtures in the cooler or freezer cases.

High Efficiency

The high efficiency case is the installation of LED lighting fixtures on the cooler or freezer cases, replacing the existing lighting fixtures.

Hours

Annual hours of operation are determined on a case-by-case basis and are typically 8760 hours/year. Post-retrofit operating hours are assumed to be the same as pre-retrofit hours unless lighting occupancy sensors were also implemented.

Measure Life

The measure life is 13 years.⁴⁶⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
	Initiative									
Freezer/Cooler LEDs	Large Retrofit	All	1.00	0.94	1.01	1.01	0.99	1.00	1.00	1.00
Freezer/Cooler LEDs	Small Retrofit	National Grid	1.00	0.94	1.01	1.01	0.99	1.00	n/a	n/a
Freezer/Cooler LEDs	Small Retrofit	Eversource (NSTAR)	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Freezer/Cooler LEDs	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Freezer/Cooler LEDs	Small Retrofit	CLC	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Freezer/Cooler LEDs	Small Retrofit	Eversource (WMECO)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

⁴⁶⁶ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities.

Realization Rates

- All PAs Large C&I energy and demand RRs from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs.⁴⁶⁷
- National Grid: RRs for C&I Small Business installations based on 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs⁴⁶⁸;
- Eversource (NSTAR), Eversource (WMECO), CLC, Unitil: energy and demand RRs are 100% based on no evaluations

Coincidence Factors

- All PAs Large C&I CFs from 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs⁴⁶⁹.
- National Grid C&I Small Business based on 12 month logging impact evaluation of MA PAs LCI prescriptive lighting programs⁴⁷⁰.
- Unitil, Eversource (NSTAR), Eversource (WMECO): C&I Small Business CFs set to 100% because pre-retrofit unit operate 8760 hours/year.

⁴⁶⁷ DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations.

⁴⁶⁸ Ibid.

⁴⁶⁹ Ibid.

⁴⁷⁰ Ibid.

HVAC – Unitary Air Conditioners

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure promotes the installation of high efficiency unitary air conditioning equipment in lost opportunity applications. Air conditioning (AC) systems are a major consumer of electricity and systems that exceed baseline efficiencies can save considerable amounts of energy. This measure applies to air, water, and evaporatively-cooled unitary AC systems, both single-package and split systems. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Measure Type: Cooling Core Initiative: C&I New Buildings & Major Renovations and C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

For units with cooling capacities less than 65 kBtu/h:

$$\Delta kWh = (kBtu / h) \left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right) (EFLH_{Cool})$$
$$\Delta kW = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

For units with cooling capacities equal to or greater than 65 kBtu/h and EER available:

$$\Delta kWh = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right) (EFLH_{Cool})$$
$$\Delta kW = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

For units with cooling capacities equal to or greater than 65 kBtu/h and IEER available:

$$\Delta kWh = (kBtu / h) \left(\frac{1}{IEER_{BASE}} - \frac{1}{IEER_{EE}} \right) (Hours_{Cool}) (Cap_{adj})$$
$$\Delta kW = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

Where:

October 2015

		C).P.U. 15-160 to D.P.U	J. 15-169
		I C	nree-Year Plan 2016-	2018
Massachusetts	Techni	ical Reference Manual F	Schuber 30, 2013	Commercial and Industrial Electric Efficiency Measures
		P	Page 228 of 435	
ΔkWh	=	Gross annual kWh savi	ngs from the mea	sure.
ΔkW	=	Gross connected kW sa	wings from the m	easure.
kBtu/h	=	Capacity of the cooling	equipment in kB	tu per hour (1 ton of cooling capacity equals
		12 kBtu/h)		
SEER _{BASE}	=	Seasonal Energy Effici	ency Ratio of the	baseline equipment.
SEER _{EE}	=	Seasonal Energy Effici	ency Ratio of the	energy efficient equipment.
EFLH _{Cool}	=	Cooling equivalent full	load hours.	
EER _{BASE}	=	Energy Efficiency Rati	o of the baseline e	equipment.
EER _{EE}	=	Energy Efficiency Rational Contract Con	o of the energy ef	ficient equipment.
IEER _{BASE}	=	Integrated Energy Effic	ciency Ratio of the	e baseline equipment.
IEER _{EE}	=	Integrated Energy Effic	ciency Ratio of the	e energy efficient equipment.
Hours _{Cool}	=	Annual Cooling Hours		
Cap _{adj}		Capacity Adjustment F	actor: 471 See tabl	le below for values.

PA specific Capacity Adjustment Factors for IEER⁴⁷²

РА	Capacity Adjustment Factor
National Grid	1.009
Eversource (NSTAR), CLC	0.927
WMECO, Unitil	1.104

Baseline Efficiency

The baseline efficiency case for new installations assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. For 2016, baseline efficiency requirements will follow IECC 2012 with Massachusetts specific amendments.⁴⁷³ Baseline requirements for 2017 and on have not been finalized.

⁴⁷¹ The capacity adjustment factor is used only when IEER is used to determine energy savings. Since IEER takes into account performance at different loading points, the capacity adjustment factor helps to account for the fact that more load occurs at lower temperatures and capacities. The adjustment factor is greater than 1 for climate zones with lower full load hours and runtime, and the factor is less than 1 for zones with more full load hours and runtime.

 ⁴⁷² DNV GL (2014). *Memo – Develop Modified Runtime from NEEP HVAC Loadshape Study*. Prepared for National Grid and Northeast Utilities. August 20, 2014. Capacity Factors are weighted using information about PA specific load zones.
 ⁴⁷³ International Code Council (2012). *2012 International Energy Conservation Code*; Page C-38, Table C403.2.3(1).

Split system and single package

Equipment Type	Size Category	Subcategory or Rating Condition	2016 Baseline Efficiency
	<65 000 Btu/b ^b	Split system	13.0 SEER
	~03;000 Btu/II	Single package	13.0 SEER
	≥65,000 Btu/h and <135,000 Btu/h	Split system and single package	11.2 EER ^a 11.4 IEER ^a
Air conditioners, air cooled	≥135,000 Btu/h and <240,000 Btu/h	Split system and single package	11.0 EER ^a 11.2 IEER ^a
	≥240,000 Btu/h and <760,000 Btu/h	Split system and single package	10.0 EER ^a 10.1 IEER ^a
	≥760,000 Btu/h	Split system and single package	9.7 EER ^a 9.8 IEER ^a
	<65,000 Btu/h	Split system and single package	12.1 EER 12.3 IEER
A	≥65,000 Btu/h and <135,000 Btu/h	Split system and single package	12.1 EER ^a 12.3 IEER ^a
Air conditioners, air cooled Air conditioners, Water cooled Air conditioners, evaporatively cooled	≥135,000 Btu/h and <240,000 Btu/h	Split system and single package	12.5 EER ^a 12.7 IEER ^a
	≥240,000 Btu/h	Split system and single package	12.4 EER ^a 12.6 IEER ^a
	<65,000 Btu/h	Split system and single package	12.1 EER 12.3 IEER
Air conditionar	≥65,000 Btu/h and <135,000 Btu/h	Split system and single package	12.1 EER ^a 12.3 IEER ^a
evaporatively cooled	≥135,000 Btu/h and <240,000 Btu/h	Split system and single package	12.0 EER ^a 12.2 IEER ^a
	>240,000 D4: /h	Solit contant and single as the s	11.9 EER ^a

Unitary Air Conditioners Baseline Efficiency Levels⁴⁷⁴

a. Deduct 0.2 from the required EERs for units with a heating section other than electric heat.⁴⁷⁵ b. Single-phase air-cooled air conditioners <65,000 Btu/h are regulated by the National Appliance Energy Conservation Act of 1987 (NAECA); SEER values are those set by NAECA.

≥240,000 Btu/h

High Efficiency

The high efficiency case assumes the HVAC equipment meets or exceeds the Consortium for Energy Efficiency's (CEE) specification. This specification results in cost-effective energy savings by specifying higher efficiency HVAC equipment while ensuring that several manufacturers produce compliant equipment. The CEE specification is reviewed and updated annually to reflect changes to the ASHRAE and IECC energy code baseline as well as improvements in the HVAC equipment technology. Equipment efficiency is the rated efficiency of the installed equipment for each project.

12.1 IEER^a

 $^{^{474}}$ For air-cooled air conditioners < 65 kBtu/h, if the actual EER_{EE} is unknown, assume the following conversion from SEER to EER: EER≈SEER/1.1.

⁴⁷⁵ The PAs do not differentiate between units by heating section types. To be conservative, the highest Baseline Efficiency is assumed for all heating section types in each equipment category.

Hours

Whenever EER or SEER is used to determine energy savings, Equivalent Full Load Hours should be used. Whenever IEER is used to determine energy savings, Annual Cooling Hours should be used. Annual cooling hours or equivalent full load hours for unitary AC equipment may be site specific or default PA specific values made be used, see Table 6 in Appendix A: Common Lookup Tables.

Measure Life

The measure life is 15 years.⁴⁷⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Unitary AC	NB, EUL	CLC	1.00	1.00	0.74	0.00	0.45	0.00	n/a	n/a
Unitary AC	NB, EUL	National Grid	1.00	1.00	1.00	1.00	0.40	0.00	n/a	n/a
Unitary AC	NB, EUL	Eversource (NSTAR)	1.00	1.00	0.74	0.00	0.45	0.00	n/a	n/a
Unitary AC	NB, EUL	Unitil	1.00	1.00	1.00	1.00	0.33	0.00	n/a	n/a
Unitary AC	NB, EUL	Eversource (WMECO)	1.00	0.91	0.74	0.00	0.45	0.00	0.42	0.00

In-Service Rates

All installations have 100% in service rate since all programs include verification of equipment installations.

Realization Rates

- CLC, National Grid, Eversource (NSTAR), Unitil: Energy RRs set to 1.00 based 2011 NEEP C&I Unitary HVAC Loadshape Project.⁴⁷⁷
- Eversource (WMECO): Energy RRs are from 2007/2008 Large C&I Programs impact evaluation⁴⁷⁸

Coincidence Factors

CFs based 2011 NEEP C&I Unitary HVAC Loadshape Project.479

⁴⁷⁶ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

⁴⁷⁷ KEMA (2011). C&I Unitary HVAC LoadShape Project – Final Report. Prepared for the Regional Evaluation, Measurement & Verification Forum.

⁴⁷⁸ KEMA, Inc. (2010). 2007/2008 Large C&I Programs, Phase 1 Report Memo for Lighting and Process Measures. Prepared for Western Massachusetts Electric Company.

⁴⁷⁹ KEMA (2011). C&I Unitary HVAC LoadShape Project – Final Report. Prepared for the Regional Evaluation, Measurement & Verification Forum.

HVAC – Heat Pump Systems

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure applies to the installation of high-efficiency air cooled, water source, ground water source, and ground source heat pump systems. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Measure Type: Heat Pumps Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

For air cooled units with cooling capacities less than 65 kBtu/h:

$$\Delta kWh = \Delta kWh_{Cool} + \Delta kWh_{Heat}$$

$$\Delta kWh_{Cool} = \left(kBtu / h\right) \left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}}\right) \left(EFLH_{COOL}\right)$$

$$\Delta kWh_{Heat} = \left(kBtu / h\right) \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}}\right) \left(EFLH_{HEAT}\right)$$

$$\Delta kW_{Cool} = \left(kBtu / h\right)_{Cool} \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}}\right)$$

For all water source, groundwater source, and ground source units. Also for air cooled units with cooling capacities equal to or greater than 65 kBtu/h and EER available:

$$\Delta kWh = \Delta kWh_{Cool} + \Delta kWh_{Heat}$$

$$\Delta kWh_{Cool} = \left(kBtu / h_{COOL}\right) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}}\right) (EFLH_{COOL})$$

$$\Delta kWh_{Heat} = \frac{\left(kBtu / h_{HEAT}\right)}{3.412} \left(\frac{1}{COP_{BASE}} - \frac{1}{COP_{EE}}\right) (EFLH_{HEAT})$$

$$\Delta kW_{Cool} = \left(kBtu / h\right)_{Cool} \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}}\right)$$

October 2015

For air cooled units with cooling capacities equal to or greater than 65 kBtu/h with available IEER:

$$\Delta kWh = \Delta kWh_{Cool} + \Delta kWh_{Heat}$$

$$\Delta kWh_{Cool} = (kBtu / h_{COOL}) \left(\frac{1}{IEER_{BASE}} - \frac{1}{IEER_{EE}} \right) (Hours_{COOL}) (Cap_{adj})$$

$$\Delta kWh_{Heat} = \frac{(kBtu / h_{HEAT})}{3.412} \left(\frac{1}{COP_{BASE}} - \frac{1}{COP_{EE}} \right) (EFLH_{HEAT})$$

$$\Delta kW_{Cool} = (kBtu / h)_{Cool} \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

Where:

=	Gross annual cooling mode kWh savings from the measure.
=	Gross annual heating mode kWh savings from the measure.
=	Gross annual kW savings from the measure. Heating kW savings are negligible.
=	Capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/h).
=	Seasonal Energy Efficiency Ratio of the baseline equipment.
=	Seasonal Energy Efficiency Ratio of the energy efficient equipment.
=	Cooling mode equivalent full load hours.
=	Heating Seasonal Performance Factor of the baseline equipment.
=	Heating Seasonal Performance Factor of the energy efficient equipment.
=	Heating mode equivalent full load hours.
=	Capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/h).
=	Energy Efficiency Ratio of the baseline equipment.
=	Energy Efficiency Ratio of the energy efficient equipment.
=	Capacity of the heating equipment in kBtu per hour. If the heating capacity is unknown, it can be calculated from the cooling capacity ⁴⁸¹
=	Conversion factor: 3.412 Btu per Wh.
=	Coefficient of performance of the baseline equipment. See table below for values.
=	Coefficient of performance of the energy efficient equipment.
=	Integrated Energy Efficiency Ratio of the baseline equipment. See table below for values.
=	Integrated Energy Efficiency Ratio of the energy efficient equipment.
=	Annual Cooling Hours
	Capacity Adjustment Factor: ⁴⁸² See table below for values.

⁴⁸⁰ For equipment with cooling capacities less than 65 kBtu/h, it is assumed that the heating capacity and cooling capacity are equal.

equal. ⁴⁸¹ For Air Source HPs: Heating Capacity = Cooling Capacity * 13,900/12,000 (ratio of heat produced in heating mode to cooling produced in cooling mode). For Water/Ground Source HPs: Heating Capacity = Cooling Capacity * COP/EER (converts the rated cooling output to the rated heating output. ⁴⁸² The capacity adjustment factor is used only when IEER is used to determine energy savings. Since IEER takes into account

⁴⁸² The capacity adjustment factor is used only when IEER is used to determine energy savings. Since IEER takes into account performance at different loading points, the capacity adjustment factor helps to account for the fact that more load occurs at lower temperatures and capacities. The adjustment factor is greater than 1 for climate zones with lower full load hours and runtime, and the factor is less than 1 for zones with more full load hours and runtime.

PA Specific Capacity Adjustment Factors for IEER⁴⁸³

РА	Capacity Adjustment Factor
National Grid	1.009
Eversource (NSTAR), CLC	0.927
WMECO, Unitil	1.104

Baseline Efficiency

The baseline efficiency case for new installations assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. For 2016, baseline efficiency requirements will follow IECC 2012 with Massachusetts specific amendments.⁴⁸⁴ Baseline requirements for 2017 and on have not been finalized. The table below details the specific efficiency requirements by equipment type and capacity.

Fauinment	Size Category (Cooling	Subcategory or Rating	2016 Baselin	e Efficiency
Туре	Capacity)	Condition	Cooling Mode	Heating Mode
	<65 000 Ptu/b ^b	Split system	13.0 SEER	7.7 HSPF
Equipment Type Air cooled Water source Groundwater source Ground	~05,000 Btu/II	Single package	13.0 SEER	7.7 HSPF
	≥65,000 Btu/h and <135,000 Btu/h	Split system and single package / 47°F db/43°F wb outdoor air	11.0 EER ^a 11.2 IEER ^a	3.3 COP
	≥135,000 Btu/h and <240,000 Btu/h	Split system and single package / 47°F db/43°F wb outdoor air	10.6 EER ^a 10.7 IEER ^a	3.2 COP
	≥240,000 Btu/h	Split system and single package / 47°F db/43°F wb outdoor air	9.5 EER ^a 9.6 IEER ^a	3.2 COP
Water source	<17,000 Btu/h	86°F entering water (Cooling Mode) / 68°F entering water (Heating Mode)	11.2 EER	4.2 COP
	≥17,000 Btu/h and <135,000 Btu/h	86°F entering water / 68°F entering water (Heating Mode)	12.0 EER	4.2 COP
Groundwater source	<135,000 Btu/h	59°F entering water (Cooling Mode) / 50°F entering water (Heating Mode)	16.2 EER	3.6 COP
Ground source	<135,000 Btu/h	77°F entering water / 32°F entering water (Heating Mode)	13.4 EER	3.1 COP

Unitary and Applied Heat Pumps Baseline Efficiency Levels⁴⁸⁵

db = dry-bulb temperature, $^{\circ}F$; wb = wet-bulb temperature, $^{\circ}F$.

a. Deduct 0.2 from the required EERs for units with a heating section other than electric heat.⁴⁸⁶

b. Single-phase air-cooled air conditioners <65,000 Btu/h are regulated by the National Appliance Energy

Conservation Act of 1987 (NAECA); SEER values are those set by NAECA.

 ⁴⁸³ DNV GL (2014). *Memo – Develop Modified Runtime from NEEP HVAC Loadshape Study*. Prepared for National Grid and Northeast Utilities. August 20, 2014. Capacity Factors are weighted using information about PA specific load zones.
 ⁴⁸⁴ International Code Council (2012). *2012 International Energy Conservation Code*; Page C-40, Table C403.2.3(2).

⁴⁸⁵ Since IECC 2012 does not provide EER requirements for air-cooled heat pumps < 65 kBtu/h, assume the following conversion from SEER to EER: EER \approx SEER/1 1

conversion from SEER to EER: EER \approx SEER/1.1. ⁴⁸⁶ The PAs do not differentiate between units by heating section types. To be conservative, the highest baseline efficiency is assumed for all heating section types in each equipment category.

High Efficiency

The high efficiency case assumes the HVAC equipment meets or exceeds the Consortium for Energy Efficiency's (CEE) specification. This specification results in cost-effective energy savings by specifying higher efficiency HVAC equipment while ensuring that several manufacturers produce compliant equipment. The CEE specification is reviewed and updated annually to reflect changes to the ASHRAE and IECC energy code baseline as well as improvements in the HVAC equipment technology. Equipment efficiency is the rated efficiency of the installed equipment for each project.

Hours

Whenever EER or SEER is used to determine energy savings, Equivalent Full Load Hours should be used. Whenever IEER is used to determine energy savings, Annual Operating Hours should be used. Annual cooling hours or equivalent full load hours for heat pump equipment may be site specific or default PA specific hours may be used, see Table 6 in Appendix A: Common Lookup Tables.

Measure Life

The measure life is 15 years.⁴⁸⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RRE	RR _{SP}	RR _{WP}	CF _{SP}	CFwp	CF _{SSP}	CFwsp
Heat Pumps	NB, EUL	National Grid	1.00	1.05	1.00	1.00	0.40	0.00	n/a	n/a
Heat Pumps	NB, EUL	Eversource (NSTAR)	1.00	1.01	1.09	1.57	0.45	0.00	n/a	n/a
Heat Pumps	NB, EUL	CLC	1.00	1.01	1.09	1.57	0.45	0.00	n/a	n/a
Heat Pumps	NB, EUL	Unitil	1.00	1.00	1.00	1.00	0.33	0.00	n/a	n/a
Heat Pumps	NB, EUL	Eversource (WMECO)	1.00	0.91	1.09	1.57	0.45	0.00	0.42	0.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Realization Rates

- National Grid and energy and demand RRs based on a 1994 study of HVAC and process cooling equipment.⁴⁸⁸
- Eversource (NSTAR) energy and demand RRs from impact evaluation of NSTAR 2006 HVAC installations⁴⁸⁹
- CLC energy and demand RRs from impact evaluation of NSTAR 2006 HVAC installations.
- Unitil realization rates same as Unitary AC.

 ⁴⁸⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ⁴⁸⁸ The Fleming Group (1994). *Persistence of Commercial/Industrial Non-Lighting Measures, Volume 2, Energy Efficient HVAC and Process Cooling Equipment*. Prepared for New England Power Service Company.

⁴⁸⁹ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final Report. Prepared for NSTAR Electric and Gas; Table 17.

• Eversource (WMECO): Energy RRs are from 2007/2008 Large C&I Programs impact evaluation⁴⁹⁰, demand realization rates from impact evaluation of NSTAR 2006 HVAC installations referenced above.

Coincidence Factors

CFs based 2011 NEEP C&I Unitary HVAC Loadshape Project.⁴⁹¹

 ⁴⁹⁰ KEMA, Inc. (2011). 2007/2008 Large C&I Programs,
 ⁴⁹¹ KEMA (2011). C&I Unitary HVAC LoadShape Project – Final Report. Prepared for the Regional Evaluation, Measurement & Verification Forum.

HVAC – Demand Control Ventilation (DCV)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The measure controls the quantity of outside air to an air handling system based on detected space CO_2 levels. The installed systems monitor the CO_2 in the spaces or return air and reduce the outside air use when possible to save energy while meeting indoor air quality standards.

Primary Energy Impact: Electric Secondary Energy Impact: Gas, Oil Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Ventilation Core Initiative: C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impacts

Gross energy and demand savings for implementation of demand control ventilation are custom calculated using the PA's DCV savings calculation tools. These tools are used to calculate energy and demand savings based on site-specific project details including hours of operation, HVAC system efficiency and total air flow, and enthalpy and temperature set points.⁴⁹² Alternatively, the energy and demand savings may be calculated using the following algorithms and inputs:

$$\Delta kWh = (kBtu / h) \left(\frac{1 Ton}{12 kBtu / h}\right) (SAVE_{kWh})$$
$$\Delta kW = (kBtu / h) \left(\frac{1 Ton}{12 kBtu / h}\right) (SAVE_{kW})$$

Where:

=	Capacity of the cooling equipment in kBtu per hour
=	Average annual kWh reduction per ton of cooling capacity: 170 kWh/ton ⁴⁹³
=	Average kW reduction per ton of cooling capacity: 0.15 kW/ton ⁴⁹⁴
	= = =

Baseline Efficiency

The baseline efficiency case assumes the relevant HVAC equipment has no ventilation control.

⁴⁹² Detailed descriptions of the DCV Savings Calculation Tools are included in the TRM Library under the "C&I Spreadsheet Tools" folder.

 ⁴⁹³ Keena, Kevin (2008). Analysis of CO2 Control Energy Savings on Unitary HVAC Units. Prepared for National Grid.
 ⁴⁹⁴ Ibid.

High Efficiency

The high efficiency case is the installation of an outside air intake control based on CO₂ sensors.

Hours

The operating hours are site-specific for custom savings calculations.

Measure Life

The measure life is 10 years.⁴⁹⁵

Secondary Energy Impacts

Custom or default gas and oil heat impacts are counted for DCV measures for reduction in space heating.

Measure	Energy Type	Savings ⁴⁹⁶
DCV	C&I Gas Heat	0.001277 MMBtu/kWh
DCV	Oil	0.002496 MMBtu/kWh

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
DCV	NB, EUL	CLC	1.00	1.01	1.09	1.57	0.82	0.05	n/a	n/a
DCV	NB, EUL	Eversource (NSTAR)	1.00	1.01	1.09	1.57	0.82	0.05	n/a	n/a
DCV	NB, EUL	Eversource (WMECO)	1.00	0.91	1.09	1.57	0.82	0.05	n/a	n/a

In-Service Rates

All installations have 100% in service rate.

Realization Rates

For Eversource (NSTAR) and CLC, RRs are from an impact evaluation 2006 HVAC installations.⁴⁹⁷ For Eversource (WMECO) the energy RR is from and impact evaluation of 2007/2008 installations.⁴⁹⁸

Coincidence Factors

CFs based on standard assumptions.

⁴⁹⁵ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1. Measure life is assumed to be the same as Enthalpy Economizer.

⁴⁹⁶ Optimal Energy, Inc. (2008). *Non-Electric Benefits Analysis Update*. Memo Prepared for National Grid.

⁴⁹⁷ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification 2006 Final Report. Prepared for NSTAR; Table 17.

⁴⁹⁸ KEMA (2011). 2007/2008 Large C&I Programs Final Report. Prepared for Western Massachusetts Electric Company.

HVAC – Dual Enthalpy Economizer Controls (DEEC)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The measure is to upgrade the outside-air dry-bulb economizer to a dual enthalpy economizer. The system will continuously monitor the enthalpy of both the outside air and return air. The system will control the system dampers adjust the outside quantity based on the two readings.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: HVAC Measure Type: Controls Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

$$\Delta kWh = \left(kBtu / h\right) \left(\frac{1 Ton}{12 kBtu / h}\right) \left(SAVE_{kWh}\right)$$
$$\Delta kW = \left(kBtu / h\right) \left(\frac{1 Ton}{12 kBtu / h}\right) \left(SAVE_{kW}\right)$$

Where:

kBtu/h = Capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/h).

 $SAVE_{kWh}$ = Average annual kWh reduction per ton of cooling capacity: 289 kWh/ton⁴⁹⁹

 $SAVE_{kW}$ = Average kW reduction per ton of cooling capacity: 0.289 kW/ton⁵⁰⁰

Baseline Efficiency

The baseline efficiency case for this measure assumes the relevant HVAC equipment is operating with a fixed dry-bulb economizer.

High Efficiency

The high efficiency case is the installation of an outside air economizer utilizing two enthalpy sensors, one for outdoor air and one for return air.

 ⁴⁹⁹ Patel, Dinesh (2001). *Energy Analysis: Dual Enthalpy Control*. Prepared for Eversource (NSTAR).
 ⁵⁰⁰ Ibid.

Hours

Not applicable.

Measure Life

The measure life is 10 years for lost-opportunity applications.⁵⁰¹ The measure life is 7 years for retrofit installations.⁵⁰²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
DEEC	NB, EUL	National Grid	1.00	1.00	1.00	1.00	0.40	0.00	n/a	n/a
DEEC	NB, EUL	Eversource (NSTAR)	1.00	1.01	1.09	1.57	0.45	0.00	n/a	n/a
DEEC	NB, EUL	CLC	1.00	1.01	1.09	1.57	0.55	0.00	n/a	n/a
DEEC	NB, EUL	Unitil	1.00	1.00	1.00	1.00	0.332	0.00	n/a	n/a
DEEC	NB, EUL	Eversource (WMECO)	1.00	0.91	1.09	1.57	0.45	0.00	0.00	0.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Realization Rates

- National Grid RRs are 1.0 since there have been no impact evaluations of the prescriptive savings calculations.
- Eversource (NSTAR) & CLC energy and demand RRs from impact evaluation of NSTAR 2006 HVAC installations⁵⁰³
- Unitil realization rates same as Unitary AC.
- Eversource (WMECO): Energy RRs are from 2007/2008 Large C&I Programs impact evaluation⁵⁰⁴, demand realization rates from impact evaluation NSTAR 2006 HVAC installations.

Coincidence Factors

- All PAs on-peak CFs based 2011 NEEP C&I Unitary AC Loadshape Project⁵⁰⁵.
- Eversource (WMECO): seasonal peak values set to 0.00 based on assumption that no DEEC savings occur during seasonal peak periods.

 ⁵⁰¹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1
 ⁵⁰² GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*.
 Prepared for The New England State Program Working Group; Table 2.

⁵⁰³ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final Report. Prepared for NSTAR Electric and Gas; Table 17.

⁵⁰⁴ KEMA, Inc. (2011). 2007/2008 Large C&I Programs,

⁵⁰⁵ KEMA (2011). C&I Unitary AC LoadShape Project – Final Report. Prepared for the Regional Evaluation, Measurement & Verification Forum.

HVAC – ECM Fan Motors

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure promotes the installation of electronically commutated motors (ECMs) on fan powered terminal boxes, fan coils, and HVAC supply fans on small unitary equipment. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Measure Type: Motors Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Electric Energy Impact

 $\Delta kWh = (Design CFM)(Box Size Factor)(\%Flow_{ANNUAL})(Hours)$ $\Delta kW_{SP} = (Design CFM)(Box Size Factor)(\%Flow_{SP})$ $\Delta kW_{WP} = (Design CFM)(Box Size Factor)(\%Flow_{WP})$

Where:

vv nere.	
Design CFM	= Capacity of the VAV box in cubic feet per minute
Box Size Factor	= Savings factor in Watts/CFM. See table below for values.
%Flow _{annual}	= Average % of design flow over all operating hours. See table below for values.
%Flow _{SP}	= Average % of design flow during summer peak period. See table below for values.
%Flow wP	= Average % of design flow during summer peak period. See table below for values.
Hours	= Annual operating hours for VAV box fans

ECM Fan Motor Savings Factors 506

Factor	Box Size	Value	Units
Box Size Factor	< 1000 CFM	0.32	Watts/CFM
Box Size Factor	\geq 1000 CFM	0.21	Watts/CFM
%Flow _{ANNUAL}	All	0.52	-
%Flow _{SP}	All	0.63	-
%Flow _{WP}	All	0.33	-

⁵⁰⁶ Factors based on engineering analysis developed at National Grid.

Baseline Efficiency

The baseline efficiency case for this measure assumes the VAV box fans are powered by a single speed fractional horsepower permanent split capacitor (PSC) induction motor.

High Efficiency

The high efficiency case must have a motor installed on new, qualifying HVAC equipment.

Hours

The annual operating hours for ECMs on VAV box fans are site-specific and should be determined on a case-by-case basis.

Measure Life

The measure life is 20 years for lost opportunity applications.⁵⁰⁷

Algorithms for Calculating Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
ECM Fan Motors	NB, EUL	National Grid	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
ECM Fan Motors	NB, EUL	Eversource (NSTAR), CLC	1.00	1.01	1.09	1.57	0.82	0.05	n/a	n/a
ECM Fan Motors	NB, EUL	Unitil	1.00	1.00	1.00	1.00	1.00	0.82	n/a	n/a
ECM Fan Motors	NB, EUL	Eversource (WMECO)	1.00	1.31	1.09	1.57	0.82	0.05	0.72	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

- National Grid: RRs based on engineering estimates
- Eversource (NSTAR), CLC: energy and demand RRs from impact evaluation of NSTAR 2006 HVAC installations⁵⁰⁸
- Unitil: energy and demand RRs are 100% for all C&I New Construction projects based on no evaluations
- Eversource (WMECO): Energy RRs are from 2007/2008 Large C&I Programs impact evaluation⁵⁰⁹, demand realization rates from impact evaluation of NSTAR 2006 HVAC installations referenced above.

 ⁵⁰⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ⁵⁰⁸ RLW Analytics (2008). *Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final*

Report. Prepared for Eversource (NSTAR) Electric and Gas; Table 17.

⁵⁰⁹ KEMA, Inc. (2011). 2007/2008 Large C&I Programs,

Massachusetts Technical Reference Manual

Coincidence Factors

- National Grid: CFs based on engineering estimates.
- Eversource (NSTAR), CLC, Unitil, Eversource (WMECO): on-peak CFs based on standard assumptions.
- Eversource (WMECO): seasonal peak values from 2005 coincidence factor study⁵¹⁰

⁵¹⁰ RLW Analytics (2007). *Final Report, 2005 Coincidence Factor Study*. Prepared for Connecticut Energy Conservation Management Board, United Illuminating and Connecticut Light & Power.

HVAC – Energy Management System

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The measure is the installation of a new building energy management system (EMS) or the expansion of an existing energy management system for control of non-lighting electric and gas end-uses in an existing building on existing equipment. Primary Energy Impact: Electric Secondary Energy Impact: Gas, Oil Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Controls Core Initiative: C&I New Construction, C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impacts

Gross energy and demand savings for energy management systems (EMS) are custom calculated using the PA's EMS savings calculation tools. These tools are used to calculate energy and demand savings based on project-specific details including hours of operation, HVAC system equipment and efficiency and points controlled.⁵¹¹

Baseline Efficiency

The baseline for this measure assumes the relevant HVAC equipment has no control.

High Efficiency

The high efficiency case is the installation of a new EMS or the expansion of an existing EMS to control additional non-lighting electric or gas equipment. The EMS must be installed in an existing building on existing equipment.

Hours

Not applicable.

Measure Life

For lost-opportunity applications, the measure life is 15 years.⁵¹² For retrofit applications, the measure life is 10 years.⁵¹³

513 Ibid.

⁵¹¹ Descriptions of the EMS savings calculation tools are included in the TRM Library "C&I Spreadsheet Tools" folder.

⁵¹² Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

Secondary Energy Impacts

Heating Impacts: Gas and oil heat impacts are counted for EMS measures for reduction in space heating. If the heating system impacts are not calculated in the EMS savings calculation tool, they can be approximated using the interaction factors described below:

Measure	Energy Type	Impact (MMBtu/\(\Delta kWh\)) ⁵¹⁴
EMS	C&I Gas Heat	0.001277
EMS	Oil	0.002496

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
EMS	Large Retrofit	National Grid	1.00	1.04	1.03	1.03	custom	custom	n/a	n/a
EMS	Large Retrofit	Eversource (NSTAR)	1.00	1.01	1.09	1.57	0.82	0.05	n/a	n/a
EMS	Large Retrofit, Small Retrofit	Unitil	1.00	1.00	1.00	1.00	0.82	0.05	n/a	n/a
EMS	Large Retrofit	Eversource (WMECO)	1.00	0.57	1.09	1.57	0.82	0.05	custom	custom
EMS	Large Retrofit, Small Retrofit	CLC	1.00	1.01	1.09	1.57	0.82	0.05	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

- National Grid RRs derived from a 1994 study of HVAC and process cooling equipment.⁵¹⁵
- Eversource (NSTAR), CLC energy and demand RRs from impact evaluation of NSTAR 2006 HVAC installations⁵¹⁶
- Unitil: energy and demand RRs are 100% for all C&I New Construction projects based on no evaluations
- Eversource (WMECO): Energy RRs are based on end use from 2007/2008 Large C&I Programs impact evaluation⁵¹⁷, demand RRs from impact evaluation of NSTAR 2006 HVAC installations referenced above.

Coincidence Factors

- National Grid: CFs are custom calculated.
- Eversource (NSTAR), CLC, Unitil, Eversource (WMECO): on-peak CFs based on standard assumptions.
- Eversource (WMECO): seasonal CFs are custom calculated.

⁵¹⁴ Optimal Energy, Inc. (2008). *MEMO: Non-Electric Benefits Analysis Update*. Prepared for Eversource (NSTAR). Final savings values calculated in spreadsheet analysis as noted on pg 5 of the memo. ⁵¹⁵ The Fleming Group (1994). *Persistence of Commercial/Industrial Non-Lighting Measures, Volume 3, Energy Management*

Control Systems. Prepared for New England Power Service Company. ⁵¹⁶ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final

Report. Prepared for NSTAR Electric and Gas; Table 17.

⁵¹⁷ KEMA, Inc. (2011). 2007/2008 Large C&I Program Final Report. Prepared for Western Massachusetts Electric Company.

HVAC – High Efficiency Chiller

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure promotes the installation of efficient water-cooled and air-cooled water chilling packages for comfort cooling applications. Eligible chillers include air-cooled, water cooled rotary screw and scroll, and water cooled centrifugal chillers for single chiller systems or for the lead chiller only in multi-chiller systems. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Measure Type: Cooling Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Gross energy and demand savings for chiller installations may be custom calculated using the PA's Chillers savings calculation tool. These tools are used to calculated energy and demand savings based on site-specific chiller plant details including specific chiller plan equipment, operational staging, operating load profile and load profile.⁵¹⁸

Alternatively, the energy and demand savings may be calculated using the following algorithms and inputs. Please note that consistent efficiency types (FL or IPLV) must be used between the baseline and high efficiency cases. It is recommended that IPLV be used over FL efficiency types when possible.

Air-Cooled Chillers:

$$\Delta kWh = (Tons) \left(\frac{12}{EER_{BASE}} - \frac{12}{EER_{EE}} \right) (Hours)$$

$$\Delta kW = \left(Tons\right) \left(\frac{12}{EER_{BASE}} - \frac{12}{EER_{EE}}\right)$$

⁵¹⁸ Descriptions of the Chiller savings calculation tools are included in the TRM Library "C&I Spreadsheet Tools" folder.

Water-Cooled Chillers:

 $\Delta kWh = (Tons)(kW / ton_{BASE} - kW / ton_{EE})(Hours)$

 $\Delta kW = (Tons)(kW / ton_{BASE} - kW / ton_{EE})(LF)$

Where:

Tons	=	Rated capacity of the cooling equipment
EER _{BASE}	=	Energy Efficiency Ratio of the baseline equipment. See table below for values.
EER _{EE}	=	Energy Efficiency Ratio of the efficient equipment. Site-specific.
kW/ton _{BASE}	=	Energy efficiency rating of the baseline equipment. See table below for values.
kW/ton _{EE}	=	Energy efficiency rating of the efficient equipment. Site-specific.
Hours	=	Equivalent full load hours for chiller operation

Baseline Efficiency

The baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. As described in Chapter 13 of the aforementioned document, energy efficiency must be met via compliance with the International Energy Conservation Code (IECC) 2012. The table below details the specific efficiency requirements by equipment type and capacity.

Chindra Minimum Enterency requirements										
	Size Category		Path A		Path I	B				
Equipment Type	(Tons)	Units	Full Load	IPLV	Full Load	IPLV				
Air appled shillors	< 150	EER	9.562	12.5	NA	NA				
All-cooled chillers	≥ 150	EER	9.562	12.75	NA	NA				
Water cooled, electrically	< 75	kW/ton	0.780	0.63	0.800	0.600				
operated, positive	\geq 75 and < 150	kW/ton	0.775	0.615	0.790	0.586				
displacement (rotary screw	\geq 150 and < 300	kW/ton	0.680	0.580	0.718	0.540				
and scroll)	\geq 300	kW/ton	0.620	0.540	0.639	0.490				
	< 150	kW/ton	0.634	0.596	0.639	0.450				
Water cooled, electrically	\geq 150 and < 300	kW/ton	0.634	0.596	0.639	0.450				
operated, centrifugal	\geq 300 and < 600	kW/ton	0.576	0.549	0.600	0.400				
	≥ 600	kW/ton	0.570	0.539	0.590	0.400				

Chiller - Minimum Efficiency Requirements⁵¹⁹

Note: Compliance with this standard may be obtained by meeting the minimum requirements of Path A or B, however, both the Full Load and IPLV must be met to fulfill the requirements of Path A or B.

High Efficiency

The high efficiency scenario assumes water chilling packages that exceed the efficiency levels required by Massachusetts State Building Code and meet the minimum efficiency requirements as stated in the New Construction HVAC energy efficiency rebate forms.

⁵¹⁹ International Code Council (2009). *2009 International Energy Conservation Code*; Table 503.2.3(7). NOTE: values equal to IECC 2012 values: International Code Council (2012). *2012 International Energy Conservation Code*; Page C-46, Table C403.2.3(7).

Hours

The equivalent full load hours of operation for water chilling packages are site-specific and should be determined on a case-by-case basis. If site-specific EFLH is unavailable, default EFLHs of 1,361 should be used.520

Measure Life

The measure life is 23 years.⁵²¹

Secondary Energy Impacts

There are no secondary energy impacts counted for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

	Core									
Measure	Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Chillers – IPLV used	NB, EUL	National Grid, Unitil, CLC	1.00	1.20	1.00	1.00	0.49	0.06	0.42	0.04
	NB, EUL	Eversource	1.00	1.00	1.00	1.00	0.42	0.20	0.30	0.15
Chillers – FL used	NB, EUL	All	1.00	2.63	1.00	1.00	0.86	0.10	0.71	0.08

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

- National Grid, Unitil, CLC: RRs based on statewide prospective results from 2015 prescriptive chiller study.⁵²² Prospective results are to be used in parallel with updated savings factors, as described above, from the same study.
- Eversource: RRs based on retrospective results from 2015 prescriptive chiller study.⁵²³ Retrospective results are applicable to the Eversource Chiller Calculation Tool.

Coincidence Factors

- National Grid, Unitil, CLC: CFs based on prospective statewide results from 2015 prescriptive chiller study.⁵²⁴
- Eversource: Note that values stored in the CF fields are actually retrospective demand RRs for Eversource from the 2015 prescriptive chiller study.⁵²⁵

524 Ibid.

525 Ibid.

⁵²⁰ DNV GL (2015). Impact Evaluation of Prescriptive Chiller and Compressed Air Installations. Prepared for the MA PAs and EEAC.

⁵²¹ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group.

⁵²² DNV GL (2015). Impact Evaluation of Prescriptive Chiller and Compressed Air Installations. Prepared for the MA PAs and EEAC. 523 Ibid.

HVAC – Hotel Occupancy Sensors

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The measure is to the installation of hotel occupancy sensors (HOS) to control packaged terminal AC units (PTACs) with electric heat, heat pump units and/or fan coil units in hotels that operate all 12 months of the year. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Controls Core Initiative: C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on evaluation results:

 $\Delta kWh = SAVE_{kWh}$ $\Delta kW = SAVE_{kW}$

Installed hotel room occupancy sensor
Average annual kWh reduction per unit: 438 kWh ⁵²⁰
Average annual kWh reduction per unit: 0.09 kW ⁵²⁷

Baseline Efficiency

The baseline efficiency case assumes the equipment has no occupancy based controls.

High Efficiency

The high efficiency case is the installation of controls that include (a) occupancy sensors, (b) window/door switches for rooms that have operable window or patio doors, and (c) set back to 65 F in the heating mode and set forward to 78°F in the cooling mode when occupancy detector is in the unoccupied mode. Sensors controlled by a front desk system are not eligible.

 ⁵²⁶ MassSave (2010). *Energy Analysis: Hotel Guest Occupancy Sensors*. Prepared for National Grid and Eversource (NSTAR).
 ⁵²⁷ Ibid.

Hours

Not applicable.

Measure Life

For retrofit applications, the measure life is 10 years.⁵²⁸

Secondary Energy Impacts

There are no secondary energy impacts.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
HOS	Large Retrofit	National Grid	1.00	1.00	1.00	1.00	0.30	0.70	n/a	n/a
HOS	Large Retrofit	Eversource (NSTAR), CLC	1.00	1.01	1.09	1.57	0.82	0.05	n/a	n/a
HOS	Large Retrofit	Unitil	1.00	1.00	1.00	1.00	0.82	0.05	n/a	n/a
HOS	Large Retrofit	Eversource (WMECO)	1.00	0.91	1.09	1.57	0.82	0.05	0.00	0.00
HOS	Small Retrofit	CLC	1.00	1.01	1.09	1.57	0.82	0.05	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

- National Grid: RRs based on engineering estimates.
- Eversource (NSTAR), CLC energy and demand RRs from impact evaluation of NSTAR 2006 HVAC installations⁵²⁹
- Unitil: Energy and demand RRs are 100% based on no evaluations.
- Eversource (WMECO): Energy RRs are based on end use from 2007/2008 Large C&I Programs impact evaluation⁵³⁰, demand RRs from impact evaluation of NSTAR 2006 HVAC installations referenced above.

Coincidence Factors

- National Grid: CFs based on engineering estimates.
- Eversource (NSTAR), CLC, Unitil, Eversource (WMECO): on-peak CFs based on standard assumptions.
- Eversource (WMECO): seasonal CFs set to 0.00 based on assumption that no savings occur during seasonal peak periods.

⁵²⁸ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1; Measure life is assumed to be the same as for EMS retrofit measure.

⁵²⁹ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final Report. Prepared for NSTAR Electric and Gas; Table 17.

⁵³⁰ KEMA, Inc. (2011). 2007/2008 Large C&I Programs,

HVAC – Programmable Thermostats

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure involves the installation of a programmable thermostat for cooling and/or heating systems in spaces with either no or erratic existing control. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Controls

Core Initiative: C&I Small Business

Algorithms for Calculating Primary Energy Impacts

$$\Delta kWh = (SQFT)(SAVE_{kWh})$$

$$\Delta kW = (SQFT)(SAVE_{kW})$$

Where:

SQFT	=	Square feet of controlled space
SAVE _{kWh}	=	Average kW reduction per SQFT of controlled space. See table below.
SAVE _{kW}	=	Average annual kWh reduction per SQFT of controlled. See table below.

Equipment Type	SAVE _{kWh} (kWh/SQFT)	SAVE _{kW} (kW/SQFT)
Cool Only No Existing Control	0.539	0.00
Cool Only Erratic Existing Control	0.154	0.00
Heat Only No Existing Control	0.418	0.00
Heat Only Erratic Existing Control	0.119	0.00
Cool and Heat No Existing Control	0.957	0.00
Cool and Heat Erratic Existing Control	0.273	0.00
Heat Pump No Existing Control	0.848	0.00
Heat Pump Erratic Existing Control	0.242	0.00

Savings Factors (Save)⁵³¹

Baseline Efficiency

The baseline efficiency case includes spaces with either no or erratic heating and/or cooling control as indicated in the equipment type selection.

⁵³¹ Massachusetts common assumptions.

High Efficiency

The high efficiency case includes control of the space cooling and/or heating system as indicated in the equipment type selection.

Hours

Not applicable.

Measure Life

For retrofit applications, the measure life is 8 years.⁵³²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Thermostats	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	0.00	0.00	n/a	n/a
Thermostats	Small Retrofit	Eversource (NSTAR), CLC	1.00	0.91	0.92	0.92	0.00	0.00	n/a	n/a
Thermostats	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	0.00	0.00	n/a	n/a
Thermostats	Small Retrofit	Eversource (WMECO)	1.00	1.00	0.92	0.92	0.00	0.00	0.00	0.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Realization Rates

- National Grid, Unitil: RRs set to 100% based on no evaluations.
- Eversource (NSTAR), CLC: RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.
- Eversource (WMECO): Energy RRs from impact evaluation of 2008 small retrofit program⁵³³, demand RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.

Coincidence Factors

• All PAs CFs set to zero since no savings are expected during peak periods.

 ⁵³² Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ⁵³³ The Cadmus Group, Inc. (2010). *Western Massachusetts Small Business Energy Advantage Impact Evaluation Report*

Program Year 2008. Prepared for Western Massachusetts Electric Company.
Refrigeration – Door Heater Controls

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of controls to reduce the run time of door and frame heaters for freezers and walk-in or reach-in coolers. The reduced heating results in a reduced cooling load.⁵³⁴ Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Measure Type: Controls Core Initiative: C&I Small Business, C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = kW_{DH} * \%OFF * 8760$ $\Delta kW = kW_{DH} * \%OFF$

Where:

 kW_{DH} = Total demand of the door heater, calculated as Volts * Amps / 1000 8760 = Door heater annual run hours before controls %OFF Door heater Off time⁵³⁵: 46% for freezer door heaters or 74% for cooler door heaters)

Baseline Efficiency

The baseline efficiency case is a cooler or freezer door heater that operates 8,760 hours per year without any controls.

High Efficiency

The high efficiency case is a cooler or freezer door heater connected to a heater control system, which controls the door heaters by measuring the ambient humidity and temperature of the store, calculating the dew point, and using pulse width modulation (PWM) to control the anti-sweat heater based on specific algorithms for freezer and cooler doors. Door temperature is typically maintained about 5°F above the store air dew point temperature.⁵³⁶

⁵³⁴ The assumptions and algorithms used in this section are specific to NRM products.

⁵³⁵ The value is an estimate by NRM based on hundreds of downloads of hours of use data from Door Heater controllers. These values are also supported by Select Energy Services, Inc. (2004). *Cooler Control Measure Impact Spreadsheet User's Manual*. Prepared for NSTAR.

⁵³⁶ Select Energy Services, Inc. (2004). Analysis of Cooler Control Energy Conservation Measures. Prepared for NSTAR.

Hours

Pre-retrofit hours are 8,760 hours per year. After controls are installed, the door heaters in freezers are on for an average 4,730 hours/year (46% off time) and the door heaters for coolers are on for an average 2,278 hours/year (74% off time).

Measure Life

The measure life for cooler and freezer door heater controls is 10 years.⁵³⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Door Heater Control	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	0.50	1.00	n/a	n/a
Door Heater Control	Small Retrofit	Eversource (NSTAR)	1.00	0.91	0.92	0.92	0.50	1.00	n/a	n/a
Door Heater Control	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	0.50	1.00	n/a	n/a
Door Heater Control	Small Retrofit	Eversource (WMECO)	1.00	0.86	0.92	0.92	0.50	1.00	0.10	0.10
Door Heater Control	Small Retrofit, Large Retrofit	CLC	1.00	0.91	0.92	0.92	0.50	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Realization Rates

- National Grid: energy RR based on staff estimates.
- Eversource (NSTAR), CLC: RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.
- Unitil: RRs set to 100% based on no evaluations.
- Eversource (WMECO): Energy RRs from impact evaluation of 2008 small retrofit program,⁵³⁸ demand RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.

Coincidence Factors

- All PAs: on-peak CFs from the 1995 HEC study of walk-in cooler anti-sweat door heater controls.⁵³⁹
- Eversource (WMECO): seasonal CFs based on staff estimates.

 ⁵³⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ⁵³⁸ The Cadmus Group, Inc. (2010). *Western Massachusetts Small Business Energy Advantage Impact Evaluation Report Program Year 2008*. Prepared for Western Massachusetts Electric Company.

⁵³⁹ HEC, Inc. (1995). *Analysis of Door Master Walk-In Cooler Anti-Sweat Door Heater Controls Installed at Ten Sites in Massachusetts*. Prepared for New England Power Service Company; Table 9. Adjusted to account for updated RR.

Refrigeration – Novelty Cooler Shutoff

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of controls to shut off a facility's novelty coolers for non-perishable goods based on pre-programmed store hours. Energy savings occur as coolers cycle off during facility unoccupied hours.⁵⁴⁰

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Measure Type: Controls Core Initiative: C&I Small Business, C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = (kW_{NC})(DC_{AVG})(HoursOFF)$ $\Delta kW = 0$

Where:

ΔkW	=	0 since savings are assumed to occur during evening hours and are therefore not
		coincident with either summer or winter peak periods.
kW _{NC}	=	Power demand of novelty cooler calculated from equipment nameplate data and
		estimated 0.85 power factor ⁵⁴¹
HoursOFF	=	Potential hours off every night per year, estimated as one less than the number of hours
		the store is closed per day
DC _{AVG}	=	Weighted average annual duty cycle: 48.75% ⁵⁴²

Baseline Efficiency

The baseline efficiency case is the novelty coolers operating 8,760 hours per year.

High Efficiency

The high efficiency case is the novelty coolers operating fewer than 8,760 hours per year since they are controlled to cycle each night based on pre-programmed facility unoccupied hours.

⁵⁴⁰ The assumptions and algorithms used in this section are specific to NRM products.

⁵⁴¹ Conservative value based on 15 years of NRM field observations and experience.

⁵⁴² Ibid; the estimated duty cycles for Novelty Coolers are supported by Select Energy Services, Inc. (2004). *Cooler Control Measure Impact Spreadsheet Users' Manual*. Prepared for NSTAR. The study gives a less conservative value than used by NRM.

Hours

Hours reduced per day are estimated on a case-by-case basis, and are typically calculated as one less than the number of hours per day that the facility is closed each day.

Measure Life

The measure life is 10 years.⁵⁴³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Novelty Cooler Shutoff	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	0.00	0.00
Novelty Cooler Shutoff	Small Retrofit	Eversource (NSTAR)	1.00	0.91	0.92	0.92	0.00	0.00
Novelty Cooler Shutoff	Small Retrofit, Large Retrofit	CLC	1.00	0.91	0.92	0.92	0.00	0.00
Novelty Cooler Shutoff	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	0.00	0.00
Novelty Cooler Shutoff	Small Retrofit	Eversource (WMECO)	1.00	0.86	0.92	0.92	0.00	0.00

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Realization Rates

- National Grid: energy RR based on staff estimates.
- Eversource (NSTAR), CLC: RRs based on NSTAR 2002-2004 small retrofit impact evaluations.
- Unitil: RRs set to 100% based on no evaluations.
- Eversource (WMECO): Energy RRs from impact evaluation of 2008 small retrofit program⁵⁴⁴, demand RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.

Coincidence Factors

Coincidence factors are set to zero since demand savings typically occur during off-peak hours.

 ⁵⁴³ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ⁵⁴⁴ The Cadmus Group, Inc. (2010). Western Massachusetts Small Business Energy Advantage Impact Evaluation Report

Program Year 2008. Prepared for Western Massachusetts Electric Company.

Refrigeration – ECM Evaporator Fan Motors for Walk–in Coolers and Freezers

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of various sizes of electronically commutated motors (ECMs) in walkin coolers and freezers to replace existing evaporator fan motors.⁵⁴⁵ Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Measure Type: Motors Core Initiative: C&I Small Business, C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = \Delta kWh_{Fan} + \Delta kWh_{Heat}$ $\Delta kWh_{Fan} = kW_{Fan} * LRF * Hours$ $\Delta kWh_{Heat} = \Delta kWh_{Fan} * 0.28 * Eff_{RS}$ $\Delta kW = \Delta kWh/8,760$

Where:

ΔkWh_{Fan}	=	Energy savings due to increased efficiency of evaporator fan motor
ΔkWh_{Heat}	=	Energy savings due to reduced heat from the evaporator fans
$\mathrm{kW}_{\mathrm{Fan}}$	=	Power demand of evaporator fan calculated from equipment nameplate data and estimated 0.55 power factor/adjustment ⁵⁴⁶ : Amps x Voltage x PF x \sqrt{Phase}
LRF	=	Load reduction factor for motor replacement $(65\%)^{547}$
Hours	=	Annual fan operating hours.
0.28	=	Conversion factor between kW and tons: 3,413 Btuh/kW divided by 12,000
		Btuh/ton
Eff _{RS}	=	Efficiency of typical refrigeration system: 1.6 kW/ton ⁵⁴⁸
ΔkW	=	Average demand savings
8,760	=	Hours per year

⁵⁴⁵ The assumptions and algorithms used in this section are specific to NRM products.

⁵⁴⁶ Conservative value based on 15 years of NRM field observations and experience.

⁵⁴⁷ Load factor is an estimate by NRM based on several pre- and post-meter readings of installations; the value is supported by

RLW Analytics (2007). *Small Business Services Custom Measure Impact Evaluation*. Prepared for National Grid. ⁵⁴⁸ Assumed average refrigeration efficiency for typical installations. Conservative value based on 15 years of NRM field

observations and experience. Value supported by Select Energy (2004). Cooler Control Measure Impact Spreadsheet Users' Manual. Prepared for NSTAR.

Baseline Efficiency

The baseline efficiency case is an existing evaporator fan motor.

High Efficiency

The high efficiency case is the replacement of existing evaporator fan motors with ECMs.

Hours

The annual operating hours are assumed to be 8,760 * (1-%OFF), where %OFF = 0 if the facility does not have evaporator fan controls or %OFF = 46% if the facility has evaporator fan controls (4,030 hours). See section: Refrigeration – Evaporator Fan Controls for more on %OFF value.

Measure Life

The measure life is 15 years.⁵⁴⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings⁵⁵⁰

Measure	Core Initiative	РА	ISR	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Evap Fan ECMs	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Evap Fan ECMs	Small Retrofit	Eversource (NSTAR)	1.00	0.91	0.92	0.92	1.00	1.00	n/a	n/a
Evap Fan ECMs	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Evap Fan ECMs	Small Retrofit	Eversource (WMECO)	1.00	0.86	0.92	0.92	1.00	1.00	1.00	1.00
Evap Fan ECMs	Small Retrofit, Large Retrofit	CLC	1.00	0.91	0.92	0.92	1.00	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Realization Rates

- National Grid: RRs set to 100% since changes to calculation methodology made based on 2005 Custom SBS program evaluation.⁵⁵¹
- Eversource (NSTAR), CLC: RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.
- Unitil: RRs set to 100% based on no evaluations.

⁵⁴⁹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; 15-year measure life for retrofit motor installations.

⁵⁵⁰ RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid.

⁵⁵¹ RLW Analytics (2007). Impact Evaluation Analysis of the 2005 Custom SBS Program. Prepared for National Grid.

Eversource (WMECO): Energy RRs from impact evaluation of 2008 small retrofit program⁵⁵², demand RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.

Coincidence Factors

Coincident factors are set to 1 since demand savings is average.

⁵⁵² The Cadmus Group, Inc. (2010). Western Massachusetts Small Business Energy Advantage Impact Evaluation Report Program Year 2008. Prepared for Western Massachusetts Electric Company.

Refrigeration – Case Motor Replacement

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of electronically commutated motors (ECMs) in multi-deck and freestanding coolers and freezers, typically on the retail floor of convenience stores, liquor stores, and grocery stores.⁵⁵³ Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Measure Type: Motors Core Initiative: C&I Small Business

Algorithms for Calculating Primary Energy Impacts

$$\begin{split} \Delta kWh &= \Delta kWh_{Motor} + \Delta kWh_{Heat} \\ \Delta kWh_{motor} &= kW_{Motor} * LRF * Hours \\ \Delta kWh_{heat} &= \Delta kWh_{Motor} * 0.28 * Eff_{RS} \\ \Delta kW &= \Delta kWh/8,760 \end{split}$$

Where:

ΔkWh_{Motor}	=	Energy savings due to increased efficiency of case motor
ΔkWh_{Heat}	=	Energy savings due to reduced heat from evaporator fans
kW _{motor}	=	Metered load of case motor
LRF	=	Load reduction factor: 53% when shaded pole motors are replaced, 29%
		when PSC motors are replaced ⁵⁵⁴
Hours	=	Average runtime of case motors (8,500 hours) ⁵⁵⁵
0.28	=	Conversion of kW to tons: 3,413 Btuh/kW divided by 12,000 Btuh/ton.
Eff _{RS}	=	Efficiency of typical refrigeration system (1.6 kW/ton) ⁵⁵⁶
ΔkW	=	Average demand savings
8,760	=	Hours per year

⁵⁵³ The assumptions and algorithms used in this section are specific to NRM products.

⁵⁵⁴ Load factor is an estimate by NRM based on several pre- and post-meter readings of installations

⁵⁵⁵ Conservative value based on 15 years of NRM field observations and experience.

⁵⁵⁶ Assumed average refrigeration efficiency for typical installations. Conservative value based on 15 years of NRM field observations and experience. Value supported by Select Energy (2004). *Cooler Control Measure Impact Spreadsheet Users' Manual*. Prepared for NSTAR.

Baseline Efficiency

The baseline efficiency case is the existing case motor.

High Efficiency

The high efficiency case is the replacement of the existing case motor with an ECM.

Hours

Hours are the annual operating hours of the case motors.

Measure Life

The measure life is 15 years.⁵⁵⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Case ECMs	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Case ECMs	Small Retrofit	Eversource (NSTAR), CLC	1.00	0.91	0.92	0.92	1.00	1.00	n/a	n/a
Case ECMs	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Case ECMs	Small Retrofit	Eversource (WMECO)	1.00	0.86	0.92	0.92	1.00	1.00	1.00	1.00

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Realization Rates

- National Grid: set to 100% since changes to calculation methodology based on 2005 Custom SBS evaluation. ⁵⁵⁸
- Unitil: RRs set to 100% based on no evaluations.
- Eversource (NSTAR), CLC: RRs based on NSTAR 2002-2004 small retrofit impact evaluations.
- Eversource (WMECO): Energy RRs from impact evaluation of 2008 small retrofit program⁵⁵⁹ and demand RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.

Coincidence Factors

All PAs set coincident factors to 1.00 since demand savings are average.

⁵⁵⁹ The Cadmus Group, Inc. (2010). Western Massachusetts Small Business Energy Advantage Impact Evaluation Report Program Year 2008. Prepared for Western Massachusetts Electric Company.

⁵⁵⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; 15-year measure life for retrofit motor installations.

⁵⁵⁸ RLW Analytics (2007). *Impact Evaluation Analysis of the 2005 Custom SBS Program*. Prepared for National Grid.

Refrigeration – Cooler Night Covers

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of retractable aluminum woven fabric covers for open-type refrigerated display cases, where the covers are deployed during the facility unoccupied hours in order to reduce refrigeration energy consumption. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Measure Type: Night Cover Core Initiative: C&I Small Business

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = (Width)(Save)(Hours)$ $\Delta kW = (Width)(Save)$

Where:

∆kWh	=	Energy savings
ΔkW	=	Connected load reduction
Width	=	Width of the opening that the night covers protect (ft)
Save	=	Savings factor based on the temperature of the case (kW/ft). See table below.
Hours	=	Annual hours that the night covers are in use

Savings Factors⁵⁶⁰

Cooler Case Temperature	Savings Factor
Low Temperature (-35 F to -5 F)	0.03 kW/ft
Medium Temperature (0 F to 30 F)	0.02 kW/ft
High Temperature (35 F to 55 F)	0.01 kW/ft

Baseline Efficiency

The baseline efficiency case is the annual operation of open-display cooler cases.

⁵⁶⁰ CL&P Program Savings Documentation for 2011 Program Year (2010). Factors based on Southern California Edison (1997). *Effects of the Low Emissive Shields on Performance and Power Use of a Refrigerated Display Case.*

High Efficiency

The high efficiency case is the use of night covers to protect the exposed area of display cooler cases during unoccupied hours.

Hours

Hours represent the number of annual hours that the night covers are in use, and should be determined on a case-by-case basis.

Measure Life

The measure life is 10 years.⁵⁶¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Cooler Night Cover	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	0.00	0.00	n/a	n/a
Cooler Night Cover	Small Retrofit	Eversource (NSTAR), CLC	1.00	0.91	0.92	0.92	0.00	0.00	n/a	n/a
Cooler Night Cover	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	0.00	0.00	n/a	n/a
Cooler Night Cover	Small Retrofit	Eversource (WMECO)	1.00	0.86	0.92	0.92	0.00	0.00	0.00	0.00

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Realization Rates

- National Grid, Unitil: RRs set to 100% based on no evaluations.
- Eversource (NSTAR), CLC: RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.
- Eversource (WMECO): Energy RRs from impact evaluation of 2008 small retrofit program.⁵⁶² Demand RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.

Coincidence Factors

Coincidence factors are set to zero since demand savings typically occur during off-peak hours.

 ⁵⁶¹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Page 4-5 to 4-6.
 ⁵⁶² The Cadmus Group, Inc. (2010). *Western Massachusetts Small Business Energy Advantage Impact Evaluation Report Program Year 2008*. Prepared for Western Massachusetts Electric Company.

Refrigeration – Electronic Defrost Control

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: A control mechanism to skip defrost cycles when defrost is unnecessary.⁵⁶³ Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Measure Type: Controls Core Initiative: C&I Small Business, C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impacts

 $\Delta kWh = \Delta kWh_{Defrost} + \Delta kWh_{Heat}$ $\Delta kWh_{Defrost} = kW_{Defrost} * Hours * DRF$ $\Delta kWh_{Heat} = \Delta kWh_{Defrost} * 0.28 * Eff_{RS}$ $\Delta kW = \Delta kWh / 8,760$

Where:

$\Delta kWh_{Defrost}$	=	Energy savings resulting from an increase in operating efficiency due to the addition of
		electronic defrost controls.
ΔkWh_{Heat}	=	Energy savings due to reduced heat from reduced number of defrosts.
kW _{Defrost}	=	Load of electric defrost.
Hours	=	Number of hours defrost occurs over a year without the defrost controls.
DRF	=	Defrost reduction factor- percent reduction in defrosts required per year (35%) ⁵⁶⁴
0.28	=	Conversion of kW to tons: 3,413 Btuh/kW divided by 12,000 Btuh/ton.
Eff _{RS}	=	Efficiency of typical refrigeration system (1.6 kW/ton) ⁵⁶⁵
ΔkW	=	Average demand savings
8,760	=	Hours per year

Baseline Efficiency

The baseline efficiency case is an evaporator fan electric defrost system that uses a time clock mechanism to initiate defrost.

⁵⁶³ The assumptions and algorithms used in this section are specific to NRM products.

⁵⁶⁴ Ibid; supported by 3rd party evaluation: Independent Testing was performed by Intertek Testing Service on a Walk-in Freezer that was retrofitted with Smart Electric Defrost capability.

⁵⁶⁵ Assumed average refrigeration efficiency for typical installations. Conservative value based on 15 years of NRM field observations and experience. Value supported by Select Energy (2004). *Cooler Control Measure Impact Spreadsheet Users' Manual*. Prepared for NSTAR.

High Efficiency

The high efficiency case is an evaporator fan defrost system with electric defrost controls.

Hours

The number of defrost cycles is estimated to decrease by 35% from an average number of defrost cycles of 1460 defrosts/year at 40 minutes each for a total of 973 hours/year. ⁵⁶⁶ The number of defrost cycles with the defrost controls is 949 cycles/year, or 633 hours/year.

Measure Life

The measure life is 10 years.⁵⁶⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
	Initiative									
Defrost Control	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Defrost Control	Small Retrofit	Eversource (NSTAR)	1.00	0.91	0.92	0.92	1.00	1.00	n/a	n/a
Defrost Control	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Defrost Control	Small Retrofit	Eversource (WMECO)	1.00	0.86	0.92	0.92	1.00	1.00	1.00	1.00
Defrost Control	Small Retrofit, Large Retrofit	CLC	1.00	0.91	0.92	0.92	1.00	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Realization Rates

- National Grid, Unitil: RRs set to 100% based on no evaluations.
- Eversource (NSTAR), CLC: RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.
- Eversource (WMECO): Energy RRs from impact evaluation of 2008 small retrofit program⁵⁶⁸, demand RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.

Coincidence Factors

All PAs set coincident factors to 1.00 since demand savings are average.

⁵⁶⁶ Conservative value based on 15 years of NRM field observations and experience.

⁵⁶⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities.

⁵⁶⁸ The Cadmus Group, Inc. (2010). Western Massachusetts Small Business Energy Advantage Impact Evaluation Report Program Year 2008. Prepared for Western Massachusetts Electric Company.

Refrigeration – Evaporator Fan Controls

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of controls to modulate the evaporator fans based on temperature control. Energy savings include: fan energy savings from reduced fan operating hours, refrigeration energy savings from reduced waste heat, and compressor energy savings resulting from the electronic temperature control. Electronic controls allow less fluctuation in temperature, thereby creating savings.⁵⁶⁹ Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Measure Type: Controls Core Initiative: C&I Small Business, C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impact

$$\begin{split} \Delta kWh &= \Delta kWh_{Fan} + \Delta kWh_{Heat} + \Delta kWh_{Control} \\ \Delta kWh_{Fan} &= kW_{Fan} * 8760 * \% OFF \\ \Delta kWh_{Heat} &= \Delta kWh_{Fan} * 0.28 * Eff_{RS} \\ \Delta kWh_{Control} &= \left[kW_{CP} * Hours_{CP} + kW_{Fan} * 8760 * (1 - \% Off) \right] * 5\% \\ \Delta kW &= \Delta kWh / 8760 \end{split}$$

Where:

ΔkWh_{Fan}	=	Energy savings due to evaporator being shut off
ΔkWh_{Heat}	=	Energy savings due to reduced heat from the evaporator fans
$\Delta kWh_{Control}$	=	Energy savings due to the electronic controls on compressor and evaporator
$\mathrm{kW}_{\mathrm{Fan}}$	=	Power demand of evaporator fan calculated from equipment nameplate data and
		estimated 0.55 power factor/ adjustment ^{$7/6$: Amps x Voltage x PF x \sqrt{Phase}}
%OFF	=	Percent of annual hours that the evaporator is turned off: 46% ⁵⁷¹
0.28	=	Conversion of kW to tons: 3,413 Btuh/kW divided by 12,000 Btuh/ton.
Eff _{RS}	=	Efficiency of typical refrigeration system: 1.6 kW/ton ⁵⁷²
kW _{CP}	=	Total power demand of compressor motor and condenser fan calculated from equipment

⁵⁶⁹ The assumptions and algorithms used in this section are specific to NRM products.

⁵⁷⁰ Conservative value based on 15 years of NRM field observations and experience.

 ⁵⁷¹ The value is an estimate by NRM based on hundreds of downloads of hours of use data. These values are also supported by Select Energy Services, Inc. (2004). *Cooler Control Measure Impact Spreadsheet User's Manual*. Prepared for NSTAR.
 ⁵⁷² Assumed average refrigeration efficiency for typical installations. Conservative value based on 15 years of NRM field

³⁷² Assumed average refrigeration efficiency for typical installations. Conservative value based on 15 years of NRM field observations and experience. Value supported by Select Energy (2004). *Cooler Control Measure Impact Spreadsheet Users' Manual*. Prepared for NSTAR.

	D.P.U. 15-160 to D.P.L	J. 15-169
	Three-Year Plan 2016	2018
	October 30, 2015	
Massachusetts Technical Reference Manual	Exhibit 1, Appendix V	Commercial and Industrial Electric Efficiency Measures
	Page 266 of 435	
		\mathbf{f}_{1} = \mathbf{f}_{2} = \mathbf{f}_{1}
nameplate data and es	stimated 0.85 power	factor Amps x Voltage x PF x VPhase

		nameprate data and estimated 0.85 power factor . Amps x voltage x FF x vFnas
Hours _{CP}	=	Equivalent annual full load hours of compressor operation: 4,072 hours ⁵⁷⁴
5%	=	Reduced run-time of compressor and evaporator due to electronic temperature controls ⁵⁷⁵
ΔkW	=	Average demand savings
8,760	=	Hours per year

Baseline Efficiency

The baseline efficiency case assumes evaporator fans that run 8,760 annual hours with no temperature control.

High Efficiency

The high efficiency case is the use of an energy management system to control evaporator fan and compressor operation based on temperature.

Hours

The operation of the fans is estimated to be reduced by 46% from the 8,760 hours in the base case scenario.

Measure Life

The measure life is 10 years⁵⁷⁶.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

⁵⁷³ This value is an estimate by NRM based on hundreds of downloads of hours of use data from the electronic controller.

⁵⁷⁴ Conservative value based on 15 years of NRM field observations and experience.

⁵⁷⁵ Conservative estimate supported by less conservative values given by several utility-sponsored 3rd Party studies including: Select Energy Services, Inc. (2004). *Analysis of Cooler Control Energy Conservation Measures*. Prepared for NSTAR. ⁵⁷⁶ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Evap Fan Control	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Evap Fan Control	Small Retrofit	Eversource (NSTAR)	1.00	0.91	0.92	0.92	1.00	1.00	n/a	n/a
Evap Fan Control	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Evap Fan Control	Small Retrofit	Eversource (WMECO)	1.00	0.86	0.92	0.92	1.00	1.00	1.00	1.00
Evap Fan Control	Small Retrofit, Large Retrofit	CLC	1.00	0.91	0.92	0.92	1.00	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Realization Rates

- National Grid set to 100% after small retrofit RRs from 1996 savings analysis⁵⁷⁷ suggestions for more accurate calculations adopted.
- Eversource (NSTAR), CLC: RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.
- Unitil: RRs set to 100% based on no evaluations.
- Eversource (WMECO): Energy RRs from impact evaluation of 2008 small retrofit program⁵⁷⁸, demand RRs based on NSTAR 2002-2004 small retrofit program impact evaluations.

Coincidence Factors

All PAs set coincident factors to 1.00 since demand savings are average.

⁵⁷⁷ HEC, Inc. (1996). Analysis of Savings from Walk-In Cooler Air Economizers and Evaporator Fan Controls. Prepared for New England Power Service Company.

⁵⁷⁸ The Cadmus Group, Inc. (2010). Western Massachusetts Small Business Energy Advantage Impact Evaluation Report Program Year 2008. Prepared for Western Massachusetts Electric Company.

Refrigeration – Vending Misers

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Controls can significantly reduce the energy consumption of vending machine lighting and refrigeration systems. Qualifying controls must power down these systems during periods of inactivity but, in the case of refrigerated machines, must always maintain a cool product that meets customer expectations. This measure applies to refrigerated beverage vending machines, non-refrigerated snack vending machines, and glass front refrigerated coolers. This measure should not be applied to ENERGY STAR® qualified vending machines, as they already have built-in controls.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Measure Type: Controls Core Initiative: C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = (kW_{RATED})(Hours)(SAVE)$$

$$\Delta kW = \Delta kWh / Hours$$

Where:

kW _{rated}	=	Rated kW of connected equipment. See
		for default rated kW by connected equipment type.
Hours	=	Operating hours of the connected equipment: default of 8,760 hours
SAVE	=	Percent savings factor for the connected equipment. See table below for values.

Vending Machine and Cooler Controls Savings Factors 579

Equipment Type	kWRATED	SAVE (%)	$\Delta \mathbf{k} \mathbf{W}$	∆kWh
Refrigerated Beverage Vending Machines	0.40	46	0.184	1612
Non-Refrigerated Snack Vending Machines	0.085	46	0.039	343
Glass Front Refrigerated Coolers	0.46	30	0.138	1208

⁵⁷⁹ USA Technologies Energy Management Product Sheets (2006).

http://www.usatech.com/energy_management/energy_productsheets.php. Accessed 9/1/09.

Baseline Efficiency

The baseline efficiency case is a standard efficiency refrigerated beverage vending machine, nonrefrigerated snack vending machine, or glass front refrigerated cooler without a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

High Efficiency

The high efficiency case is a standard efficiency refrigerated beverage vending machine, non-refrigerated snack vending machine, or glass front refrigerated cooler with a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

Hours

It is assumed that the connected equipment operates 24 hours per day, 7 days per week for a total annual operating hours of 8,760.

Measure Life

The measure life is 5 years.⁵⁸⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Vending Misers	Large Retrofit	National Grid	1.00	1.00	1.00	1.00	0.00	0.00	n/a	n/a
Vending Misers	Large Retrofit	Eversource (NSTAR), CLC	1.00	0.85	0.41	0.24	0.00	0.00	n/a	n/a
Vending Misers	Large Retrofit	Unitil	1.00	1.00	1.00	1.00	0.00	0.00	n/a	n/a
Vending Misers	Large Retrofit	Eversource (WMECO)	1.00	0.91	0.41	0.24	0.00	0.00	0.00	0.00
Vending Misers	Small Retrofit	National Grid	1.00	1.00	1.00	1.00	0.00	0.00	n/a	n/a
Vending Misers	Small Retrofit	Eversource (NSTAR), CLC	1.00	0.91	0.92	0.92	0.00	0.00	n/a	n/a
Vending Misers	Small Retrofit	Unitil	1.00	1.00	1.00	1.00	0.00	0.00	n/a	n/a
Vending Misers	Small Retrofit	Eversource (WMECO)	1.00	0.86	0.92	0.92	0.00	0.00	0.00	0.00

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

⁵⁸⁰ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

Realization Rates

- National Grid, Unitil: RRs set to 100% since savings estimated are based on study results.
- Eversource (NSTAR), CLC: C&I Existing Building Retrofit RRs from impact evaluation of NSTAR 2006 refrigeration installations⁵⁸¹; small retrofit RRs from impact evaluation of 2002 program year⁵⁸²
- refrigeration installations ; small reuolit KKS from impact evaluation of 2002 program⁵⁸³; C&I Existing Building Retrofit energy RRs are based on end use from 2007/2008 Large C&I Programs impact evaluation⁵⁸⁴, C&I Existing Building Retrofit demand RRs from impact evaluation of NSTAR 2006 refrigeration installations, small retrofit demand RRs from NSTAR impact evaluation of 2002 program year

Coincidence Factors

CFs based on staff estimates- assumed that savings occur during off peak hours.

⁵⁸¹ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final Report. Prepared for NSTAR Electric and Gas; Table 17.

⁵⁸² RLW Analytics (2003). Small Business Solutions Program Year 2002 Impact Evaluation - Final Report. Prepared for NSTAR.

⁵⁸³ The Cadmus Group, Inc. (2010). Western Massachusetts Small Business Energy Advantage Impact Evaluation Report Program Year 2008. Prepared for Western Massachusetts Electric Company.

⁵⁸⁴ KEMA, Inc. (2011). 2007/2008 Large C&I Programs,

Food Service – Commercial Electric Ovens

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a qualified ENERGY STAR® commercial convection oven or commercial combination oven. ENERGY STAR® commercial ovens save energy during preheat, cooking and idle times due to improved cooking efficiency, and preheat and idle energy rates. Combination ovens can be used either as convection ovens or as steamers. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial Market: Lost Opportunity End Use: Food Service Measure Type: Cooking Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on the Energy Star Commercial Kitchen Equipment Savings Calculator and the Food Services Technology Center Life Cycle Cost Calculator:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh / Hours$

Where:

ΔkWh	=	gross annual kWh savings from the measure. See table below.
ΔkW	=	gross average kW savings from the measure. See table below.
Hours	=	Annual hours of operation. See Hours section below.

Energy	Savings	for	Commercial	Ovens ⁵⁸⁵
LINCISJ	Savings	101	Commercial	Ovens

Equipment Type	$\Delta \mathbf{k} \mathbf{W}$	∆kWh
Full Size Convection Oven	0.44	1,661
Combination Oven	1.40	5,271

Baseline Efficiency

The baseline efficiency case is a convection oven with a cooking energy efficiency of 65%, production capacity of 90 pounds per hour, and idle energy rate of 2.0 kW. The baseline efficiency case for a combination oven is a commercial combination oven with a convection cooking energy efficiency of 72%

⁵⁸⁵ Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Oven Calcs. <</p>
<u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> >. Tool downloaded August 10, 2015.

with a production capacity of 79 pounds per hour for convection mode and 49% steam cooking energy efficiency, with a production capacity of 126 pounds per hour for steam mode. Idle energy is assumed to be 1.3 kW for convection mode and 5.3 kW for steam mode.

High Efficiency

The high efficiency case is a convection oven with a cooking energy efficiency of 71%, production capacity of 90 pounds per hour, and idle energy rate of 1.6 kW. The high efficiency case for a combination oven is a commercial combination oven with a cooking energy efficiency of 76% with a production capacity of 119 pounds per hour for convection mode, and 55% cooking energy efficiency with a production capacity of 177 pounds per hour for steam mode, and idle energy rate of 1.3 kW for convection mode and 2.0 kW for steam mode.

Hours

Ovens assumed to operate 313 days per year⁵⁸⁶ for 12 hours a day, or 3,756 hours.⁵⁸⁷

Measure Life

The measure life for a new commercial electric oven is 12 years.⁵⁸⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Electric Ovens	NB, EUL	All	1.00	1.00	1.00	1.00	0.90	0.90

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% realization rates are assumed because savings are based on researched assumptions by ENERGY STAR®.

Coincidence Factors

Coincidence factors are 0.9 for both summer and winter seasons to account for the fact that some restaurants close one day per week and some may not serve both lunch and dinner on weekdays.

⁵⁸⁷Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Oven Calcs. <

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx >. Tool downloaded August 10, 2015.

⁵⁸⁶ The default value of 365 days per year seems excessive. Though many or most restaurants operate 7 days per week, many institutional kitchens do not. 6 day operation is assumed. 365 * 6/7 = 313 days/yr

⁵⁸⁸ Ibid.

Food Service – Commercial Electric Steam Cooker

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a qualified ENERGY STAR® commercial steam cooker. ENERGY STAR® steam cookers save energy during cooling and idle times due to improved cooking efficiency and idle energy rates. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Water, Wastewater Sector: Commercial Market: Lost Opportunity End Use: Food Service Measure Type: Cooking Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on the Energy Star Commercial Kitchen Equipment Savings Calculator:

 $\Delta kWh = (SAVE)(Quantity)(Hours)$

 $\Delta kW = (SAVE)(Quantity)$ Where:

- $\Delta kWh =$ gross annual kWh savings from the measure. With default Quantity, average savings are 8,547 kWh.
- $\Delta kW = average kW savings from the measure. With default Quantity, average savings are 2.28 kW$
- SAVE = Demand savings per pan: $0.76 \text{ kW/pan}^{589}$
- Quantity = Number of pans. Default of 3 pans.
- Hours = Average annual equipment operating hours. See Hours section below.

Baseline Efficiency

The Baseline Efficiency case is an electric steam cooker with a cooking efficiency of 30%, pan production capacity of 23.3 pounds per hour, preheat energy of 1.5 kWh, and idle energy rate of 1.2 kW.

⁵⁸⁹ Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Steam Cooker Calcs. < <u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> > except for hours of operation, see Hours section below. Tool downloaded August 10, 2015.

High Efficiency

The High Efficiency case is an ENERGY STAR® electric steam cooker with a cooking energy efficiency of 50%, pan production capacity of 16.7 pounds per hour, preheat energy of 1.5 kWh, and an idle energy rate of 0.4 kW.

Hours

Steamers are assumed to operate 313 days per year.⁵⁹⁰ The average steam cooker is assumed to operate 12 hours per day⁵⁹¹, or 3,756 hours per year.

Measure Life

The measure life for a new steamer is 12 years.⁵⁹²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Water and wastewater is saved due to the improved cooking efficiency of the high efficiency equipment.

Benefit Type	Description	Savings ⁵⁹³		
C&I Water	Annual water savings per unit	139,000 gallons/unit		
C&I Waste Water	Annual wastewater savings per unit	139,000 gallons/unit		

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Electric Steam Cooker	NB, EUL	1.00	1.00	1.00	1.00	0.90	0.90

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% realization rates are assumed because savings are based on researched assumptions by ENERGY STAR®.

Coincidence Factors

Coincidence factors are 0.9 for both summer and winter seasons to account for the fact that some restaurants close one day per week and some may not serve both lunch and dinner on weekdays.

⁵⁹¹Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Steam Cooker Calcs. < <u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> >. Tool downloaded August 10, 2015.

⁵⁹⁰ The default value of 365 days per year seems excessive. Though many or most restaurants operate 7 days per week, many institutional kitchens do not. 6 day operation is assumed. 365 * 6/7 = 313 days/yr

⁵⁹² Ibid.

⁵⁹³ Ibid.

Food Service – Commercial Electric Griddle

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a qualified ENERGY STAR® griddle. ENERGY STAR® griddles save energy cooking and idle times due to improved cooking efficiency and idle energy rates. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial Market: Lost Opportunity End Use: Food Service Measure Type: Cooking Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on the Energy Star Commercial Kitchen Equipment Savings Calculator:

 $\Delta kWh = (SAVE)(Width)(Hours)$ $\Delta kW = (SAVE)(Width)$

Where:

∆kWh	=	gross annual	kWh s	avings	s from	n the measure.	With	defa	ault Width, average	savings ar	e
		1,637 kWh.									
			1 ***		0	. 1	XX 71.1	1 0	1. ***** 1.1	•	~

- $\Delta kW = \text{gross average kW savings from the measure. With default Width, average savings are 0.44 kW.}$
- SAVE = Savings per foot of griddle width: 0.15 kW/ft^{594}
- Width = Width of griddle in feet. Default of 3 feet.

Hours = Average annual equipment operating hours, see Hours section below.

Baseline Efficiency

The baseline efficiency case is a typically sized, 6 sq. ft. commercial griddle with a cooking energy efficiency of 65%, production capacity of 35 pounds per hour, and idle energy rate of 400 W/sq. ft.

⁵⁹⁴ Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Griddle Calcs. < <u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> >. Tool downloaded August 10, 2015.

High Efficiency

The high efficiency case is a typically sized, 6 sq. ft. commercial griddle with a cooking energy efficiency of 70%, production capacity of 40 pounds per hour, and idle energy rate of 320 W/sq. ft.

Hours

Griddles are assumed to operate 313 days per year.⁵⁹⁵ The average griddle is assumed to operate 12 hours per day⁵⁹⁶, or 3,756 hours per year.

Measure Life

The measure life for a new griddle is 12 years.⁵⁹⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Electric Griddle	NB, EUL	1.00	1.00	1.00	1.00	1.00	1.00

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% realization rates are assumed because savings are based on researched assumptions by ENERGY STAR®.

Coincidence Factors

Coincidence factors are 0.9 for both summer and winter seasons to account for the fact that some restaurants close one day per week and some may not serve both lunch and dinner on weekdays.

⁵⁹⁶Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Griddle Calcs. < <u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> >. Tool downloaded August 10, 2015.

⁵⁹⁵ The default value of 365 days per year seems excessive. Though many or most restaurants operate 7 days per week, many institutional kitchens do not. 6 day operation is assumed. 365 * 6/7 = 313 days/yr

⁵⁹⁷ PG&E calculator: http://www.fishnick.com/saveenergy/tools/calculators/egridcalc.php

Food Service – Low Temperature Commercial Dishwasher

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a qualified ENERGY STAR® low temperature commercial dishwasher in a facility with electric hot water heating. Low temperature dishwashers use the hot water supplied by the kitchen's existing water heater and use a chemical sanitizing agent in the final rinse cycle and sometimes a drying agent.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Water Sector: Commercial Market: Lost Opportunity End Use: Food Service Measure Type: Cleaning Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on the Energy Star Commercial Kitchen Equipment Savings Calculator:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh / Hours$

Where:

 $\Delta kWh =$ gross annual kWh savings from the measure. See table below.

 ΔkW = gross average kW savings from the measure. See table below.

Hours = Average annual equipment operating hours, see Hours section below.

Energy Savings for Low Temperature Commercial Dishwashers⁵⁹⁸

Equipment Type	$\Delta \mathbf{k} \mathbf{W}$	∆kWh
Under Counter	0.39	2,178
Door Type	2.46	13,851
Single Tank Conveyor	2.07	11,685
Multi Tank Conveyor	2.86	16,131

⁵⁹⁸ Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Dishwasher Calcs. < <u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> >. Tool downloaded August 10, 2015. Default values used except for days operated per year. See Hours section below.

Baseline Efficiency

The baseline efficiency case is a commercial dishwasher with idle energy rates and water consumption as follows:

Dishwasher Type	Idle Energy Rate (kW)	Water Consumption (gal/rack)
Under Counter	0.50	1.73
Door Type	0.60	2.10
Single Tank Conveyor	1.60	1.31
Multi Tank Conveyor	2.00	1.04

High Efficiency

The high efficiency case is a commercial dishwasher with idle energy rates and water consumption following ENERGY STAR efficiency requirements as follows:

Dishwasher Type	Max Idle Energy Rate (kW)	Max Water Consumption (gal/rack)
Under Counter	0.50	1.19
Door Type	0.60	1.18
Single Tank Conveyor	1.60	0.79
Multi Tank Conveyor	2.00	0.54

Hours

Dishwashers are assumed to operate 313 days per year.⁵⁹⁹ The average dishwasher is assumed to operate 18 hours per day⁶⁰⁰, or 5,634 hours per year.

Measure Life

The measure life for a new low temperature dishwasher is given by type below:⁶⁰¹

Dishwasher Type	Life (years)
Under Counter	10
Door Type	15
Single or Multi Tank Conveyor	20

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

⁶⁰⁰Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Dishwasher Calcs. <

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx >. Tool downloaded August 10, 2015.

⁵⁹⁹ The default value of 365 days per year seems excessive. Though many or most restaurants operate 7 days per week, many institutional kitchens do not. 6 day operation is assumed. 365 * 6/7 = 313 days/yr

⁶⁰¹ Ibid.

Non-Energy Impacts

There are water savings associated with this measure:⁶⁰²

Dishwasher Type	Annual water savings (Gal/Unit)	Annual wastewater savings per unit (Gal/Unit)
Under Counter	12,677	12,677
Door Type	80,629	80,629
Single Tank Conveyor	65,104	65,104
Multi Tank Conveyor	93,900	93,900

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Low Temperature Dishwasher	NB, EUL	1.00	1.00	1.00	1.00	0.90	0.90

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% realization rates are assumed because savings are based on researched assumptions by ENERGY STAR®.

Coincidence Factors

Coincidence factors are 0.9 for both summer and winter seasons to account for the fact that some restaurants close one day per week and some may not serve both lunch and dinner on weekdays.

⁶⁰² Ibid.

Food Service – High Temperature Commercial Dishwasher

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a qualified ENERGY STAR® high temperature commercial dishwasher in a building with gas domestic hot water. High temperature dishwashers use a booster heater to raise the rinse water temperature to 180° F – hot enough to sterilize dishes and assist in drying. Electric savings are achieved through savings to the electric booster.
Primary Energy Impact: Electric
Secondary Energy Impact: Gas
Non-Energy Impact: Water
Sector: Commercial
Market: Lost Opportunity
End Use: Food Service
Measure Type: Cleaning Equipment
Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on the Energy Star Commercial Kitchen Equipment Savings Calculator: $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh / Hours$

Where:

 $\Delta kWh =$ gross annual kWh savings from the measure. See table below

 ΔkW = gross average kW savings from the measure. See table below

Hours = Average annual equipment operating hours, see Hours section below.

Energy Savings for High Temperature Commercial Dishwashers⁶⁰³

Equipment Type	$\Delta \mathbf{k} \mathbf{W}$	∆kWh		
Under Counter	0.32	1,791		
Door Type	0.74	4,151		
Single Tank Conveyor	0.75	4,243		
Multi Tank Conveyor	1.71	9,630		
Pot, Pan, and Utensil	0.18	1,032		

⁶⁰³ Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Dishwasher Calcs. < <u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> >. Tool downloaded August 10, 2015. Default values used except for days operated per year. See Hours section below.

Massachusetts Technical Reference Manual

Baseline Efficiency

The baseline efficiency case is a commercial dishwasher with idle energy rates and water consumption as follows:

Dishwasher Type	Idle Energy Rate (kW)	Water Consumption (gal/rack)
Under Counter	0.76	1.09
Door Type	0.87	1.29
Single Tank Conveyor	1.93	0.87
Multi Tank Conveyor	2.59	0.97
Pot, Pan, and Utensil	1.20	0.70

High Efficiency

The high efficiency case is a commercial dishwasher with idle energy rates and water consumption following ENERGY STAR® Efficiency Requirements as follows:

Dishwasher Type	Idle Energy Rate (kW)	Water Consumption (gal/rack)
Under Counter	0.50	0.86
Door Type	0.70	0.89
Single Tank Conveyor	1.50	0.70
Multi Tank Conveyor	2.25	0.54
Pot, Pan, and Utensil	1.20	0.58

Hours

Dishwashers are assumed to operate 313 days per year.⁶⁰⁴ The average dishwasher is assumed to operate 18 hours per day⁶⁰⁵, or 5,634 hours per year.

Measure Life

The measure life for a new high temperature dishwasher is given by type below:⁶⁰⁶

Dishwasher Type	Life (years)
Under Counter	10
Door Type	15
Single or Multi Tank Conveyor	20
Pot, Pan, and Utensil	10

⁶⁰⁵Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Dishwasher Calcs. <

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx >. Tool downloaded August 10, 2015.

⁶⁰⁴ The default value of 365 days per year seems excessive. Though many or most restaurants operate 7 days per week, many institutional kitchens do not. 6 day operation is assumed. 365 * 6/7 = 313 days/yr

⁶⁰⁶ Ibíd.

Secondary Energy Impacts

There are gas savings for this measure.

Dishwasher Type	Savings (therms)
Under Counter	39
Door Type	252
Single Tank Conveyor	153
Multi Tank Conveyor	580
Pot, Pan, and Utensil	76

Non-Energy Impacts

There are water savings associated with this measure:⁶⁰⁷

Dishwasher Type	Annual water savings (gal/unit)	Annual wastewater savings (gal/unit)
Under Counter	5,399	5,399
Door Type	35,056	35,056
Single Tank Conveyor	21,284	21,284
Multi Tank Conveyor	80,754	80,754
Pot, Pan, and Utensil	10,517	10,517

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
High Temperature Dishwasher	NB, EUL	1.00	1.00	1.00	1.00	0.90	0.90

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% realization rates are assumed because savings are based on researched assumptions by ENERGY STAR®.

Coincidence Factors

Coincidence factors are 0.9 for both summer and winter seasons to account for the fact that some restaurants close one day per week and some may not serve both lunch and dinner on weekdays.

⁶⁰⁷ Ibid.

Food Service – Commercial Ice Machine

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a qualified ENERGY STAR® commercial ice machine. Commercial ice machines meeting the ENERGY STAR® specifications are on average 15 percent more energy efficient and 10 percent more water-efficient than standard models. ENERGY STAR® qualified equipment includes ice-making head (IMH), self-contained (SCU), and remote condensing units (RCU). **Primary Energy Impact:** Electric

Secondary Energy Impact: None Non-Energy Impact: Water Sector: Commercial Market: Lost Opportunity End Use: Food Service Measure Type: Ice Machines Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on the Energy Star Commercial Kitchen Equipment Savings Calculator: $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh / Hours$

Where:

 $\Delta kWh =$ gross annual kWh savings from the measure. See table below.

 ΔkW = gross average kW savings from the measure. See table below.

Hours = Average annual equipment operating hours, see Hours section below.

Energy Savings for Commercial fee Machine							
Equipment Type	$\Delta \mathbf{k} \mathbf{W}$	∆kWh					
Ice Making Head	0.08	665					
Self Contained Unit	0.02	205					
Remote Condensing Unit (Batch)	0.07	630					
Remote Condensing Unit (Continuous)	0.14	1,196					

Energy Savings for Commercial Ice Machine⁶⁰⁸

⁶⁰⁸ Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Ice Machine Calcs. < <u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> >. Tool downloaded August 10, 2015. Except for duty cycle of machines- ES tool uses 75% duty cycle, which is thought to be too high. Duty cycle of 40% used instead.

Baseline Efficiency

The baseline efficiency case is a non-ENERGY STAR® commercial ice machine.

High Efficiency

The high efficiency case is a commercial ice machine meeting the ENERGY STAR® Efficiency Requirements.

Hours

Ice making machines are assumed to operate 365 days per year. The average ice making machine is assumed to operate 18 hours per day⁶⁰⁹, or 5,634 hours per year.

Measure Life

The measure life for a new ice making machine is assumed to be 8 years.⁶¹⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There is water savings associated with this measure:⁶¹¹

Dishwasher Type	Annual water savings (gal/unit)	Annual wastewater savings (gal/unit)
Ice Making Head	3,322	3,322
Self Contained Unit	3,526	3,526
Remote Condensing Unit (Batch)	2,631	2,631
Remote Condensing Unit (Continuous)	0	0

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Ice Making Machine	NB, EUL	1.00	1.00	1.00	1.00	1.00	1.00

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% realization rates are assumed because savings are based on researched assumptions by ENERGY STAR®.

Coincidence Factors

Coincidence factors are 0.9 for both summer and winter seasons to account for the fact that some restaurants close one day per week and some may not serve both lunch and dinner on weekdays.

 ⁶⁰⁹Savings Calculator for ENERGY STAR® Certified Commercial Kitchen Equipment: Ice Machine Calcs. <
 <u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx</u> >. Tool downloaded August 10, 2015.
 ⁶¹⁰ Ibíd.

⁶¹¹ Ibid

Food Service – Commercial Fryers

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a qualified ENERGY STAR® standard or large vat commercial fryer. ENERGY STAR® commercial fryers save energy during cooking and idle times due to improved cooking efficiency and idle energy rates. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial Market: Lost Opportunity End Use: Food Service Measure Type: Cooking Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on the Energy Star Commercial Kitchen Equipment Savings Calculator:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW / Hours$

Where:

 $\Delta kWh =$ gross annual kWh savings from the measure per table below $\Delta kW =$ gross average kW savings from the measure per table below Hours = Annual hours of operation. See Hours section below.

Energy Savings for Commercial Fryer	Energy	Savings	for	Commercial	Fryer ⁶¹
-------------------------------------	--------	---------	-----	------------	---------------------

Equipment Type	$\Delta \mathbf{k} \mathbf{W}$	∆kWh
Standard Vat	0.16	610
Large Vat	0.58	2,175

Baseline Efficiency

The baseline efficiency case for a standard sized fryer is a deep-fat fryer with a cooking energy efficiency of 75%, shortening capacity of up to 65 pounds, and idle energy rate of 1.05 kW.

< <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/commercial_kitchen_equipment_calculator.xls</u>>.

⁶¹² ENERGY STAR® Commercial Kitchen Equipment Savings Calculator: Fryer Calcs.

Tool downloaded August 10, 2015. Default assumptions used except for operating hours, see Hours section, and food cooked per day. Standard sized fryer food cooked per day reduced by 25% to 112 lb/day reflect the 25% reduction in operating hours

The baseline efficiency case for a large sized fryer is a deep-fat fryer with a cooking energy efficiency of 70%, shortening capacity of up to 100 pounds, and idle energy rate of 1.35 kW.

High Efficiency

The high efficiency case for a standard sized fryer is a deep-fat fryer with a cooking energy efficiency of 80%, shortening capacity of up to 70 pounds, and idle energy rate of no more than 1.0 kW. For large-capacity fryers (shortening capacity exceeds 70 pounds), the idle energy rate may be up to 1.1 kW.

Hours

Fryers assumed to operate 313 days per year.⁶¹³ Fryers assumed to operate 12 hours a day, or 3,756 hours per year.⁶¹⁴

Measure Life

The measure life for a new commercial electric fryer is 12 years⁶¹⁵.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Electric Fryer	NB, EUL	All	1.00	1.00	1.00	1.00	1.00	0.90	0.90

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% realization rates are assumed because savings are based on researched assumptions by ENERGY STAR®.

Coincidence Factors

Coincidence factors are 0.9 for both summer and winter seasons to account for the fact that some restaurants close one day per week and some may not serve both lunch and dinner on weekdays.

⁶¹³ The default value of 365 days per year seems excessive. Though many or most restaurants operate 7 days per week, many institutional kitchens do not. 6 day operation is assumed. 365 * 6/7 = 313 days/yr

⁶¹⁴ Default hours of 16 seem excessive by staff estimates and compared to other commercial equipment operation hours. Twelve hours used as more reasonable estimate.

⁶¹⁵ Pacific Gas & Electric Company – Customer Energy Efficiency Department (2007). Work Paper PGECOFST101, Commercial Convection Oven, Revision #0.

Food Service – Food Holding Cabinets

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a qualified ENERGY STAR® hot food holding cabinet (HFHC). ENERGY STAR® hot food holding cabinets are 70 percent more energy efficient than standard models. Models that meet this requirement incorporate better insulation, reducing heat loss, and may also offer additional energy saving devices such as magnetic door gaskets, auto-door closures, or dutch doors. The insulation of the cabinet also offers better temperature uniformity within the cabinet from top to bottom. Offering full size, ³/₄ size, and ¹/₂ half size HFHC. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial Market: Lost Opportunity End Use: Food Service Measure Type: Storage Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on the Energy Star Commercial Kitchen Equipment Savings Calculator:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh / Hours$

Where:

∆kWh	=	gross annual kWh savings from the measure: See table below.
ΔkW	=	gross average kW savings from the measure: See table below.
Hours	=	Annual hours of operation. See Hours section below.

Energy Savings for Commercial Hot Food Holding Cabinets⁶¹⁶

Equipment Type	$\Delta \mathbf{k} \mathbf{W}$	$\Delta \mathbf{kWh}$
Full Size -20 ft ³	0.51	2,376
$\frac{3}{4}$ Size – 12 ft ³	0.22	1,042
$\frac{1}{2}$ Size – 8 ft ³	0.15	695

⁶¹⁶ ENERGY STAR® Commercial Kitchen Equipment Savings Calculator: HFHC Calcs.

< <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/commercial_kitchen_equipment_calculator.xls</u>>. Tool downloaded August 10, 2015. Default assumptions used except for hours of operation and volume of HFHC. See Hours section below.
Baseline Efficiency

The baseline efficiency idle energy rate for a HFHC is 40 W for all sizes.

High Efficiency

The high efficiency idle energy rate for HFHC is 294 W for full size, 258 W for $\frac{3}{4}$ size, and 172 W for $\frac{1}{2}$ size.

Hours

Hot food holding cabinets assumed to operate 313 days per year⁶¹⁷ for 15 hours a day, or 4,695 hours per year.⁶¹⁸

Measure Life

The measure life for a new commercial HFHC is 12 years⁶¹⁹.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	PA	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
HFHC	NB, EUL	All	1.00	1.00	1.00	1.00	1.00	0.90	0.90

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

100% realization rates are assumed because savings are based on researched assumptions by ENERGY STAR®.

Coincidence Factors

Coincidence factors are 0.9 for both summer and winter seasons to account for the fact that some restaurants close one day per week and some may not serve both lunch and dinner on weekdays.

⁶¹⁷ The default value of 365 days per year seems excessive. Though many or most restaurants operate 7 days per week, many institutional kitchens do not. 6 day operation is assumed. 365 * 6/7 = 313 days/yr

⁶¹⁸ Default hours of 16 seem excessive by staff estimates and compared to other commercial equipment operation hours. Twelve hours used as more reasonable estimate.

⁶¹⁹ Pacific Gas & Electric Company – Customer Energy Efficiency Department (2007). *Work Paper PGECOFST101, Commercial Convection Oven, Revision #0.*

Compressed Air – High Efficiency Air Compressors

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Covers the installation of oil flooded, rotary screw compressors with Load/No Load, Variable Speed Drive, or Variable Displacement capacity control with properly sized air receiver. Efficient air compressors use various control schemes to improve compression efficiencies at partial loads. When an air compressor fitted with Load/No Load, Variable Speed Drive, or Variable Displacement capacity controls is used in conjunction with a properly-sized air receiver, considerable amounts of energy can be saved. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: Compressed Air Measure Type: Air Compressors Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impacts

 $\Delta kWh = (HP_{COMPRESSOR})(SAVE)(Hours)$ $\Delta kW = (HP_{COMPRESSOR})(SAVE)$

Where:

HP _{COMPRESSOR}	=	Nominal rated horsepower of high efficiency air compressor
Save	=	Air compressor kW reduction per HP: 0.189. ⁶²⁰
Hours	=	Annual operating hours of the air compressor.

Baseline Efficiency

The baseline efficiency case is a typical load/unload compressor.

High Efficiency

The high efficient case is an oil-flooded, rotary screw compressor with Variable Speed Drive or Variable Displacement capacity control with a properly sized air receiver. Air receivers are designed to provide a supply buffer to meet short-term demand spikes which can exceed the compressor capacity. Installing a larger receiver tank to meet occasional peak demands can allow for the use of a smaller compressor.

⁶²⁰ DNV GL (2015). Impact Evaluation of Prescriptive Chiller and Compressed Air Installations. Prepared for the MA PAs and EEAC. Result for VSD 25-75 HP used since "All" result includes savings from load/unload compressors, which are now baseline.

Hours

The annual hours of operation for air compressors are site-specific and should be determined on a caseby-case basis.

Measure Life

For lost-opportunity installations, the lifetime for this measure is 15 years.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Air Compressor	NB, EUL, Large Retrofit	All	1.00	1.39	1.00	1.00	1.17	0.98	1.29	1.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Realization Rates

 All PAs: RR from the prospective results of the 2015 study of prescriptive compressed air. The RR adjusts for differences in operating hours between PA tracking assumptions and on site findings. The RR must be coupled with the updated kW/HP results from the same study.⁶²¹

Coincidence Factors

All PAs: CFs from the prospective results of the 2015 study of prescriptive compressed air.⁶²²

 ⁶²¹ DNV GL (2015). Impact Evaluation of Prescriptive Chiller and Compressed Air Installations. Prepared for the MA PAs and EEAC.
⁶²² Ibid

Compressed Air – Refrigerated Air Dryers

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of cycling or variable frequency drive (VFD)-equipped refrigerated compressed air dryers. Refrigerated air dryers remove the moisture from a compressed air system to enhance overall system performance. An efficient refrigerated dryer cycles on and off or uses a variable speed drive as required by the demand for compressed air instead of running continuously. Only properly sized refrigerated air dryers used in a single-compressor system are eligible. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Compressed Air Measure Type: Refrigerated Air Dryers Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = (CFM_{DRYER})(SAVE)(Hours)$ $\Delta kW = (CFM_{DRYER})(SAVE)$

Where:

CFM _{DRYER}	=	Full flow rated capacity of the refrigerated air dryer in cubic feet per minute
		(CFM). Obtain from equipment's Compressed Air Gas Institute Datasheet.
Save	=	Refrigerated air dryer kW reduction per dryer full flow rated CFM: 0.00554. 623
Hours	=	Annual operating hours of the refrigerated air dryer.

Baseline Efficiency

The baseline efficiency case is a non-cycling refrigerated air dryer.

High Efficiency

The high efficiency case is a cycling refrigerated dryer or a refrigerated dryer equipped with a VFD.

⁶²³ DNV GL (2015). *Impact Evaluation of Prescriptive Chiller and Compressed Air Installations*. Prepared for the MA PAs and EEAC.

Hours

The annual hours of operation for compressed air dryers are site-specific.

Measure Life

The measure life is 15 years.⁶²⁴

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Refrigerated Air Dryers	NB, EUL	All	1.00	1.56	1.00	1.00	1.17	0.98	1.29	1.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Realization Rates

RR from the prospective results of the 2015 study of prescriptive compressed air. The RR adjusts for differences in operating hours between PA tracking assumptions and on site findings. The RR must be coupled with the updated kW/CFM results from the same study.⁶²⁵

Coincidence Factors

CFs from the prospective results of the 2015 study of prescriptive compressed air.⁶²⁶

⁶²⁴ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

⁶²⁵ DNV GL (2015). Impact Evaluation of Prescriptive Chiller and Compressed Air Installations. Prepared for the MA PAs and EEAC.

⁶²⁶ Ibid.

Compressed Air – Low Pressure Drop Filters

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Filters remove solids and aerosols from compressed air systems. Low pressure drop filters have longer lives and lower pressure drops than traditional coalescing filters resulting in higher efficiencies.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity & Retrofit End Use: Compressed Air Measure Type: Low Pressure Drop Filters Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impacts⁶²⁷

 $\Delta kWh = (Quantity)(HP_{COMP})(0.7457)(\% Savings)(Hours)$ $\Delta kW = (Quantity)(HP_{COMP})(0.7457)(\% Savings)$

Where:		
ΔkWh	=	Energy savings
ΔkW	=	Demand savings
Quantity	=	Number of filters installed
HP _{COMP}	=	Average compressor load
0.7457	=	Conversion from HP to kW
% Savings	=	Percent change in pressure drop. Site specific.
Hours	=	Annual operating hours of the lower pressure drop filter.

Baseline Efficiency

The baseline efficiency case is a standard coalescing filter with initial drop of between 1 and 2 pounds per sq inch (psi) with an end of life drop of 10 psi.

High Efficiency

The high efficiency case is a low pressure drop filter with initial drop not exceeding 1 psi over life and 3 psi at element change. Filters must be deep-bed, "mist eliminator" style and installed on a single operating compressor rated 15 - 75 HP.

⁶²⁷ Formula adapted from savings calculation tool developed by Lenticular Solutions Inc.

Hours

The annual hours of operation are site specific and will be determined on a case by case basis.

Measure Life

For lost-opportunity installations, the lifetime for this measure is 5 years. For retrofit projects, the lifetime is 3 years.⁶²⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings⁶²⁹

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
LP Drop Filter	NB, EUL, Large Retrofit	National Grid	1.00	1.00	1.00	1.00	0.80	0.54	0.77	0.54
LP Drop Filter	NB, EUL, Large Retrofit	Eversource (NSTAR), CLC	1.00	1.25	0.95	0.80	0.88	0.69	n/a	n/a
LP Drop Filter	NB, EUL, Large Retrofit	Unitil	1.00	1.00	1.00	1.00	0.80	0.54	0.77	0.54
LP Drop Filter	NB, EUL, Large Retrofit	Eversource (WMECO)	1.00	0.90	0.95	0.80	0.88	0.69	custom	custom

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Realization Rates

- National Grid, Unitil: RRs based on impact evaluation of PY 2004 compressed air installations.⁶³⁰
- Eversource (NSTAR), CLC: energy and demand RRs from impact evaluation of NSTAR 2006 compressed air installations⁶³¹
- Eversource (WMECO): energy RRs from 2011 WMECO C&I impact evaluation.⁶³², demand RRs from impact evaluation of NSTAR 2006 compressed air installations referenced above.

⁶²⁸ Based on typical replacement schedules for low pressure filters (Eversource (NSTAR) staff estimates).

 ⁶²⁹ This measure was included in the 2015 DNV GL study of Prescriptive compressed air measures, however, no sites with low pressure drop filters were selected in the sample.
⁶³⁰ DMI (2006). *Impact Evaluation of 2004 Compressed Air Prescriptive Rebates*. Prepared for National Grid; results analyzed in

⁶³⁰ DMI (2006). Impact Evaluation of 2004 Compressed Air Prescriptive Rebates. Prepared for National Grid; results analyzed in RLW Analytics (2006). Sample Design and Impact Evaluation Analysis for Prescriptive Compressed Air Measures in the Energy Initiative and Design 2000 Programs. Prepared for National Grid.

⁶³¹ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final Report. Prepared for NSTAR Electric and Gas; Table 17.

⁶³² KEMA (2011). 2007/2008 Large C&I Programs. Prepared for Western Massachusetts Electric Company.

Massachusetts Technical Reference Manual

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Commercial and Industrial Electric Efficiency Measures Page 295 of 435

Coincidence Factors

- National Grid, Unitil: CFs based on impact evaluation of PY 2004 compressed air installations.633
- Eversource (NSTAR), CLC, Eversource (WMECO): on-peak CFs based on standard assumptions.
- Eversource (WMECO): seasonal CFs are custom calculated

⁶³³ DMI (2006). Impact Evaluation of 2004 Compressed Air Prescriptive Rebates. Prepared for National Grid; results analyzed in RLW Analytics (2006). Sample Design and Impact Evaluation Analysis for Prescriptive Compressed Air Measures in the Energy Initiative and Design 2000 Programs. Prepared for National Grid.

Compressed Air – Zero Loss Condensate Drains

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Drains remove water from a compressed air system. Zero loss condensate drains remove water from a compressed air system without venting any air, resulting in less air demand and consequently greater efficiency. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity & Retrofit End Use: Compressed Air Measure Type: Zero Loss Condensate Drains Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impacts

$$\Delta kWh = (CFM_{pipe})(CFM_{saved})(SAVE)(Hours)$$

$$\Delta kW = (CFM_{pipe})(CFM_{save})(SAVE)$$

Where:		
ΔkWh	=	Energy Savings
ΔkW	=	Demand savings
CFM _{pipe}	=	CFM capacity of piping. Site specific.
CFM _{saved}	=	Average CFM saved per CFM of piping capacity: 0.049
Save	=	Average savings per CFM: 0.24386 kW/CFM ⁶³⁴
Hours	=	Annual operating hours of the zero loss condensate drain.

Baseline Efficiency

The baseline efficiency case is installation of a standard condensate drain on a compressor system.

High Efficiency

The high efficiency case is installation of a zero loss condensate drain on a single operating compressor rated \leq 75 HP.

Hours

** **

The annual hours of operation are site specific and will be determined on a case by case basis.

⁶³⁴ Based on Eversource (NSTAR) analysis assuming a typical timed drain settings discharge scenario.

Measure Life

For lost-opportunity installations, the lifetime for this measure is 15 years. For retrofit projects, the lifetime is 13 years.⁶³⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings⁶³⁶

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CFSSP	CFWSP
Zero Loss Drain	NB, EUL, Large Retrofit	National Grid	1.00	1.00	1.00	1.00	0.80	0.54	0.77	0.54
Zero Loss Drain	NB, EUL, Large Retrofit	Eversource (NSTAR), CLC	1.00	1.25	0.95	0.80	0.88	0.69	n/a	n/a
Zero Loss Drain	NB, EUL, Large Retrofit	Unitil	1.00	1.00	1.00	1.00	0.80	0.54	0.77	0.54
Zero Loss Drain	NB, EUL, Large Retrofit	Eversource (WMECO)	1.00	0.90	0.95	0.80	0.88	0.69	custom	custom

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

- National Grid, Unitil: RRs based on impact evaluation of PY 2004 compressed air installations.⁶³⁷
- Eversource (NSTAR), CLC: energy and demand RRs from impact evaluation of NSTAR 2006 compressed air installations⁶³⁸
- Eversource (WMECO): energy RRs from 2011 WMECO C&I impact evaluation.⁶³⁹, demand RRs from impact evaluation of NSTAR 2006 compressed air installations referenced above.

⁶³⁵ Energy & Resource Solutions (2005), Measure Life Study, Prepared for The Massachusetts Joint Utilities; Table 1-1. Drains ⁶³⁶ This measure was included in the 2015 DNV GL study of Prescriptive compressed air measures, however, there were not a

statistically significant number of sites with this measure selected in the sample, so no impact updates have been made.

⁶³⁷ DMI (2006). Impact Evaluation of 2004 Compressed Air Prescriptive Rebates. Prepared for National Grid; results analyzed in RLW Analytics (2006). Sample Design and Impact Evaluation Analysis for Prescriptive Compressed Air Measures in the Energy Initiative and Design 2000 Programs. Prepared for National Grid.

⁶³⁸ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final Report. Prepared for NSTAR Electric and Gas; Table 17.

⁶³⁹ KEMA (2011). 2007/2008 Large C&I Programs. Prepared for Western Massachusetts Electric Company.

Massachusetts Technical Reference Manual

Coincidence Factors

- National Grid, Unitil: CFs based on impact evaluation of PY 2004 compressed air installations.⁶⁴⁰
- Eversource (NSTAR), CLC, Eversource (WMECO): on-peak CFs based on standard assumptions.
- Eversource (WMECO): seasonal CFs are custom calculated.

⁶⁴⁰ DMI (2006). Impact Evaluation of 2004 Compressed Air Prescriptive Rebates. Prepared for National Grid; results analyzed in RLW Analytics (2006). Sample Design and Impact Evaluation Analysis for Prescriptive Compressed Air Measures in the Energy Initiative and Design 2000 Programs. Prepared for National Grid.

Motors/Drives – Variable Frequency Drives

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure covers the installation of variable speed drives according to the terms and conditions stated on the statewide worksheet. The measure covers multiple end use types and building types. The installation of this measure saves energy since the power required to rotate a pump or fan at lower speeds requires less power than when rotated at full speed. **Primary Energy Impact:** Electric

Secondary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: Motors/Drives Measure Type: Variable Speed Drive Core Initiative: C&I New Buildings & Major Renovations and C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impacts

$$\Delta kWh = (HP) \left(\frac{1}{\eta_{motor}}\right) (kWh/HP)$$
$$\Delta kW = (HP) \left(\frac{1}{\eta_{motor}}\right) (kW/HP)_{SP}$$

Where:

HP	=	Rated horsepower for the impacted motor.
η _{motor}	=	Motor efficiency
kWh/HP	=	Annual electric energy reduction based on building and equipment type. See table below.
kW/HP _{SP}	=	Summer demand reduction based on building and equipment type. See table below.
kW/HP _{WP}	=	Winter demand reduction based on building and equipment type. See table below.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018

Exhibit 1, Appendix V Commercial and Industrial Electric Efficiency Measures Page 300 of 435

October 30, 2015

Savings Factors for C&I VFDs (kWh/HP⁶⁴¹ and kW/HP⁶⁴²)

	Building Exhaust Fan	Cooling Tower Fan	Chilled Water Pump	Boiler Feed Water Pump	Hot Water Circulating. Pump	MAF - Make-up Air Fan	Return Fan	Supply Fan	WS Heat Pump Circulating Loop	
Annual Energy Savings F	actors (k	Wh/HP)				1				
University/College	3,641	449	745	2,316	2,344	3,220	1,067	1,023	3,061	
Elm/H School	3,563	365	628	1,933	1,957	3,402	879	840	2,561	
Multi-Family	3,202	889	1,374	2,340	2,400	3,082	1,374	1,319	3,713	
Hotel/Motel	3,151	809	1,239	2,195	2,239	3,368	1,334	1,290	3,433	
Health	3,375	1,705	2,427	2,349	2,406	3,002	1,577	1,487	3,670	
Warehouse	3,310	455	816	2,002	2,087	3,229	1,253	1,205	2,818	
Restaurant	3,440	993	1,566	1,977	2,047	2,628	1,425	1,363	3,542	
Retail	3,092	633	1,049	1,949	2,000	2,392	1,206	1,146	2,998	
Grocery	3,126	918	1,632	1,653	1,681	2,230	1,408	1,297	3,285	
Offices	3,332	950	1,370	1,866	1,896	3,346	1,135	1,076	3,235	
Summer Demand Savings Factors (kW/HP _{SP})										
University/College	0.109	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Elm/H School	0.377	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Multi-Family	0.109	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Hotel/Motel	0.109	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Health	0.109	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Warehouse	0.109	-0.023	0.174	0.457	0.091	0.261	0.287	0.274	0.218	
Restaurant	0.261	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Retail	0.109	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Grocery	0.261	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Offices	0.109	-0.023	0.174	0.457	0.091	0.109	0.287	0.274	0.218	
Winter Demand Savings	Factors (1	kW/HP _W	(P)							
University/College	0.377	-0.006	0.184	0.457	0.210	0.109	0.260	0.252	0.282	
Elementary/High School	0.457	-0.006	0.184	0.457	0.210	0.109	0.260	0.252	0.282	
Multi-Family	0.109	-0.006	0.184	0.355	0.210	0.109	0.260	0.252	0.282	
Hotel/Motel	0.109	-0.006	0.184	0.418	0.210	0.109	0.260	0.252	0.282	
Health	0.377	-0.006	0.184	0.275	0.210	0.109	0.260	0.252	0.282	
Warehouse	0.377	-0.006	0.184	0.178	0.210	0.261	0.260	0.252	0.282	
Restaurant	0.109	-0.006	0.184	0.355	0.210	0.109	0.260	0.252	0.282	
Retail	0.109	-0.006	0.184	0.275	0.210	0.109	0.260	0.252	0.282	
Grocery	0.457	-0.006	0.184	0.418	0.210	0.109	0.260	0.252	0.282	
Offices	0.457	-0.006	0.184	0.418	0.210	0.109	0.260	0.252	0.282	

⁶⁴¹ Chan, Tumin (2010). Formulation of a Prescriptive Incentive for the VFD and Motors & VFD impact tables at NSTAR. Prepared for NSTAR.

⁶⁴² For Chilled Water Pump, Hot Water Circ. Pump, Return Fan, Supply Fan, and WSHP Circ. Loop: kW/HP estimates derived from Cadmus (2012). Variable Speed Drive Loadshape Project. Prepared for the NEEP Regional Evaluation, Measurement & Verification Forum. Other drive type kW/HP savings estimates based on Chan, Tumin (2010). Formulation of a Prescriptive Incentive for the VFD and Motors & VFD impact tables at NSTAR. Prepared for NSTAR.

Baseline Efficiency

The baseline efficiency case measure varies with equipment type. All baselines assume either a constant or 2-speed motor. Air or water volume/temperature is controlled using valves, dampers, and/or reheats.

High Efficiency

In the high efficiency case, pump flow or fan air volume is directly controlled using downstream information. The pump or fan will automatically adjust its speed based on inputted set points and the downstream feedback it receives.

Hours

Hours vary by end use and building type.

Measure Life

For lost-opportunity installations, the lifetime is 15 years. For retrofit projects, the lifetime is 13 years.⁶⁴³

Secondary Energy Impacts

There are no secondary energy impacts.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
VFD	NB, EUL	All	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00
VFD	Large Retrofit	All	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00
VFD	Small Retrofit	CLC	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00
VFD	Small Retrofit	Eversource (NSTAR)	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00
VFD	Small Retrofit	Eversource (WMECO)	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Energy RRs for all PAs based on impact evaluation of 2011-2012 prescriptive VSD projects.⁶⁴⁴ Demand RRs from study not used due to low precision of demand results. Demand RRs for Chilled Water Pump, Hot Water Circ. Pump, Return Fan, Supply Fan, and WSHP Circ. Loop set to 1 since savings based on NEEP VSD Loadshape study.

Coincidence Factors

CFs for all PAs set to 1.0 since summer and winter demand savings are based on evaluation results.

 ⁶⁴³ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
⁶⁴⁴ KEMA, Inc. and DMI, Inc. (2013). 2011-2012 Massachusetts Prescriptive VSD Impact Evaluation. Prepared for the Massachusetts Program Administrators and the Massachusetts Energy Efficiency Advisory Council.

Motors/Drives – Motor and Variable Frequency Drives

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure covers the installation of a high efficiency motor with a variable speed drives according to the terms and conditions stated on the statewide worksheet. The measure covers multiple end use types and building types. The installation of this measure saves energy since the power required to rotate a pump or fan at lower speeds requires less power than when rotated at full speed.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: Motors/Drives Measure Type: Variable Speed Drive Core Initiative: C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impacts

$$\Delta kWh = (HP) \left(\frac{1}{\eta_{motor}}\right) (kWh/HP)$$
$$\Delta kW = (HP) \left(\frac{1}{\eta_{motor}}\right) (kW/HP)_{SP}$$

Where:

HP	=	Rated horsepower for the impacted motor.
η _{motor}	=	Motor efficiency
kWh/HP	=	Annual electric energy reduction based on building and equipment type. See table below.
kW/HP _{SP}	=	Summer demand reduction based on building and equipment type. See table below.
kW/HP _{WP}	=	Winter demand reduction based on building and equipment type. See table below.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018

October 30, 2015 <u>Exhibit 1, Appendix V</u> Commercial and Industrial Electric Efficiency Measures Page 303 of 435

Savings Factors for C&I VFDs with Motor Replacement (kWh/HP⁶⁴⁵ and kW/HP⁶⁴⁶)

8									, I	
	Building Exhaust Fan	Cooling Tower Fan	Chilled Water Pump	Boiler Feed Water Pump	Hot Water Circulating. Pump	MAF - Make-up Air Fan	Return Fan	Supply Fan	WS Heat Pump Circulating Loop	
Annual Energy Savings F	actors (k	Wh/HP)	• • • •							
University/College	3,802	486	780	2,415	2,442	3,381	1,143	1,100	3,194	
Elm/H School	3,721	396	657	2,015	2,040	3,561	941	903	2,673	
Multi-Family	3,368	954	1,435	2,443	2,504	3,248	1,466	1,412	3,879	
Hotel/Motel	3,317	866	1,294	2,291	2,335	3,534	1,425	1,381	3,585	
Health	3,541	1,815	2,535	2,453	2,510	3,168	1,676	1,586	3,835	
Warehouse	3,476	496	853	2,098	2,183	3,396	1,342	1,294	2,952	
Restaurant	3,606	1,066	1,636	2,067	2,138	2,794	1,519	1,457	3,703	
Retail	3,258	685	1,097	2,036	2,087	2,558	1,288	1,229	3,133	
Grocery	3,292	1,001	1,710	1,724	1,753	2,396	1,498	1,386	3,434	
Offices	3,498	1,014	1,432	1,947	1,977	3,512	1,210	1,151	3,379	
Summer Demand Savings Factors (kW/HP _{SP})										
University/College	0.257	(0.004)	0.465	0.952	0.190	0.257	0.679	0.706	0.582	
Elm/H School	1.187	(0.006)	0.697	1.428	0.286	0.385	1.019	1.058	0.699	
Multi-Family	0.385	(0.006)	0.697	1.428	0.286	0.385	1.019	1.058	0.873	
Hotel/Motel	0.257	(0.004)	0.465	0.952	0.190	0.257	0.679	0.706	0.582	
Health	0.128	(0.002)	0.232	0.476	0.095	0.128	0.340	0.353	0.291	
Warehouse	0.770	(0.012)	1.394	2.855	0.571	1.677	2.038	2.117	1.745	
Restaurant	0.839	(0.006)	0.697	1.428	0.286	0.385	1.019	1.058	0.722	
Retail	0.514	(0.008)	0.930	1.904	0.381	0.514	1.358	1.411	1.163	
Grocery	0.280	(0.002)	0.232	0.476	0.095	0.128	0.340	0.353	0.241	
Offices	0.257	(0.004)	0.465	0.952	0.190	0.257	0.679	0.706	0.582	
Winter Demand Savings	Factors (kW/HP _{WI}	e)							
University/College	0.791	(0.001)	0.384	0.952	0.437	0.257	0.563	0.544	0.587	
Elementary/High School	1.428	(0.002)	0.575	1.428	0.655	0.385	0.844	0.816	0.881	
Multi-Family	0.385	(0.002)	0.575	1.123	0.661	0.385	0.844	0.816	0.893	
Hotel/Motel	0.257	(0.001)	0.384	0.874	0.438	0.257	0.563	0.544	0.590	
Health	0.396	(0.001)	0.192	0.294	0.223	0.128	0.281	0.272	0.302	
Warehouse	2.374	(0.003)	1.151	1.181	1.384	1.677	1.688	1.632	1.872	
Restaurant	0.385	(0.002)	0.575	1.123	0.661	0.385	0.844	0.816	0.893	
Retail	0.514	(0.002)	0.767	1.178	0.893	0.514	1.125	1.088	1.208	
Grocery	0.476	(0.001)	0.192	0.437	0.219	0.128	0.281	0.272	0.295	
Offices	0.952	(0.001)	0.384	0.874	0.438	0.257	0.563	0.544	0.590	

Baseline Efficiency

In the baselines, air or water volume/temperature is controlled using valves, dampers, and/or reheats.

 ⁶⁴⁵ Chan, Tumin (2010). Formulation of a Prescriptive Incentive for the VFD and Motors & VFD impact tables at Eversource (NSTAR). Prepared for NSTAR.
⁶⁴⁶ For Chilled Water Pump, Hot Water Circ. Pump, Return Fan, Supply Fan, and WSHP Circ. Loop: kW/HP estimates derived

⁶⁴⁶ For Chilled Water Pump, Hot Water Circ. Pump, Return Fan, Supply Fan, and WSHP Circ. Loop: kW/HP estimates derived from Cadmus (2012). *Variable Speed Drive Loadshape Project*. Prepared for the NEEP Regional Evaluation, Measurement & Verification Forum. Other drive type kW/HP savings estimates based on Chan, Tumin (2010). *Formulation of a Prescriptive Incentive for the VFD and Motors & VFD impact tables at NSTAR*. Prepared for NSTAR.

High Efficiency

In the high efficiency case, pump flow or fan air volume is directly controlled using downstream information. The pump or fan will automatically adjust its speed based on inputted set points and the downstream feedback it receives.

Hours

Hours vary by end use and building type.

Measure Life

For retrofit projects, the lifetime is 13 years.⁶⁴⁷

Secondary Energy Impacts

There are no secondary energy impacts.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Core Initiative	РА	ISR	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
VFD	Large Retrofit	All	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00
VFD	Small Retrofit	CLC	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00
VFD	Small Retrofit	Eversource (NSTAR)	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00
VFD	Small Retrofit	Eversource (WMECO)	1.00	0.94	1.00	1.00	1.00	1.00	1.00	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Realization Rates

Energy RRs for all PAs based on impact evaluation of 2011-2012 prescriptive VSD projects.⁶⁴⁸ Demand RRs from study not used due to low precision of demand results. Demand RRs for Chilled Water Pump, Hot Water Circ. Pump, Return Fan, Supply Fan, and WSHP Circ. Loop set to 1 since savings based on NEEP VSD Loadshape study.

Coincidence Factors

CFs for all PAs set to 1.0 since summer and winter demand savings are based on evaluation results.

 ⁶⁴⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
⁶⁴⁸ KEMA, Inc. and DMI, Inc. (2013). 2011-2012 Massachusetts Prescriptive VSD Impact Evaluation. Prepared for the Massachusetts Program Administrators and the Massachusetts Energy Efficiency Advisory Council.

Whole Building - Building Operator Certification

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Building Operator Certification (BOC) is a nationally recognized training program designed to educate facilities personnel in the energy and resource efficient operation and maintenance of building systems. Savings include only operations, maintenance and controls savings.

Primary Energy Impact: Electric Secondary Energy Impact: Project Specific Non-Energy Impact: Project Specific Sector: Commercial & Industrial Market: Retrofit End Use: All Measure Type: Custom Core Initiative: C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impact

Savings are deemed based on study results⁶⁴⁹

Savings for Building Operator Certification

Measure Name	ΔkWh/SF/Student
BOC – O&M Only	0.178
BOC – O&M plus Capital Upgrades	0.364

Baseline Efficiency

No BOC training

High Efficiency

Completion and certification in a BOC level I or level II training course.

Measure Life

Measure life of 5 years.⁶⁵⁰

Secondary Energy Impacts

There are no secondary energy impacts.

October 2015

 ⁶⁴⁹ Navigant Consulting (2015). Comprehensive Review of Non-Residential Training and Education Programs, with a Focus on Building Operator Certification. Prepared for the Massachusetts Program Administrators and the Energy Efficiency Advisory Council
⁶⁵⁰ Ibid.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Ieasure Name Core Initiative		ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
BOC Training	Large Retrofit	National Grid	1.00	1.00	1.00	1.00	1.00	1.00

In-Service Rates

n/a

Realization Rates

Realization rates are set to 100% since savings are based off of evaluation results.

Coincidence Factors

Coincident factors are set to 1.0.

Code Compliance Support Initiative (CCSI) - Commercial

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The MassSave Code Compliance Support Initiative (CCSI) is focused on improving the energy code compliance rates of residential and commercial buildings in the state. The initiative includes trainings, technical support, and the development of compliance documentation tools. This effort will support code officials, as well as design and construction professionals. Primary Energy Impact: Electric & Gas Secondary Energy Impact: N/A Non-Energy Impact: N/A Sector: Commercial & Industrial Market: Lost Opportunity End Use: All Measure Type: Whole Building Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

$$\Delta kWh = GTP * \frac{(1 - NC) - BC}{1 - BC} * AF * ARF$$

Where:

- GTP = Gross Technical Potential Commercial energy savings (kWh and Therms) through building simulations described below under Baseline Efficiency. The gross technical potential for C&I is the difference between site observed energy measures and buildings modelled as 100% compliant with 2012 IECC requirements multiplied by the total square feet of new commercial buildings in MA
- NC = Non-Compliance The percentage of potential energy savings not realized at the end of an energy code cycle due to buildings on average not fully meeting code requirements: the difference between 100% and actual compliance at the end of the energy code cycle
- *BC* = Baseline Compliance The percentage of energy savings realized at the beginning of a new code cycle
- AF = Attribution Factor The percentage of potential energy savings above the normal compliance level, on average, at the end of a typical energy code cycle attributable to PA CCSI efforts⁶⁵¹
- ARF = Annual Ramp Factor Factor used to simulate how quickly the CCSI reaches the target compliance goal across years. That is, since it takes time for the education efforts of the CCSI to take hold only a portion of the attributable savings are claimed each year during the

⁶⁵¹ A deemed rate of 35% is used.

initiative and ramped up to 100% over the entire three year term⁶⁵²

Baseline Efficiency

The baseline efficiency case assumes energy consumption using a measured compliance level⁶⁵³. The baseline for the commercial building sector was determined as buildings that meet 100% of the 2012 IECC code, and were then compared to non-compliant buildings that were surveyed during the 2012 code baseline study⁶⁵⁴ (commercial buildings on average were 80% compliant with the 2006/2009 codes at the time of the study in terms of energy savings). New Buildings Institute conducted building modeling simulations for five building types based on data collected during the 2012 code baseline study. Energy Use Intensities (EUI) for offices, schools, multifamily, retail and refrigerated warehouses were created both for 100% compliant conditions and for those when compliance was not met. The EUIs were then multiplied by the forecasted number of square feet of new construction commercial buildings in MA using the online Dodge Database.

High Efficiency

The high efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code.

Hours

Not Applicable.

Measure Life

20 years.

Secondary Energy Impacts

Not Applicable.

Non-Energy Impacts

Not Applicable.

Impact Factors for Calculating Adjusted Gross Savings

Measure	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Code Compliance Support Initiative	ALL	1.00	1.00	1.00	1.00	N/A	N/A	N/A	N/A

Note: Unless otherwise stated, PA's use Statewide results.

⁶⁵² The 2016 – 2018 term includes savings from 2015 – 2018 where the Annual Ramp Factor is 20% for 2015, 30% for 2016, 50% for 2017, and 100% for 2018.

⁶⁵³ DNV-GL, ERS, APPRISE (2015). Massachusetts Commercial New Construction Energy

Code Compliance Follow-Up Study, Final Report, Prepared for: Massachusetts Program Administrators and Energy Efficiency Advisory Council.

⁶⁵⁴ DNV-KEMA, ERS, APPRISE (2012). *Final Report, Project 11, Code Compliance Baseline Study*, Prepared for: Massachusetts Energy Efficiency Program Administrators.

In-Service Rates

All PAs use 100% in service rate.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% realization rates as all adjustments are made via the factors listed in the algorithm above.

Coincidence Factors

Not applicable as only energy savings are counted.

Custom Measures (Large C&I)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The Custom project track is offered for energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects which do not qualify for incentives under any of the prescriptive rebate offering. Projects offered through the custom approach must pass a cost-effectiveness test based on project-specific costs and savings.

Primary Energy Impact: Electric Secondary Energy Impact: Project Specific Non-Energy Impact: Project Specific Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: All Measure Type: Custom Core Initiative: C&I New Buildings & Major Renovations and C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit

Notes

In 2011 the PAs agreed on the following set of categories for Large C&I custom projects. All Large C&I Custom projects will be assigned to one of the following categories for future statewide impact evaluation.

Custom Category	Description
Comprehensive	New construction projects which address multiple end-uses, reach 20%+ total energy savings,
Design	and use whole-building simulations for ex-ante savings estimates and Retrofit projects which
	address multiple end-uses, reach 15%+ electric energy savings, and do not require whole-
	building simulations.
Compressed Air	New construction and/or retrofit projects for compressed air systems.
СНР	Combined Heat and Power projects.
HVAC	New construction and/or retrofit projects for HVAC system equipment and controls.
Lighting	New construction and/or retrofit projects for lighting system equipment and controls.
Motor	New construction and/or retrofit projects for motor installations or controls.
Other	New construction and/or retrofit projects that do not fit in with other categories.
Process	New construction and/or retrofit projects for process system equipment and controls.
Refrigeration	New construction and/or retrofit projects for refrigeration system equipment and controls.
Verified Savings	Retrofit "Pay-for-Performance" projects for which savings are estimated based on post-
_	installation measurement and verification.

Algorithms for Calculating Primary Energy Impact

Gross energy and demand savings estimates for custom projects are calculated using engineering analysis with project-specific details. Custom analyses typically include a weather dependent load bin analysis,

whole building energy model simulation, end-use metering or other engineering analysis and include estimates of savings, costs, and an evaluation of the projects' cost-effectiveness.

Baseline Efficiency

For lost opportunity projects, the baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code or industry accepted standard practice. For retrofit projects, the baseline efficiency case is the same as the existing, or pre-retrofit, case for the facility.

High Efficiency

The high efficiency scenario is specific to the custom project and may include one or more energy efficiency measures. Energy and demand savings calculations are based on projected or measured changes in equipment efficiencies and operating characteristics and are determined on a case-by-case basis. The project must be proven cost-effective in order to qualify for energy efficiency incentives.

Hours

All hours for custom savings analyses should be determined on a case-by-case basis.

Measure Life

For both lost-opportunity and retrofit custom applications, the measure life is determined based on specific project using the common custom measure life recommendations.⁶⁵⁵

Secondary Energy Impacts

All secondary energy impacts should be determined on a case-by-case basis.

Non-Energy Impacts

All non-energy impacts should be determined on a case-by-case basis.

⁶⁵⁵ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-2.

Massachusetts Technical Reference Manual

Impact Factors for Calculating Adjusted Gross Savings

Measure	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Comprehensive Design	Eversource (NSTAR), CLC, Unitil, Eversource (WMECO)	1.00	0.91	0.64	0.60	custom	custom	custom	custom
_	National Grid	1.00	0.97	0.64	0.55	custom	custom	n/a	n/a
Compressed Air	All	1.00	0.85	0.76	0.74	custom	custom	custom	custom
	Eversource (NSTAR)	1.00	1.10	1.44	1.01	custom	custom	custom	custom
СНР	National Grid	1.00	0.91	1.09	1.05	custom	custom	custom	custom
	Unitil	1.00	0.84	1.38	0.00	custom	custom	custom	custom
	Unitil	1.00	0.88	0.88	0.85	custom	custom	custom	custom
	National Grid	1.00	0.75	0.70	0.67	custom	custom	n/a	n/a
HVAC	Eversource (NSTAR)	1.00	0.91	0.94	0.88	custom	custom	n/a	n/a
	Eversource (WMECO)	1.00	0.88	0.88	0.85	custom	custom	custom	custom
	CLC	1.00	0.88	0.88	0.85	custom	custom	n/a	n/a
Lighting	National Grid	1.00	0.98	1.16	0.85	custom	custom	n/a	n/a
	Eversource (NSTAR)	1.00	1.02	0.85	0.84	custom	custom	n/a	n/a
	CLC	1.00	0.98	0.94	0.92	custom	custom	n/a	n/a
	Unitil	1.00	0.98	0.94	0.92	custom	custom	n/a	n/a
	Eversource (WMECO)	1.00	0.98	0.85	0.84	custom	custom	custom	custom
LED Street Lighting	CLC	1.00	1.00	1.00	1.00	custom	custom	custom	custom
	National Grid	1.00	0.89	0.89	0.74	custom	custom	n/a	n/a
Matan	Eversource (NSTAR), CLC	1.00	0.91	0.90	0.76	custom	custom	n/a	n/a
WIOLOF	Unitil	1.00	1.00	1.00	1.00	custom	custom	n/a	n/a
	Eversource (WMECO)	1.00	0.91	0.90	0.76	custom	custom	custom	custom
Other	National Grid	1.00	0.31	0.34	0.33	custom	custom	custom	custom
	National Grid	1.00	0.68	0.96	0.82	custom	custom	n/a	n/a
	Eversource (NSTAR)	1.00	1.04	0.80	1.11	custom	custom	n/a	n/a
Process	CLC	1.00	0.76	0.82	0.88	custom	custom	n/a	n/a
	Unitil	1.00	0.76	0.82	0.88	custom	custom	n/a	n/a
	Eversource (WMECO)	1.00	0.76	0.80	1.11	custom	custom	custom	custom
	National Grid	1.00	1.19	1.21	1.20	custom	custom	n/a	n/a
	Eversource (NSTAR), CLC	1.00	1.13	1.38	1.10	custom	custom	n/a	n/a
Refrigeration	Unitil	1.00	1.11	1.21	1.14	custom	custom	n/a	n/a
	Eversource (WMECO)	1.00	1.11	1.21	1.14	custom	custom	custom	custom
Verified Savings ⁶⁵⁶	Statewide	1.00	1.00	1.00	1.00	custom	custom	custom	custom

Note: Unless otherwise stated, PA's use Statewide results.

⁶⁵⁶ The PAs assume 100% realization rates for verified savings projects because gross savings assumptions are based on postinstallation verification and analysis. This custom category is new in 2011 and has not been evaluated.

	D.P.U. 15-160 to D.P.U	J. 15-169
	Three-Year Plan 2016-	2018
	October 30, 2015	
Massachusetts Technical Reference Manual	Exhibit 1, Appendix V	Commercial and Industrial Electric Efficiency Measures
	Page 313 of 435	

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Realization Rates

- Comprehensive: Realization rates from statewide impact evaluation completed in 2011. National Grid uses PA specific values, all other PA's use statewide values due to small sample size.⁶⁵⁷
- HVAC: Realization rates from statewide impact evaluation completed in 2015. National Grid and Eversource (NSTAR) use PA specific values, all other PA's use statewide values due to small sample size.⁶⁵⁸
- CHP: National Grid, Eversource (NSTAR) and Unitil CHP RRs from a Massachusetts CHP impact evaluation of 2011-2012 CHP projects.⁶⁵⁹
- Compressed Air: Realization rates from statewide impact evaluation completed in 2012.⁶⁶⁰ All PA's use statewide values due to poor precision on a PA level.
- Process: Realization rates from statewide impact evaluation completed in 2012.⁶⁶¹ National Grid and Eversource (NSTAR) use PA specific values, all other PA's use statewide values due to small sample size.
- Lighting: Realization rates from statewide impact evaluation completed in 2012.⁶⁶² National Grid and Eversource (NSTAR) use PA specific values, all other PA's use statewide values due to small sample size.
- Refrigeration, Motors, and Other: Realization rates from statewide impact evaluation completed in 2012. National Grid uses PA specific values for each end use, All other PAs use statewide values due to small sample size. In the case of Eversource (NSTAR), the statewide rate for Custom Motors was used due to small sample size and the PA specific number for Refrigeration.⁶⁶³

Coincidence Factors

For all PAs, gross summer and winter peak coincidence factors are custom-calculated for each custom project based on project-specific information. The actual or measured coincidence factors are included in the summer and winter demand realization rates.

⁶⁵⁹ KEMA (2013). *Massachusetts Combined Heat and Power Program Impact Evaluation 2011-2012*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council

⁶⁵⁷ KEMA, Inc. and SBW (2011). *Impact Evaluation of 2008 and 2009 Custom CDA Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.

⁶⁵⁸ DNV GL (2015). *Impact Evaluation of 2012 Custom HVAC Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.

Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council ⁶⁶⁰ KEMA (2012). *Impact Evaluation of 2010 Custom Process and Compressed Air Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council. ⁶⁶¹ Ibid

⁶⁶² KEMA (2012). *Impact Evaluation of the 2010 Custom Lighting Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.

⁶⁶³ KEMA, Inc. and SBW (2013). *Impact Evaluation of 2011 Custom Refrigeration, Motor, and Other Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.

Custom Measures (Small C&I)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The Custom project track is offered for energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects which do not qualify for incentives under any of the prescriptive rebate offering. Projects offered through the custom approach must pass a cost-effectiveness test based on project-specific costs and savings.

Primary Energy Impact: Electric Secondary Energy Impact: Project Specific Non-Energy Impact: Project Specific Sector: Commercial & Industrial Market: Retrofit End Use: All Measure Type: Custom Core Initiative: C&I Small Business

Algorithms for Calculating Primary Energy Impact

Gross energy and demand savings estimates for custom projects are calculated using engineering analysis with project-specific details. Custom analyses typically include a weather dependent load bin analysis, whole building energy model simulation, end-use metering or other engineering analysis and include estimates of savings, costs, and an evaluation of the projects' cost-effectiveness.

Baseline Efficiency

For Lost Opportunity projects, the baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code or industry accepted standard practice. For retrofit projects, the baseline efficiency case is the same as the existing, or pre-retrofit, case for the facility.

High Efficiency

The high efficiency scenario is specific to the custom project and may include one or more energy efficiency measures. Energy and demand savings calculations are based on projected or measured changes in equipment efficiencies and operating characteristics and are determined on a case-by-case basis. The project must be proven cost-effective in order to qualify for energy efficiency incentives.

Hours

All hours for custom savings analyses should be determined on a case-by-case basis.

Measure Life

For both lost-opportunity and retrofit custom applications, the measure life is determined based on specific project using the common custom measure life recommendations.⁶⁶⁴

Secondary Energy Impacts

All secondary energy impacts should be determined on a case-by-case basis.

Non-Energy Impacts

All non-energy impacts should be determined on a case-by-case basis.

T (T (~ 1 1 /•		C C ·
Impact	Factors	tor (Calculating	g Adjusted	Gross Savings
					_

Measure	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Lighting	National Grid	1.00	1.04	1.02	1.13	custom	custom	n/a	n/a
Refrigeration	National Grid	1.00	1.60	1.49	0.69	custom	custom	n/a	n/a
Other	National Grid	1.00	0.81	0.77	0.53	custom	custom	n/a	n/a
Lighting Systems	Eversource (NSTAR)	1.00	1.02	0.99	0.99	custom	custom	n/a	n/a
Lighting Controls	Eversource (NSTAR)	1.00	0.42	0.92	0.92	custom	custom	n/a	n/a
VSD	Eversource (NSTAR)	1.00	0.94	1.00	1.00	custom	custom	n/a	n/a
Other Non-Lighting Systems	Eversource (NSTAR), CLC	1.00	0.91	0.92	0.92	custom	custom	n/a	n/a
LED Street Lighting	CLC	1.00	1.00	1.00	1.00	custom	custom	n/a	n/a
Lighting Controls	CLC	1.00	0.42	0.92	0.92	custom	custom	n/a	n/a
Lighting Systems	CLC	1.00	1.02	0.99	0.99	custom	custom		
Lighting	Unitil	1.00	1.08	0.99	0.99	custom	custom	n/a	n/a
Non-Lighting	Unitil	1.00	1.08	1.00	1.00	custom	custom	n/a	n/a
Lighting Systems	Eversource (WMECO)	1.00	1.02	0.99	0.99	custom	custom	0.67	0.58
Lighting Controls	Eversource (WMECO)	1.00	0.42	0.92	0.92	custom	custom	0.67	0.58
VSD	Eversource (WMECO)	1.00	0.94	1.00	1.00	custom	custom	custom	custom
Other	Eversource (WMECO)	1.00	1.00	0.92	0.92	custom	custom	custom	custom

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

- National Grid RRs derived from impact evaluation of 2005 SBS program⁶⁶⁵
- Eversource (NSTAR) VSD rates from impact evaluation of C&I 2006 programs⁶⁶⁶

⁶⁶⁴ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-2.

⁶⁶⁵ RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid; Table 4.

- Eversource (NSTAR), Eversource (WMECO), and CLC: lighting RRs from the 2011 Small C&I Non-Controls Lighting impact evaluation.⁶⁶⁷ Lighting Controls from a lighting control pre/post installation impact evaluation.⁶⁶⁸ Other non-lighting energy and all demand RRs based on NSTAR 2002–2004 small retrofit impact evaluations
- Unitil RRs from Small Business program impact evaluation.⁶⁶⁹

Coincidence Factors

For all PAs, gross summer and winter peak coincidence factors are custom-calculated for each custom project based on project-specific information. The actual or measured coincidence factors are included in the summer and winter demand realization rates.

⁶⁶⁶ RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final Report. Prepared for NSTAR Electric and Gas; Tables 14-18

⁶⁶⁷Cadmus Group (2011). Non-Controls Lighting Evaluation for the Massachusetts Small Commercial Direct Install Program. Prepared for Massachusetts Utilities.

⁶⁶⁸ Cadmus Group (2012). Small Business Direct Install Program: Pre/Post Lighting Occupancy Sensor Study. Prepared for Prepared for Massachusetts Program Administrators.

⁶⁶⁹ Summit Blue Consulting, LLC (2008). *Multiple Small Business Services Programs Impact Evaluation 2007 – Final Report Update*. Prepared for Cape Light Compact, National Grid, NSTAR, Unitil and Western Massachusetts Electric Company.

Custom Measures (Multifamily C&I)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Vendors install a variety of measures at multifamily facilities. Measures include lighting, HVAC, and domestic hot water equipment and measures. Primary Energy Impact: Electric Secondary Energy Impact: Project Specific Non-Energy Impact: Yes Sector: Commercial & Industrial Market: Retrofit End Use: HVAC, Lighting, Hot Water Measure Type: Custom Core Initiative: C&I Multifamily

Algorithms for Calculating Primary Energy Impact

Gross energy and demand savings estimates for C&I Multifamily projects are calculated by approved vendors with project-specific details. Vendors currently use algorithms (described in the Residential section of this document) to calculate savings.

Baseline Efficiency

For retrofit projects, the baseline efficiency case is the same as the existing, or pre-retrofit, case for the facility.

High Efficiency

The high efficiency scenario is specific to the facility and may include one or more energy efficiency measures. Energy and demand savings calculations are based on projected or measured changes in equipment efficiencies and operating characteristics and are determined on a case-by-case basis.

Hours

See Residential Section of this document.

Measure Life

See Residential Section of this document.

Secondary Energy Impacts

See Residential Section of this document.

Non-Energy Impacts

All non-energy impacts should be determined on a case-by-case basis.

Measure	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
	National Grid	1.00	0.98	1.16	0.85	custom	custom	n/a	n/a
Lighting	Eversource	1.00	1.02	0.85	0.84	custom	custom	custom	custom
	CLC	1.00	0.98	0.94	0.92	custom	custom	n/a	n/a
	Unitil	1.00	0.98	0.94	0.92	custom	custom	n/a	n/a
	National Grid	1.00	0.75	0.70	0.67	custom	custom	n/a	n/a
HVAC	Eversource	1.00	0.91	0.94	0.88	custom	custom	custom	custom
ΠνΑ	CLC	1.00	0.88	0.88	0.85	custom	custom	n/a	n/a
	Unitil	1.00	0.88	0.88	0.85	custom	custom	n/a	n/a
	National Grid	1.00	0.68	0.96	0.82	custom	custom	n/a	n/a
Hot Water	Eversource	1.00	1.00	0.92	0.92	custom	custom	custom	custom
Hot water	CLC	1.00	0.91	0.92	0.92	custom	custom	n/a	n/a
	Unitil	1.00	1.08	1.00	1.00	custom	custom	n/a	n/a

Impact Factors for Calculating Adjusted Gross Savings

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Realization Rates

- Lighting: All PAs use realization rates from the large commercial custom lighting statewide impact evaluation completed in 2012.⁶⁷⁰
- HVAC: All PAs use realization rates from the large commercial custom HVAC impact evaluation completed in 2015.⁶⁷¹
- Hot Water: National Grid RRs derived from the large commercial electric process evaluation.⁶⁷² Eversource and CLC energy RRs and all demand RRs based on Eversource (NSTAR) 2002–2004 small retrofit impact evaluations, Unitil RRs from Small Business program impact evaluation.⁶⁷³

Coincidence Factors

For all PAs, gross summer and winter peak coincidence factors are custom-calculated for each custom project based on project-specific information. The actual or measured coincidence factors are included in the summer and winter demand realization rates.

⁶⁷⁰ KEMA (2012). Impact Evaluation of the 2010 Custom Lighting Installations. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.

⁶⁷¹ DNV GL (2015). Impact Evaluation of 2012 Custom HVAC Installations. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.

⁶⁷² KEMA (2012). *Impact Evaluation of 2010 Custom Process and Compressed Air Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.

⁶⁷³ Summit Blue Consulting, LLC (2008). *Multiple Small Business Services Programs Impact Evaluation 2007 – Final Report Update*. Prepared for Cape Light Compact, National Grid, NSTAR, Unitil and Western Massachusetts Electric Company.

Prescriptive Measures (C&I Multifamily)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Vendors install a variety of measures at multifamily facilities. Measures include lighting, HVAC, and domestic hot water equipment and measures. Primary Energy Impact: Electric Secondary Energy Impact: Project Specific Non-Energy Impact: Yes Sector: Commercial & Industrial Market: Retrofit End Use: HVAC, Lighting, Hot Water Measure Type: Varied, see Residential Section Core Initiative: C&I Multifamily

Algorithms for Calculating Primary Energy Impact

The prescriptive measures, algorithms, and deemed savings claimed in the C&I Multifamily Retrofit program are identical to those claimed through the Residential Multifamily programs. Please reference the appropriate measure in the residential section of this TRM for all savings algorithms and deemed savings numbers.

Baseline Efficiency

See Residential Section of this document for measure specific detail.

High Efficiency

See Residential Section of this document for measure specific detail.

Hours

See Residential Section of this document for measure specific detail.

Measure Life

See Residential Section of this document for measure specific detail.

Secondary Energy Impacts

See Residential Section of this document for measure specific detail.

Non-Energy Impacts

See Residential Section of this document for measure specific detail.

Impact Factors for Calculating Adjusted Gross Savings

Measure	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}	CF _{SSP}	CF _{WSP}
Lighting	All	0.97	0.60	0.60	0.60	*	*	*	*
HVAC	All	1.00	0.60	0.60	0.60	*	*	*	*
Hot Water	All	1.00	0.60	0.60	0.60	*	*	*	*

In-Service Rates

- Lighting: In Service Rate from the MF Retrofit: MF Retrofit: 2012 MF Impact Analysis⁶⁷⁴
- HVAC and Hot Water: All installations have 100% in service rate since all PA programs include verification of equipment installations.

Realization Rates

- All PAs use realization rates from common assumptions.
- HVAC: National Grid uses realization rates from the All PAs use realization rates from the large commercial custom HVAC impact evaluation completed in 2015.⁶⁷⁵
- Hot Water: National Grid RRs derived from impact evaluation of 2005 SBS program.⁶⁷⁶ Eversource and CLC energy RRs and all demand RRs based on NSTAR 2002–2004 small retrofit impact evaluations, Unitil RRs from Small Business program impact evaluation.⁶⁷⁷

Coincidence Factors

See Residential Section of this document for measure specific detail.

⁶⁷⁴ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis*. Prepared for the Massachusetts Electric and Gas Program Administrators.

⁶⁷⁵ DNV GL (2015). Impact Evaluation of 2012 Custom HVAC Installations. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.

 ⁶⁷⁶ RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid; Table 4.
⁶⁷⁷ Summit Blue Consulting, LLC (2008). Multiple Small Business Services Programs Impact Evaluation 2007 – Final Report Update. Prepared for Cape Light Compact, National Grid, NSTAR, Unitil and Western Massachusetts Electric Company.

Commercial and Industrial Gas Efficiency Measures

Food Service – Commercial Ovens

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: Installation of High Efficiency Gas Ovens **Primary Energy Impact:** Natural Gas Secondary Energy Impact: None Non-Energy Impact: Water Sector: Commercial & Industrial Market: Lost Opportunity End Use: Food Service Measure Type: Cooking Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed:

Measure Name	ΔMMBtu				
Convection Oven	12.9^{678}				
Combination Oven	112.0 ⁶⁷⁹				
Conveyer Oven	88.4^{680}				
Rack Oven	211.3 ⁶⁸¹				

Baseline Efficiency

The baseline efficiency case is a standard efficiency oven.

Measure Name	Baseline Efficiency				
Convection Oven	44%				
Combination Oven	35%				
Conveyer Oven	20% Heavy Load				
Rack Oven	30%				

High Efficiency

High efficiency case is an oven that meets or exceeds the high efficiency ratings per oven type shown in table below.

⁶⁸¹ Food Service Technology Center (2015). Gas Rack Oven Life-Cycle Cost Calculator.

⁶⁷⁸ Energy Star Commercial Kitchen Equipment Saving Calculator <u>http://www.energystar.gov/products/certified-</u> products/detail/commercial-food-service-equipment. Default values used. Accessed on 10/2/2015 ⁶⁷⁹ Food Service Technology Center (2015). *Gas Combination Oven Life-Cycle Cost Calculator*.

http://www.fishnick.com/saveenergy/tools/calculators/gcombicalc.php. Default values used. Accessed 10/2/2015

⁶⁸⁰ Food Service Technology Center (2015). Gas Conveyor Oven Life-Cycle Cost Calculator. http://www.fishnick.com/saveenergy/tools/calculators/gconvovencalc.php. Default values used. Accessed 10/2/2015

Measure Name	Efficiency Requirement				
Convection Oven	>= 46%				
Combination Oven	>= 44%				
Conveyer Oven	>= 42%				
Rack Oven	>= 50%				

Hours

Not applicable.

Measure Life

The measure life is 12 years for all commercial ovens. 682

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

65,700 Gallons of water⁶⁸³ for the combination oven

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Convection Oven	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Combination Oven	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Conveyer Oven	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Rack Oven	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

⁶⁸³ Food Service Technology Center (2015). Gas Combination Oven Life-Cycle Cost Calculator.

⁶⁸² Food Service Technology Center (2015). Oven Life-Cycle Cost Calculators

http://www.fishnick.com/saveenergy/tools/calculators/gcombicalc.php. Accessed 10/2/2015
Food Service – Commercial Griddle

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: Installation of a gas griddle with efficiency of 38%. **Primary Energy Impact:** Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Food Service Measure Type: Cooking Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁶⁸⁴.

Savings for Commercial Griddles

Measure Name	AMMBtu
Griddle	13.1

Baseline Efficiency

The baseline efficiency case is a standard efficiency (32% efficient) gas griddle.

High Efficiency

The high efficiency case is a gas griddle with an efficiency of 38%.

Hours

Not applicable.

Measure Life

The measure life is 12 years.⁶⁸⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

⁶⁸⁴ Energy Star Commercial Kitchen Equipment Saving Calculator <u>http://www.energystar.gov/products/certified-</u> products/detail/commercial-food-service-equipment. Default values used. Accessed on 10/2/2015 685 Ibid.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Griddle	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Food Service – Commercial Fryer

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: The installation of a natural-gas fired fryer that is either ENERGY STAR® rated or has a heavy-load cooking efficiency of at least 50%. Qualified fryers use advanced burner and heat exchanger designs to use fuel more efficiently, as well as increased insulation to reduce standby heat loss.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Food Service Measure Type: Cooking Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed⁶⁸⁶

Savings for Commercial Fryers

Measure Name	ΔMMBtu	
Fryer	50.8	

Baseline Efficiency

The baseline efficiency case is a non-Energy Star qualified fryer.

High Efficiency

The high efficiency case is an Energy Star qualified fryer.

Hours

Not applicable.

Measure Life

The measure life is 12 years.⁶⁸⁷

⁶⁸⁶ Energy Star Commercial Kitchen Equipment Saving Calculator http://www.energystar.gov/products/certifiedproducts/detail/commercial-food-service-equipment. Default values used. Accessed on 10/2/2015

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Fryer	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Food Service – Commercial Steamer

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of an ENERGY STAR® rated natural-gas fired steamer, either connectionless or steam-generator design, with heavy-load cooking efficiency of at least 38%. Qualified steamers reduce heat loss due to better insulation, improved heat exchange, and more efficient steam delivery systems.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: Water, Wastewater Sector: Commercial & Industrial Market: Lost Opportunity End Use: Food Service Measure Type: Cooking Equipment Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed⁶⁸⁸.

Savings for Commercial Steamers

Measure Name	ΔMMBtu
Steamer	105.4

Baseline Efficiency

The baseline efficiency case is a non-energy star steamer

High Efficiency

The high efficiency case is an ENERGY STAR® qualified gas-fired steamer.

Hours

The deemed savings assumes 4,380 annual operating hours (12 hours a day * 365 days/year).⁶⁸⁹

Measure Life

The measure life is 12 years.⁶⁹⁰

 ⁶⁸⁸ Energy Star Commercial Kitchen Equipment Saving Calculator http://www.energystar.gov/products/certified-products/detail/commercial-food-service-equipment. Default values used. Accessed on 10/2/2015
 ⁶⁸⁹ Ibid
 ⁶⁹⁰ Ibid

^{obo} Ibid.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings ⁶⁹¹
C&I Water	C&I Water Savings	162,060 gallons/unit
C&I Wastewater	C&I Wastewater Savings	162,060 gallons/unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Steamer	NB, EUL	All	1.00	1.00	1.00	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁶⁹¹ Ibid.

HVAC – Boilers

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of a high efficiency natural gas fired condensing hot water boiler. High-efficiency condensing boilers can take advantage of improved design, sealed combustion and condensing flue gases in a second heat exchanger to achieve improved efficiency. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Measure Type: Heating Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁶⁹².

Measure Name	ΔMMBtu
Condensing Boiler <= 300 mbh (.90 AFUE)	30.6
Condensing Boiler 301-499 mbh (.90 TE)	58.4
Condensing Boiler 500-999 mbh (.90 TE)	107.3
Condensing Boiler 1000-1700 mbh (.90 TE)	197.2
Condensing Boiler 1701+ mbh (.90 TE)	345.1
Condensing Boiler <= 300 mbh (.95 AFUE)	27.8

Baseline Efficiency

The baseline efficiency assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. The deemed savings methodology for this measure does not require specific baseline data, but the baseline information is provided here for use in the future when this is converted to a deemed calculated measure.

As described in Chapter 13 of the Massachusetts State Building Code, energy efficiency must be met via compliance with the International Energy Conservation Code (IECC) 2012. The table below details the specific efficiency requirements by equipment type and capacity. Baseline requirements for 2017 and on have not been finalized.

⁶⁹² KEMA (2013). *Impact Evaluation of 2011 Prescriptive Gas Measures*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council; Page 1-2.

Baseline Efficiency Requirements for C&I Gas-Fired Boilers⁶⁹³

			Minimum Efficiency	
Equipment Type	Subcategory	Size Category (Input)	(2016) ^a	Test Procedure
		<300,000 Btu/h	82% AFUE	10 CFR Part 430
Boilers, Hot water	Gas-Fired	>=300,000 Btu/h and		
		<=2,500,000 Btu/h ^b	80% E _t	10 CFR Part 431
		>2,500,000 Btu/h ^c	82% E _c	

a. Annual Fuel Utilization Efficiency (AFUE), Thermal efficiency (Et), Combustion efficiency (Ec)

b. Maximum capacity - min. and max. ratings as provided for and allowed by the units controls

c. These requirements apply to boilers with rated input of 8 MMBtu/h or less that are not packaged boilers and to all packaged boilers. Minimum efficiency requirements for boilers cover all capacities of packaged boilers

High Efficiency

The high efficiency scenario assumes a gas-fired boiler that exceeds the efficiency levels required by Massachusetts State Building Code or federal code whichever has a higher value

Hours

Not applicable.

Measure Life

The measure life is 25 years.⁶⁹⁴

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

	Core							
Measure Name	Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF_{SP}	CF _{WP}
Condensing Boiler <= 300 mbh (.90 TE)	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Condensing Boiler 301-499 mbh (.90 TE)	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Condensing Boiler 500-999 mbh (.90 TE)	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Condensing Boiler 1000-1700 mbh (.90 TE)	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Condensing Boiler 1701+ mbh (.90 TE)	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Condensing Boiler <= 300 mbh (.95 TE)	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

⁶⁹³ Adapted from 2012 International Energy Conservation Code; Table C403.2.3(5).

⁶⁹⁴ ASHRAE Applications Handbook (2003); Page 36.3.

	D.P.U. 15-160 to D.P.U. 1	15-169
	Three-Year Plan 2016-20	18
	October 30, 2015	
Massachusetts Technical Reference Manual	Exhibit 1, Appendix V	Commercial and Industrial Gas Efficiency Measures
	Page 332 of 435	

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Boiler Reset Controls

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: Boiler Reset Controls are devices that automatically control boiler water temperature based on outdoor or return water temperature using a software program. **Primary Energy Impact:** Natural Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Heating Core Initiative: C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁶⁹⁵.

Savings for Boiler Reset Controls

Measure Name	ΔMMBtu
Boiler Reset Control	35.5

Baseline Efficiency

The baseline efficiency case is a boiler without reset controls.

High Efficiency

The high efficiency case is a boiler with reset controls.

Hours

Not applicable.

Measure Life

The measure life is 15 years.⁶⁹⁶

⁶⁹⁵ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks; the GDS Study assumes 710.46 MMBTU base use with 5% savings factor. 696 ACEEE (2006). *Emerging Technologies Report: Advanced Boiler Controls*. Prepared for ACEEE; Page 2

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Boiler Reset Controls	Large Retrofit, Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Combo Water Heater/Boiler

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: This measure promotes the installation of a combined high-efficiency boiler and water heating unit. Combined boiler and water heating systems are more efficient than separate systems because they eliminate the standby heat losses of an additional tank. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC, Hot Water Measure Type: Heating Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁶⁹⁷.

Savings for Combo Condensing Boiler/Water Heater

Measure Name	ΔMMBtu
Combo Condensing Boiler/Water Heater 90%	24.6
Combo Condensing Boiler/Water Heater 95%	31.8

Baseline Efficiency

The baseline efficiency case is a standard efficiency gas-fired storage tank hot water heater with a separate standard efficiency boiler for space heating purposes.

High Efficiency

The high efficiency case is either a condensing, integrated water heater/boiler with an AFUE of $\geq=90\%$ or AFUE $\geq=95\%$.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁶⁹⁸

⁶⁹⁷ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Combo Condensing Boiler/Water Heater 90%	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Combo Condensing Boiler/Water Heater 95%	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁶⁹⁸ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.

HVAC – Condensing Unit Heaters

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a condensing gas-fired unit heater for space heating with capacity up to 300 MBH and minimum combustion efficiency of 90%. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Measure Type: Heating Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁶⁹⁹.

Savings for Condensing Unit Heater

Measure Name	ΔMMBtu
Condensing Unit Heater <= 300 mbh	40.9

Baseline Efficiency

The baseline efficiency case is a standard efficiency gas fired unit heater with minimum combustion efficiency of 80%, interrupted or intermittent ignition device (IID), and either power venting or an automatic flue damper.⁷⁰⁰ As a note, the baseline efficiency referenced applies to 2016. Baseline requirements for 2017 and on have not been finalized.

High Efficiency

The high efficiency case is a condensing gas unit heater with 90% AFUE or greater.

Hours

Not applicable.

⁶⁹⁹ NYSERDA Deemed Savings Database (Rev 11); Measure Name: A.UNIT-HEATER-COND.<300000.CI._._.N. The database provides savings of 204.6 MMBtu per million BTU/hr of heater input capacity. Assume average unit size of 200,000 BTU capacity.

⁷⁰⁰ 2012 International Energy Conservation Code

Measure Life

The measure life is 18 years.⁷⁰¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Condensing Unit Heater <= 300 mbh	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁷⁰¹ Ecotrope, Inc. (2003). *Natural Gas Efficiency and Conservation Measure Resource Assessment for the Residential and Commercial Sectors*. Prepared for the Energy Trust of Oregon.

HVAC – Furnaces

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of a high efficiency natural gas warm air furnace with an electronically commutated motor (ECM) for the fan. High efficiency furnaces are better at converting fuel into direct heat and better insulated to reduce heat loss. ECM fan motors significantly reduce fan motor electric consumption as compared to both shaped-pole and permanent split capacitor motors. Primary Energy Impact: Natural Gas Secondary Energy Impact: Electric Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Measure Type: Heating Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁷⁰².

Savings for Furnaces	
Measure Name	ΔMMBtu
Furnace w/ECM 95%	5.7
Furnace w/ECM 97%	6.7

Baseline Efficiency

The baseline efficiency assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. The deemed savings methodology for this measure does not require specific baseline data, but the baseline information is provided here for use in the future if this is converted to a deemed calculated measure.

As described in the Massachusetts State Building Code, energy efficiency must be met via compliance with the relevant International Energy Conservation Code (IECC) 2012. The table below details the specific efficiency requirements by equipment type and capacity. Baseline requirements for 2017 and on have not been finalized.

⁷⁰² DNV-GL (2015). *Recalculation of Prescriptive Program Gas Furnace Savings Using New Baseline*. Prepared for Massachusetts Energy Efficiency Program Administrators & Massachusetts Energy Efficiency Advisory Council.

	D.P.U. 15-160 to D.P.U.	15-169
	Three-Year Plan 2016-2	018
	October 30, 2015	
Massachusetts Technical Reference Manual	Exhibit 1, Appendix V	Commercial and Industrial Gas Efficiency Measures
	Page 340 of 435	

Baseline Efficiency Requirements for Gas-Fired Furnaces⁷⁰³

Equipment Type	Size Category (Input)	Minimum Efficiency (2016)
Warm air furnaces, gas fired	< 225,000 Btu/h	85% AFUE

High Efficiency

The high efficiency scenario assumes either a gas-fired furnace equal or higher than 95% AFUE or 97 AFUE.

Hours

Not applicable.

Measure Life

The measure life is 18 years.⁷⁰⁴

Secondary Energy Impacts

High efficiency furnaces equipped with ECM fan motors also save electricity from reduced fan energy requirements. The reduction of electric use is 168 kWh and 0.124 kW⁷⁰⁵. See HVAC – Furnace Fan Motors (ECM) in the Residential section.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Furnace w/ECM 95%	NB, EUL	All	1.00	1.00	1.00	1.00	0.00	0.16
Furnace w/ECM 97%	NB, EUL	All	1.00	1.00	1.00	1.00	0.00	0.16

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate.

Coincidence Factors

⁷⁰³ Agreed upon value with EEAC consultants⁷⁰⁴ ASHRAE Applications Handbook (2003); Page 36.3.

⁷⁰⁵ The Cadmus Group, Inc. (2012). Brushless Fan Motors Impact Evaluation. Prepared for: The Electric and Gas Program Administrators of Massachusetts

HVAC – Infrared Heaters

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The installation of a gas-fired low intensity infrared heating system in place of unit heater, furnace, or other standard efficiency equipment. Infrared heating uses radiant heat as opposed to warm air to heat buildings. In commercial environments with high air exchange rates, heat loss is minimal because the space's heat comes from surfaces rather than air. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Measure Type: Heating Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁷⁰⁶.

Savings for Infrared Heaters

Measure Name	ΔMMBtu
Infrared Heaters	12.0

Baseline Efficiency

The baseline efficiency case is a standard efficiency gas-fired unit heater with combustion efficiency of 80%.

High Efficiency

The high efficiency case is a gas-fired low-intensity infrared heating unit.

Hours

Not applicable.

Measure Life

The measure life is 17 years.⁷⁰⁷

⁷⁰⁶ KEMA (2013). *Impact Evaluation of 2011 Prescriptive Gas Measures*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council; Page 1-5.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Infrared Heaters	NB, EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁷⁰⁷ Nexant (2006). *DSM Market Characterization Report*. Prepared for Questar Gas.

HVAC – Thermostats

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a programmable thermostat with the ability to adjust heating or airconditioning operating times according to a pre-set schedule to meet occupancy needs and minimize redundant HVAC operation. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Controls Core Initiative: C&I Existing Building Retrofit, C&I Small Business, C&I Multifamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results^{708,709}

Savings for 110grammable Thermostats									
Measure Name	Core Initiative	PA	ΔMMBtu						
Programmable Thermostat	Large Retrofit	All	3.2						
Programmable Thermostat	Small Retrofit	All	3.2						
Programmable Thermostat	C&I MF Retrofit	All	2.3						

Savings for Programmable Thermostats

Baseline Efficiency

The baseline efficiency case is an HVAC system using natural gas to provide space heating without a programmable thermostat.

High Efficiency

The high efficiency case is an HVAC system using natural gas to provide space heating with a 7-day programmable thermostat installed.

Hours

Not applicable.

⁷⁰⁸DNV GL (2015) 2013 Massachusetts Prescriptive Gas Thermostat Evaluation Study & Programmable Thermostat Decision Memo. Prepared for the Massachusetts Energy Efficiency Program Administrators..

⁷⁰⁹ The Cadmus Group (2012). *Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis. Page 18-2* Prepared for Massachusetts Program Administrators

Measure Life

The measure life is 15 years.⁷¹⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Programmable Thermostat	Large Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	C&I MF Retrofit	All	1.00	0.60	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁷¹⁰ Environmental Protection Agency (2010). Life Cycle Cost Estimate for ENERGY STAR Programmable Thermostat.

HVAC – Duct Sealing and Insulation

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: For existing ductwork in non-conditioned spaces, seal and insulate ductwork. This could include replacing un-insulated flexible duct with rigid insulated ductwork or sealing leaky fixed ductwork with mastic or aerosol and installing 1" – 2" of duct-wrap insulation. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Ducting Core Initiative: C&I Existing Building Retrofit, C&I Small Business, C&I Multifamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu * Unit$

Where:		
Unit	=	Number of square feet of ductwork treated
∆MMBtu	=	Average annual MMBtu savings per unit: 0.13 ⁷¹¹

Baseline Efficiency

The baseline efficiency case is existing, non-sealed (leaky) and un-insulated ductwork in unconditioned spaces (e.g. attic or basement)

High Efficiency

The high efficiency condition is air sealed and insulated ductwork in unconditioned spaces.

Hours

Not Applicable.

Measure Life

The measure life is 20 years.⁷¹²

⁷¹¹ National Grid Staff Estimate (2010) MA SBS-DI Duct Sealing and Insulation Scenario and Deemed Savings.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Duct Sealing and Insulation	Large Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Sealing and Insulation	Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Duct Sealing and Insulation	C&I MF Retrofit	All	1.00	0.60	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁷¹² National Grid Staff Estimate (2010). MA SBS-DI Duct Sealing and Insulation Scenario and Deemed Savings.

HVAC – Pipe Wrap (Heating)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Install insulation on steam piping located in non-conditioned spaces. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Insulation Core Initiative: C&I Existing Building Retrofit, C&I Small Business, C&I Multifamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results^{713,714}

Sutings for Steam ripe mou	incion		
Measure Name	Core Initiative	PA	AMMBtu per linear foot
Steam Pipe Insulation, <=1.5"	Large Retrofit, Small Retrofit	All	0.21
Steam Pipe Insulation, 3"	Large Retrofit, Small Retrofit	All	0.37
Pipe Wrap (Heating)	C&I MF Retrofit	All	0.16

Savings for Steam Pipe Insulation

Baseline Efficiency

The baseline efficiency case is un-insulated steam piping in unconditioned space.

High Efficiency

The high efficiency condition is steam piping in unconditioned space with insulation installed.

Hours

Not Applicable.

Measure Life

The measure life is 15 years⁷¹⁵.

⁷¹³ National Grid Staff Calculation (2010). Pipe insulation for SBS DI measures 2010 Excel Workbook

⁷¹⁴ Savings assumptions from National Grid program vendor for Multifamily.

⁷¹⁵ GDS Associates, Inc (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; table B-2a, measure

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Steam Pipe Insulation, <=1.5"	Large Retrofit, Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Steam Pipe Insulation, 3"	Large Retrofit, Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Pipe Wrap (Heating)	C&I MF Retrofit	All	1.00	0.60	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Process – Steam Traps

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Repair or replace malfunctioning steam traps. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: Refer to Appendix C: Non-Resource Impacts Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Steam Traps Core Initiative: C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁷¹⁶:

Savings for Steam Traps

Measure Name	ΔMMBtu
Steam Trap - Prescriptive	25.7

Baseline Efficiency

The baseline efficiency case is a failed steam trap.

High Efficiency

The high efficiency case is a repaired or replaced steam trap.

Hours

Not applicable.

Measure Life

The measure life is 6 years.⁷¹⁷

⁷¹⁶ National Grid (2008). National Grid 2008 Steam Trap Savings Calculation. Based on historical steam trap surveys steam losses in lbs/hr are found using "Boiler Efficiency Institute (1987). *Steam Efficiency Improvement.*; Page 34, Table 4.1 under Steam Leak Rate Through Holes. Average loss rate for all trap sizes 1/32" to 1/4" for low steam pressures (5 psig and 10 psig) and high pressures (50 psig and 100 psig). Assume trap failure effective for 540 EFLH per year. Determine to equivalent therms per year and factor for frequency encountered = [80% * (78.50 + 111.46)/2] + [20% * (1,108.04 + 1,982.18)/2] = 385.01 BTU/trap-year. Assume that 50% of traps fail in the open position and savings is grossed up by the efficiency of the boiler supplying the steam of (inverse of 75%). Net savings is 257 therms per trap.

⁷¹⁷ DNV GL (2015) *Massachusetts 2013 Prescriptive Gas Impact Evaluation – Steam Trap Evaluation Phase I.* Prepared for Massachusetts Energy Efficiency Program Administrators & Massachusetts Energy Efficiency Advisory Council.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
Annual Non-Resource	See Appendix C: Non-Resource Impacts	See Appendix C: Non-Resource Impacts

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Steam Trap - Prescriptive	Large Retrofit, Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Water Heating – Pipe Wrap (Water Heating)

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Install insulation on hot water located in non-conditioned spaces. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Measure Type: Insulation Core Initiative: C&I Existing Building Retrofit, C&I Small Business, C&I Multifamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results^{718,719}

Savings for Hot Water Insulation

Measure Name	Core Initiative	PA	AMMBtu per linear foot
Hot Water Pipe Insulation, <=1.5"	Large Retrofit, Small Retrofit	All	0.21
Hot Water Pipe Insulation, 2"	Large Retrofit, Small Retrofit	All	0.36
Pipe Wrap (Water Heating)	C&I MF Retrofit	All	1.14

Baseline Efficiency

The baseline efficiency case is un-insulated hot water piping in unconditioned space.

High Efficiency

The high efficiency condition is hot water piping in unconditioned space with insulation installed.

Hours

Not Applicable.

Measure Life

The measure life is 15 years⁷²⁰.

⁷¹⁸ National Grid Staff Calculation (2010). Pipe insulation for SBS DI measures 2010 Excel Workbook

⁷¹⁹ The Cadmus Group (2012). *Massachusetts Multifamily Program Impact Analysis July 2012 – Revised May 2013*. Prepared for Massachusetts Program Administrators.

⁷²⁰ GDS Associates, Inc (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; table B-2a, measure

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Hot Water Pipe Insulation, <=1.5"	Large Retrofit, Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Hot Water Pipe Insulation, 2"	Large Retrofit, Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Pipe Wrap (Water Heating)	C&I MF Retrofit	All	1.00	0.60	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Water Heating – Indirect Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Indirect water heaters use a storage tank that is heated by the main boiler. The energy stored by the water tank allows the boiler to turn off and on less often, saving considerable energy. **Primary Energy Impact:** Natural Gas

Secondary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Hot Water Measure Type: Water Heater Core Initiative: C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁷²¹.

Savings for Indirect Water Heaters

Measure Name	ΔMMBtu
Indirect Water Heater - Upstream	19.0

Baseline Efficiency

The baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. As described in the MA State Building Code, energy efficiency must be met via compliance with the relevant International Energy Conservation Code (IECC) 2012. The assumed efficiency slightly exceeds the minimum required by code to reflect the typical baseline unit available in the marketplace. Baseline requirements for 2017 and on have not been finalized.

For indirect water heaters the baseline is a hot water boiler operating at 78% recovery efficiency. Additionally a baseline storage water heater was assumed for purposed of estimating standby losses.⁷²²

High Efficiency

The high efficiency scenario is an indirect water heater with a Combined Appliance Efficiency (CAE) of 85% or greater.

⁷²¹ KEMA (2013). *Impact Evaluation of 2011 Prescriptive Gas Measures*. Prepared for Massachusetts Energy Efficiency Program Administrators; Page 1-6

⁷²² Title 10, Code of Federal Regulations, Part 430 - Energy Conservation Program for Consumer Products, Subpart C - Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010; Energy Conservation standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters: Final Rule, Federal Register, 75 FR 20112, April 16, 2010.

Hours

Not applicable.

Measure Life

The measure life is 15 years⁷²³.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Indirect Water Heater	EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁷²³ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Appendix A-2.

Water Heating – Tankless Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Tankless water heaters circulate water through a heat exchanger to be heated for immediate use, eliminating the standby heat loss associated with a storage tank. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Hot water Measure Type: Water Heater Core Initiative: C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed⁷²⁴.

Savings for Tankless Water Heaters

Measure Name	ΔMMBtu
Tankless Water Heater 0.82 - Upstream	6.6
Tankless Water Heater 0.94 - Upstream	9.0

Baseline Efficiency

The baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. As described in the MA State Building Code, energy efficiency must be met via compliance with the relevant International Energy Conservation Code (IECC) 2012. The assumed efficiency slightly exceeds the minimum required by code to reflect the typical baseline unit available in the marketplace. Baseline requirements for 2017 and on have not been finalized.

For on-demand tankless water heaters the baseline is a code-compliant gas-fired storage water heater with EF = 0.61.⁷²⁵

⁷²⁴ Title 10, Code of Federal Regulations, Part 430-Energy Conservation Program for Consumer Products, Subpart C – Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010; Energy Conservation standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters; Final Rule, Federal Register, 75 FR 20112, April 16, 2010.
⁷²⁵ Title 10, Code of Federal Regulations, Part 430 - Energy Conservation Program for Consumer Products, Subpart C - Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010; Energy Conservation standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters: Final Rule, Federal Register, 75 FR 20112, April 16, 2010.

High Efficiency

The high efficiency equipment is either a gas-fired instantaneous hot water heater with an Energy Factor of at least 0.82 or 0.94.

Hours

Not applicable.

Measure Life

The measure life is 20 years^{726} .

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Tankless Water Heater 0.82 - Upstream	EUL	All	1.00	1.00	n/a	n/a	n/a	n/a
Tankless Water Heater 0.94 - Upstream	EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁷²⁶ Hewitt, D. Pratt, J. & Smith, G. (2005). *Tankless Gas Water Heaters: Oregon Market Status*. Prepared for the Energy Trust of Oregon.

Water Heating – Condensing Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a high-efficiency gas-fired water heater. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Hot Water Measure Type: Water Heater Core Initiative: C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed⁷²⁷.

Savings for Condensing Water Heaters

Measure Name	ΔMMBtu
Condensing Water Heater 0.95 - Upstream	25.0

Baseline Efficiency

The baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. As described in the MA State Building Code, energy efficiency must be met via compliance with the relevant International Energy Conservation Code (IECC) 2012. The assumed efficiency slightly exceeds the minimum required by code to reflect the typical baseline unit available in the marketplace. Baseline requirements for 2017 and on have not been finalized.

For condensing stand-alone water heaters, the assumed baseline is a stand-alone tank water heater with a thermal efficiency of 80%.⁷²⁸

High Efficiency

The high efficiency case is a condensing stand alone commercial water heater with a thermal efficiency of 95% or greater and a capacity between 75,000 Btu and 300,000 Btu.

 ⁷²⁷ Title 10, Code of Federal Regulations, Part 430-Energy Conservation Program for Consumer Products, Subpart C – Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010; Energy Conservation standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters; Final Rule, Federal Register, 75 FR 20112, April 16, 2010.
 ⁷²⁸ Title 10, Code of Federal Regulations, Part 430 - Energy Conservation Program for Consumer Products, Subpart C - Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010; Energy Conservation standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters: Final Rule, Federal Register, 75 FR 20112, April 16, 2010.

Hours

Not applicable.

Measure Life

The measure life is 15 years⁷²⁹.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Condensing Water Heater 0.94 - Upstream	EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁷²⁹ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Page 2 of Appendix B-2, measure GDS C-WH-4. The GDS study references "ACEEE (2004). *Emerging technologies and practices*; W1 - pg 46."

Water Heating – Stand Alone Water Heater

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a high-efficiency gas-fired water heater. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Hot Water Measure Type: Water Heater Core Initiative: C&I Initial Purchase & End of Useful Life

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁷³⁰.

Savings for Stand Alone Water Heaters

Measure Name	ΔMMBtu
Stand Alone Water Heater 0.67 - Upstream	2.4

Baseline Efficiency

The baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. As described in the MA State Building Code, energy efficiency must be met via compliance with the relevant International Energy Conservation Code (IECC) 2012. The assumed efficiency slightly exceeds the minimum required by code to reflect the typical baseline unit available in the marketplace. Baseline requirements for 2017 and on have not been finalized.

For free-standing water heaters the baseline is a code-compliant gas-fired storage water heater with EF = 0.59.⁷³¹

High Efficiency

The high efficiency case is an ENERGY STAR® gas-fired freestanding hot water heater with an Energy Factor of at least 0.67 and a nominal input of 75,000 BTU/hour or less.

⁷³⁰ Title 10, Code of Federal Regulations, Part 430-Energy Conservation Program for Consumer Products, Subpart C – Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010; Energy Conservation standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters; Final Rule, Federal Register, 75 FR 20112, April 16, 2010.
⁷³¹ Title 10, Code of Federal Regulations, Part 430 - Energy Conservation Program for Consumer Products, Subpart C - Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010; Energy Conservation standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters: Final Rule, Federal Register, 75 FR 20112, April 16, 2010.
Hours

Not applicable.

Measure Life

The measure life is 13 years⁷³².

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Stand Alone Water Heater 0.67 - Upstream	EUL	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

⁷³² GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Appendix A-2.

Water Heating – Pre-Rinse Spray Valve

Version Date and Revision History

Effective Date: 1/1/2016 End Date: TBD

Measure Overview

Description: Retrofitting existing standard spray nozzles in locations where service water is supplied by natural gas fired hot water heater with new low flow pre-rinse spray nozzles with an average flow rate of 1.6 GPM. **Primary Energy Impact:** Natural Gas Secondary Energy Impact: None Non-Energy Impact: C&I Water, C&I Sewer Sector: Commercial, Industrial Market: Retrofit End Use: Hot Water Measure Type: Flow Control Core Initiative: C&I Existing Building Retrofit, C&I Small Business

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results⁷³³.

Savings for Pre-Rise Spray Valves

Measure Name	ΔMMBtu
Pre-Rinse Spray Valve	11.4

Baseline Efficiency

The baseline efficiency case is an existing efficiency spray valve.

High Efficiency

The high efficiency case is a low flow pre-rinse spray valve with an average flow rate of 1.6 GPM.

Hours

Not applicable.

Measure Life

The measure life is 8 years.⁷³⁴

⁷³³ DNV-GL (2014). Impact Evaluation Massachusetts Prescriptive Gas Pre-Rinse Spray Valve. Prepared for the MA Gas PAs and MA EEAC. ⁷³⁴ Ibid

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings ⁷³⁵
C&I Water	C&I water savings	6,410 gallons/unit
C&I Sewer	C&I sewer water savings	6,410 gallons/unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Pre-Rinse Spray Valve	Large Retrofit, Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

⁷³⁵ Ibid.

Water Heating – Low-Flow Shower Heads

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a low flow showerhead with a flow rate of 1.5 GPM or less in a commercial setting with service water heated by natural gas. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: C&I Water, C&I Sewer Sector: Commercial Market: Retrofit End Use: Hot water Measure Type: Flow Control Core Initiative: C&I Existing Building Retrofit, C&I Small Business, C&I Multifamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed^{736,737}

Savings for Low-Flow Shower Heads

Measure Name	Core Initiative	PA	ΔMMBtu
Low-Flow Showerhead	Large Retrofit	All	2.65
Low-Flow Showerhead	Small Retrofit	All	2.65
Low-Flow Showerhead	C&I MF Retrofit	All	1.14

Baseline Efficiency

The baseline efficiency case is a 2.5 GPM showerhead.

High Efficiency

The high efficiency case is a 1.5 GPM showerhead.

Hours

Not Applicable.

⁷³⁶ Department of Energy Calculator for Faucets & Showerheads. <u>http://energy.gov/eere/femp/energy-cost-calculator-faucets-and-showerheads-0</u>. Subsequently revised for lower anticipated hot water use. Baseline values were used with the exception of hot water use. This was changed from 100% to 50%.

⁷³⁷ The Cadmus Group (2012). *Massachusetts Multifamily Program Impact Analysis July 2012 – Revised May 2013*. Prepared for Massachusetts Program Administrators.

Massachusetts Technical Reference Manual	D.P.U. 15-160 to D.P.U. Three-Year Plan 2016-20 October 30, 2015 Exhibit 1 Appendix V	15-169 18 Commercial and Industrial Gas Efficiency Measures
	Page 364 of 435	

Measure Life

The measure life is 10 years in the Large Retrofit and Small Retrofit initiatives.⁷³⁸ The measure life is 7 years in the C&I MF Retrofit initiative⁷³⁹.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Core Initiative	Description	Savings
C&I Water	Large Retrofit, Small Retrofit	C&I water savings	7,300 gallons/unit ⁷⁴⁰
C&I Sewer	Large Retrofit, Small Retrofit	C&I sewer water savings	7,300 gallons/unit ⁷⁴¹
Residential Water	C&I MF Retrofit	Multifamily water savings for low- flow showerheads	2,165 Gallons/Unit ⁷⁴²

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Low-Flow Showerhead	Large Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Low-Flow Showerhead	Small Retrofit	All	1.00	1.00	n/a	n/a	n/a	n/a
Low-Flow Showerhead	C&I MF Retrofit	All	1.00	0.60	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

⁷³⁸ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks; Table B-2a, measure C-WH-15. ⁷³⁹ MA Common Assumptions

⁷⁴⁰ Federal Energy Management Program (2011). Energy Cost Calculator for Faucets and Showerheads. Accessed on 10/12/2011.

⁷⁴¹ Federal Energy Management Program (2011). Energy Cost Calculator for Faucets and Showerheads. Accessed on 10/12/2011.

⁷⁴² Staff calculation based on methodology from The Cadmus Group, Inc. (2012). *Home Energy Services Impact Evaluation*. Prepared for the Electric and Gas Program Administrators of Massachusetts

Water Heating – Faucet Aerator

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Installation of a faucet aerator with a flow rate of 1.5 GPM or less on an existing faucet with high flow in a commercial setting with service water heated by natural gas. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: C&I Water, C&I Sewer Sector: Commercial Market: Retrofit End Use: Hot water Measure Type: Flow Control Core Initiative: C&I Existing Building Retrofit, C&I Small Business, C&I Multifamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results^{743,744}

Savings for Faucet Aerators

Measure Name	Core Initiative	PA	ΔMMBtu
Faucet Aerator	Large Retrofit	All	1.7
Faucet Aerator	Small Retrofit	All	1.7
Faucet Aerator	C&I MF Retrofit	All	0.86

Baseline Efficiency

The baseline efficiency case is a 2.2 GPM faucet.

High Efficiency

The high efficiency case is a faucet with 1.5 GPM or less aerator installed.

Hours

The savings estimates for this measure are determined empirically in terms of units installed and so the equivalent heating full load hours are not directly used, however, the calculator used to determine the deemed savings uses a default operation of 30 minutes a day, 260 days a year.

 ⁷⁴³ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks; Table B-2a, measure C-WH-16.
 ⁷⁴⁴ The Cadmus Group (2012). Massachusetts Multifamily Program Impact Analysis July 2012 – Revised May 2013. Prepared

⁷⁴⁴ The Cadmus Group (2012). *Massachusetts Multifamily Program Impact Analysis July 2012 – Revised May 2013*. Prepared for Massachusetts Program Administrators.

Massachusetts Technical Reference Manual	D.P.U. 15-160 to D.P.U. 15 Three-Year Plan 2016-201 October 30, 2015 Exhibit 1, Appendix V	5-169 8 Commercial and Industrial Gas Efficiency Measures
	Page 366 of 435	

Measure Life

The measure life is 10 years in the Large Retrofit and Small Retrofit initiatives.745 The measure life is 7 years in the C&I MF Retrofit initiative⁷⁴⁶.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Core Initiative	Description	Savings ⁷⁴⁷
C&I Water	Large Retrofit, Small Retrofit	C&I water savings	5,460 gallons/unit
C&I Sewer	Large Retrofit, Small Retrofit	C&I sewer water savings	5,460 gallons/unit
Residential Water	C&I MF Retrofit	Residential water savings for faucet aerators ⁷⁴⁸	332 Gallons/Unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	PA	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Faucet Aerator	Large Retrofit	All	1.00	1.00	1.00	1.00	n/a	n/a
Faucet Aerator	Small Retrofit	All	1.00	1.00	1.00	1.00	n/a	n/a
Faucet Aerator	C&I MF Retrofit	All	1.00	0.60	1.00	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

⁷⁴⁵ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks; Table B-2a, measure C-WH-15. ⁷⁴⁶ MA Common Assumptions

⁷⁴⁷ Federal Energy Management Program (2011). Energy Cost Calculator for Faucets and Showerheads. Accessed on 10/12/2011.

⁷⁴⁸ NMR Group, Inc., Tetra Tech (2011). Massachusetts Special and Cross-Sector Studies Area, Residential and Low-Income Non-Energy Impacts (NEI) Evaluation, Prepared for Massachusetts Program Administrators

Whole Building - Building Operator Certification

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: Building Operator Certification (BOC) is a nationally recognized training program designed to educate facilities personnel in the energy and resource efficient operation and maintenance of building systems. Savings include only operations, maintenance and controls savings.

Primary Energy Impact: Gas Secondary Energy Impact: Project Specific Non-Energy Impact: Project Specific Sector: Commercial & Industrial Market: Retrofit End Use: All Measure Type: Custom Core Initiative: C&I Existing Building Retrofit

Algorithms for Calculating Primary Energy Impact

Savings are deemed based on study results⁷⁴⁹

Savings for Building Operator Certification

Measure Name	ΔMMBtu/SF/Student
BOC – O&M Only	0.0007
BOC – O&M plus Capital Upgrades	0.0011

Baseline Efficiency

No BOC training

High Efficiency

Completion and certification in a BOC level I or level II training course.

Measure Life

Measure life of 5 years⁷⁵⁰

Secondary Energy Impacts

There are no secondary energy impacts.

 ⁷⁴⁹ Navigant Consulting (2015). Comprehensive Review of Non-Residential Training and Education Programs, with a Focus on Building Operator Certification. Prepared for the Massachusetts Program Administrators and the Energy Efficiency Advisory Council
 ⁷⁵⁰ Ibid.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
BOC Training	Large Retrofit	National Grid	1.00	1.00	1.00	1.00	1.00	1.00

In-Service Rates

n/a

Realization Rates

Realization rates are set to 100% since savings are based off of evaluation results.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

Custom Measures

Version Date and Revision History

Effective Date:1/1/2016End Date:TBD

Measure Overview

Description: The Custom project track is offered for energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects which do not qualify for incentives under any of the prescriptive rebate offering. Projects offered through the custom approach must pass a cost-effectiveness test based on project-specific costs and savings.
Primary Energy Impact: Natural Gas (Heating, Water Heating, or All)
Secondary Energy Impact: Project Specific
Non-Energy Impact: Project Specific
Sector: Commercial & Industrial
Market: Lost Opportunity, Retrofit
End Use: All
Measure Type: Varies
Core Initiative: C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit, C&I Small Business, C&I Multifamily Retrofit

Algorithms for Calculating Primary Energy Impact

Gross therm savings estimates for custom projects are calculated using engineering analysis and projectspecific details. Custom analyses typically include a weather dependent load bin analysis, whole building energy model simulation, or other engineering analysis and include estimates of savings, costs, and an evaluation of the project's cost-effectiveness.

Baseline Efficiency

For Lost Opportunity projects, the baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code or industry accepted standard practice.

For retrofit projects, the baseline efficiency case is the same as the existing, or pre-retrofit, case for the facility.

High Efficiency

The high efficiency scenario is specific to the custom project and may include one or more energy efficiency measures. Energy and demand savings calculations are based on projected changes in equipment efficiencies and operating characteristics and are determined on a case-by-case basis. The project must be proven cost-effective in order to qualify for energy efficiency incentives.

Hours

All hours for custom savings analyses should be determined on a case-by-case basis.

Measure Life

For both lost-opportunity and retrofit custom applications, the measure life is determined on a case-bycase basis.

Secondary Energy Impacts

All secondary energy impacts should be determined on a case-by-case basis.

Non-Energy Impacts

All non-energy impacts should be determined on a case-by-case basis.

_							
Immod	Fastara	ford	0.011	atima	Adjusted	Change	Covinga
пппяст	F actors	IOP V	листи	NIIIO	Admisied	UTLOSS.	Savings
impace	I accord	101 (Juica		1 Iujusteu	01055	See This

Measure	Core Initiative	РА	ISR	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Custom	NB, EUL	Liberty, Berkshire, Unitil	1.00	0.883	n/a	n/a	n/a	n/a
Custom	NB, EUL	Eversource (NSTAR)	1.00	0.918	n/a	n/a	n/a	n/a
Custom	NB, EUL	National Grid	1.00	0.779	n/a	n/a	n/a	n/a
Custom	NB, EUL	Columbia Gas	1.00	0.727	n/a	n/a	n/a	n/a
Custom	Large Retrofit, Small Retrofit, C&I MF Retrofit	Liberty, Berkshire, Unitil	1.00	0.883	n/a	n/a	n/a	n/a
Custom	Large Retrofit, Small Retrofit, C&I MF Retrofit	Eversource (NSTAR)	1.00	0.918	n/a	n/a	n/a	n/a
Custom	Large Retrofit, Small Retrofit, C&I MF Retrofit	National Grid	1.00	0.779	n/a	n/a	n/a	n/a
Custom	Large Retrofit, Small Retrofit, C&I MF Retrofit	Columbia Gas	1.00	0.727	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Eversource (NSTAR), National Grid, and Columbia Gas use PA-specific results while all other Pas use the statewide average.⁷⁵¹.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

⁷⁵¹DNV GL & ERS (2015) *Project 43 Impact Evaluation of PY2013 Custom Gas Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators & Massachusetts Energy Efficiency Advisory Council.

Appendices

Appendix A: Common Lookup Tables

Table 1: Lighting Power Densities Using the Building Area Method⁷⁵²

Building Area Type	Lighting Power Density (W/ft ²)
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.6
Dormitory	1.0
Fire Stations	0.8
Exercise Center	1.0
Gymnasium	1.1
Healthcare-Clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility	1.3
Motel	1.0
Motion Picture Theatre	1.2
Multi-Family	0.7
Museum	1.1
Office	0.9
Parking Garage	0.3
Penitentiary	1.0
Performing Arts Theatre	1.6
Police/Fire Station	1.0
Post Office	1.1
Religious Building	1.3
Retail	1.4
School/University	1.2
Sports Arena	1.1
Town Hall	1.1
Transportation	1.0
Warehouse	0.6
Workshop	1.4

⁷⁵² IECC 2012 Interior Lighting Power Allowances: Building Area method, Table C405.5.2(1)

Space Type	Lighting Power Density (W/ft ²)
COMMON SPACE-BY-SPACE TYPES	
Atrium – First 40 feet in height	0.03 per ft. ht.
Atrium – Above 40 feet in height	0.02 per ft. ht.
Audience/seating area – permanent	
For Auditorium	0.9
For performing arts theater	2.6
For motion picture theater	1.2
Classroom/lecture/training	1.30
Conference/meeting/multipurpose	1.2
Corridor/transition	0.7
Dining Area	
Bar/lounge/leisure dining	1.40
Family dining area	1.40
Dressing/fitting room performing arts theater	1.1
Electrical/mechanical	1.10
Food preparation	1.20
Laboratory for classrooms	1.3
Laboratory for medical/industrial/research	1.8
Lobby	1.10
Lobby for performing arts theater	3.3
Lobby for motion picture theater	1.0
Locker room	0.80
Lounge recreation	0.8
Office – enclosed	1.1
Office – open plan	1.0
Restroom	1.0
Sales area	1.6
Stairway	0.70
Storage	0.8
Workshop	1.60
Courthouse/police station/penitentiary	1.00
Courtroom	1 90
Confinement cells	11
Judge chambers	1 30
Penitentiary audience seating	0.5
Penitentiary classroom	13
Penitentiary dining	11
BUILDING SPECIFIC SPACE-RV-SPACE TVPES	1.1
Automotive – service/repair	0.70
Bank/office – banking activity area	15
Dormitory living quarters	1 10
Gymnasium/fitness center	

Table 2: Interior Lighting Power Allowances: Space-by-Space Method⁷⁵³

⁷⁵³ IECC 2012 Interior Lighting Power Allowances: Space-by-Space Method, Table C405.5.2(2)

Space Type	Lighting Power Density (W/ft ²)
Fitness area	0.9
Gymnasium audience/seating	0.40
Playing area	1.40
Healthcare clinic/hospital	
Corridors/transition	1.00
Exam/treatment	1.70
Emergency	2.70
Public and staff lounge	0.80
Medical Supplies	1.40
Nursery	0.9
Nurse Station	1.00
Physical Therapy	0.90
Patient room	0.70
Pharmacy	1.20
Radiology/imaging	1.3
Operating room	2.20
Recovery	1.2
Lounge/recreation	0.8
Laundry – washing	0.60
Hotel	
Dining area	1.30
Guest rooms	1.10
Hotel lobby	2.10
Highway lodging dining	1.20
Highway lodging guest rooms	1.10
Library	
Stacks	1.70
Card File and cataloguing	1.10
Reading area	1.20
Manufacturing	
Corridors/transition	0.40
Detailed manufacturing	1.3
Equipment room	1.0
Extra high bay (> 50-foot floor-ceiling height)	1.1
High bay (25 – 50-foot floor-ceiling height)	1.20
Low bay (< 25-foot floor-ceiling height)	1.2
Museum	
General Exhibition	1.00
Restoration	1.70
Parking Garage – garage areas	0.2
Convention Center	
Exhibit space	1.50
Audience/seating area	0.90
Fire Stations	
Engine Room	0.80
Sleeping quarters	0.30
Corridors/transitionDetailed manufacturingEquipment roomExtra high bay (> 50-foot floor-ceiling height)High bay (25 – 50-foot floor-ceiling height)Low bay (< 25-foot floor-ceiling height)	0.40 1.3 1.0 1.1 1.20 1.2 1.00 1.70 0.2 0.90 0.80 0.30

Space Type	Lighting Power Density (W/ft ²)
Post Office	
Sorting area	0.90
Religious building	
Fellowship hall	0.60
Audience seating	2.40
Worship pulpit/choir	2.40
Retail	
Dressing/fitting area	0.9
Mall concourse	1.6
Sales area	1.6
Sports arena	
Audience seating	0.4
Court sports area – Class 4	0.7
Court sports area – Class 3	1.2
Court sports area – Class 2	1.9
Court sports area – Class 1	3.0
Ring sports area	2.7
Transportation	
Air/train/bus baggage area	1.00
Airport concourse	0.60
Terminal – ticket counter	1.50
Warehouse	
Fine material storage	1.40
Medium/bulky material	0.60

Table 3: MassSAVE New Construction Proposed Lighting Wattage Tables

2016 MassSAVE C&I Lighting Rated Wattage Tables developed by Lighting Worksheet Team

T5 Systems 1F14SSE 1L2' 14W T5/ELIG 1F21SSE 1L3' 21W T5/ELIG 1F24HSE 1L2' 24W T5HO/ELIG 1F28SSE 1L4' 28W T5/ELIG 1F39HSE 1L3' 39W T5HO/ELIG 1F39HSE 1L4' 47W T5HO/ELIG 1F47HSE 1L4' 50W T5HO/ELIG 1F50HSE 1L4' 54W T5HO/ELIG 1F54HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F2HSE 2L2' 24W T5HO/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F47HSE 2L4' 47W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 54W T5HO/ELIG 3F47HSE 3L4' 54W T5HO/ELIG 3F28SE 3L4' 28W T5/ELIG 3F4HSE 3L4' 47W T5HO/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F47HSE 3L4' 50W T5HO/ELIG 3F47HSE 3L4' 54W T5HO/ELIG 3F47HSE 3L4' 54W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG	16 24 29 32 42 53 58 59 32 47 52 63 85 103 110 117 50 80 95	
1F14SSE 1L2' 14W T5/ELIG 1F21SSE 1L3' 21W T5/ELIG 1F24HSE 1L2' 24W T5HO/ELIG 1F28SSE 1L4' 28W T5/ELIG 1F39HSE 1L3' 39W T5HO/ELIG 1F47HSE 1L4' 47W T5HO/ELIG 1F50HSE 1L4' 50W T5HO/ELIG 1F50HSE 1L4' 50W T5HO/ELIG 1F54HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F21SSE 2L3' 21W T5/ELIG 2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F4HSE 2L2' 24W T5HO/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F4HSE 2L4' 28W T5/ELIG 2F39HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' 54W T5HO/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F47HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F54HSE 4L4' 54W T5HO/ELIG	16 24 29 32 42 53 58 59 32 47 52 63 85 103 110 117 50 80 95 157	
1F21SSE 1L3' 21W T5/ELIG 1F24HSE 1L2' 24W T5HO/ELIG 1F28SSE 1L4' 28W T5/ELIG 1F39HSE 1L3' 39W T5HO/ELIG 1F47HSE 1L4' 47W T5HO/ELIG 1F50HSE 1L4' 50W T5HO/ELIG 1F50HSE 1L4' 54W T5HO/ELIG 1F50HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F21SSE 2L3' 21W T5/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F4HSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F47HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 2L4' 50W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F74HSE 4L4' 28W T5/ELIG 4F54HSE 4L4' 50W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG	24 29 32 42 53 58 59 32 47 52 63 85 103 110 117 50 80 95 157	
1F24HSE 1L2' 24W T5HO/ELIG 1F28SSE 1L4' 28W T5/ELIG 1F39HSE 1L3' 39W T5HO/ELIG 1F47HSE 1L4' 47W T5HO/ELIG 1F50HSE 1L4' 50W T5HO/ELIG 1F50HSE 1L4' 54W T5HO/ELIG 1F54HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F21SSE 2L2' 24W T5HO/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F28SE 2L4' 28W T5/ELIG 2F47HSE 2L4' 39W T5HO/ELIG 2F47HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 2L4' 50W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' 54W T5HO/ELIG 3F50HSE 3L4' 28W T5/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG 3F54HSE 3L4' 28W T5/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG	29 32 42 53 58 59 32 47 52 63 85 103 110 117 50 80 95 157	
1F28SSE 1L4' 28W T5/ELIG 1F39HSE 1L3' 39W T5HO/ELIG 1F47HSE 1L4' 47W T5HO/ELIG 1F50HSE 1L4' 50W T5HO/ELIG 1F50HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F21SSE 2L3' 21W T5/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F47HSE 2L4' 28W T5/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 3L2' 14W T5/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F28SSE 3L4' 54W T5HO/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F47HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F74HSE 4L4' 28W T5/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F47HSE 4L4' 54W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG <td>32 42 53 58 59 32 47 52 63 85 103 110 117 50 80 95 157</td> <td></td>	32 42 53 58 59 32 47 52 63 85 103 110 117 50 80 95 157	
1F39HSE 1L3' 39W T5HO/ELIG 1F47HSE 1L4' 47W T5HO/ELIG 1F50HSE 1L4' 50W T5HO/ELIG 1F50HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F14SSE 2L2' 24W T5HO/ELIG 2F2HSE 2L2' 24W T5HO/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F39HSE 2L4' 28W T5/ELIG 2F39HSE 2L4' 39W T5HO/ELIG 2F47HSE 2L4' 47W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F28SE 3L4' 75HO/ELIG 3F28SE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG	42 53 58 59 32 47 52 63 85 103 110 117 50 80 95 157	
1F47HSE 1L4' 47W T5HO/ELIG 1F50HSE 1L4' 50W T5HO/ELIG 1F54HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F21SSE 2L2' 24W T5HO/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F47HSE 2L4' 50W T5HO/ELIG 2F47HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 3L2' 14W T5/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F28SE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG <td>53 58 59 32 47 52 63 85 103 110 117 50 80 95 157</td> <td></td>	53 58 59 32 47 52 63 85 103 110 117 50 80 95 157	
1F50HSE 1L4' 50W T5HO/ELIG 1F54HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F21SSE 2L3' 21W T5/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F47HSE 2L4' 47W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' 75HO/ELIG 3F24HSE 3L4' 47W T5HO/ELIG 3F28SE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 54W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG	58 59 32 47 52 63 85 103 110 117 50 80 95 157	
1F54HSE 1L4' 54W T5HO/ELIG 2F14SSE 2L2' 14W T5/ELIG 2F21SSE 2L3' 21W T5/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F39HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 54W T5HO/ELIG 2F54HSE 3L2' 14W T5/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' 47W T5HO/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F14SSE 4L4' 28W T5/ELIG 4F70HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	59 32 47 52 63 85 103 110 117 50 80 95 157	
2F14SSE 2L2' 14W T5/ELIG 2F21SSE 2L3' 21W T5/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F39HSE 2L4' 28W T5/ELIG 2F47HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' T5HO/ELIG 3F28SE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 54W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	32 47 52 63 85 103 110 117 50 80 95 157	
2F21SSE 2L3' 21W T5/ELIG 2F24HSE 2L2' 24W T5HO/ELIG 2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F39HSE 2L4' 47W T5HO/ELIG 2F47HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' 75HO/ELIG 3F28SE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 4L2' 14W T5/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	47 52 63 85 103 110 117 50 80 95	
2F24HSE 2L2' 24W T5HO/ELIG 2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F47HSE 2L4' 47W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 54W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' T5HO/ELIG 3F24HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F14SSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 47W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	52 63 85 103 110 117 50 80 95 157	
2F28SSE 2L4' 28W T5/ELIG 2F39HSE 2L3' 39W T5HO/ELIG 2F47HSE 2L4' 47W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 54W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' T5HO/ELIG 3F28SSE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F14SSE 4L4' 28W T5/ELIG 4F70HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	63 85 103 110 117 50 80 95 157	
2F39HSE 2L3' 39W T5HO/ELIG 2F47HSE 2L4' 47W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F50HSE 2L4' 54W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' T5HO/ELIG 3F28SE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F74HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG	85 103 110 117 50 80 95	
2F47HSE 2L4' 47W T5HO/ELIG 2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' T5HO/ELIG 3F24HSE 3L4' 75HO/ELIG 3F24HSE 3L4' 75HO/ELIG 3F24HSE 3L4' 47W T5HO/ELIG 3F24HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG	103 110 117 50 80 95 157	
2F50HSE 2L4' 50W T5HO/ELIG 2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' T5HO/ELIG 3F28SSE 3L4' 28W T5/ELIG 3F47HSE 3L4' 28W T5/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 50W T5HO/ELIG	110 117 50 80 95	
2F54HSE 2L4' 54W T5HO/ELIG 3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' T5HO/ELIG 3F28SSE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F28SSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F47HSE 5L4' 50W T5HO/ELIG	117 50 80 95	† I
3F14SSE 3L2' 14W T5/ELIG 3F24HSE 3L4' T5HO/ELIG 3F28SSE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F28SSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	50 80 95	
3F24HSE 3L4' T5HO/ELIG 3F28SSE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F50HSE 3L4' 54W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F28SSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 47W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	80 95	† I
3F28SSE 3L4' 28W T5/ELIG 3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F28SSE 4L2' 14W T5/ELIG 4F47HSE 4L4' 28W T5/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F50HSE 4L4' 54W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	95 157	1 –
3F47HSE 3L4' 47W T5HO/ELIG 3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F28SSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 47W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELEE 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	157	
3F50HSE 3L4' 50W T5HO/ELIG 3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F28SSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 47W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	15/	
3F54HSE 3L4' 54W T5HO/ELIG 4F14SSE 4L2' 14W T5/ELIG 4F28SSE 4L2' 28W T5/ELIG 4F47HSE 4L4' 27W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELIG 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	168	İ I
4F14SSE 4L2' 14W T5/ELIG 4F28SSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 47W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELEE 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	177	İ –
4F28SSE 4L4' 28W T5/ELIG 4F47HSE 4L4' 47W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELEE 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	68	İ I
4F47HSE 4L4' 47W T5HO/ELIG 4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELEE 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	126	
4F50HSE 4L4' 50W T5HO/ELIG 4F54ESH 4L4' 54W T5HO/ELEE 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	200	
4F54ESH 4L4' 54W T5HO/ELEE 4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	215	1 –
4F54HSE 4L4' 54W T5HO/ELIG 5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	218	İ –
5F47HSE 5L4' 47W T5HO/ELIG 5F50HSE 5L4' 50W T5HO/ELIG	234	Ī
5F50HSE 5L4' 50W T5HO/ELIG	260	1 –
	278	İ –
5F54HSE 5L4' 54W T5HO/ELIG	294	İ I
6F28SSE 6L4' 28W T5/ELIG	189	
6F47HSE 6L4' 47W T5HO/ELIG	303	
6F50HSE 6L4' 50W T5HO/ELIG	325	
6F54HSE 6L4' 54W T5HO/ELIG	351	
8F54HSE 8L4' 54W T5HO/ELIG	468	⊢
10F54HSE 10L4' 54W T5HO/ELIG	585	
Two Foot High Efficient T8 Systems		
1F17ESN 1L2' 17W T8EE/ELEE	17	ļ
1F17ESH 1L2' 17W T8EE/ELEE HIGH PWR	20	-
1F28BXE 1L2' F28BX/ELIG	-	1 1

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>
Two	Foot High Efficient T8 Systems (c	ont.)
2F17ESL	2L2' 17W T8EE/ELEE LOW PWR	27
2F17ESN	2L2' 17W T8EE/ELEE	32
2F17ESH	2L2' 17W T8EE/ELEE HIGH PWR	40
2F28BXE	2L2' F28BX/ELIG	63
3F17ESL	3L2' 17W T8EE/ELEE LOW PWR	39
3F17ESN	3L2' 17W T8EE/ELEE	46
3F17ESH	3L2' 17W T8EE/ELEE HIGH PWR	61
3F28BXE	3L2' F28BX/ELIG	94
1F17ESL	1L2' 17W T8EE/ELEE LOW PWR	14
Th	ree Foot High Efficient T8 System	ns
1F25ESL	1L3' 25W T8EE/ELEE LOW PWR	21
1F25ESN	1L3' 25W T8EE/ELEE	24
1F25ESH	1L3' 25W T8EE/ELEE HIGH PWR	30
2F25ESL	2L3' 25W T8EE/ELEE LOW PWR	40
2F25ESN	2L3' 25W T8EE/ELEE	45
2F25ESH	2L3' 25W T8EE/ELEE HIGH PWR	60
3F25ESL	3L3' 25W T8EE/ELEE LOW PWR	58
3F25ESN	3L3' 25W T8EE/ELEE	67
3F25ESH	3L3' 25W T8EE/ELEE HIGH PWR	90
Four Foot 7	F8 High Efficient / Reduce Wattag	ge Systems
1F25EEH	1L4' 25W T8EE/ELEE HIGH PWR	30
1F25EEE	1L4' 25W T8EE/ELEE	22
1F25EEL	1L4' 25W T8EE/ELEE LOW PWR	19
2F25EEH	2L4' 25W T8EE/ELEE HIGH PWR	57
2F25EEE	2L4' 25W T8EE/ELEE	43
2F25EEL	2L4' 25W T8EE/ELEE LOW PWR	37
3F25EEH	3L4' 25W T8EE/ELEE HIGH PWR	86
3F25EEE	3L4' 25W T8EE/ELEE	64
3F25EEL	3L4' 25W T8EE/ELEE LOW PWR	57
4F25EEH	4L4' 25W T8EE/ELEE HIGH PWR	111
4F25EEE	4L4' 25W T8EE/ELEE	86

October 2015

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 377 of 435

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>
Four Foot	F8 High Efficient / Reduce Wattag (cont.)	ge Systems
4F25EEL	4L4' 25W T8EE/ELEE LOW PWR	75
1F28EEH	1L4' 28W T8EE/ELEE HIGH PWR	33
1F28EEE	1L4' 28W T8EE/ELEE	24
1F28EEL	1L4' 28W T8EE/ELEE LOW PWR	22
2F28EEH	2L4' 28WT8EE/ELEE HIGH PWR	64
2F28EEE	2L4' 28W T8EE/ELEE	48
2F28EEL	2L4' 28W T8EE/ELEE LOW PWR	42
3F28EEH	3L4' 28W T8EE/ELEE HIGH PWR	96
3F28EEE	3L4' 28W T8EE/ELEE	72
3F28EEL	3L4' 28W T8EE/ELEE LOW PWR	63
4F28EEH	4L4' 28W T8EE/ELEE HIGH PWR	126
4F28EEE	4L4' 28W T8EE/ELEE	94
4F28EEL	4L4' 28W T8EE/ELEE LOW PWR	83
1F30EEH	1L4' 30W T8EE/ELEE HIGH PWR	36
1F30EEE	1L4' 30W T8EE/ELEE	26
1F30EEL	1L4' 30W T8EE/ELEE LOW PWR	24
2F30EEH	2L4' 30WT8EE/ELEE HIGH PWR	69
2F30EEE	2L4' 30W T8EE/ELEE	52
2F30EEL	2L4' 30W T8EE/ELEE LOW PWR	45
3F30EEH	3L4' 30W T8EE/ELEE HIGH PWR	103
3F30EEE	3L4' 30W T8EE/ELEE	77
3F30EEL	3L4' 30W T8EE/ELEE LOW PWR	68
4F30EEH	4L4' 30W T8EE/ELEE HIGH PWR	133
4F30EEE	4L4' 30W T8EE/ELEE	101
4F30EEL	4L4' 30W T8EE/ELEE LOW PWR	89
1F32EEH	1L4' 32W T8EE/ELEE HIGH PWR	38
1F32EEE	1L4' 32W T8EE/ELEE	28
1F32EEL	1L4' 32W T8EE/ELEE LOW PWR	25
1F32SSE	1L4' 32W T8/ELIG	30
2F32SSE	2L4' 32W T8/ELIG	60
5F32EEH	5L4' 32W T8EE/ELEE HIGH PWR	182
6F28EEE	6L4' 28W T8EE/ELEE	144

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>
Four Foot	F8 High Efficient / Reduce Wattag	ge Systems
6F28EEH	6L4' 28W T8EE/ELEE HIGH PWR	192
6F28EEL	6L4' 28W T8EE/ELEE LOW PWR	126
6F30EEE	6L4' 30W T8EE/ELEE	154
6F30EEL	6L4' 30W T8EE/ELEE LOW PWR	136
7F32EEH	7L4' 32W T8EE/ELEE HIGH PWR	250
2F32EEH	2L4' 32W T8EE/ELEE HIGH PWR	73
2F32EEE	2L4' 32W T8EE/ELEE	53
2F32EEL	2L4' 32W T8EE/ELEE LOW PWR	47
3F32EEH	3L4' 32W T8EE/ELEE HIGH PWR	109
3F32EEE	3L4' 32W T8EE/ELEE	82
3F32EEL	3L4' 32W T8EE/ELEE LOW PWR	72
4F32EEH	4L4' 32W T8EE/ELEE HIGH PWR	141
4F32EEE	4L4' 32W T8EE/ELEE	107
4F32EEL	4L4' 32W T8EE/ELEE LOW PWR	95
6F32EEH	6L4' 32W T8EE/ELEE HIGH PWR	218
6F32EEE	6L4' 32W T8EE/ELEE	168
6F32EEL	6L4' 32W T8EE/ELEE LOW PWR	146
	Eight Foot T8 Systems	
1F59SSE	1L8' T8/ELIG	60
1F80SSE	1L8' T8 HO/ELIG	85
2F59SSE	2L8' T8/ELIG	109
2F59SSL	2L8' T8/ELIG LOW PWR	100
2F80SSE	2L8' T8 HO/ELIG	160
12.000	LED Lighting Fixtures	
1L002	2 WATT LED	2
1L003	3 WATT LED	3
1L004	4 WATT LED	04
1L005	5 WATT LED	05
1L006	6 WATT LED	06
1L007	7 WATT LED	07
1L008	8 WATT LED	08
1L009	9 WATT LED	09
1L010	10 WATT LED	10
1L011	11 WATT LED	11
1L012	12 WATT LED	12

October 2015

© 2015 Massachusetts Electric and Gas Energy Efficiency Program Administrators, ALL RIGHTS RESERVED

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 378 of 435

<u>Device</u> <u>Code</u>	Device Description	Rated Watts	<u>Device</u> <u>Code</u>	l
	LED Lighting Fixtures (cont.))	I	LED I
1L013	13 WATT LED	13	1L075	
1L014	14 WATT LED	14	1L080	
1L015	15 WATT LED	15	1L085	
1L016	16 WATT LED	16	1L090	
1L017	17 WATT LED	17	1L095	
1L018	18 WATT LED	18	1L100	
1L019	19 WATT LED	19	1L101	
1L020	20 WATT LED	20	1L106	
1L021	21 WATT LED	21	1L107	
1L022	22 WATT LED	22	1L116	
1L023	23 WATT LED	23	1L120	
1L024	24 WATT LED	24	1L125	
1L025	25 WATT LED	25	1L130	
1L026	26 WATT LED	26	1L131	
1L027	27 WATT LED	27	1L135	
1L028	28 WATT LED	28	1L139	
1L029	29 WATT LED	29	1L140	
1L030	30 WATT LED	30	1L145	
1L031	31 WATT LED	31	1L150	
1L032	32 WATT LED	32	1L155	
1L033	33 WATT LED	33	1L160	
1L034	34 WATT LED	34	1L164	
1L035	35 WATT LED	35	1L165	
1L036	36 WATT LED	36	1L170	
1L037	37 WATT LED	37	1L175	
1L038	38 WATT LED	38	1L180	
1L039	39 WATT LED	39	1L185	
1L040	40 WATT LED	40	1L186	
1L041	41 WATT LED	41	1L190	
1L042	42 WATT LED	42	1L200	
1L043	43 WATT LED	43	1L204	
1L044	44 WATT LED	44	1L205	
1L045	45 WATT LED	45	1L210	
1L046	46 WATT LED	46	1L211	
1L047	47 WATT LED	47	1L220	
1L048	48 WATT LED	48	1L233	
1L049	49 WATT LED	49	1L235	
1L050	50 WATT LED	50	1L237	
1L053	53 WATT LED	53	1L240	
1L055	55 WATT LED	55	1L256	
1L060	60 WATT LED	60	1L279	
1L063	63 WATT LED	63	1LED015	
1L071	71 WATT LED	71		N
1L070	70 WATT LED	70	1M0100E	
1L073	73 WATT LED	73	1M0150E	

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>
	LED Lighting Fixtures (cont.)	
1L075	75 WATT LED	75
1L080	80 WATT LED	90
1L085	85 WATT LED	85
1L090	90 WATT LED	90
1L095	95 WATT LED	95
1L100	100 WATT LED	100
1L101	101 WATT LED	101
1L106	106 WATT LED	106
1L107	107 WATT LED	107
1L116	116 WATT LED	116
1L120	120 WATT LED	120
1L125	125 WATT LED	125
1L130	130 WATT LED	130
1L131	131 WATT LED	131
1L135	135 WATT LED	135
1L139	139 WATT LED	139
1L140	140 WATT LED	140
1L145	145 WATT LED	145
1L150	150 WATT LED	150
1L155	155 WATT LED	155
1L160	160 WATT LED	160
1L164	164 WATT LED	164
1L165	165 WATT LED	165
1L170	170 WATT LED	170
1L175	175 WATT LED	175
1L180	180 WATT LED	180
1L185	185 WATT LED	185
1L186	186 WATT LED	186
1L190	190 WATT LED	190
1L200	200 WATT LED	200
1L204	204 WATT LED	204
1L205	205 WATT LED	205
11.210	210 WATT LED	210
11.220	211 WATTLED	211
11.220	220 WATTLED	220
11.233	233 WATTLED	233
1L235	235 WATT LED	235
11.240	23/ WATTLED	237
11.256	240 WATTLED	240
11.270	230 WATTLED	230
1L2/9	279 WATTLED	15
ILED015	15 wall LED	15
1M0100E		111
1M0100E		162
INDIJUE		102

October 2015

 $\ensuremath{\mathbb{C}}$ 2015 Massachusetts Electric and Gas Energy Efficiency Program Administrators, ALL RIGHTS RESERVED

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 379 of 435

<u>Device</u> <u>Code</u>	Device Description	Rated Watts
	Six Foot Systems	I
1F72HSE	1L6' T8HO/ELIG	80
	Incandescent Lamps	
1I0015	15W INC	15
110020	20W INC	20
110025	25W INC	25
110034	34W INC	34
110036	36W INC	36
110040	40W INC	40
110042	42 W INC	42
110045	50W INC	50
110052	52W INC	52
1I0054	54W INC	54
110055	55W INC	55
110060	60W INC	60
110065	65W INC	65
110067	6/W INC	67
110069	72W INC	09 72
110072	72W INC	75
110080	80W INC	80
110085	85W INC	85
110090	90W INC	90
110093	93W INC	93
1I0100	100W INC	100
110120	120W INC	120
110125	125 W INC	125
110155	150W INC	150
110200	200W INC	200
110300	300W INC	300
1I0448	448W INC	448
110500	500W INC	500
110750	750W INC	750
111000	1000W INC	1000
111300	Compact Eluorosconts (CEL's)	1300
1C00058	5W COMPACT HW	7
1000078	7W COMPACT HW	9
1C00098	9W COMPACT HW	11
1000000	11W COMPACT HW	13
1000135	13W COMPACT HW	15
1C0018F	18W COMPACT HW FLIG	20
1000185	18W COMPACT HW	20
1000105	22W COMPACT HW	20
1000223	1/22W COMPACT HW ELIC	24
1C0023E	1/25 W COMPACT HW ELIG	23
1C0026E	20W COMPACT HW ELIG	28
1000268	26W COMPACT HW	28
1C0028S	28W COMPACT HW	30
1C0032E	32W COMPACT HW ELIG	34
1C0032S	32W CIRCLINE HW	34
1C0042E	1/42W COMPACT HW ELIG	48

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>
	Compact Fluorescents (cont.)	
1C0044S	44W CIRCLINE HW	46
1C0057E	1/57W COMPACT HW ELIG	65
1C2232S	22/32W CIRCLINE HW	58
1C2D10E	10W 2D COMPACT HW ELIG	12
1C2D16E	16W 2D COMPACT HW ELIG	18
1C2D21E	21W 2D COMPACT HW ELIG	22
1C2D28E	28W 2D COMPACT HW ELIG	28
1C2D38E	38W 2D COMP.HW ELIG	36
1C3240S	32/40W CIRCLINE HW	80
2C0005S	2/5W COMPACT HW	14
2C0007S	2/7W COMPACT HW	18
2C0009S	2/9W COMPACT HW	22
2C0011S	2/11W COMPACT HW	26
2C0013E	2/13W COMPACT HW ELIG	28
2C0013S	2/13W COMPACT HW	30
2C0018E	2/18W COMP. HW ELIG	40
2C0026E	2/26W COMP. HW ELIG	54
2C0032E	2/32W COMPACT HW ELIG	68
2C0042E	2/42W COMPACT HW ELIG	100
2C0057E	2/57W COMPACT HW ELIG	130
3C0009S	3/9W COMPACT HW	33
3C0013S	3/13W COMPACT HW	45
3C0018E	3/18W COMPACT HW ELIG	60
3C0026E	3/26W COMPACT HW ELIG	82
3C0032E	3/32W COMPACT HW ELIG	114
3C0042E	3/42W COMPACT HW ELIG	141
4C0026E	4/26W COMPACT HW ELIG	108
4C0032E	4/32W COMPACT HW ELIG	152
4C0042E	4/42W COMPACT HW ELIG	188
6C0026E	6/26W COMPACT HW ELIG	162
6C0032E	6/32W COMPACT HW ELIG	228
6C0042E	6/42W COMPACT HW ELIG	282
8C0026E	8/26W COMPACT HW ELIG	216
8C0032E	8/32W COMPACT HW ELIG	304
8C0042E	8/42W COMPACT HW ELIG	376
4C0018E	4/18W COMPACT HW ELIG	80
Low Voltage Halogen Fixture (includes Transformer)		
1R0020	20W LV HALOGEN FIXT	30
1R0025	25W LV HALOGEN FIXT	35
1R0035	35W LV HALOGEN FIXT	45
1R0042 1R0050	42W LV HALOGEN FIXT	52 60
1R0050	65W LV HALOGEN FIXT	75
1R0075	75W LV HALOGEN FIXT	85

October 2015

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 380 of 435

<u>Device</u> <u>Code</u>	Device Description	Rated Watts
	Halogen/Quartz Lamps	
1T0035	35W HALOGEN LAMP	35
1T0040	40W HALOGEN LAMP	40
1T0042	42W HALOGEN LAMP	42
1T0045	45W HALOGEN LAMP	45
1T0047	47W HALOGEN LAMP	47
1T0050	50W HALOGEN LAMP	50
1T0052	52W HALOGEN LAMP	52
1T0055	55W HALOGEN LAMP	55
1T0060	60W HALOGEN LAMP	60
1T0072	72W HALOGEN LAMP	72
1T0075	75W HALOGEN LAMP	75
1T0090	90W HALOGEN LAMP	90
1T0100	100W HALOGEN LAMP	100
1T0150	150W HALOGEN LAMP	150
1T0200	200W HALOGEN LAMP	200
1T0250	250W HALOGEN LAMP	250
1T0300	300W HALOGEN LAMP	300
1T0350	350W HALOGEN LAMP	350
1T0400	400W HALOGEN LAMP	400
1T0425	425W HALOGEN LAMP	425
1T0500	500W HALOGEN LAMP	500
1T0750	750W HALOGEN LAMP	750
1T0900	900W HALOGEN LAMP	900
1T1000	1000W HALOGEN LAMP	1000
1T1200	1200W HALOGEN LAMP	1200
1T1500	1500W HALOGEN LAMP	1500
	Mercury Vapor (MV)	
1V0040S	40W MERCURY	50
1V0050S	50W MERCURY	75
1V0075S	75W MERCURY	95
1V0100S	100W MERCURY	120
1V0175S	175W MERCURY	205
1V0250S	250W MERCURY	290
1V0400S	400W MERCURY	455
1V0700S	700W MERCURY	775
1V1000S	1000W MERCURY	1075
2V0400S	2/400W MERCURY	880
	Low Pressure Sodium (LPS)	
1L0035S	35W LPS	60
1L0055S	55W LPS	85
1L0090S	90W LPS	130
1L0135S	135W LPS	180
1L0180S	180W LPS	230
	High Pressure Sodium (HPS)	
1H0035S	35W HPS	45
1H0050S	50W HPS	65
1H0070S	70W HPS	90
1H0100S	100W HPS	130
1H0150S	150W HPS	190
1H0200S	200W HPS	240
1H0225S	225W HPS	275
1H0250S	250W HPS	295
1H0310S	310W HPS	350
1H0360S	360W HPS	435
1H0400S	400W HPS	460

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>	
	High Pressure Sodium (cont.)		
1H0600S	600W HPS	675	
1H0750S	750W HPS	835	
1H1000S	1000W HPS	1085	
	Electronic Metal Halide Lamps	1.60	
1M0150E	150W METAL HALIDE EB	160	
1M0200E	200W METAL HALIDE EB	215	
1M0250E	250W METAL HALIDE EB	270	
1M0320E	320W METAL HALIDE EB	345	
1M0350E	350W METAL HALIDE EB	375	
1M0400E	400W METAL HALIDE EB	430	
1M0450E	400W METAL HALIDE EB	480	
1M0875P	875W MH CWA	950	
1M0875R	875W MH LINEAR	927	
	MH Track Lighting		
1M0020E	20W MH SPOT	25	
1M0025E	25W MH SPOT	25	
1M0035E	35W MH SPOT	44	
1M0039E	39W MH SPOT	47	
1M0050E	50W MH SPOT	60	
1M0070E	70W MH SPOT	80	
	Metal Halide (MH)		
1M0032S	32W METAL HALIDE	40	
1M0050S	50W METAL HALIDE	65	
1M0070S	70W METAL HALIDE	95	
1M0100S	100W METAL HALIDE	120	
1M0150S	150W METAL HALIDE	190	
1M0175S	175W METAL HALIDE	205	
1M0250S	250W METAL HALIDE	295	
1M0360S	360W METAL HALIDE	430	
1M0400S	400W METAL HALIDE	455	
1M0750S	750W METAL HALIDE	825	
1M0875P	875W MH CWA	950	
1M0875R	875W MH LINEAR	927	
1M1000S	1000W METAL HALIDE	1075	
1M1500S	1500W METAL HALIDE	1615	
1M1800S	1800W METAL HALIDE	1875	
Pulse Start Metal Halide Lamn/Ballast			
1M0100P	100W MH CWA	128	
1M0100R	100W MH LINEAR	118	
1M0150P	150W MH CWA	190	
1M0150R	150W MH LINEAR	172	
1M0175P	175W MH CWA	208	
1M0175R	175W MH LINEAR	190	
1M0200P	200W MH CWA	232	
1M0200R	200W MH LINEAR	218	
1M0250P	250W MH CWA	288	

October 2015

© 2015 Massachusetts Electric and Gas Energy Efficiency Program Administrators, ALL RIGHTS RESERVED

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 381 of 435

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>	
Pulse Start Metal Halide Lamp/Ballast			
1M0250R	250W MH LINEAR	265	
1M0300P	300W MH CWA	342	
1M0300R	300W MH LINEAR	324	
1M0320P	320W MH CWA	365	
1M0320R	320W MH LINEAR	345	
1M0350P	350W MH CWA	400	
1M0350R	350W MH LINEAR	375	
1M0400P	400W MH CWA	455	
1M0400R	400W MH LINEAR	430	
1M0450P	450W MH CWA	508	
1M0450R	450W MH LINEAR	480	
1M0750P	750W MH CWA	815	
1M0750R	750W MH LINEAR	805	
1M1000P	1000W MH CWA	1080	
	Two Foot T8 / T12 Systems		
1F17SSE	1L2' 17WT8/ELIG	17	
1F20SSS	1L2' 20W T12/HPF(1)	32	
1F28BXE	1L2' F28BX/ELIG	32	
1F40BXE	1L2' F40BX/ELIG	46	
1F50BXE	1L2' F50BX/ELIG	54	
1F55BXE	1L2' F55BX/ELIG	56	
1F80BXE	1L2'F80BXE/ELIG	90	
2F14EEE	2L2' T5/EEELIG	32	
2F17EEE	2L2' 17W T8EE/ELEE	29	
2F17SSE	2L2' 17W T8/ELIG	37	
2F17SSL	2L2' 17W T8/ELIG LOW Power	27	
2F17SSM	2L2' 17W T8/EEMAG	45	
2F20SSS	2L2' 20WT12/HPF(2)	56	
2F24HSS	2L2' 24 T12HO/STD/STD	85	
2F28BXE	2L2' F28BX/ELIG	63	
	Two Foot T8 / T12 Systems		
2F40BXE	2L2' F40BX/ELIG	72	
2F50BXE	2L2' F50BX/ELIG	108	
2F55BXE	2L2'55BXE/ELIG	112	
3F17SSE	3L2' 17W T8/ELIG	53	
3F17SSL	3L2' 17W T8/ELIG LOW POWER	39	
3F20SSS	3L2' 20WT12/HPF(3)	78	
3F28BXE	3L2' F28BX/ELIG	94	
3F40BXE	3L2' F40BX/ELIG	102	
3F50BXE	3L2' F50BX/ELIG	162	
3F55BXE	3L2' F55BX/ELIG	168	
4F17SSE	4L2' 17W T8/ELIG	62	
4F20SSS	4L2' 20WT12/HPF(2)	112	
4F36BXE	4L2' F36BX/ELIG	148	

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>
]	Two Foot T8 / T12 Systems (cont.)	
4F40BXE	4L2' F40BX/ELIG	144
4F40BXH	4L 40W T5 (Std.) HIGH LMN	170
4F50BXE	4L2' F50BX/ELIG	216
4F55BXE	4L2' F55BX/ELIG	224
5F40BXE	5L2' F40BX/ELIG	190
5F50BXE	5L2' F50BX/ELIG	270
5F55BXE	5L2' F55BX/ELIG	280
6F36BXE	6L2' F36BX/ELIG	212
6F40BXE	6L2' F40BX/ELIG	204
6F50BXE	6L2' F50BX/ELIG	324
6F55BXE	6L2' F55BX/ELIG	336
8F36BXE	8L2' F36BX/ELIG	296
8F40BXE	8L2' F40BX/ELIG	288
8F50BXE	8L2' F50BX/ELIG	432
8F55BXE	8L2' F55BX/ELIG	448
9F36BXE	9L2' F36BX/ELIG	318
9F40BXE	9L2' F40BX/ELIG	306
9F50BXE	9L2' F50BX/ELIG	486
9F55BXE	9L2' F55BX/ELIG	504
12F40BE	12L2' F40BX/ELIG	408
12F50BE	12L2' F50BX/ELIG	648
12F55BE	12L2' F55BX/ELIG	672
	Three Foot T8 / T12 Systems	
1F25SSE	1L3' 25W T8/ELIG	24
2F25SSE	2L3' 25W T8/ELIG	47
2F25SSM	2L3' 25W T8/EEMAG	65
1F30SEM	1L3' 30W T12 EE/EEMAG	38
1F30SES	1L3' 30W T12 EE/STD	42
1F30SSS	1L3' 30W T12 STD/STD	46
2F30SEE	2L3' 30W T12 EE/ELIG	49
2F30SEM	2L3' 30W T12 EE/EEMAG	66
2F30SES	2L3' 30W T12 EE/STD	73
2F30SSS	2L3' 30W T12 STD/STD	80
2F25SSE	2L3' 25W T8/ELIG	47
2F25SSM	2L3' 25W T8/EEMAG	65
3F30SSS	3L3' 30W T12 STD/STD	140
3F30SES	3L3' 30W T12 EE/STD	127
4F25ESH	4L3' 25W T8EE/ELEE HIGH PWR'	120
4F25ESL	4L3' 25W T8EE/ELEE LOW PWR'	74
4F25ESN	4L3' 25W T8EE/ELEE'	90
4F25SSE	4L3' 25W T8/ELIG	88
4F25SSL	4L3' 25WT8/ELIG LOW PWR	74
4F30SES	4L3' 30W T12EE/STD	146

October 2015

© 2015 Massachusetts Electric and Gas Energy Efficiency Program Administrators, ALL RIGHTS RESERVED

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 382 of 435

<u>Device</u> <u>Code</u>	Device Description	Rated Watts
	Four Foot F48 T12 Systems	
1F48SES	1L4' F48T12EE/STD	50
1F48SSS	1L4' F48T12/STD	60
2F48SES	2L4' F48T12EE/STD	82
2F48SSS	2L4' F48T12/STD	102
3F48SES	3L4' F48T12EE/STD	132
3F48SSS	3L4' F48T12/STD	162
4F48SES	4L4' F48T12EE/STD	164
4F48SSS	4L4' F48T12/STD	204
1F48HES	1L4' F48HO/EE/STD	80
1F48HSS	1L4' F48H0/STD/STD	85
2F48HES	2L4' F48HO/EE/STD	135
2F48HSS	2L4' F48H0/STD/STD	145
3F48HES	3L4' F48HO/EE/STD	215
3F48HSS	3L4' F48H0/STD/STD	230
4F48HES	4L4' F48HO/EE/STD	270
4F48HSS	4L4' F48H0/STD/STD	290
	Four Foot F48VHO T12 Systems	
1F48VES	1L4' F48VHO/EE/STD	123
1F48VSS	1L4' F48VHO/STD/STD	138
2F48VES	2L4' F48VHO/EE/STD	210
2F48VSS	2L4' F48VHO/STD/STD	240
3F48VES	3L4' F48VHO/EE/STD	333
3F48VSS	3L4' F48VHO/STD/STD	378
4F48VES	4L4' F48VHO/EE/STD	420
4F48VSS	4L4' F48VHO/STD/STD	480
	Four Foot T12 Systems	
1F40SEE	1L4' EE/ELIG	38
1F40SEM	1L4' EE/EEMAG	40
1F40SES	1L4' EE/STD	50
1F40SSE	1L4' STD/ELIG	46
1F40SSM	1L4' STD/EEMAG	50
1F40SSS	1L4' STD/STD	57
2F40SEE	2L4' EE/ELIG	60
2F40SEM	2L4' EE/EEMAG	70
2F40SES	2L4' EE/STD	80
2F40SSE	2L4' STD/ELIG	72
2F40SSM	2L4' STD/EEMAG	86
2F40SSS	2L4' STD/STD	94
3F40SEE	3L4' EE/ELIG	90
3F40SEM	3L4' EE/EEMAG	110
3F40SES	3L4' EE/STD	130
3F40SSE	3L4' STD/ELIG	110
3F40SSM	3L4' STD/EEMAG	136
3F40SSS	3L4' STD/STD	151
4F40SEE	4L4' EE/ELIG	120

<u>Device</u> <u>Code</u>	Device Description	Rated Watts
	Four Foot T12 Systems	
4F40SEM	4L4' EE/EEMAG	140
4F40SES	4L4' EE/STD	160
4F40SSE	4L4' STD/ELIG	144
4F40SSM	4L4' STD/EEMAG	172
4F40SSS	4L4' STD/STD	188
6F40SSS	6L4' STD/STD	282
	Four Foot T8 Systems	
1F32SSE	1L4' T8/ELIG	30
1F32SSL	1L4 T8/ELIG LOW POWER	26
1F32SSM	1L4' T8/EEMAG	37
2F32SSE	2L4' T8/ELIG	60
2F32SSH	2L4' T8/ELIG HIGH LMN	78
2F32SSL	2L4 T8/ELIG LOW PWR	52
2F32SSM	2L4' T8/EEMAG	70
3F32SSE	3L4' T8/ELIG	88
3F32SSH	3L4' T8/ELIG HIGH LMN	112
3F32SSL	3L4 T8/ELIG LOW POWER	76
3F32SSM	3L4' T8/EEMAG	107
4F32SSE	4L4' T8/ELIG	112
4F32SSH	4L4' T8/ELIG HIGH LMN	156
4F32SSL	4L4 T8/ELIG LOW PWR	98
4F32SSM	4L4' T8/EEMAG	140
5F32SSE	5L4' T8/ELIG	148
5F32SSH	5L4' T8/ELIG HIGH LMN	190
6F32SSE	6L4' T8/ELIG	174
6F32SSH	6L4' 32W T8/ELIG HIGH LMN	224
8F32SSH	8L4' T8/ELIG HIGH LMN	312
	Five Foot T8 / T12 Systems	
1F40HSE	1L5' HO/STD/ELIG	59
1F60HSM	1L5' HO/STD/EEMAG	90
1F60SSM	1L5'/STD/EEMAG	73
1F60TSM	1L5' T10HO/STD/EEMAG	135
2F40HSE	2L5' HO/STD/ELIG	123
2F40TSE	2L5'T8/ELIG	68
2F60HSM	2L5' HO/STD/EEMAG	178
2F60SSM	2L5'/STD/EEMAG	122
3F40TSE	3L5'T8/ELIG	106
	Six Foot T12 & T12HO Systems	
1F72HSE	1L6' T8HO/ELIG	80
1F72HSS	1L6' F72HO/STD/STD	113
1F72SSM	1L6' STD/EEMAG	80
1F72SSS	1L6' STD/STD	95
2F72HSE	2L6'T8 HO/ELIG	160
2F72HSM	2L6' F72HO/STD/EEMAG	193

October 2015

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 383 of 435

2F72HSS	2L6' F72HO/STD	195
<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>
	Six Foot T12 & T12HO Systems	
2F72SSM	2L6' STD/EEMAG	135
2F72SSS	2L6' STD/STD	173
Eight Foot T12HO Systems		
1F96HES	1L8' HO/EE/STD	125
1F96HSS	1L8' HO/STD/STD	135
2F96HEE	2L8' HO/EE/ELIG	170
2F96HEM	2L8' HO/EE/EEMAG	207
2F96HES	2L8' HO/EE/STD	227
2F96HSE	2L8' HO/STD/ELIG	195
2F96HSM	2L8' HO/STD/EEMAG	237
2F96HSS	2L8' HO/STD/STD	257

3F96HES	3L8' HO/EE/STD	352	
3F96HSS	3L8' HO/STD/STD	392	
4F96HEE	4L8' HO/EE/ELIG	340	
4F96HEM	4L8' HO/EE/EEMAG	414	
4F96HES	4L8' HO/EE/STD	454	
4F96HSE	4L8' HO/STD/ELIG	390	
4F96HSM	4L8' HO/STD/EEMAG	474	
4F96HSS	4L8' HO/STD/STD	514	
Eight Foot T12VHO Systems			
1F96VES	1L8' VHO/EE/STD	200	
1F96VSS	1L8' VHO/STD/STD	230	
2F96VES	2L8' VHO/EE/STD	390	
2F96VSS	2L8' VHO/STD/STD	450	
3F96VES	3L8' VHO/EE/STD	590	
3F96VSS	3L8' VHO/STD/STD	680	

Massachusetts Technical Reference Manual

Table 4: MassSAVE Retrofit Proposed Lighting Wattage Tables

2016 MassSAVE C&I Lighting Rated Wattage Tables developed by Lighting Worksheet Team

<u>Device</u> Code	Device Description	<u>Rated</u> Watts
	LED Exit Signs	
1E0002	2.0 WATT LED	2
1E0003	3.0 WATT LED	3
1E0005	5.0 WLED	5
1E0005C	0.5 WATT LEC	0.5
1E0008	8.0 WLED	8
1E0015	1.5 WATT LED	1.5
1E0105	10.5 WATT LED	10.5
	T5 Systems	
1F14SSE	1L2' 14W T5/ELIG	16
1F21SSE	1L3' 21W T5/ELIG	24
1F24HSE	1L2' 24W T5HO/ELIG	29
1F28SSE	1L4' 28W T5/ELIG	32
1F39HSE	1L3' 39W T5HO/ELIG	42
1F47HSE	1L4' 47W T5HO/ELIG	53
1F50HSE	1L4' 50W T5HO/ELIG	58
1F54HSE	1L4' 54W T5HO/ELIG	59
2F14SSE	2L2' 14W T5/ELIG	32
2F21SSE	2L3' 21W T5/ELIG	47
2F24HSE	2L2' 24W T5HO/ELIG	52
2F28SSE	2L4' 28W T5/ELIG	63
2F39HSE	2L3' 39W T5HO/ELIG	85
2F47HSE	2L4' 47W T5HO/ELIG	103
2F50HSE	2L4' 50W T5HO/ELIG	110
2F54HSE	2L4' 54W T5HO/ELIG	117
3F14SSE	3L2' 14W T5/ELIG	50
3F24HSE	3L4' T5HO/ELIG	80
3F28SSE	3L4' 28W T5/ELIG	95
3F47HSE	3L4' 47W T5HO/ELIG	157
3F50HSE	3L4' 50W T5HO/ELIG	168
3F54HSE	3L4' 54W T5HO/ELIG	177
4F14SSE	4L2' 14W T5/ELIG	68
4F28SSE	4L4' 28W T5/ELIG	126
4F47HSE	4L4' 47W T5HO/ELIG	200
4F50HSE	4L4' 50W T5HO/ELIG	215
4F54ESH	4L4' 54W T5HO/ELEE	218
<u>Device</u> Code	Device Description	<u>Rated</u> Watts
	T5 Systems (cont.)	

4F54HSE	4L4' 54W T5HO/ELIG	234			
5F47HSE	5L4' 47W T5HO/ELIG	260			
5F50HSE	5L4' 50W T5HO/ELIG	278			
5F54HSE	5L4' 54W T5HO/ELIG	294			
6F28SSE	6L4' 28W T5/ELIG	189			
6F47HSE	6L4' 47W T5HO/ELIG	303			
6F50HSE	6L4' 50W T5HO/ELIG	325			
6F54HSE	6L4' 54W T5HO/ELIG	351			
8F54HSE	8L4' 54W T5HO/ELIG	468			
10F54HSE	10L4' 54W T5HO/ELIG	585			
Tw	o Foot High Efficient T8 Systems				
1F17ESL	1L2' 17W T8EE/ELEE LOW PWR	14			
1F17ESN	1L2' 17W T8EE/ELEE	17			
1F17ESH	1L2' 17W T8EE/ELEE HIGH PWR	20			
1F28BXE	1L2' F28BX/ELIG	32			
2F17ESL	2L2' 17W T8EE/ELEE LOW PWR	27			
2F17ESN	2L2' 17W T8EE/ELEE	32			
2F17ESH	2L2' 17W T8EE/ELEE HIGH PWR	40			
2F28BXE	2L2' F28BX/ELIG	63			
3F17ESL	3L2' 17W T8EE/ELEE LOW PWR	39			
3F17ESN	3L2' 17W T8EE/ELEE	46			
3F17ESH	3L2' 17W T8EE/ELEE HIGH PWR	61			
3F28BXE	3L2' F28BX/ELIG	94			
Three Foot High Efficient T8 Systems					
1F25ESL	1L3' 25W T8EE/ELEE LOW PWR	21			
1F25ESN	1L3' 25W T8EE/ELEE	24			
1F25ESH	1L3' 25W T8EE/ELEE HIGH PWR	30			
2F25ESL	2L3' 25W T8EE/ELEE LOW PWR	40			
<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>			
Three Foot High Efficient T8 Systems (cont.)					
2F25ESN	2L3' 25W T8EE/ELEE	45			

October 2015

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 385 of 435

2F25ESH	2L3' 25W T8EE/ELEE HIGH	60	
21232611	PWR 3L3' 25W T8EE/ELEE LOW	50	
3F25ESL	PWR	58	
3F25ESN	3L3 ² 25W 18EE/ELEE	6/	
3F25ESH	PWR	90	
Four Foot T	8 High Efficient / Reduce Wattage	Systems	
1F25EEH	1L4' 25W T8EE/ELEE HIGH PWR	30	
1F25EEE	1L4' 25W T8EE/ELEE	22	
1F25EEL	1L4' 25W T8EE/ELEE LOW PWR	19	
2F25EEH	2L4' 25W T8EE/ELEE HIGH PWR	57	
2F25EEE	2L4' 25W T8EE/ELEE	43	
2F25EEL	2L4' 25W T8EE/ELEE LOW PWR	37	
3F25EEH	3L4' 25W T8EE/ELEE HIGH PWR	86	
3F25EEE	3L4' 25W T8EE/ELEE	64	
3F25EEL	3L4' 25W T8EE/ELEE LOW PWR	57	
4F25EEH	4L4' 25W T8EE/ELEE HIGH PWR	111	
4F25EEE	4L4' 25W T8EE/ELEE	86	
4F25EEL	4L4' 25W T8EE/ELEE LOW PWR	75	
1F28EEH	1L4' 28W T8EE/ELEE HIGH PWR	33	
1F28EEE	1L4' 28W T8EE/ELEE	24	
1F28EEL	1L4' 28W T8EE/ELEE LOW PWR	22	
2F28EEH	2L4' 28WT8EE/ELEE HIGH PWR	64	
2F28EEE	2L4' 28W T8EE/ELEE	48	
2F28EEL	2L4' 28W T8EE/ELEE LOW PWR	42	
3F28EEH	3L4' 28W T8EE/ELEE HIGH PWR	96	
3F28EEE	3L4' 28W T8EE/ELEE	72	
3F28EEL	3L4' 28W T8EE/ELEE LOW PWR	63	
4F28EEH	4L4' 28W T8EE/ELEE HIGH PWR	126	
<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>	
Four Foot T8 High Efficient / Reduce Wattage Systems			
4F28EEE	4L4' 28W T8EE/ELEE	94	

4F28EEL	4L4' 28W T8EE/ELEE LOW PWR	83	
1F30EEH	1L4' 30W T8EE/ELEE HIGH PWR	36	
1F30EEE	1L4' 30W T8EE/ELEE	26	
1F30EEL	1L4' 30W T8EE/ELEE LOW PWR	24	
2F30EEH	2L4' 30WT8EE/ELEE HIGH PWR	69	
2F30EEE	2L4' 30W T8EE/ELEE	52	
2F30EEL	2L4' 30W T8EE/ELEE LOW PWR	45	
3F30EEH	3L4' 30W T8EE/ELEE HIGH PWR	103	
3F30EEE	3L4' 30W T8EE/ELEE	77	
3F30EEL	3L4' 30W T8EE/ELEE LOW PWR	68	
4F30EEH	4L4' 30W T8EE/ELEE HIGH PWR	133	
4F30EEE	4L4' 30W T8EE/ELEE	101	
4F30EEL	4L4' 30W T8EE/ELEE LOW PWR	89	
1F32EEH	1L4' 32W T8EE/ELEE HIGH PWR	38	
1F32EEE	1L4' 32W T8EE/ELEE	28	
1F32EEL	1L4' 32W T8EE/ELEE LOW PWR	25	
2F32EEH	2L4' 32W T8EE/ELEE HIGH PWR	73	
2F32EEE	2L4' 32W T8EE/ELEE	53	
2F32EEL	2L4' 32W T8EE/ELEE LOW PWR	47	
3F32EEH	3L4' 32W T8EE/ELEE HIGH PWR	109	
3F32EEE	3L4' 32W T8EE/ELEE	82	
3F32EEL	3L4' 32W T8EE/ELEE LOW PWR	72	
4F32EEH	4L4' 32W T8EE/ELEE HIGH PWR	141	
4F32EEE	4L4' 32W T8EE/ELEE	107	
4F32EEL	4L4' 32W T8EE/ELEE LOW PWR	95	
5F32EEH	5L4' 32W T8EE/ELEE HIGH PWR	182	
6F28EEE	6L4' 28W T8EE/ELEE	144	
6F28EEH	6L4' 28W T8EE/ELEE HIGH PWR	192	
6F28EEL	6L4' 28W T8EE/ELEE LOW PWR	126	
6F30EEE	6L4' 30W T8EE/ELEE	154	
<u>Device</u> <u>Code</u>	Device Description	<u>Rated</u> Watts	
Four Foot T8 High Efficient / Reduce Wattage Systems			
6F30EEL	6L4' 30W T8EE/ELEE LOW PWR	136	

October 2015

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 386 of 435

6F32EEH	6L4' 32W T8EE/ELEE HIGH	218	1L004	4 WATT LED
6F32EEE	6L4' 32W T8EE/ELEE	168	1L005	5 WATT LED
6F32FEI	6L4' 32W T8EE/ELEE LOW	146	1L006	6 WATT LED
01'92EEE	PWR	140	1L007	7 WATT LED
7F32EEH	/L4 32W 18EE/ELEE HIGH PWR	250	1L008	8 WATT LED
	Eight Foot T8 Systems		1L009	9 WATT LED
1F59SSE	1L8' T8/ELIG	60	1L010	10 WATT LED
1F80SSE	1L8' T8 HO/ELIG	85	1L011	11 WATT LED
2F59SSE	2L8' T8/ELIG	109	1L012	12 WATT LED
2F59SSL	2L8' T8/ELIG LOW PWR	100	1L013	13 WATT LED
2F80SSE	2L8' T8 HO/ELIG	160	1L014	14 WATT LED
	Tandem Wired T8 High Efficient	1	1L015	15 WATT LED
2W32EEE	2L4' TW T8EE/ELIG	27	1L016	16 WATT LED
2W32EEL	2L4' TW T8EE/ELEE LOW PWR	24	1L017	17 WATT LED
3W32EEE	3L4' TW T8EE/ELIG	39	1L018	18 WATT LED
3W32EEL	3L4' TW T8EE/ELEE LOW PWR	34	1L019	19 WATT LED
4W32EEE	4L4' TW T8EE/ELIG	51	1L020	20 WATT LED
4W32EEL	4L4' TW T8EE/ELEE LOW PWR	45	1L021	21 WATT LED
Т	andem-Wired Fluorescent Systems		1L022	22 WATT LED
2W32SSE	21.4' TW T8/ELIG	30	1L023	23 WATT LED
2W32SSH	21.4° TW T8/HI-LUM	39	1L024	24 WATT LED
2W40SEE	214' TW FE/FLIG	30	1L025	25 WATT LED
2W40SSE	2L4' TW STD/FLIG	36	1L026	26 WATT LED
2W59HSE	2L8' TW T8 HO/FLIG	80	1L027	27 WATT LED
2W59SSF	21.8° TW T8/FLIG	55	1L028	28 WATT LED
2W96HEE	2L8' TW HO-EE/ELIG	85	1L029	29 WATT LED
2W96HSE	21.8' TW HO-STD/FLIG	98	1L030	30 WATT LED
2W96SEE	21.8' TW FF/FLIG	55	1L031	31 WATT LED
2W9688F	21.8' TW STD/FLIG	67	1L032	32 WATT LED
3W32SSE	31 4' TW T8/FLIG	29	1L033	33 WATT LED
4D17SSE	4L2' TW T8/FLIG	31	1L034	34 WATT LED
4D32FFF	4I 4' DTW T8FE/FLIG	51	1L035	35 WATT LED
4D32EEE	4L4' DTW T8EE/ELEE LOW	51	1L036	36 WATT LED
4D32EEL	PWR	45	1L037	37 WATT LED
4D32SSE	4L4' DTW T8/ELIG	53	1L038	38 WATT LED
4D32SSL	4L4 DTWT8/ELIG LOW POWER	49	1L039	39 WATT LED
4W32SSE	4L4' TW T8/ELIG	27	1L040	40 WATT LED
4W32SSL	4L4 TWT8/ELIG LOW POWER	25	1L041	41 WATT LED
			1L042	42 WATT LED
Device	Device Description	Rated Watte	Device	Dania Danistat
Coue	LED Lighting Fixtures	<u>watts</u>	Code	Device Description
1L002	2 WATT LED	2		LED Lighting Fixture
11.003	3 WATT LED	3	1L043	43 WATT LED

October 2015

© 2015 Massachusetts Electric and Gas Energy Efficiency Program Administrators, ALL RIGHTS RESERVED

Massachusetts	Technical	Reference	Manual

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 387 of 435

1L044	44 WATT LED	44
1L045	45 WATT LED	45
1L046	46 WATT LED	46
1L047	47 WATT LED	47
1L048	48 WATT LED	48
1L049	49 WATT LED	49
1L050	50 WATT LED	50
1L053	53 WATT LED	53
1L055	55 WATT LED	55
1L060	60 WATT LED	60
1L063	63 WATT LED	63
1L070	70 WATT LED	70
1L071	71 WATT LED	71
1L073	73 WATT LED	73
1L075	75 WATT LED	75
1L080	90 WATT LED	90
1L085	85 WATT LED	85
1L090	90 WATT LED	90
1L095	95 WATT LED	95
1L100	100 WATT LED	100
1L101	101 WATT LED	101
1L106	106 WATT LED	106
1L107	107 WATT LED	107
1L116	116 WATT LED	116
1L120	120 WATT LED	120
1L125	125 WATT LED	125
1L130	130 WATT LED	130
1L131	131 WATT LED	131

<u>Device</u> <u>Code</u>	Device Description	Rated <u>Watts</u>		
LED Lighting Fixtures (cont.)				
1L135	135 WATT LED	135		
1L139	139 WATT LED	139		
1L140	140 WATT LED	140		
1L145	145 WATT LED	145		
1L150	150 WATT LED	150		
1L155	155 WATT LED	155		
1L160	160 WATT LED	160		
1L164	164 WATT LED	164		
1L165	165 WATT LED	165		
1L170	170 WATT LED	170		
1L175	175 WATT LED	175		
1L180	180 WATT LED	180		
1L185	185 WATT LED	185		
1L186	186 WATT LED	186		
1L190	190 WATT LED	190		
1L200	200 WATT LED	200		
1L204	204 WATT LED	204		
1L205	205 WATT LED	205		
1L210	210 WATT LED	210		
1L211	211 WATT LED	211		
1L220	220 WATT LED	220		
1L233	233 WATT LED	233		
1L235	235 WATT LED	235		
1L237	237 WATT LED	237		
1L240	240 WATT LED	240		
1L256	256 WATT LED	256		
1L279	279 WATT LED	279		
1LED015	15 Watt LED	15		

Building Type	Annual Operating Hours		
Assembly	2857 (one shift)		
Automobile	4056 (retail)		
Big Box	4057 (retail)		
Community College	3255		
Dormitory	3,056		
Fast Food	5110		
Full Service Restaurant	5110		
Grocery	6074		
Heavy Industrial	4,057		
Hospital	8036		
Hotel	8583		
Large Refrigerated Space	2602 (warehouse)		
Large Office	3610		
Light Industrial	4,730 (two shift)		
Motel	8583		
Multi Story Retail	4089		
Multifamily high-rise	7665 (Common Area)		
Multifamily low-rise	7665 (Common Area)		
Other	3951		
Religious	1955		
K-12 Schools	2596		
Small Office	3610		
Small Retail	4089		
University	3255		
Warehouse	3759		

Table 5: Default Effective Lighting Hours by Building Type ⁷⁵
--

Table 6: Cooling and Heating Equivalent Full Load Hours

Building (or Space) Type	Annual Cooling Hours (Hours _{cool})	Cooling Full Load Hours (EFLH _{cool})	Heating Full Load Hours (EFLH _{heat})
Average – CLC	3,027	1,172	530
Average – NSTAR	3,027	1,172	N/A
Average – National Grid	2,539	935	984
Average – Unitil	1,896	755	1,329
Average – WMECO	1,896	755	1,329
	800, 1000-6000 at 1000	800, 1000-6000 at 1000 hour	
Site Specific - NSTAR	hour increments	increments	N/A

- Average Cooling EFLHs from the 2010 NEEP HVAC Loadshape study.⁷⁵⁵ Regional EFLHs from the NEEP study are determined for each PA by applying weights based on ISO-NE load zones.
- Average Cooling Hours derived from the 2010 NEEP HVAC Loadshape study data.⁷⁵⁶

⁷⁵⁴ Lighting hours developed from Massachusetts Common Assumptions and New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs (2010). Values are provided for use when site-specific hours are not available.
⁷⁵⁵ KEMA (2011). C&I Unitary AC LoadShape Project – Final Report. Prepared for the Regional Evaluation, Measurement & Verification Forum.

Average Heating EFLHs derived from 2010 NEEP HVAC Loadshape study757 and the Connecticut Program Savings Document for 2011 Program Year. 758

⁷⁵⁶ DNV GL (2014). Memo – Develop Modified Runtime from NEEP HVAC Loadshape Study. Prepared for National Grid and Northeast Utilities. August 20, 2014.

⁷⁵⁸ United Illuminating Company, Connecticut Light & Power Company (2010). UI and CL&P Program Savings Documentation for 2011 Program Year.

Appendix B: Net to Gross Impact Factors

Residential Efficiency Measures						
Measure	PA	FR	SOP	SO _{NP}	NTG	
Residential New Construction						
Cooling	All	30%	0%	50%	120%	
Heating	All	30%	0%	50%	120%	
Water Heating	All	30%	0%	50%	120%	
CFL Bulb	All	See Reside	ential Lig	hting – C	FL Bulb	
LED Bulb	All	See Reside	ential Lig	hting – L	ED Bulb	
Heating (High Rise)	All	0%	0%	0%	100%	
Cooling (High Rise)	All	0%	0%	0%	100%	
Water Heating (High Rise)	All	0%	0%	0%	100%	
Lighting (High Rise)	All	See Reside	ential Lig	hting – L	ED Bulb	
Codes and Standards	All	0%	0%	0%	100%	
Residential M	ulti-Family Retrofi	t				
Air Sealing	All	19%	0%	0%	81%	
Insulation	All	19%	0%	0%	81%	
Duct Sealing	All	19%	0%	0%	81%	
Duct Insulation	All	19%	0%	0%	81%	
Pipe Wrap (Water Heating)	All	0%	0%	0%	100%	
Pipe Wrap (Heating)	All	0%	0%	0%	100%	
Faucet Aerator	All	15%	0%	0%	85%	
Low-Flow Showerhead	All	15%	0%	0%	85%	
Low-Flow Showerhead with TSV	All	15%	0%	0%	85%	
Thermostatic Shut-off Valve	All	15%	0%	0%	85%	
Demand Circulator	All	0%	0%	0%	100%	
Boiler Reset Control	All	0%	0%	0%	100%	
Programmable Thermostat	All	24%	0%	0%	76%	
Wi-Fi Thermostat	All	0%	0%	0%	100%	
Refrigerator	All	0%	0%	0%	100%	
CFL Bulb	All	18%	0%	0%	82%	
LED Bulb	All	18%	0%	0%	82%	
Indoor Fixture	All	18%	0%	0%	82%	
Outdoor Fixture	All	18%	0%	0%	82%	
LED Indoor Fixture	All	18%	0%	0%	82%	
LED Outdoor Fixture	All	18%	0%	0%	82%	
Common Area Int Fixture	All	18%	0%	0%	82%	
Common Area Int Fixture, LED	All	18%	0%	0%	82%	
Common Area Ext Fixture	All	18%	0%	0%	82%	
Common Area Ext Fixture, LED	All	18%	0%	0%	82%	
Common Area Occupancy Sensor	All	18%	0%	0%	82%	
Smart Strips	All	0%	0%	0%	100%	
Heating System Tune-Up	All	0%	0%	0%	100%	

October 2015

Electric - Residential Heating & Cooling Equipment					
Central Air SEER 16.0 EER 13	All	42%	28%	0%	86%
Heat Pump SEER 16.0 EER 12 HSPF 8.5	All	42%	28%	0%	86%
Heat Pump SEER 18.0 HSPF 9.6	All	42%	28%	0%	86%
Mini Split HP SEER 18.0 HSPF 9	All	45%	7%	0%	62%
Mini Split HP SEER 20.0 HSPF 11	All	45%	7%	0%	62%
Furnace ECM	All	41%	22%	0%	81%
Circulator Pump	All	0%	0%	0%	100%
Early Retirement Central Air (EE)	All	0%	0%	0%	100%
Early Retirement Central Air (Retire)	All	0%	0%	0%	100%
Early Retirement Heat Pump (EE) SEER 16	All	0%	0%	0%	100%
Early Retirement Heat Pump (Retire) SEER 16	All	0%	0%	0%	100%
Early Retirement Heat Pump (EE) SEER 18	All	0%	0%	0%	100%
Early Retirement Heat Pump (Retire) SEER 18	All	0%	0%	0%	100%
Heat Pump Water Heater <55 gallon, Electric	All	0%	0%	0%	100%
Duct Sealing	All	0%	0%	0%	100%
Down Size 1/2 Ton	All	0%	0%	0%	100%
Heat Pump Digital Check-up/Tune-Up	All	0%	0%	0%	100%
Central Air QIV	All	0%	0%	0%	100%
Heat Pump QIV	All	0%	0%	0%	100%
Mini Split Heat Pump QIV	All	0%	0%	0%	100%
QI w/ Duct modifications	All	0%	0%	0%	100%
Gas - Residential Heating & Cooling Equipment					
Boiler 90%	All	32%	8%	0%	76%
Boiler 95%	All	31%	8%	0%	77%
Furnace w/ECM 95%	All	41%	22%	0%	81%
Furnace w/ECM 97%	All	41%	22%	0%	81%
Combo Condensing Boiler/Water Heater 90%	All	34%	8%	0%	74%
Combo Condensing Boiler/Water Heater 95%	All	34%	8%	0%	74%
Boiler Reset Control	All	0%	0%	0%	100%
Heat Recovery Ventilator	All	0%	0%	0%	100%
Condensing Water Heater 0.95	All	0%	0%	0%	100%
Stand Alone Water Heater 0.67	All	13%	13%	0%	100%
Tankless Water Heater 0.82	All	37%	25%	0%	88%
Tankless Water Heater 0.94	All	28%	25%	0%	97%
Indirect Water Heater	All	66%	0%	0%	34%
Programmable Thermostat	All	58%	0%	0%	42%
Wi-Fi Thermostat (controls gas heat only)	All	0%	0%	0%	100%
Wi-Fi Thermostat (controls elec cooling & gas heat)	All	0%	0%	0%	100%

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 392 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG
Residential Home Energy Services					
Air Sealing	All	8%	8%	28%	128%
Insulation	All	25%	20%	28%	123%
Duct Insulation	All	0%	0%	0%	100%
Duct Seal	All	0%	0%	0%	100%
Pipe Wrap (Water Heating)	All	0%	0%	0%	100%
Pipe Wrap (Heating)	All	0%	0%	0%	100%
Boiler Reset Control	All	0%	0%	0%	100%
Heating System Replacement (Boiler)	All	28%	0%	0%	72%
Heating System Replacement (Furnace)	All	28%	0%	0%	72%
Indirect Water Heater	All	29%	0%	0%	71%
On-Demand Water Heater	All	29%	0%	0%	71%
Faucet Aerator	All	0%	0%	0%	100%
Low-Flow Showerhead	All	0%	0%	0%	100%
Programmable Thermostat	All	11%	0%	0%	89%
Wi-Fi Thermostat	All	0%	0%	0%	100%
CFL Bulb	All	24%	0%	0%	76%
LED Bulb (2016)	All	0%	0%	0%	100%
LED Bulb (2017)	All	5%	0%	0%	95%
LED Bulb (2018)	All	10%	0%	0%	90%
Refrigerator (Savings Over Remaining Life)	All	14%	0%	0%	86%
Refrigerator (Savings Compared to Baseline)	All	14%	0%	0%	86%
Early Retirement CW (Retire)	All	0%	0%	0%	100%
Early Retirement CW (EE)	All	0%	0%	0%	100%
Smart Strip	All	0%	0%	0%	100%
Early Retirement Boiler, Forced Hot Water (EE)	All	0%	0%	0%	100%
Early Retirement Boiler, Forced Hot Water (Retire)	All	0%	0%	0%	100%
Early Retirement Boiler, Steam (EE)	All	0%	0%	0%	100%
Early Retirement Boiler, Steam (Retire)	All	0%	0%	0%	100%
Early Retirement Furnace (EE)	All	0%	0%	0%	100%
Early Retirement Furnace (Retire)	All	0%	0%	0%	100%

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Page 393 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG		
Residential Lighting 2016							
CFL Bulb	All	46%	0%	0%	54%		
CFL Bulb (EISA Exempt)	All	46%	0%	0%	54%		
CFL Bulb (Hard to Reach)	All	7%	0%	0%	93%		
CFL Bulb (School Fundraiser)	All	46%	0%	0%	54%		
LED Bulb	All	10%	0%	0%	90%		
LED Bulb (EISA Exempt)	All	10%	0%	0%	90%		
LED Bulb (Hard to Reach)	All	0%	0%	0%	100%		
LED Bulb (School Fundraiser)	All	10%	0%	0%	90%		
LED Bulb (Reflectors)	All	10%	0%	0%	90%		
Fixture	All	4%	0%	0%	96%		
LED Fixture	All	2%	0%	0%	98%		
Residential Lighting 2017							
CFL Bulb	All	47%	0%	0%	53%		
CFL Bulb (EISA Exempt)	All	47%	0%	0%	53%		
CFL Bulb (Hard to Reach)	All	8%	0%	0%	92%		
CFL Bulb (School Fundraiser)	All	47%	0%	0%	53%		
LED Bulb	All	20%	0%	0%	80%		
LED Bulb (EISA Exempt)	All	20%	0%	0%	80%		
LED Bulb (Hard to Reach)	All	1%	0%	0%	99%		
LED Bulb (School Fundraiser)	All	20%	0%	0%	80%		
LED Bulb (Reflectors)	All	20%	0%	0%	80%		
Fixture	All	4%	0%	0%	96%		
LED Fixture	All	7%	0%	0%	93%		
Residential Lighting 2018							
CFL Bulb	All	47%	0%	0%	53%		
CFL Bulb (EISA Exempt)	All	47%	0%	0%	53%		
CFL Bulb (Hard to Reach)	All	9%	0%	0%	91%		
CFL Bulb (School Fundraiser)	All	47%	0%	0%	53%		
LED Bulb	All	30%	0%	0%	70%		
LED Bulb (EISA Exempt)	All	30%	0%	0%	70%		
LED Bulb (Hard to Reach)	All	2%	0%	0%	98%		
LED Bulb (School Fundraiser)	All	30%	0%	0%	70%		
LED Bulb (Reflectors)	All	30%	0%	0%	70%		
Fixture	All	4%	0%	0%	96%		
LED Fixture	All	11%	0%	0%	89%		

Massachusetts Technical Reference Manual

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 394 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG	
Residential Consumer Products						
Freezer Recycling	All	41%	0%	0%	59%	
Freezer (Energy Star)	All	35%	0%	0%	65%	
Refrigerator Recycling (Combined)	All	31%	0%	0%	69%	
Refrigerator Recycling (Primary)	All	31%	0%	0%	69%	
Refrigerator Recycling (Secondary Not Replaced)	All	31%	0%	0%	69%	
Refrigerator Recycling (Secondary Replaced)	All	31%	0%	0%	69%	
Refrigerator (Most Efficient)	All	25%	0%	0%	75%	
Pool Pump (Two Speed)	All	0%	0%	0%	100%	
Pool Pump (Variable Speed)	All	0%	0%	0%	100%	
Room Air Cleaner	All	25%	0%	0%	75%	
Smart Strip	All	0%	0%	0%	100%	
Smart Strip (Tier 2)	All	0%	0%	0%	100%	
Dehumidifier	All	0%	0%	0%	100%	
Dehumidifier Recycling	All	0%	0%	0%	100%	
Dryer (Energy Star)	All	10%	0%	0%	90%	
Low-Flow Showerhead with TSV	All	0%	0%	0%	100%	
Thermostatic Shutoff Valve	All	0%	0%	0%	100%	
Residential Behavior/Feedback Program						
Home Energy Reports	All	0%	0%	0%	100%	
Energy Education	All	0%	0%	0%	100%	
Low-Income Single Family Retrofit						
All Measures	All	0%	0%	0%	100%	
Low-Income Multi-Family Retrofit						
All Measures	All	0%	0%	0%	100%	

Massachusetts	Technical	Reference	Manual

Sources

Unless otherwise stated below, all PA's use Massachusetts common assumptions for all residential measure freeridership and spillover values.

- The Net-to-Gross factors used in Residential New Construction for Heating, Cooling, and Water Heating are based on evaluation results⁷⁵⁹ adjusted downward from an agreement with the EEAC consultants to account for the age of the study and the new Codes and Standards measure.
- The Net-to-Gross factors used in Residential Lighting and Residential New Construction for CFL Bulb and LED Bulb are from the Multistage Lighting Net-to-Gross Assessment: Overall Report⁷⁶⁰. The values change each year.
- The Net-to-Gross factors used in Residential Consumer Products for the Refrigerator and Freezer Recycling measures are from the Massachusetts Appliance Turn-in Program Evaluation Integrated Report Findings Report.761
- The Net-to-Gross factors used in Residential Heating & Cooling Equipment are from the 2012 Cool Smart and HEHE Program Evaluation report⁷⁶²
- The Net-to-Gross factors used in Residential Home Energy Services for CFL Bulb, Refrigerator, Air Sealing, and Insulation are from the Massachusetts 2011 Residential Retrofit and Low Income Net to Gross Evaluation⁷⁶³. The free-ridership for CFL Bulbs was based on this study but modified by agreement with the EEAC consultants on 7-2-12, to account for the potential for participants who would have bought CFLs outside of the HES program but through the Upstream Lighting program.
- The Net-to-Gross factors used in Residential Home Energy Services for Thermostats, Heating System Replacement and Water Heater measures are from the 2010 Net-to-Gross Findings: Home Energy Assessment study.⁷⁶⁴
- The Net-to-Gross factors used in Multifamily Retrofit are based on the 2011 NTG Study⁷⁶⁵.

⁷⁵⁹ NMR Group, Inc (2012). Massachusetts Residential New Construction Net Impacts Report. Prepared for the Electric Program Administrators of Massachusetts. 760 The Cadmus Group (2015). Multistage Lighting Net-to-Gross Assessment: Overall Report. Prepared for the Electric Program Administrators of Massachusetts.

⁷⁶¹ NMR Group, Inc (2011). Massachusetts Appliance Turn-in Program Evaluation Integrated Report Findings. Prepared for the Electric Program Administrators of Massachusetts.

⁷⁶² The Cadmus Group (2012). 2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net-to-Gross, Market Effects, and Equipment Replacement Timing. Prepared for the Electric and Gas Program Administrators of Massachusetts.

⁷⁶³ The Cadmus Group (2012). Massachusetts 2011 Residential Retrofit and Low Income Net-to-Gross Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts

⁷⁶⁴ The Cadmus Group (2011). 2010 Net-to-Gross Findings: Home Energy Assessment. Prepared for the Electric and Gas Program Administrators of Massachusetts

⁷⁶⁵ The Cadmus Group (2012). Massachusetts 2011 Residential Retrofit Multifamily Program Impact Analysis. Prepared for Massachusetts Program Administrators and the Energy Efficiency Advisory Council; June 2012
Commercial Electric Efficiency Measures					
Measure	PA	FR	SOP	SO _{NP}	NTG
C&I New Buildings & Major Renovation	ons and C&I Initial Purc	hase & Er	d of Usef	ul Life	
Advanced Lighting Design (Performance Lighting)	National Grid	22.9%	34.6%	0%	111.7%
Advanced Lighting Design (Performance Lighting)	Eversource (NSTAR)	41.6%	12.5%	0%	70.9%
Advanced Lighting Design (Performance Lighting)	Unitil	35.0%	14.8%	0%	79.9%
Advanced Lighting Design (Performance Lighting)	Eversource (WMECO)	32%	0%	2%	70%
Advanced Lighting Design (Performance Lighting)	CLC	35.5%	4.2%	0%	68.7%
Lighting Controls	National Grid	19.1%	34.2%	0%	115.1%
Lighting Controls	Eversource (NSTAR)	41.6%	12.5%	0%	70.9%
Lighting Controls	Unitil	35.0%	14.8%	0%	79.9%
Lighting Controls	Eversource (WMECO)	32%	0%	2%	70%
Lighting Controls	CLC	35.5%	4.2%	0%	68.7%
Lighting Systems	National Grid	19.1%	34.2%	0%	115.1%
Lighting Systems	Eversource (NSTAR)	41.6%	12.5%	0%	70.9%
Lighting Systems	Unitil	35.0%	14.8%	0%	79.9%
Lighting Systems	Eversource (WMECO)	32%	0%	2%	70%
Lighting Systems	CLC	35.5%	4.2%	0%	68.7%
Demand Control Ventilation (DCV)	National Grid	1.5%	0%	0%	98.5%
Demand Control Ventilation (DCV)	Eversource (NSTAR)	37.6%	0%	0.8%	63.2%
Demand Control Ventilation (DCV)	Unitil	41.5%	0%	0.7%	59.3%
Demand Control Ventilation (DCV)	Eversource (WMECO)	58.8%	0.4%	0.4%	42%
Demand Control Ventilation (DCV)	CLC	41.5%	0.0%	0.7%	59.3%
Dual Enthalpy Economizer Controls (DEEC)	National Grid	1.5%	0%	0%	98.5%
Dual Enthalpy Economizer Controls (DEEC)	Eversource (NSTAR)	37.6%	0%	0.8%	63.2%
Dual Enthalpy Economizer Controls (DEEC)	Unitil	41.5%	0%	0.7%	59.3%
Dual Enthalpy Economizer Controls (DEEC)	Eversource (WMECO)	58.8%	0.4%	0.4%	42%
Dual Enthalpy Economizer Controls (DEEC)	CLC	41.5%	0.0%	0.7%	59.3%
ECM Fan Motors	National Grid	1.5%	0%	0%	98.5%
ECM Fan Motors	Eversource (NSTAR)	37.6%	0%	0.8%	63.2%
ECM Fan Motors	Unitil	41.5%	0%	0.7%	59.3%
ECM Fan Motors	Eversource (WMECO)	58.8%	0.4%	0.4%	42%
ECM Fan Motors	CLC	9.8%%	0.0%	27.2%	117.4%
Energy Management System (EMS)	CLC	41.5%	0.0%	0.7%	59.3%
High Efficiency Chiller	National Grid	1.5%	0%	0%	98.5%
High Efficiency Chiller	Eversource (NSTAR)	37.6%	0%	0.8%	63.2%
High Efficiency Chiller	Unitil	41.5%	0%	0.7%	59.3%
High Efficiency Chiller	Eversource (WMECO)	58.8%	0.4%	0.4%	42%
High Efficiency Chiller	CLC	6.3%	0.0%	0%	93.8%
Heat Pump Systems	National Grid	36.2%	0.6%	0%	64.4%
Heat Pump Systems	Eversource (NSTAR)	0%	0%	0%	100
Heat Pump Systems	Unitil	41.5%	0%	0.7%	59.3%
Heat Pump Systems	Eversource (WMECO)	58.8%	0.4%	0.4%	42%
Heat Pump Systems	CLC	41.5%	0.0%	0.7%	59.3%
Unitary Air Conditioners	National Grid	36.2%	0.6%	0%	64.4%
Unitary Air Conditioners	Eversource (NSTAR)	0%	0%	0%	100
Unitary Air Conditioners	Unitil	41.5%	0%	0.7%	59.3%
Unitary Air Conditioners	Eversource (WMECO)	58.8%	0.4%	0.4%	42%

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 397 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG
C&I New Buildings & Major Renovat	tions and C&I Initial Purc	hase & E	nd of Usef	ul Life	
Unitary Air Conditioners	CLC	41.5%	0%	0.7%	59.30%
High Efficiency Air Compressor	National Grid	46.4%	0%	4.6%	58.2%
High Efficiency Air Compressor	Eversource (NSTAR)	46.3%	9.6%	0%	63.3%
High Efficiency Air Compressor	Unitil	37.2%	3.3%	1.3%	67.4%
High Efficiency Air Compressor	Eversource (WMECO)	13.3%	5.8%	0%	92.5%
High Efficiency Air Compressor	CLC	37.2%	3.3%	1.3%	67.4%
Refrigerated Air Dryers	National Grid	46.4%	0%	4.6%	58.2%
Refrigerated Air Dryers	Eversource (NSTAR)	46.3%	9.6%	0%	63.3%
Refrigerated Air Dryers	Unitil	37.2%	3.3%	1.3%	67.4%
Refrigerated Air Dryers	Eversource (WMECO)	13.3%	5.8%	0%	92.5%
Refrigerated Air Dryers	CLC	37.2%	3.3%	1.3%	67.4%
Variable Frequency Drives	National Grid	41.5%	0%	0%	58.5%
Variable Frequency Drives	Eversource (NSTAR)	13.7%	0%	27.2%	113.5%
Variable Frequency Drives	Unitil	41.5%	0.0%	0.0%	58.5%
Variable Frequency Drives	Eversource (WMECO)	9.8%	0%	27.2%	117.4%
Variable Frequency Drives	CLC	41.5%	0.0%	0.0%	58.5%
Commercial Electric Ovens	All	0%	0%	0%	100%
Commercial Electric Steam Cooker	All	0%	0%	0%	100%
Commercial Electric Griddle	All	0%	0%	0%	100%
Commercial Dishwashers	All	0%	0%	0%	100%
Commercial Ice Machines	All	0%	0%	0%	100%
Commercial Fryers	All	0%	0%	0%	100%
Food Holding Cabinets	All	0%	0%	0%	100%
Custom	National Grid	22.9%	34.6%	0%	111.7%
Custom	Unitil	22.9%	34.6%	0%	111.7%
Custom	CLC	22.9%	34.6%	0%	111.7%
Custom - Compressed Air	Eversource (NSTAR)	46.3%	9.6%	0%	63.3%
Custom - Compressed Air	Eversource (WMECO)	13.3%	5.8%	0%	92.5%
Custom - HVAC	Eversource (NSTAR)	37.6%	0%	0.8%	63.2%
Custom - HVAC	Eversource (WMECO)	58.8%	0.4%	0.4%	42%
Custom - HVAC	CLC	41.5%	0%	0.7%	59.3%
Custom - Lighting	Eversource (NSTAR)	41.6%	12.5%	0%	70.9%
Custom - Lighting	Eversource (WMECO)	32%	0%	2.0%	70%
Custom - Lighting	CLC	35%	14.8%	0%	79.9%
Custom - Motors	Eversource (NSTAR)	13.7%	0%	27.2%	113.5%
Custom - Motors	Eversource (WMECO)	9.8%	0%	27.2%	117.4%
Custom - Process	Eversource (WMECO)	17.4%	0%	0%	82.6%
Custom - Process Equipment	Eversource (NSTAR)	17.4%	0%	0%	82.6%
Custom - Refrigeration	Eversource (NSTAR)	6.3%	0%	0%	93.7%
Custom - Refrigeration	Eversource (WMECO)	6.3%	0%	0%	93.7%
Custom – Refrigeration	CLC	6.3%	0%	0%	93.8%
Custom - Food Services (Ovens, Cookers, etc)	Eversource (NSTAR)	0%	0%	0%	100%
Custom - Food Services (Ovens, Cookers, etc)	Eversource (WMECO)	0%	0%	0%	100%

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Page 398 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG
C&I Exis	ting Building Retrofit				
Lighting Controls	National Grid	14.8%	11.1%	0%	96.3%
Lighting Controls	Eversource (NSTAR)	9.9%	11.8%	0%	101.9%
Lighting Controls	Unitil	14.1%	11.3%	0%	97.2%
Lighting Controls	Eversource (WMECO)	43.2%	4.9%	0%	61.7%
Lighting Controls	CLC	14.1%	11.3%	0%	97.2%
Lighting Systems	National Grid	14.8%	11.1%	0%	96.3%
Lighting Systems	Eversource (NSTAR)	9.9%	11.8%	0%	101.9%
Lighting Systems	Unitil	14.1%	11.3%	0%	97.2%
Lighting Systems	Eversource (WMECO)	43.2%	4.9%	0%	61.7%
Lighting Systems	CLC	14.1%	11.3%	0%	97.2%
Vending Machine and Cooler Controls (Lighting)	Eversource (NSTAR)	10.5%	0%	0%	89.5%
Energy Management System	National Grid	37.7%	23.9%	0%	86.2%
Energy Management System	Eversource (NSTAR)	13.3%	8.7%	0%	95.4%
Energy Management System	Unitil	14.7%	8.8%	0%	94%
Energy Management System	Eversource (WMECO)	14.7%	8.8%	0%	94.1%
Energy Management System	CLC	14.7%	8.8%	0%	94.0%
LEDs in Freezers/Coolers	CLC	13%	0%	0%	87%
Vending Misers	National Grid	37.7%	23.9%	0%	86.2%
Vending Misers	Unitil	13%	0%	0%	87%
Vending Misers	Eversource (WMECO)	13%	0%	0%	87%
Vending Misers	Eversource (NSTAR)	10.5%	0%	0%	89.5%
Vending Misers	CLC	13%	0%	0%	87%
Variable Frequency Drives	National Grid	6.8%	0%	0%	93.2%
Variable Frequency Drives	Eversource (NSTAR)	12.5%	3.6%	23.6%	114.7%
Variable Frequency Drives	Unitil	6.8%	0%	0%	93.2%
Variable Frequency Drives	Eversource (WMECO)	45%	7.1%	20.1%	82.2%
Variable Frequency Drives	CLC	6.8%	0%	0%	93.2%
Custom	National Grid	3.9%	0.7%	0%	96.8%
Custom	Unitil	3.9%	0.7%	0%	96.8%
Custom	CLC	3.9%	0.7%	0%	96.8%
Custom - Compressed Air	Eversource (NSTAR)	16.1%	0%	4.6%	88.5%
Custom – Compressed Air	Eversource (WMECO)	16.1%	0%	4.6%	88.5%
Custom - HVAC	Eversource (NSTAR)	13.3%	8.7%	0%	95.4%
Custom – HVAC	Eversource (WMECO)	14.7%	8.8%	0%	94.1%
Custom - HVAC	CLC	14.7%	8.8%	0%	94.1%
Custom - Lighting	Eversource (NSTAR)	9.9%	11.8%	0%	101.9%
Custom - Lighting	Eversource (WMECO)	43.2%	4.9%	0%	61.7%
Custom - Lighting	CLC	14.1%	11.3%	0%	97.2%
Custom – Motors	Eversource (NSTAR)	12.5%	3.6%	23.6%	114.7%
Custom – Motors	Eversource (WMECO)	45%	7.1%	20.1%	82.2%
Custom - Process	Eversource (NSTAR)	1.7%	3.6%	0%	101.9%
Custom – Process	Eversource (WMECO)	2.2%	3.1%	0%	100.9%
Custom – Refrigeration	Eversource (NSTAR)	10.5%	0%	0%	89.5%
Custom – Refrigeration	Eversource (WMECO)	13%	0%	0%	87%
Custom – Refrigeration	CLC	13%	0%	0%	127%
Custom – CHP	Eversource (NSTAR)	0.7%	0%	0%	99.3%

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Page 399 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG
Custom – CHP	Eversource (WMECO)	0.7%	0%	0%	99.3%
Custom – CHP	CLC	0.7%	0%	0%	99.3%
C&I	Small Business				
Lighting Controls	National Grid	7.4%	1.8%	0.2%	94.6%
Lighting Controls	Eversource (NSTAR)	4.4%	6.1%	0%	101.7%
Lighting Controls	Unitil	8.7%	1.6%	0.4%	93.3%
Lighting Controls	Eversource (WMECO)	5.1%	14.6%	0%	109.5%
Lighting Controls	CLC	7.3%	12.0%	0%	104.8%
Lighting Systems	National Grid	7.4%	1.8%	0.2%	94.6%
Lighting Systems	Eversource (NSTAR)	4.4%	6.1%	0%	101.7%
Lighting Systems	Unitil	8.7%	1.6%	0.4%	93.3%
Lighting Systems	Eversource (WMECO)	5.1%	14.6%	0%	109.5%
Lighting Systems	CLC	7.3%	12.0%	0%	104.8%
Energy Management Systems (EMS)	CLC	3.3%	4.3%	0%	101%
Hotel Occupancy Sensors	CLC	7.3%	12.0%	0%	104.8%
Programmable Thermostats	National Grid	2.5%	7.2%	0%	104.7%
Programmable Thermostats	Eversource (NSTAR)	1.5%	5.8%	0%	104.3%
Programmable Thermostats	Unitil	3.3%	4.3%	0%	101%
Programmable Thermostats	CLC	3.3%	4.3%	0%	101%
Case Motor Replacement	National Grid	2.5%	7.2%	0%	104.7%
Case Motor Replacement	Eversource (NSTAR)	12.1%	0%	0%	87.9%
Case Motor Replacement	Unitil	12.2%	2.7%	0%	90.5%
Case Motor Replacement	Eversource (WMECO)	9.9%	15.1%	0%	105.2%
Case Motor Replacement	CLC	9.0%	0.7%	26.5%	118.3%
Cooler Night Covers	National Grid	2.5%	7.2%	0%	104.7%
Cooler Night Covers	Eversource (NSTAR)	12.1%	0%	0%	87.9%
Cooler Night Covers	Unitil	12.2%	2.7%	0%	90.5%
Cooler Night Covers	Eversource (WMECO)	9.9%	15.1%	0%	105.2%
Cooler Night Covers	CLC	20.3%	5.1%	0%	84.9%
Cooler/Freezer Door Heater Control	National Grid	2.5%	7.2%	0%	104.7%
Cooler/Freezer Door Heater Control	Eversource (NSTAR)	12.1%	0%	0%	87.9%
Cooler/Freezer Door Heater Control	Unitil	12.2%	2.7%	0%	90.5%
Cooler/Freezer Door Heater Control	Eversource (WMECO)	9.9%	15.1%	0%	105.2%
Cooler/Freezer Door Heater Control	CLC	20.3%	5.1%	0%	84.9%
Cooler/Freezer Evaporator Fan Controls	National Grid	2.5%	7.2%	0%	104.7%
Cooler/Freezer Evaporator Fan Controls	Eversource (NSTAR)	12.1%	0%	0%	87.9%
Cooler/Freezer Evaporator Fan Controls	Unitil	12.2%	2.7%	0%	90.5%
Cooler/Freezer Evaporator Fan Controls	Eversource (WMECO)	9.9%	15.1%	0%	105.2%
Cooler/Freezer Evaporator Fan Controls	CLC	20.3%	5.1%	0%	84.9%
ECM for Evaporator Fans in Walk-in Coolers and	National Grid	2.5%	7.2%	0%	104.7%
Freezers					
ECM for Evaporator Fans in Walk-in Coolers and	Eversource (NSTAR)	12.1%	0%	0%	87.9%
Freezers ECM for Evaporator Eans in Walls in Coolers and	Unitil	10 00/	2 70/	00/	00.50/
ECIVITION EVAPORATOR FAILS IN WAIK-IN COOLERS and Freezers	Unitit	12.270	2./%	0%	90.3%
ECM for Evaporator Fans in Walk-in Coolers and	Eversource (WMECO)	9.9%	15.1%	0%	105.2%
Freezers		2.270	10.170	0,0	100.270

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 400 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG
ECM for Evaporator Fans in Walk-in Coolers and	CLC	20.3%	5.1%	0%	84.9%
Freezers					
Electronic Defrost Control	National Grid	2.5%	7.2%	0%	104.7%
Electronic Defrost Control	Eversource (NSTAR)	12.1%	0%	0%	87.9%
Electronic Defrost Control	Unitil	12.2%	2.7%	0%	90.5%
Electronic Defrost Control	Eversource (WMECO)	9.9%	15.1%	0%	105.2%
Electronic Defrost Control	CLC	20.3%	5.1%	0%	84.9%
LEDs in Freezers/Coolers	National Grid	7.4%	1.8%	0.2%	94.6%
LEDs in Freezers/Coolers	Eversource (NSTAR)	12.1%	0%	0%	87.9%
LEDs in Freezers/Coolers	Unitil	8.7%	1.6%	0.4%	93.3%
LEDs in Freezers/Coolers	Eversource (WMECO)	9.9%	15.1%	0%	105.2%
LEDs in Freezers/Coolers	CLC	7.3%	12.0%	0%	104.8%
Novelty Cooler Shutoff	National Grid	2.5%	7.2%	0%	104.7%
Novelty Cooler Shutoff	Eversource (NSTAR)	12.1%	0%	0%	87.9%
Novelty Cooler Shutoff	Unitil	12.2%	2.7%	0%	90.5%
Novelty Cooler Shutoff	Eversource (WMECO)	9.9%	15.1%	0%	105.2%
Novelty Cooler Shutoff	CLC	20.3%	5.1%	0%	84.9%
Vending Misers	CLC	20.3%	5.1%	0%	84.9%
Variable Frequency Drives	CLC	5.8%	2.70%	24.6%	121.4%
Variable Frequency Drives	Eversource (NSTAR)	10.1%	0%	27.2%	117.1%
Variable Frequency Drives	Eversource (WMECO)	9%	0.7%	26.5%	118.2%
Hot Water	Eversource (NSTAR)	11.3%	0%	0%	88.7%
Hot Water	Eversource (WMECO)	11.3%	0%	0%	88.7%
Process	Eversource (NSTAR)	21.8%	0%	0%	78.2%
Process	Eversource (WMECO)	21.8%	0%	0%	78.2%
Custom - HVAC	CLC	3.3%	4.3%	0%	101%
Custom – Building Envelope	CLC	25.0%	0%	0%	75%
Custom - Lighting	CLC	7.3%	12.0%	0%	104.8%
Custom – Motors	CLC	5.8%	2.70%	24.6%	121.4%
Custom – Refrigeration	CLC	20.3%	5.1%	0%	84.9%
Custom – Hot Water	CLC	11.3%	0%	0%	88.7%
C&I N	Iultifamily Retrofit		L	L	
HVAC - Multifamily	National Grid	3%	7%	0%	105%
Hot Water - Multifamily	National Grid	3%	7%	0%	105%
Lighting - Multifamily	National Grid	18%	0%	0%	82%
HVAC Custom- Multifamily	National Grid	3.9%	0.7%	0%	96.8%
Hot Water Custom- Multifamily	National Grid	3.9%	0.7%	0%	96.8%
Lighting Custom- Multifamily	National Grid	3.9%	0.7%	0%	96.8%
HVAC - Multifamily	Eversource (NSTAR)	13.3%	8.7%	0%	95.4%
Hot Water - Multifamily	Eversource (NSTAR)	11.3%	0%	0%	88.7%
Lighting - Multifamily	Eversource (NSTAR)	18%	0%	0%	82%
HVAC Custom- Multifamily	Eversource (NSTAR)	13.3%	8.7%	0%	95.4%
Hot Water Custom- Multifamily	Eversource (NSTAR)	11.3%	0%	0%	88 7%
Lighting Custom- Multifamily	Eversource (NSTAR)	9.0%	11.8%	0%	102%
HVAC Custom- Multifamily	Eversource (WMECO)	J.J/U	11.070	070	102/0
Hot Water Custom- Multifemily	Eversource (WMECO)				
Lighting Custom Multifemily	Eversource (WMECO)				
	Eversource (WIMECO)				

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Massachusetts Technical Reference Manual Exhibit 1, Appendix V Page 401 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG		
HVAC - Multifamily	Unitil	3.9%	0.7%	0%	96.8%		
Hot Water - Multifamily	Unitil	3.9%	0.7%	0%	96.8%		
Lighting - Multifamily	Unitil	18%	0%	0%	82%		
HVAC Custom- Multifamily	Unitil	3.9%	0.7%	0%	96.8%		
Hot Water Custom- Multifamily	Unitil	3.9%	0.7%	0%	96.8%		
Lighting Custom- Multifamily	Unitil	3.9%	0.7%	0%	96.8%		
HVAC Custom- Multifamily	CLC	14.7%	8.8%	0%	94.1%		
Hot Water Custom- Multifamily	CLC	11.3%	0%	0%	88.7%		
Lighting Custom- Multifamily	CLC	14.1%	11.3%	0%	97.2%		
C&I U	pstream Lighting 2016						
Upstream LED Linear	All	10.0%	10.0%	0.0%	100.0%		
Upstream LED Screw In	All	21.0%	63.0%	1.0%	143.0%		
Upstream Fluorescent	All	26.0%	0.0%	0.0%	74.0%		
C&I U	pstream Lighting 2017						
Upstream LED Linear	All	15.0%	10.0%	0.0%	95.0%		
Upstream LED Screw In	All	26.0%	58.0%	1.0%	133.0%		
Upstream Fluorescent	All	36.0%	0.0%	0.0%	64.0%		
C&I Upstream Lighting 2018							
Upstream LED Linear	All	20%	10.0%	0.0%	90.0%		
Upstream LED Screw In	All	31.0%	53.0%	1.0%	123.0%		

EVALUATIONS

All factors except for Upstream Lighting are from the National Grid, NSTAR, Western Massachusetts Electric Company, Unitil, and Cape Light Compact 2013 Commercial and Industrial Electric Programs Free-ridership and Spillover Study.⁷⁶⁶ Upstream LED Linear are MA Common Assumptions. Upstream LED Fluorescent comes from the Upstream Lighting Process evaluation completed in 2013⁷⁶⁷ Upstream LED Screw in comes from the C&I LED Spillover study⁷⁶⁸.

⁷⁶⁶ TetraTech (2015). National Grid, Eversource (NSTAR), Western Massachusetts Electric Company, Unitil, and Cape Light Compact 2013 Commercial and Industrial Electric Programs Free-ridership and Spillover Study. February 17, 2015 ⁷⁶⁷ KEMA (2013). *Process Evaluation of the 2012 Bright Opportunities Program*. MA LCIEC Project 17.

⁷⁶⁸ DNV-GL (2015). Final report of Massachusetts LED Spillover Analysis.

Commercial Natural Gas Measures									
Measure	PA	FR	SOP	SO _{NP}	NTG				
C&I New Buildings & Major Renovations and C&I Initial Purchase & End of Useful Life									
Furnace w/ECM	National Grid	30.1%	14.7%	0.0%	84.6%				
Furnace w/ECM	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%				
Furnace w/ECM	Columbia	29.3%	0.1%	0.4%	71.2%				
Furnace w/ECM	Berkshire	43.7%	5.0%	0.0%	61.3%				
Furnace w/ECM	Liberty	57.6%	11.6%	0.0%	54.0%				
Furnace w/ECM	Unitil	32.4%	7.6%	0.6%	75.8%				
Condensing Boiler	National Grid	30.1%	14.7%	0.0%	84.6%				
Condensing Boiler	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%				
Condensing Boiler	Columbia	29.3%	0.1%	0.4%	71.2%				
Condensing Boiler	Berkshire	43.7%	5.0%	0.0%	61.3%				
Condensing Boiler	Liberty	57.6%	11.6%	0.0%	54.0%				
Condensing Boiler	Unitil	32.4%	7.6%	0.6%	75.8%				
Condensing Unit Heater <= 300 mbh	National Grid	30.1%	14.7%	0.0%	84.6%				
Condensing Unit Heater <= 300 mbh	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%				
Condensing Unit Heater <= 300 mbh	Columbia	29.3%	0.1%	0.4%	71.2%				
Condensing Unit Heater <= 300 mbh	Berkshire	43.7%	5.0%	0.0%	61.3%				
Condensing Unit Heater <= 300 mbh	Liberty	57.6%	11.6%	0.0%	54.0%				
Condensing Unit Heater <= 300 mbh	Unitil	32.4%	7.6%	0.6%	75.8%				
Infrared Heaters	National Grid	30.1%	14.7%	0.0%	84.6%				
Infrared Heaters	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%				
Infrared Heaters	Columbia	29.3%	0.1%	0.4%	71.2%				
Infrared Heaters	Berkshire	43.7%	5.0%	0.0%	61.3%				
Infrared Heaters	Liberty	57.6%	11.6%	0.0%	54.0%				
Infrared Heaters	Unitil	32.4%	7.6%	0.6%	75.8%				
Combo Condensing Boiler/Water Heater	National Grid	30.1%	14.7%	0.0%	84.6%				
Combo Condensing Boiler/Water Heater	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%				
Combo Condensing Boiler/Water Heater	Columbia	29.3%	0.1%	0.4%	71.2%				
Combo Condensing Boiler/Water Heater	Berkshire	43.7%	5.0%	0.0%	61.3%				
Combo Condensing Boiler/Water Heater	Liberty	57.6%	11.6%	0.0%	54.0%				
Combo Condensing Boiler/Water Heater	Unitil	32.4%	7.6%	0.6%	75.8%				
Combination Oven	National Grid	30.1%	14.7%	0.0%	84.6%				
Combination Oven	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%				
Combination Oven	Columbia	29.3%	0.1%	0.4%	71.2%				
Combination Oven	Berkshire	43.7%	5.0%	0.0%	61.3%				
Combination Oven	Liberty	57.6%	11.6%	0.0%	54.0%				
Combination Oven	Unitil	32.4%	7.6%	0.6%	75.8%				
Convection Oven	National Grid	30.1%	14.7%	0.0%	84.6%				
Convection Oven	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%				
Convection Oven	Columbia	29.3%	0.1%	0.4%	71.2%				
Convection Oven	Berkshire	43.7%	5.0%	0.0%	61.3%				

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 403 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG
Convection Oven	Liberty	57.6%	11.6%	0.0%	54.0%
Convection Oven	Unitil	32.4%	7.6%	0.6%	75.8%
Conveyer Oven	National Grid	30.1%	14.7%	0.0%	84.6%
Conveyer Oven	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Conveyer Oven	Columbia	29.3%	0.1%	0.4%	71.2%
Conveyer Oven	Berkshire	43.7%	5.0%	0.0%	61.3%
Conveyer Oven	Liberty	57.6%	11.6%	0.0%	54.0%
Conveyer Oven	Unitil	32.4%	7.6%	0.6%	75.8%
Rack Oven	National Grid	30.1%	14.7%	0.0%	84.6%
Rack Oven	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Rack Oven	Columbia	29.3%	0.1%	0.4%	71.2%
Rack Oven	Berkshire	43.7%	5.0%	0.0%	61.3%
Rack Oven	Liberty	57.6%	11.6%	0.0%	54.0%
Rack Oven	Unitil	32.4%	7.6%	0.6%	75.8%
Griddle	National Grid	30.1%	14.7%	0.0%	84.6%
Griddle	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Griddle	Columbia	29.3%	0.1%	0.4%	71.2%
Griddle	Berkshire	43.7%	5.0%	0.0%	61.3%
Griddle	Liberty	57.6%	11.6%	0.0%	54.0%
Griddle	Unitil	32.4%	7.6%	0.6%	75.8%
Fryer	National Grid	30.1%	14.7%	0.0%	84.6%
Fryer	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Fryer	Columbia	29.3%	0.1%	0.4%	71.2%
Fryer	Berkshire	43.7%	5.0%	0.0%	61.3%
Fryer	Liberty	57.6%	11.6%	0.0%	54.0%
Fryer	Unitil	32.4%	7.6%	0.6%	75.8%
Steamer	National Grid	30.1%	14.7%	0.0%	84.6%
Steamer	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Steamer	Columbia	29.3%	0.1%	0.4%	71.2%
Steamer	Berkshire	43.7%	5.0%	0.0%	61.3%
Steamer	Liberty	57.6%	11.6%	0.0%	54.0%
Steamer	Unitil	32.4%	7.6%	0.6%	75.8%
Custom	National Grid	11.0%	2.6%	0.3%	91.9%
Custom	Eversource (NSTAR)	20.6%	2.4%	1.0%	82.8%
Custom	Columbia	19.0%	5.2%	0.0%	86.2%
Custom	Berkshire	5.3%	3.4%	0.5%	98.6%
Custom	Liberty	15.7%	29.1%	0.0%	113.4%
Custom	Unitil	15.7%	3.4%	0.5%	88.2%

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 404 of 435

C&I Existing Building Retrofit and C&I Small Business 0.0% 84.6% Boiler Reset Control National Grid 30.1% 14.7% 0.0% 84.6% Boiler Reset Control Columbia 29.3% 0.1% 0.4% 71.2% Boiler Reset Control Berkshire 43.7% 5.0% 0.0% 61.3% Boiler Reset Control Liberty 57.6% 11.6% 0.0% 84.6% Programmable Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Programmable Thermostat Columbia 29.3% 0.1% 64.9% 75.8% Programmable Thermostat Columbia 29.3% 0.1% 64.9% 71.2% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 55.8% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 61.3% Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1	Measure	PA	FR	SOp	SONP	NTG
Boiler Reset Control National Grid 30.1% 14.7% 0.0% 84.6% Boiler Reset Control Eversource (NSTAR) 35.2% 2.8% 0.3% 68.1% Boiler Reset Control Columbia 29.3% 0.1% 0.4% 71.2% Boiler Reset Control Liberty 57.6% 11.6% 0.0% 54.0% Boiler Reset Control Liberty 57.6% 11.6% 0.0% 54.0% Programmable Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Programmable Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Wi-Fi Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Wi-Fi Thermostat Liberty 57.6% 11.6%<	C&I Existing Building	g Retrofit and C&I Small	Business			
Boiler Reset Control Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Boiler Reset Control Columbia 29.3% 0.1% 0.4% 71.2% Boiler Reset Control Liberty 57.6% 11.6% 0.0% 54.0% Boiler Reset Control Unitil 32.4% 7.6% 0.6% 75.8% Programmable Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Programmable Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 84.6% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Wi-Fi Thermostat Columbia 29.3% 0.1% 4.4% 7.2% Wi-Fi Thermostat Berkshire 43.7% 5.0% 0.0% 61.3% Wi-Fi Thermostat Unitil 32.4% 7.6% 0	Boiler Reset Control	National Grid	30.1%	14.7%	0.0%	84.6%
Boiler Reset Control Columbia 29.3% 0.1% 0.4% 71.2% Boiler Reset Control Berkshire 43.7% 5.0% 0.0% 61.3% Boiler Reset Control Unitil 32.4% 7.6% 11.6% 0.0% 84.0% Boiler Reset Control Unitil 32.4% 7.6% 0.6% 87.8% Programmable Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Programmable Thermostat Berkshire 43.7% 5.0% 0.0% 61.3% Programmable Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 81.5% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 61.3% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 56.0% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 57.8% Duct Insulation National Grid 30.1% 14.7%	Boiler Reset Control	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Boiler Reset Control Berkshire 43,7% 5.0% 0.0% 61.3% Boiler Reset Control Liberty 57.6% 11.6% 0.0% 54.0% Boiler Reset Control Unitil 32.4% 7.6% 0.6% 75.8% Programmable Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Programmable Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Programmable Thermostat Elerkshire 43.7% 5.0% 0.0% 54.0% Programmable Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Wi-Fi Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Liberty 5.0% 0.0% 61.3% Wi-Fi Thermostat Liberty 5.0% 0.0% 61.3% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.0%	Boiler Reset Control	Columbia	29.3%	0.1%	0.4%	71.2%
Boiler Reset Control Liberty 57.6% 11.6% 0.0% 54.0% Boiler Reset Control Unitil 32.4% 7.6% 0.6% 75.8% Programmable Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Programmable Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 63.7% Programmable Thermostat Unitil 32.4% 7.6% 0.0% 64.3% Wi-Fi Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation National Grid 30.1% 14.7% 0.0% 64.6% Duct Insulation Columbia 29.3% 0.1% 0	Boiler Reset Control	Berkshire	43.7%	5.0%	0.0%	61.3%
Boiler Reset Control Unitit 32.4% 7.6% 0.6% 7.5.8% Programmable Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Programmable Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Programmable Thermostat Columbia 29.3% 0.1% 0.4% 7.12% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Programmable Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 5.0% 0.0% 5.0% 0.0% 6.3% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Columbia 29.3% 0.1% 0.6% 75.8% D	Boiler Reset Control	Liberty	57.6%	11.6%	0.0%	54.0%
Programmable Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Programmable Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Programmable Thermostat Berkshire 43.7% 5.0% 0.1% 4.7.2% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Programmable Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.0% 84.6% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Columbia 29.3% 0.1% 0.6% 75.8% Duct Insulation Columbia 29.3% 0.1% 0.4%	Boiler Reset Control	Unitil	32.4%	7.6%	0.6%	75.8%
Programmable Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Programmable Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 61.3% Programmable Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Wi-Fi Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Berkshire 43.7% 5.0% 0.0% 64.3% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation National Grid 30.1% 14.7% 0.0% 64.0% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Unitil 32.4% 7.6% 0.6%	Programmable Thermostat	National Grid	30.1%	14.7%	0.0%	84.6%
Programmable Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Programmable Thermostat Berkshire 43.7% 5.0% 0.0% 61.3% Programmable Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Programmable Thermostat Unitil 32.4% 7.6% 0.0% 58.4% Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.0% 54.0% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Unitil 32.4% 7.6% 0.6% 78.8% Duct Insulation Unitil 32.4% 7.6% 0.6%	Programmable Thermostat	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Programmable Thermostat Berkshire 43,7% 5,0% 0,0% 61.3% Programmable Thermostat Liberty 57,6% 11.6% 0.0% 54.0% Programmable Thermostat Unitil 32,4% 7,6% 0.0% 54.0% Wi-Fi Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Berkshire 43,7% 5.0% 0.0% 61.3% Wi-Fi Thermostat Liberty 57,6% 11.6% 0.0% 54.0% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Liberty 57.6% 11.6% 0.0% 61.3% Duct Insulation Liberty 57.6% 11.6% 0.0% <td< td=""><td>Programmable Thermostat</td><td>Columbia</td><td>29.3%</td><td>0.1%</td><td>0.4%</td><td>71.2%</td></td<>	Programmable Thermostat	Columbia	29.3%	0.1%	0.4%	71.2%
Programmable Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Programmable Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Wi-Fi Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Wi-Fi Thermostat Columbia 23.9% 0.1% 0.4% 71.2% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Liberty 57.6% 0.1% 54.0% 0.6% 75.8% Duct Insulation Liberty 57.6% 11.6%	Programmable Thermostat	Berkshire	43.7%	5.0%	0.0%	61.3%
Programmable Thermostat Unitil 32 4% 7.6% 0.6% 75.8% Wi-Fi Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Edekshire 43.7% 5.0% 0.0% 61.3% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.0% 54.0% Duct Insulation National Grid 30.1% 14.7% 0.0% 68.1% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Liberty 57.6% 11.6% 0.0% 68.1% Duct Insulation Liberty 57.6% 11.6% 0.0% 61.3% Duct Insulation Liberty 57.6% 11.6% 0.0% 68.1% Duct Sealing National Grid 30.1% 14.7% 0.0% 68.1%	Programmable Thermostat	Liberty	57.6%	11.6%	0.0%	54.0%
Wi-Fi Thermostat National Grid 30.1% 14.7% 0.0% 84.6% Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 64.3% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Liberty 57.6% 11.6% 0.0% 64.3% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 64.3% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% <	Programmable Thermostat	Unitil	32.4%	7.6%	0.6%	75.8%
Wi-Fi Thermostat Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Berkshire 43.7% 5.0% 0.0% 61.3% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Liberty 57.6% 11.6% 0.0% 64.3% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 64.0% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2%	Wi-Fi Thermostat	National Grid	30.1%	14.7%	0.0%	84.6%
Wi-Fi Thermostat Columbia 29.3% 0.1% 0.4% 71.2% Wi-Fi Thermostat Berkshire 43.7% 5.0% 0.0% 61.3% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Liberty 57.6% 11.6% 0.0% 64.0% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% D	Wi-Fi Thermostat	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Wi-Fi Thermostat Berkshire 43.7% 5.0% 0.0% 61.3% Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Columbia 29.3% 0.1% 68.1% 76.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6%	Wi-Fi Thermostat	Columbia	29.3%	0.1%	0.4%	71.2%
Wi-Fi Thermostat Liberty 57.6% 11.6% 0.0% 54.0% Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Berkshire 43.7% 5.0% 0.0% 61.3% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Isulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Fau	Wi-Fi Thermostat	Berkshire	43.7%	5.0%	0.0%	61.3%
Wi-Fi Thermostat Unitil 32.4% 7.6% 0.6% 75.8% Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Berkshire 43.7% 5.0% 0.0% 61.3% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet	Wi-Fi Thermostat	Liberty	57.6%	11.6%	0.0%	54.0%
Duct Insulation National Grid 30.1% 14.7% 0.0% 84.6% Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Berkshire 43.7% 5.0% 0.0% 61.3% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6%	Wi-Fi Thermostat	Unitil	32.4%	7.6%	0.6%	75.8%
Duct Insulation Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Berkshire 43.7% 5.0% 0.0% 61.3% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Ae	Duct Insulation	National Grid	30.1%	14 7%	0.0%	84.6%
Duct Insulation Columbia 29.3% 0.1% 0.4% 71.2% Duct Insulation Berkshire 43.7% 5.0% 0.0% 61.3% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet A	Duct Insulation	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Duct Insulation Berkshire 43.7% 5.0% 0.0% 61.3% Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Duct Sealing Duct Sealing 0.1% 0.4% 71.2% Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Columbia 29.3% 0.1% 0.4% 71.2% <t< td=""><td>Duct Insulation</td><td>Columbia</td><td>29.3%</td><td>0.1%</td><td>0.3%</td><td>71.2%</td></t<>	Duct Insulation	Columbia	29.3%	0.1%	0.3%	71.2%
Duct Insulation Liberty 57.6% 11.6% 0.0% 54.0% Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Liberty 57.6% 11.6% 0.0% 64.1% Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Unitil 32.4% 7.6% 0.6% 75.8% Low-F	Duct Insulation	Berkshire	43.7%	5.0%	0.0%	61.3%
Duct Insulation Unitil 32.4% 7.6% 0.6% 75.8% Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Berkshire 43.7% 5.0% 0.0% 61.3% Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.0% 64.3% Duct Sealing Unitil 32.4% 7.6% 0.0% 64.9% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Liberty 57.6% 11.6% 0.0% 64.9% Faucet Aerator Liberty 57.6% 11.6% 0.0% 64.9% Low-F	Duct Insulation	Liberty	57.6%	11.6%	0.0%	54.0%
Duct Sealing National Grid 30.1% 14.7% 0.0% 84.6% Duct Sealing Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Berkshire 43.7% 5.0% 0.0% 61.3% Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Reversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Columbia 29.3% 0.1% 0.4% 71.2% Faucet Aerator Reversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Liberty 57.6% 11.6% 0.0% 54.0% Faucet Aerator Liberty 57.6% 11.6% 0.0% 54.0%	Duct Insulation	Unitil	32.4%	7.6%	0.6%	75.8%
Duct Sealing Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Berkshire 43.7% 5.0% 0.0% 61.3% Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Liberty 57.6% 11.6% 0.0% 54.0% Faucet Aerator Unitil 32.4% 7.6% 0.6% 75.8% <td>Duct Sealing</td> <td>National Grid</td> <td>30.1%</td> <td>14.7%</td> <td>0.0%</td> <td>84.6%</td>	Duct Sealing	National Grid	30.1%	14.7%	0.0%	84.6%
Duct Sealing Columbia 29.3% 0.1% 0.4% 71.2% Duct Sealing Berkshire 43.7% 5.0% 0.0% 61.3% Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Columbia 29.3% 0.1% 0.4% 71.2% Faucet Aerator Columbia 29.3% 0.1% 0.4% 71.2% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Liberty 57.6% 11.6% 0.0% 54.0% Faucet Aerator Liberty 57.6% 11.6% 0.0% 54.0% Low-Flow Showerhead National Grid 30.1% 14.7% 0.0% 84.6%	Duct Sealing	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Duct Sealing Berkshire 43.7% 5.0% 0.0% 61.3% Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Columbia 29.3% 0.1% 0.4% 71.2% Faucet Aerator Berkshire 43.7% 5.0% 0.0% 84.6% Faucet Aerator Liberty 57.6% 11.6% 0.0% 61.3% Faucet Aerator Liberty 57.6% 11.6% 0.0% 64.3% Faucet Aerator Liberty 57.6% 11.6% 0.0% 84.6% Low-Flow Showerhead National Grid 30.1% 14.7% 0.0% 84.6% Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2%	Duct Sealing	Columbia	29.3%	0.1%	0.4%	71.2%
Duct Sealing Liberty 57.6% 11.6% 0.0% 54.0% Duct Sealing Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Columbia 29.3% 0.1% 0.4% 71.2% Faucet Aerator Berkshire 43.7% 5.0% 0.0% 61.3% Faucet Aerator Liberty 57.6% 11.6% 0.0% 54.0% Faucet Aerator Unitil 32.4% 7.6% 0.6% 75.8% Faucet Aerator Unitil 32.4% 7.6% 0.0% 54.0% Faucet Aerator Unitil 32.4% 7.6% 0.6% 75.8% Low-Flow Showerhead National Grid 30.1% 14.7% 0.0% 84.6% Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2% <t< td=""><td>Duct Sealing</td><td>Berkshire</td><td>43.7%</td><td>5.0%</td><td>0.0%</td><td>61.3%</td></t<>	Duct Sealing	Berkshire	43.7%	5.0%	0.0%	61.3%
Duct SealingUnitil32.4%7.6%0.6%75.8%Faucet AeratorNational Grid30.1%14.7%0.0%84.6%Faucet AeratorEversource (NSTAR)35.2%2.8%0.5%68.1%Faucet AeratorColumbia29.3%0.1%0.4%71.2%Faucet AeratorBerkshire43.7%5.0%0.0%61.3%Faucet AeratorLiberty57.6%11.6%0.0%54.0%Faucet AeratorUnitil32.4%7.6%0.6%75.8%Low-Flow ShowerheadNational Grid30.1%14.7%0.0%84.6%Low-Flow ShowerheadEversource (NSTAR)35.2%2.8%0.5%68.1%Low-Flow ShowerheadColumbia29.3%0.1%0.4%71.2%Low-Flow ShowerheadEversource (NSTAR)35.2%2.8%0.5%68.1%Low-Flow ShowerheadColumbia29.3%0.1%0.4%71.2%Low-Flow ShowerheadEversource (NSTAR)35.2%2.8%0.5%68.1%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Pre-Rinse Spray ValveNational Grid30.1%14.7% <td>Duct Sealing</td> <td>Liberty</td> <td>57.6%</td> <td>11.6%</td> <td>0.0%</td> <td>54.0%</td>	Duct Sealing	Liberty	57.6%	11.6%	0.0%	54.0%
Faucet Aerator National Grid 30.1% 14.7% 0.0% 84.6% Faucet Aerator Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Faucet Aerator Columbia 29.3% 0.1% 0.4% 71.2% Faucet Aerator Berkshire 43.7% 5.0% 0.0% 61.3% Faucet Aerator Liberty 57.6% 11.6% 0.0% 54.0% Faucet Aerator Unitil 32.4% 7.6% 0.6% 75.8% Low-Flow Showerhead National Grid 30.1% 14.7% 0.0% 64.1% Low-Flow Showerhead Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2% Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2% Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2% Low-Flow Showerhead Liberty 35.2% 2.8% 0.5% 68.1% Low-Flow Showerhead Liberty 57.6% 11.6%	Duct Sealing	Unitil	32.4%	7.6%	0.6%	75.8%
Faucet AeratorEversource (NSTAR)35.2%2.8%0.5%68.1%Faucet AeratorColumbia29.3%0.1%0.4%71.2%Faucet AeratorBerkshire43.7%5.0%0.0%61.3%Faucet AeratorLiberty57.6%11.6%0.0%54.0%Faucet AeratorUnitil32.4%7.6%0.6%75.8%Low-Flow ShowerheadNational Grid30.1%14.7%0.0%84.6%Low-Flow ShowerheadColumbia29.3%0.1%0.4%71.2%Low-Flow ShowerheadBerkshire43.7%5.0%0.6%75.8%Low-Flow ShowerheadColumbia29.3%0.1%0.4%71.2%Low-Flow ShowerheadEversource (NSTAR)35.2%2.8%0.5%68.1%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Low-Flow ShowerheadUnitil32.4%7.6%0.6%75.8%Low-Flow ShowerheadUnitil32.4%7.6%0.0%54.0%Low-Flow ShowerheadUnitil32.4%7.6%0.0%54.0%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Low-Flow ShowerheadUnitil32.4%7.6%0.6%75.8%Pre-Rinse Spray ValveNational Grid30.1%14.7%0.0%84.6%Pre-Rinse Spray ValveEversource (NSTAR)35.2%2.8%0.5%68.1%	Faucet Aerator	National Grid	30.1%	14.7%	0.0%	84.6%
Faucet AeratorColumbia29.3%0.1%0.4%71.2%Faucet AeratorBerkshire43.7%5.0%0.0%61.3%Faucet AeratorLiberty57.6%11.6%0.0%54.0%Faucet AeratorUnitil32.4%7.6%0.6%75.8%Low-Flow ShowerheadNational Grid30.1%14.7%0.0%84.6%Low-Flow ShowerheadEversource (NSTAR)35.2%2.8%0.5%68.1%Low-Flow ShowerheadBerkshire43.7%5.0%0.0%61.3%Low-Flow ShowerheadLiberty57.6%11.6%0.0%61.3%Low-Flow ShowerheadLiberty57.6%11.6%0.0%61.3%Low-Flow ShowerheadUnitil29.3%0.1%0.4%71.2%Low-Flow ShowerheadUnitil32.4%7.6%0.6%75.8%Pre-Rinse Spray ValveNational Grid30.1%14.7%0.0%84.6%Pre-Rinse Spray ValveEversource (NSTAR)35.2%2.8%0.5%68.1%	Faucet Aerator	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Faucet AeratorBerkshire43.7%5.0%0.0%61.3%Faucet AeratorLiberty57.6%11.6%0.0%54.0%Faucet AeratorUnitil32.4%7.6%0.6%75.8%Low-Flow ShowerheadNational Grid30.1%14.7%0.0%84.6%Low-Flow ShowerheadEversource (NSTAR)35.2%2.8%0.5%68.1%Low-Flow ShowerheadColumbia29.3%0.1%0.4%71.2%Low-Flow ShowerheadBerkshire43.7%5.0%0.0%61.3%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Pre-Rinse Spray ValveNational Grid30.1%14.7%0.0%84.6%Pre-Rinse Spray ValveEversource (NSTAR)35.2%2.8%0.5%68.1%	Faucet Aerator	Columbia	29.3%	0.1%	0.4%	71.2%
Faucet AeratorLiberty57.6%11.6%0.0%54.0%Faucet AeratorUnitil32.4%7.6%0.6%75.8%Low-Flow ShowerheadNational Grid30.1%14.7%0.0%84.6%Low-Flow ShowerheadEversource (NSTAR)35.2%2.8%0.5%68.1%Low-Flow ShowerheadColumbia29.3%0.1%0.4%71.2%Low-Flow ShowerheadBerkshire43.7%5.0%0.0%61.3%Low-Flow ShowerheadLiberty57.6%11.6%0.0%54.0%Pre-Rinse Spray ValveNational Grid30.1%14.7%0.0%84.6%Pre-Rinse Spray ValveEversource (NSTAR)35.2%2.8%0.5%68.1%	Faucet Aerator	Berkshire	43.7%	5.0%	0.0%	61.3%
Faucet Aerator Unitil 32.4% 7.6% 0.6% 75.8% Low-Flow Showerhead National Grid 30.1% 14.7% 0.0% 84.6% Low-Flow Showerhead Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2% Low-Flow Showerhead Berkshire 43.7% 5.0% 0.0% 61.3% Low-Flow Showerhead Liberty 57.6% 11.6% 0.0% 54.0% Low-Flow Showerhead Unitil 32.4% 7.6% 0.6% 75.8% Pre-Rinse Spray Valve National Grid 30.1% 14.7% 0.0% 84.6% Pre-Rinse Spray Valve Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1%	Faucet Aerator	Liberty	57.6%	11.6%	0.0%	54.0%
Low-Flow Showerhead National Grid 30.1% 14.7% 0.0% 84.6% Low-Flow Showerhead Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2% Low-Flow Showerhead Berkshire 43.7% 5.0% 0.0% 61.3% Low-Flow Showerhead Liberty 57.6% 11.6% 0.0% 54.0% Low-Flow Showerhead Unitil 32.4% 7.6% 0.6% 75.8% Pre-Rinse Spray Valve National Grid 30.1% 14.7% 0.0% 84.6%	Faucet Aerator	Unitil	32.4%	7.6%	0.6%	75.8%
Low-Flow Showerhead Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1% Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2% Low-Flow Showerhead Berkshire 43.7% 5.0% 0.0% 61.3% Low-Flow Showerhead Liberty 57.6% 11.6% 0.0% 54.0% Low-Flow Showerhead Unitil 32.4% 7.6% 0.6% 75.8% Pre-Rinse Spray Valve National Grid 30.1% 14.7% 0.0% 84.6% Pre-Rinse Spray Valve Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1%	Low-Flow Showerhead	National Grid	30.1%	14.7%	0.0%	84.6%
Low-Flow Showerhead Columbia 29.3% 0.1% 0.4% 71.2% Low-Flow Showerhead Berkshire 43.7% 5.0% 0.0% 61.3% Low-Flow Showerhead Liberty 57.6% 11.6% 0.0% 54.0% Low-Flow Showerhead Unitil 32.4% 7.6% 0.6% 75.8% Pre-Rinse Spray Valve National Grid 30.1% 14.7% 0.0% 84.6% Pre-Rinse Spray Valve Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1%	Low-Flow Showerhead	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Low-Flow Showerhead Berkshire 43.7% 5.0% 0.0% 61.3% Low-Flow Showerhead Liberty 57.6% 11.6% 0.0% 54.0% Low-Flow Showerhead Unitil 32.4% 7.6% 0.6% 75.8% Pre-Rinse Spray Valve National Grid 30.1% 14.7% 0.0% 84.6% Pre-Rinse Spray Valve Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1%	Low-Flow Showerhead	Columbia	29.3%	0.1%	0.4%	71.2%
Low-Flow Showerhead Liberty 57.6% 11.6% 0.0% 54.0% Low-Flow Showerhead Unitil 32.4% 7.6% 0.6% 75.8% Pre-Rinse Spray Valve National Grid 30.1% 14.7% 0.0% 84.6% Pre-Rinse Spray Valve Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1%	Low-Flow Showerhead	Berkshire	43.7%	5.0%	0.0%	61.3%
Low-Flow Showerhead Unitil 32.4% 7.6% 0.6% 75.8% Pre-Rinse Spray Valve National Grid 30.1% 14.7% 0.0% 84.6% Pre-Rinse Spray Valve Eversource (NSTAR) 35.2% 2.8% 0.5% 68.1%	Low-Flow Showerhead	Liberty	57.6%	11.6%	0.0%	54.0%
Pre-Rinse Spray ValveNational Grid30.1%14.7%0.0%84.6%Pre-Rinse Spray ValveEversource (NSTAR)35.2%2.8%0.5%68.1%	Low-Flow Showerhead	Unitil	32.4%	7.6%	0.6%	75.8%
Pre-Rinse Spray Valve Eversource (NSTAR) 35 2% 2 8% 0 5% 68 1%	Pre-Rinse Spray Valve	National Grid	30.1%	14.7%	0.0%	84.6%
	Pre-Rinse Spray Valve	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 405 of 435

Measure	PA	FR	SOp	SONP	NTG
Pre-Rinse Spray Valve	Columbia	29.3%	0.1%	0.4%	71.2%
Pre-Rinse Spray Valve	Berkshire	43.7%	5.0%	0.0%	61.3%
Pre-Rinse Spray Valve	Liberty	57.6%	11.6%	0.0%	54.0%
Pre-Rinse Spray Valve	Unitil	32.4%	7.6%	0.6%	75.8%
Steam Traps	National Grid	30.1%	14.7%	0.0%	84.6%
Steam Traps	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Steam Traps	Columbia	29.3%	0.1%	0.4%	71.2%
Steam Traps	Berkshire	43.7%	5.0%	0.0%	61.3%
Steam Traps	Liberty	57.6%	11.6%	0.0%	54.0%
Steam Traps	Unitil	32.4%	7.6%	0.6%	75.8%
Hot Water Pipe Insulation	National Grid	30.1%	14.7%	0.0%	84.6%
Hot Water Pipe Insulation	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Hot Water Pipe Insulation	Columbia	29.3%	0.1%	0.4%	71.2%
Hot Water Pipe Insulation	Berkshire	43.7%	5.0%	0.0%	61.3%
Hot Water Pipe Insulation	Liberty	57.6%	11.6%	0.0%	54.0%
Hot Water Pipe Insulation	Unitil	32.4%	7.6%	0.6%	75.8%
Steam Pipe Insulation	National Grid	30.1%	14.7%	0.0%	84.6%
Steam Pipe Insulation	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Steam Pipe Insulation	Columbia	29.3%	0.1%	0.4%	71.2%
Steam Pipe Insulation	Berkshire	43.7%	5.0%	0.0%	61.3%
Steam Pipe Insulation	Liberty	57.6%	11.6%	0.0%	54.0%
Steam Pipe Insulation	Unitil	32.4%	7.6%	0.6%	75.8%
Custom Measures	National Grid	11.0%	2.6%	0.3%	91.9%
Custom Measures	Eversource (NSTAR)	20.6%	2.4%	1.0%	82.8%
Custom Measures	Columbia	19.0%	5.2%	0.0%	86.2%
Custom Measures	Berkshire	5.3%	3.4%	0.5%	98.6%
Custom Measures	Liberty	15.7%	29.1%	0.0%	113.4%
Custom Measures	Unitil	15.7%	3.4%	0.5%	88.2%
C&I M	Iultifamily Retrofit	1	•		
Building Shell - Custom	National Grid	11%	2.6%	0.3%	91.9%
Building Shell - Custom	Eversource (NSTAR)	20.6%	2.4%	1.0%	82.8%
Building Shell - Custom	Columbia	19.0%	5.2%	0.0%	86.2%
Building Shell - Custom	Berkshire	5.3%	3.4%	0.5%	98.6%
Building Shell - Custom	Liberty	15.7%	3.4%	0.5%	88.3%
Building Shell - Custom	Unitil	15.7%	3.4%	0.5%	88.3%
HVAC - Custom	National Grid	11%	2.6%	0.3%	91.9%
HVAC - Custom	Eversource (NSTAR)	20.6%	2.4%	1.0%	82.8%
HVAC - Custom	Columbia	19.0%	5.2%	0.0%	86.2%
HVAC - Custom	Berkshire	5.3%	3.4%	0.5%	98.6%
HVAC - Custom	Liberty	15.7%	3.4%	0.5%	88.3%
HVAC - Custom	Unitil	15.7%	3.4%	0.5%	88.3%
Heating - Custom	National Grid	11%	2.6%	0.3%	91.9%
Heating - Custom	Eversource (NSTAR)	20.6%	2.4%	1.0%	82.8%
Heating - Custom	Columbia	19.0%	5.2%	0.0%	86.2%
Heating - Custom	Berkshire	5.3%	3.4%	0.5%	98.6%

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 406 of 435

Measure	PA	FR	SOP	SO _{NP}	NTG
Heating - Custom	Liberty	15.7%	29.1%	0.0%	113.4%
Heating - Custom	Unitil	15.7%	3.4%	0.5%	88.3%
Hot Water - Custom	National Grid	11%	2.6%	0.3%	91.9%
Hot Water - Custom	Eversource (NSTAR)	20.6%	2.4%	1.0%	82.8%
Hot Water - Custom	Columbia	19.0%	5.2%	0.0%	86.2%
Hot Water - Custom	Berkshire	5.3%	3.4%	0.5%	98.6%
Hot Water - Custom	Liberty	15.7%	3.4%	0.5%	88.3%
Hot Water - Custom	Unitil	15.7%	3.4%	0.5%	88.3%
Duct Sealing	National Grid	11%	2.6%	0.3%	91.9%
Duct Sealing	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Duct Sealing	Columbia	19.0%	5.2%	0.0%	86.2%
Duct Sealing	Berkshire	43.7%	5.0%	0.0%	61.3%
Duct Sealing	Liberty	57.6%	11.6%	0%	54.0%
Duct Sealing	Unitil	32.4%	7.6%	0.6%	75.8%
Duct Insulation	National Grid	11%	2.6%	0.3%	91.9%
Duct Insulation	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Duct Insulation	Columbia	19.0%	5.2%	0.0%	86.2%
Duct Insulation	Berkshire	43.7%	5.0%	0.0%	61.3%
Duct Insulation	Liberty	57.6%	11.6%	0%	54.0%
Duct Insulation	Unitil	32.4%	7.6%	0.6%	75.8%
Pipe Wrap (Water Heating)	National Grid	30.1%	14.7%	0.0%	84.6%
Pipe Wrap (Water Heating)	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Pipe Wrap (Water Heating)	Columbia	19.0%	5.2%	0.0%	86.2%
Pipe Wrap (Water Heating)	Berkshire	43.7%	5.0%	0.0%	61.3%
Pipe Wrap (Water Heating)	Liberty	57.6%	11.6%	0%	54.0%
Pipe Wrap (Water Heating)	Unitil	32.4%	7.6%	0.6%	75.8%
Pipe Wrap (Heating)	National Grid	30.1%	14.7%	0.0%	84.6%
Pipe Wrap (Heating)	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Pipe Wrap (Heating)	Columbia	19.0%	5.2%	0.0%	86.2%
Pipe Wrap (Heating)	Berkshire	43.7%	5.0%	0.0%	61.3%
Pipe Wrap (Heating)	Liberty	57.6%	11.6%	0%	54.0%
Pipe Wrap (Heating)	Unitil	32.4%	7.6%	0.6%	75.8%
Faucet Aerator	National Grid	30.1%	14.7%	0.0%	84.6%
Faucet Aerator	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Faucet Aerator	Columbia	19.0%	5.2%	0.0%	86.2%
Faucet Aerator	Berkshire	43.7%	5.0%	0.0%	61.3%
Faucet Aerator	Liberty	57.6%	11.6%	0%	54.0%
Faucet Aerator	Unitil	32.4%	7.6%	0.6%	75.8%
Low-Flow Showerhead	National Grid	30.1%	14.7%	0.0%	84.6%
Low-Flow Showerhead	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Low-Flow Showerhead	Columbia	19.0%	5.2%	0.0%	86.2%
Low-Flow Showerhead	Berkshire	43.7%	5.0%	0.0%	61.3%
Low-Flow Showerhead	Liberty	57.6%	11.6%	0%	54.0%
Low-Flow Showerhead	Unitil	32.4%	7.6%	0.6%	75.8%
Programmable Thermostat	National Grid	30.1%	14.7%	0.0%	84.6%

Measure	PA	FR	SOP	SO _{NP}	NTG
Programmable Thermostat	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Programmable Thermostat	Columbia	19.0%	5.2%	0.0%	86.2%
Programmable Thermostat	Berkshire	43.7%	5.0%	0.0%	61.3%
Programmable Thermostat	Liberty	57.6%	11.6%	0%	54.0%
Programmable Thermostat	Unitil	32.4%	7.6%	0.6%	75.8%
Wi-Fi Thermostat	National Grid	30.1%	14.7%	0.0%	84.6%
Wi-Fi Thermostat	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Wi-Fi Thermostat	Columbia	19.0%	5.2%	0.0%	86.2%
Wi-Fi Thermostat	Berkshire	43.7%	5.0%	0.0%	61.3%
Wi-Fi Thermostat	Liberty	57.6%	11.6%	0%	54.0%
Wi-Fi Thermostat	Unitil	32.4%	7.6%	0.6%	75.8%
Demand Circulator	National Grid	30.1%	14.7%	0.0%	84.6%
Demand Circulator	Eversource (NSTAR)	35.2%	2.8%	0.5%	68.1%
Demand Circulator	Columbia	19.0%	5.2%	0.0%	86.2%

D.P.U. 15-160 to D.P.U. 15-169

Sources

For C&I New Buildings & Major Renovations, C&I Initial Purchase & End of Useful Life, C&I Existing Building Retrofit, C&I Small Business and C&I Multifamily Retrofit all Net-to-Gross factors are based on the results of the 2014-2015 Commercial and Industrial Natural Gas Programs Free-ridership and Spillover Study conducted by TetraTech for the MA Gas PAs.⁷⁶⁹ This study developed free-ridership and participant spillover rates for each PA for prescriptive and custom measures. PAs that had fewer than 10 customers surveyed for a program type used the statewide rates.

For C&I Multifamily Retrofit, National Grid, Eversource, Berkshire and Liberty use the Custom NTG values for Custom measures and the Prescriptive NTG values for all other measures. Columbia uses Custom NTG values for all C&I MF Retrofit measures.

⁷⁶⁹ TetraTech (2015). National Grid, Eversource, Unitil, Berkshire Gas, Columbia Gas of MA, and Liberty Utilities 2014-2015 Commercial and Industrial Natural Gas Programs Free-ridership and Spillover Study. August 2015.

Appendix C: Non-Resource Impacts

		Annual	One- time \$	Annual	One- time \$	Annual	One- time \$
	NEL Catagory	\$ per	per Unit	\$ per	per KWb	\$ per Therm	per Therm
	Residential New	Construc	tion	КУУП	IX VV II	1 ner m	1 ner m
CFL Bulb	Lighting Quality and Lifetime		3.00				
LED Bulb	Lighting Quality and Lifetime		3.00				
Heating	Property Value Increase	72.00					
Heating	Thermal Comfort	77.00					
Heating	Noise Reduction	40.00					
Heating (High Rise) - Gas PA only	Property Value Increase	72.00					
Heating (High Rise) - Gas PA only	Thermal Comfort	77.00					
Heating (High Rise) - Gas PA only	Noise Reduction	40.00					
	Residential Multi-	Family R	etrofit	T		r	
Air Sealing	Thermal Comfort	10.13					
Air Sealing	Noise Reduction	4.88					
Air Sealing	Home Durability	3.95					
Air Sealing	Health Benefits	0.32					
Air Sealing	Property Value Increase		135.83				
Insulation	Thermal Comfort	25.15					
Insulation	Noise Reduction	11.54					
Insulation	Home Durability	9.82					
Insulation	Health Benefits	0.80					
Insulation	Property Value Increase		378.05				
Duct Seal	Thermal Comfort	0.16					
Duct Seal	Home Durability	0.06					
Duct Seal	Health Benefits	0.01					
Duct Seal	Property Value Increase		2.51				
Low-Flow Showerhead	Property Value Increase		0.03				
Low-Flow Showerhead with TSV	Property Value Increase		0.03				
Wi-Fi Thermostat	Thermal Comfort	3.99					
Wi-Fi Thermostat	Home Durability	1.33					
Wi-Fi Thermostat	Health Benefits	0.13					
Wi-Fi Thermostat	Property Value Increase		51.49				
Programmable Thermostat	Thermal Comfort	3.99					
Programmable Thermostat	Home Durability	1.33					
Programmable Thermostat	Health Benefits	0.13					
Programmable Thermostat	Property Value Increase		51.49				

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 409 of 435

			One-		One-		One-
		Annual	time \$	Annual	time \$	Annual	time \$
		\$ per	per	\$ per	per	\$ per	per
Refrigerator	NEI Category Property Value Increase	Unit	1 44	ĸwn	KWN	Inerm	Inerm
CEL Dulh	Lighting Quality and Lifetime		2.00				
	Lighting Quality and Lifetime		3.00				
LED Bulb	Lighting Quality and Lifetime		3.00				
Fixtures	Lighting Quality and Lifetime		3.50				
	Residential Home	Energy Se	ervices	[-	[
Air Sealing	Thermal Comfort	10.13					
Air Sealing	Noise Reduction	4.88					
Air Sealing	Home Durability	3.95					
Air Sealing	Health Benefits	0.32					
Air Sealing	Property Value Increase		135.83				
Insulation	Thermal Comfort	25.15					
Insulation	Noise Reduction	11.54					
Insulation	Home Durability	9.82					
Insulation	Health Benefits	0.80					
Insulation	Property Value Increase	0.00	378.05				
Duct Seal	Thermal Comfort	0.16	270.00				
Duct Seal	Home Durability	0.06					
Duct Seal	Health Benefits	0.01					
Duct Seal	Property Value Increase		2.51				
Programmable Thermostat	Thermal Comfort	3.99					
Programmable Thermostat	Home Durability	1.33					
Programmable Thermostat	Health Benefits	0.13					
Programmable Thermostat	Property Value Increase		51.49				
Early Retirement Boiler							
(EE)	Thermal Comfort	24.32					
Early Retirement Boiler	Home Durability	5 75					
Early Retirement Boiler		0.70					
(EE)	Health Benefits	0.78					
Early Retirement Boiler			220.26				
(EE) Farly Retirement Boiler	Property Value Increase		339.26				
(Retire)	Thermal Comfort	24.32					
Early Retirement Boiler							
(Retire)	Home Durability	11.67					
Early Retirement Boiler		0.70					
(Retire) Early Retirement Boiler	Health Benefits	0.78					
(Retire)	Equipment Maintenance	102.40					
Early Retirement Boiler							
(Retire)	Property Value Increase		339.26				
Heating System	Thermal Comfort	24.22					
Replacement	riterillar Connort	24.32		l		l	

		Annual	One- time \$	Annual S por	One- time \$	Annual S por	One- time \$
	NEI Category	Unit	Unit	s per kWh	KWh	s per Therm	Therm
Heating System Replacement	Home Durability	5.75					
Heating System Replacement	Health Benefits	0.78					
Heating System Replacement	Property Value Increase		339.26				
Indirect Water Heater	Home Durability	0.70					
Indirect Water Heater	Property Value Increase		41.28				
On Demand Water Heater	Home Durability	0.70					
On Demand Water Heater	Property Value Increase		41.28				
Low-Flow Showerhead	Property Value Increase		0.03				
Refrigerator	Property Value Increase		1.44				
CFL Bulb	Lighting Quality and Lifetime		3.00				
LED Bulb	Lighting Quality and Lifetime		3.00				
	Residential Heating &	Cooling I	Equipmen	t			
Central Air SEER 16	Thermal Comfort	2.24					
Central Air SEER 16	Noise Reduction	2.03					
Central Air SEER 16	Home Durability	0.65					
Central Air SEER 16	Equipment Maintenance	1.07					
Central Air SEER 16	Health Benefits	0.07					
Central Air SEER 16	Property Value Increase		35.77				
Heat Pump SEER 16	Thermal Comfort	2.88					
Heat Pump SEER 16	Home Durability	0.84					
Heat Pump SEER 16	Equipment Maintenance	1.34					
Heat Pump SEER 16	Health Benefits	0.09					
Heat Pump SEER 16	Property Value Increase		46.07				
Heat Pump SEER 18	Thermal Comfort	2.88					
Heat Pump SEER 18	Home Durability	0.84					
Heat Pump SEER 18	Equipment Maintenance	1.34					
Heat Pump SEER 18	Health Benefits	0.09					
Heat Pump SEER 18	Property Value Increase		46.07				
Mini Split HP (SEER 18)	Thermal Comfort	2.53					
Mini Split HP (SEER 18)	Home Durability	0.65					
Mini Split HP (SEER 18)	Equipment Maintenance	-					
Mini Split HP (SEER 18)	Health Benefits	0.08					
Mini Split HP (SEER 18)	Property Value Increase		40.35				
Mini Split HP (SEER 20)	Thermal Comfort	2.53					
Mini Split HP (SEER 20)	Home Durability	0.65					
Mini Split HP (SEER 20)	Equipment Maintenance	-					
Mini Split HP (SEER 20)	Health Benefits	0.08					

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Page 411 of 435

		Annual	One- time \$	Annual	One- time \$	Annual	One- time \$
		\$ per	per	\$ per	per	\$ per	per
Mini Sulit IID (SEED 20)	NEI Category	Unit	Unit 40.35	kWh	KWh	Therm	Therm
Darmaine 1/2 tan	Thermol Constant	0.10	+0.55				
Down size 1/2 ton		0.19					
Down size 1/2 ton	Home Durability	0.07					
Down size 1/2 ton	Equipment Maintenance	0.37					
Down size 1/2 ton	Health Benefits	0.01					
Down size 1/2 ton	Property Value Increase		3.01				
Digital Check up/tune up	Thermal Comfort	0.47					
Digital Check up/tune up	Home Durability	0.18					
Digital Check up/tune up	Equipment Maintenance	0.87					
Digital Check up/tune up	Health Benefits	0.01					
Digital Check up/tune up	Property Value Increase		7.44				
QIV	Thermal Comfort	0.47					
QIV	Home Durability	0.18					
OIV	Equipment Maintenance	0.87					
OIV	Health Benefits	0.01					
QIV	Property Value Increase		7.44				
DHW - Condensing 0.95	Home Durability	0.70					
DHW - Condensing 0.95	Property Value Increase		41.28				
DHW - Tankless 0.82	Home Durability	1.23					
DHW - Tankless 0.82	Property Value Increase		56.39				
DHW - Tankless 0.94	Home Durability	1.23					
DHW - Tankless 0.94	Property Value Increase		56.39				
DHW - Indirect	Home Durability	0.70					
DHW - Indirect	Property Value Increase		41.28				
DHW - Stand Alone 0.67	Home Durability	1.30					
DHW - Stand Alone 0.67	Property Value Increase		24.09				
Combo Condensing Boiler/Water Heater 90%	Thermal Comfort	1.21					
Combo Condensing							
Boiler/Water Heater 90%	Home Durability	0.39					
Boiler/Water Heater 90%	Equipment Maintenance	1.10					
Combo Condensing		1.10					
Boiler/Water Heater 90%	Health Benefits	0.04					
Combo Condensing Boiler/Water Heater 90%	Property Value Increase		19.27				
Combo Condensing			19.27				
Boiler/Water Heater 90%	Thermal Comfort	1.21					
Combo Condensing	Hama Dunchilita	0.20					
Boller/ water Heater 90%	nome Durability	0.39					
Boiler/Water Heater 90%	Equipment Maintenance	1.10					

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Page 412 of 435

		Annual	One-	Annual	One-	Annual	One-
		Annual \$ per	per	Annual \$ per	per	Annual \$ per	per
	NEI Category	Unit	Unit	kWh	KWh	Therm	Therm
Combo Condensing Boiler/Water Heater 90%	Health Benefits	0.04					
Combo Condensing							
Boiler/Water Heater 90%	Property Value Increase		19.27				
Furnace w/ECM 95%	Thermal Comfort	27.18					
Furnace w/ECM 95%	Home Durability	7.12					
Furnace w/ECM 95%	Equipment Maintenance	11.98					
Furnace w/ECM 95%	Health Benefits	0.87					
Furnace w/ECM 95%	Property Value Increase		379.29				
Furnace w/ECM 97%	Thermal Comfort	27.18					
Furnace w/ECM 97%	Home Durability	7.12					
Furnace w/ECM 97%	Equipment Maintenance	11.98					
Furnace w/ECM 97%	Health Benefits	0.87					
Furnace w/ECM 97%	Property Value Increase		379.29				
Boiler 90%	Thermal Comfort	27.61					
Boiler 90%	Home Durability	7.33					
Boiler 90%	Equipment Maintenance	13.88					
Boiler 90%	Health Benefits	0.89					
Boiler 90%	Property Value Increase		385.23				
Boiler 95%	Thermal Comfort	27.49					
Boiler 95%	Home Durability	7.28					
Boiler 95%	Equipment Maintenance	13.47					
Boiler 95%	Health Benefits	0.88					
Boiler 95%	Property Value Increase		383.53				
Programmable Thermostat	Thermal Comfort	3.99					
Programmable Thermostat	Home Durability	1.33					
Programmable Thermostat	Health Benefits	0.13					
Programmable Thermostat	Property Value Increase		51.49				
Wi-Fi Thermostat	Thermal Comfort	3.99					
Wi-Fi Thermostat	Home Durability	1.33					
Wi-Fi Thermostat	Health Benefits	0.13					
Wi-Fi Thermostat	Property Value Increase		51.49				
	Residential	Lighting		•	•		
CFL Bulb	Lighting Quality and Lifetime		3.00				
LED Bulb	Lighting Quality and Lifetime	1	3.00				
Fixture	Lighting Quality and Lifetime	1	3.50				
	Low-Income Single	Family F	Retrofit				
Participants/TLC Kit	Arrearages	2.61					
Participants/TLC Kit	Bad Debt Write-offs	3.74					

		Annual	One- time \$	Annual	One- time \$	Annual	One- time \$
	NEI Category	\$ per Unit	per Unit	\$ per kWh	per KWh	\$ per Therm	per Therm
	Terminations and	0.40					
Participants/TLC Kit	Reconnections	0.43					
Participants/TLC Kit	Customer Calls and Collections	0.58					
Participants/TLC Kit	Notices	0.34					
Participants/TLC Kit	Lighting Quality and Lifetime		56.00				
Participants/TLC Kit	Increase		226.31				
Participants/TLC Kit	Rate Discounts			Varies		Varies	
Participants/TLC Kit	Price Hedging				0.01		0.076
Weatherization	Thermal Comfort	55.61					
Weatherization	Noise Reduction	29.95					
Weatherization	Home Durability	19.37					
Weatherization	Health Benefits	10.46					
Weatherization	Property Value Increase		368.56				
Weatherization	Rate Discounts			Varies		Varies	
Weatherization	Price Hedging				0.01		0.076
Air Sealing	Thermal Comfort	30.23					
Air Sealing	Noise Reduction	16.39					
Air Sealing	Home Durability	10.61					
Air Sealing	Health Benefits	5.69					
Air Sealing	Property Value Increase		144.93				
Air Sealing	Rate Discounts			Varies		Varies	
Air Sealing	Price Hedging				0.01		0.076
Insulation	Thermal Comfort	25.38					
Insulation	Noise Reduction	13.56					
Insulation	Home Durability	8.76					
Insulation	Health Benefits	4.77					
Insulation	Property Value Increase		223.63				
Insulation	Rate Discounts			Varies		Varies	
Insulation	Price Hedging				0.01		0.076
Heating System Retrofit	Safety Related Emergency Calls	8.43					
Heating System Retrofit	Thermal Comfort	28.01					
Heating System Retrofit	Equipment Maintenance	9.72					
Heating System Retrofit	Home Durability	27.43					
Heating System Retrofit	Health Benefits	5.27					
Heating System Retrofit	Improved Safety	45.05					
Heating System Retrofit	Property Value Increase	-	249.20				
Heating System Retrofit	Rate Discounts			Varies		Varies	
Heating System Retrofit	Price Hedging	-			0.01		0.076

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Page 414 of 435

		Annual \$ per	One- time \$ per	Annual \$ per	One- time \$ per	Annual \$ per	One- time \$ per
	NEI Category	Unit	Unit	kWh	KWh	Therm	Therm
<55 gallon	Home Durability	0.20					
Heat Pump Water Heater		0.20					
<55 gallon	Property Value Increase		1.65				
Heat Pump Water Heater	Dete Discounts			Varian		Varian	
< 35 gallon Heat Pump Water Heater	Rate Discounts			varies		varies	
<55 gallon	Price Hedging				0.01		0.076
Duct Seal	Thermal Comfort	0.68					
Duct Seal	Home Durability	0.23					
Duct Seal	Health Benefits	0.13					
Duct Seal	Property Value Increase		5 11				
Duct Seal	Rate Discounts		0.11	Varies		Varies	
Duct Seal	Price Hedging			, united	0.01	, arres	0.076
Pipe Wran (Water Heating)	Thermal Comfort	5 56			0.01		0.070
Pipe Wrap (Water Heating)	Health Benefits	1.05					
Pipe Wrap (Water Heating)	Property Value Increase	1.05	5.00				
Duet Seel	Pata Discounts		5.00	Varias		Varias	
Duct Seal	Rate Discounts			varies	0.01	varies	0.076
Law Flow Chowark and	Price neugilig		1.72		0.01		0.076
Low-Flow Snowernead	Property value increase		1.72	N 7 ·		X 7 ·	
Low-Flow Showerhead	Rate Discounts			Varies	0.01	Varies	0.076
Low-Flow Showerhead	Price Hedging				0.01		0.076
only	Property Value Increase		26.61				
Faucet Aerator	Rate Discounts			Varies		Varies	
Faucet Aerator	Price Hedging				0.01		0.076
CFL Bulb	Rate Discounts			Varies		Varies	
CFL Bulb	Price Hedging				0.01		0.076
LED Bulb	Rate Discounts			Varies		Varies	
LED Bulb	Price Hedging			, united	0.01	, arres	0.076
Fixture	Rate Discounts			Varies	0.01	Varies	0.070
Fixture	Price Hedging			v di les	0.01	v difes	0.076
Fraazer Danlagement	Pate Discounts			Varies	0.01	Varias	0.070
Freezer Replacement	Property Value Increase		26.61	v aries		v arres	
Freezer Replacement	Drigo Hodging		20.01		0.01		0.076
Preezer Replacement	Price neuging			Manian	0.01	Manian	0.076
Reinigerator Replacement	Rate Discounts		26.61	varies		varies	
Refrigerator Replacement	Property Value Increase		20.61		0.01		0.071
Ketrigerator Keplacement	Price Hedging				0.01		0.076
Appliance Removal	Rate Discounts			Varies		Varies	
Appliance Removal	Price Hedging				0.01		0.076
Smart Strips	Rate Discounts			Varies		Varies	

October 2015

© 2015 Massachusetts Electric and Gas Energy Efficiency Program Administrators, ALL RIGHTS RESERVED

		Annual	One- time \$	Annual	One- time \$	Annual	One- time \$
	NEI Category	\$ per Unit	per Unit	\$ per kWh	per KWh	\$ per Therm	per Therm
Smart Strips	Price Hedging				0.01		0.076
Programmable Thermostat	Thermal Comfort	4.87					
Programmable Thermostat	Home Durability	1.68					
Programmable Thermostat	Health Benefits	0.92					
Programmable Thermostat	Property Value Increase		34.47				
Window AC Replacement	Window Air Conditioner Replacement	49.50					
Window AC Replacement	Rate Discounts			Varies		Varies	
Window AC Replacement	Price Hedging				0.01		0.076
Waterbed	Rate Discounts			Varies		Varies	
Waterbed	Price Hedging				0.01		0.076
Dehumidifier	Rate Discounts			Varies		Varies	
Dehumidifier	Price Hedging				0.01		0.076
	Low-Income Multi-	Family R	Retrofit				
Participant	Arrearages	2.61					
Participant	Bad Debt Write-offs	3.74					
Participant	Terminations and Reconnections	0.43					
Participant	Customer Calls and Collections	0.58					
Participant	Notices	0.34					
Participant – Electric PA							
only	Lighting Quality and Lifetime		56.00				
Participant	Rate Discounts			Varies		Varies	
Participant	Price Hedging				0.01		0.076
Air Sealing	Thermal Comfort	30.23					
Air Sealing	Noise Reduction	16.39					
Air Sealing	Home Durability	10.61					
Air Sealing	Health Benefits	5.69					
Air Sealing	Property Durability	2.58					
Air Sealing	Rental Unit Increased Property Value		1.19				
Air Sealing	Rental Units Marketability	0.07					
Air Sealing	Reduced Tenant Complaints	1.37					
Air Sealing	Property Value Increase		144.93				
Air Sealing	Rate Discounts			Varies		Varies	
Air Sealing	Price Hedging				0.01		0.076
Insulation	Thermal Comfort	25.38					
Insulation	Noise Reduction	13.56					
Insulation	Home Durability	8.76					
Insulation	Health Benefits	4.77					

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 416 of 435

		Annual	One- time \$	Annual	One- time \$	Annual	One- time \$
	NEI Category	S per Unit	per Unit	\$ per kWh	per KWh	\$ per Therm	per Therm
Insulation	Property Value Increase		223.63				
Insulation	Rate Discounts			Varies		Varies	
Insulation	Price Hedging				0.01		0.076
	Safety Related Emergency						
Heating System Retrofit	Calls	8.43					
Heating System Retrofit	Thermal Comfort	28.01					
Heating System Retrofit	Equipment Maintenance	9.72					
Heating System Retrofit	Home Durability	27.43					
Heating System Retrofit	Health Benefits	5.27					
Heating System Retrofit	Improved Safety	45.05					
Heating System Retrofit	Property Value Increase	-	249.20				
Heating System Retrofit	Rate Discounts			Varies		Varies	
Heating System Retrofit	Price Hedging	-			0.01		0.076
Duct Seal	Thermal Comfort	0.68					
Duct Seal	Home Durability	0.23					
Duct Seal	Health Benefits	0.13					
Duct Seal	Property Value Increase		5.11				
Duct Seal	Rate Discounts			Varies		Varies	
Duct Seal	Price Hedging				0.01		0.076
Pipe Wrap (Water Heating)	Thermal Comfort	5.56					
Pipe Wrap (Water Heating)	Health Benefits	1.05					
Pipe Wrap (Water Heating)	Property Value Increase		5.00				
Pipe Wrap (Water Heating)	Rate Discounts			Varies		Varies	
Pipe Wrap (Water Heating)	Price Hedging				0.01		0.076
Pipe Wrap (Heating)	Thermal Comfort	5.56					
Pipe Wrap (Heating)	Health Benefits	1.05					
Pipe Wrap (Heating)	Property Value Increase		5.00				
Pipe Wrap (Heating)	Rate Discounts			Varies		Varies	
Pipe Wrap (Heating)	Price Hedging				0.01		0.076
Water Heater	Home Durability	0.20					
Water Heater	Rental Units Marketability	0.01					
Water Heater	Reduced Tenant Complaints	0.20					
Water Heater	Property Durability	0.37					
Water Heater	Rental Unit Increased Property Value		0.17				
Water Heater	Property Value Increase		1.65				
Water Heater	Rate Discounts			Varies		Varies	
Water Heater	Price Hedging				0.01		0.076
Low-Flow Showerhead	Property Value Increase		1.72				

		Annual S per	One- time \$	Annual S per	One- time \$	Annual S per	One- time \$ ner
	NEI Category	Unit	Unit	kWh	KWh	Therm	Therm
Low-Flow Showerhead	Rate Discounts			Varies		Varies	
Low-Flow Showerhead	Price Hedging				0.01		0.076
Low-Flow Showerhead	Rental Units Marketability	0.01					
Low-Flow Showerhead	Home Durability	0.37					
Low-Flow Showerhead	Reduced Tenant Complaints	0.20					
Low-Flow Showerhead	Rental Unit Increased Property Value		0.17		0.01		0.076
Faucet Aerator - Gas PA	Property Value Increase		26.61				
Faucet Aerator	Rate Discounts		20.01	Varies		Varies	
Faucet Aerator	Price Hedging			v arres	0.01	v diles	0.076
Faucet Aerator	Rental Units Marketability	0.01			0.01		0.070
Faucet Aerator	Home Durability	0.01					
Faucet Aerator	Reduced Tenant Complaints	0.20					
Faucet Aerator	Rental Unit Increased Property	0.20	0.17		0.01		0.076
Programmable Thermostat	Thermal Comfort	4 87	0.17		0.01		0.070
Programmable Thermostat	Property Value Increase	ч.07	34 47				
Programmable Thermostat	Home Durability	1.68	57.77				
Programmable Thermostat	Health Benefits	0.92					
Programmable Thermostat	Rental Unit Marketability	0.12					
Programmable Thermostat	Equipment Maintenance Reliability Due to Thermostats	3.91					
Programmable Thermostat	Property Durability	4.05					
Programmable Thermostat	Rental Unit Increased Property Value	1.00	1.87				
Programmable Thermostat	Reduced Tenant Complaints	2.16					
Programmable Thermostat	Rate Discounts			Varies		Varies	
Programmable Thermostat	Price Hedging				0.01		0.076
CFL Bulb	Rate Discounts			Varies		Varies	
CFL Bulb	Price Hedging				0.01		0.076
LED Bulb	Rate Discounts			Varies		Varies	
LED Bulb	Price Hedging				0.01		0.076
Fixture	Rate Discounts			Varies		Varies	
Fixture	Price Hedging				0.01		0.076
Freezer Replacement	Property Value Increase		26.61				
Freezer Replacement	Rental Units Marketability	0.34					
Freezer Replacement	Property Durability	12.90					
Freezer Replacement	Rental Unit Increased Property Value		5.96				
Freezer Replacement	Reduced Tenant Complaints	6.86					

		Annual S per	One- time \$	Annual S per	One- time \$	Annual S per	One- time \$
	NEI Category	Unit	Unit	kWh	KWh	Therm	Therm
Freezer Replacement	Rate Discounts			Varies		Varies	
Freezer Replacement	Price Hedging				0.01		0.076
Refrigerator Replacement	Property Value Increase		26.61				
Refrigerator Replacement	Rental Units Marketability	0.34					
Refrigerator Replacement	Property Durability	12.90					
Refrigerator Replacement	Rental Unit Increased Property Value		5.96				
Refrigerator Replacement	Reduced Tenant Complaints	6.86					
Refrigerator Replacement	Rate Discounts			Varies		Varies	
Refrigerator Replacement	Price Hedging				0.01		0.076
Window AC Replacement	Window Air Conditioner Replacement	49.50					
Window AC Replacement	Rate Discounts			Varies		Varies	
Window AC Replacement	Price Hedging				0.01		0.076
Waterbed	Rate Discounts			Varies		Varies	
Waterbed	Price Hedging				0.01		0.076
	C&I Existing Bu	ilding Ret	trofit				
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	Own, product spollage, rent						
Compressed Air - Custom	disposal			0.056			
	Administrative costs material			0.050			
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste			. .			
HVAC - Custom	disposal			0.024			
	Administrative costs, other						
HVAC - Prescriptive	costs, other labor costs, O&M,			0.007			
	Administrative costs material			0.097			
	handling material movement						
	other costs, other labor costs.						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
Lighting - Custom	disposal			0.059			
	Administrative costs, material						
	handling, material movement,						
	other labor costs, O&M, sales			0.007			
Lighting - Prescriptive	revenue, waste disposal	1	1	0.027	1		

			One-		One-		One-
		Annual	time \$	Annual	time \$	Annual	time \$
		\$ per	per	\$ per	per	\$ per	per
	NEI Category	Unit	Unit	kWh	KWh	Therm	Therm
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
Process - Custom	disposal			0.056			
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
Refrigeration - Custom	disposal			0.047			
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
Refrigeration - Prescriptive	disposal			0.047			
CHP Systems	Administrative costs, O&M			(0.015)			
	Admin costs, material						
	movement, other costs, other						
	labor, O&M, product spoilage,						
Boiler Reset Controls	waste disposal					1.35	
	Admin costs, material						
	movement, other costs, other						
	labor, O&M, product spoilage,						
Steam Traps	waste disposal					1.35	
	Admin costs, material						
	movement, other costs, other						
	labor, O&M, product spoilage,						
Thermostat	waste disposal					1.35	
	Admin costs, material						
	movement, other costs, other						
	labor, O&M, product spoilage,						
Custom	waste disposal					0.25	
	C&I Small	Business					
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
HVAC	disposal			0.097			
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
Lighting	disposal			0.027			

			One		One		One
		A	One-	A	Une-	A	One-
		Annual	time \$	Annual	time \$	Annual	time \$
	NEL Catalogue	\$ per	per	\$ per	per	\$ per	per
	NEI Category	Unit	Unit	kwh	KWh	Iherm	Therm
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
Process	disposal			0.056			
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
Refrigeration	disposal			0.047			
	Admin costs, fees, material						
	movement, O&M, product						
Duct Insulation	spoilage, rent revenue					1.35	
	Admin costs, fees, material						
	movement, O&M, product						
Pipe Wrap	spoilage, rent revenue					1.35	
	Admin costs, fees, material						
	movement, O&M, product						
Thermostat	spoilage, rent revenue					1.35	
	Admin costs, material						
	movement, other costs, other						
	labor O&M product spoilage						
Boiler Reset Controls	waste disposal					1 35	
						1.50	
	Admin costs, fees, material						
	movement, O&M, product						
Heating - Prescriptive	spoilage, rent revenue					1.35	
	Admin costs, material						
	movement, other costs, other						
	labor, O&M, product spoilage,						
Custom	waste disposal					0.25	
	C&I Multifam	ily Retro	fit				
	Administrative costs, material						
	handling, material movement.						
	other labor costs. O&M. sales						
Lighting	revenue waste disposal			0.027			
	Admin costs fees material			0.027			
	movement O&M product						
Duct Insulation	spoilage rent revenue					1 35	
	Admin costs fees material					1.50	
	movement O&M product						
Pine Wran	spoilage rent revenue					1 35	
	Admin costs fees material					1.55	
	movement $\Omega \& M$ product						
Thermostat	spoilage, rent revenue					1 25	
Thermostat	A dmin ageta material					1.33	
	Aumin costs, material						
	labor OrM product appilance						
Custom	labor, Octvi, product spollage,					0.25	
Custom	waste disposal	1				0.25	

Massachusetts Technical Reference Manual

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 <u>Exhibit 1, Appendix V</u> Page 421 of 435

	NEI Category	Annual \$ per Unit	One- time \$ per Unit	Annual \$ per kWh	One- time \$ per KWh	Annual \$ per Therm	One- time \$ per Therm
	C&I Upstrear	n Lightin	g				
	Administrative costs, material						
	handling, material movement,						
	other costs, other labor costs,						
	O&M, product spoilage, rent						
	revenue, sales revenue, waste						
Upstream LED Screw In	disposal			0.027			

Appendix D: Table of Referenced Documents

FULL CITATION	DIGITAL DOCUMENT FILENAME
ACEEE (2006). Emerging Technologies Report: Advanced Boiler Controls. Prepared for ACEEE.	ACEEE_2006_Emerging_Technologies_Report_ Advanced_Boiler_Controls
ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation. Prepared for NSTAR, National Grid, Connecticut Light & Power and United Illuminating.	ADM_2009_Residential_Central_AC_Regional_ Evaluation
Apex Analytics (2014). Clothes Washer Screening.xls	Apex Analytics (2014). Clothes Washer Screening.xls
Apex Analytics (2015). 2015 Refrigerator Savings Modeling.xls.	APEX_Analytics_2015_Refrigerators_Savings_ Modeling.xls
Appliance Standards Awareness Project. Dehumidifiers.	ASAP_2007_Dehumidifiers_2011 08 05
California Plug Load Research Center (2014). Tier 2 Advanced PowerStrip Evaluation for Energy Savings Incentive.	Calplug_2014_Tier2_APS_Evaluation.pdf
Chan, Tumin (2010). Formulation of a Prescriptive Incentive for the VFD and Motors & VFD impact tables at NSTAR. Prepared for NSTAR.	Chan_2010_Formulation_of_Prescriptive_VFD_ Impact_Tables_NSTAR
Davis Energy Group (2008). Proposal Information Template for Residential Pool Pump Measure Revisions. Prepared for Pacific Gas and Electric Company.	Davis_2008_Residential_Pool_Pump_Measure_ Revisions
DNV-GL (2014). Impact Evaluation Massachusetts Prescriptive Gas Pre-Rinse Spray Valve. Prepared for the MA Gas PAs and MA EEAC.	DNVGL_2014_Impact_Evaluation_MA_2012_Gas _Pre-Rinse_Spray_Valve.pdf
DNV-GL (2014). Memo – Develop Modified Runtime from NEEP HVAC Loadshape Study. Prepared for National Grid and Northeast Utilities.	DNVGL_2014_Memo_Modified_Hours_NEEP_H VAC_Loadshape_Study
DNV-GL (2015). Recalculation of Prescriptive Program Gas Furnace Savings Using New Baseline.	DNVGL_2015_Prescriptive_Gas_Furnace_Savings _Baseline_Change_Memo_3-5-15.docx
DNV-GL (2015). Massachusetts Commercial and Industrial Upstream Lighting Program: "In Storage" Lamps Follow-Up Study	DNVGL_2015_Upstream_Lighting_Program_In_ Storage_Lamps_Follow_Up.pdf
DNV-GL (2015). Impact Evaluation of 2012 Custom HVAC Installations. Prepared for the Massachusetts Program Administrators and Energy Efficiency Advisory Council.	DNVGL_2015_Impact_Eval_2012_Custom_HVAC .pdf
DNV-GL (2015). Impact Evaluation of Prescriptive Chiller and Compressed Air Installations. Prepared for the Massachusetts Program Administrators and Energy Efficiency Advisory Council.	DNVGL_2015_Impact_Eval_Presc_Chiller_Compr essed_Air.pdf
DNV-GL (2015). Final report of Massachusetts LED Spillover Analysis.	DNVGL_2015_MA_LED_Spillover_FINAL Report.pdf
DNV-GL, ERS, APPRISE (2015). Massachusetts Commercial New Construction Energy Code Compliance Follow-Up Study, Final Report, Prepared for: Massachusetts Program Administrators and Energy Efficiency Advisory Council.	DNV-GL_2015_Commercial_NC_Energy_Code_ Compliance_Follow_Up_Study.pdf

FULL CITATION	DIGITAL DOCUMENT FILENAME
DNV GL (2015) 2013 Massachusetts Prescriptive Gas	
Thermostat Evaluation Study & Programmable	
Thermostat Decision Memo. Prepared for the	DNV
Massachusetts Energy Efficiency Program Administrators.	GL_2015_Thermostat_Study_Decision_Memo.pdf
DNV GL & ERS (2015) Project 43 Impact Evaluation of	
PY2013 Custom Gas Installations. Prepared for	
Massachusetts Energy Efficiency Program Administrators	DNV GL_2015_Impact-
& Massachusetts Energy Efficiency Advisory Council.	Evaluation_PY13_Custom_Gas.pdf
DNV GL (2015) Massachuseus 2015 Prescriptive Gas	
Prepared for Massachusetts Energy Efficiency Program	
Administrators & Massachusetts Energy Efficiency	DNV GL 2015 Prescriptive Gas Steam Tran
Advisory Council	Phase 1 pdf
DNV KEMA (2012) Impact Evaluation of 2010	DNV KEMA 2012 Proparinting Ltg Import Evol
DNV KEMA (2015). Impact Evaluation of 2010 Prescriptive Lighting Installations	PV2010 pdf
DNV-KEMA ERS APPRISE (2012) Final Report	_112010.pdf
Project 11 Code Compliance Baseline Study Prenared	
for: Massachusetts Energy Efficiency Program	DNV-KEMA 2012 Commercial NC Energy
Administrators.	Code Compliance Baseline.pdf
DOF (2008) ENERGY STAR® Residential Water	DOE 2008 ENERGY STAR Residential Water
Heaters: Final Criteria Analysis Prenared for the DOF	Heaters Final Criteria Analysis
DOF (2012) Technical Support Document: Energy	
Efficiency Program for Consumer Products and	
Commercial and Industrial Equipment: Residential	DOE 2012 Technical Support Document Clothes
Clothes Washers.	Washers.pdf
DOE (2013), 10 CFR Parts 429 and 430 August 14, 2013.	
Energy Conservation Program: Test Procedures for	DOE 2013 Test Procedures for Residential
Residential Clothes Dryers; Final Rule.	Clothes_Dryers.pdf
DOE (2015). 10 CFR Part 431 March 27, 2015. Energy	
Conservation Program: Energy Conservation Standards	DOE 2015 Energy Conservation Standards for
for Residential Clothes Dryers.	Residential_Clothes_Dryer.pdf
ECOS (2009). Smart Plug Strips: Draft Report	ECOS_2009_Smart_Plug_Strips_Draft_Report.pdf
Ecotrope, Inc. (2003), Natural Gas Efficiency and	
Conservation Measure Resource Assessment for the	
Residential and Commercial Sectors. Prepared for the	Ecotrope 2003 Natural Gas Efficiency and Cons
Energy Trust of Oregon.	ervation_Measure_Resource_Assessment
Energy & Resource Solutions (2005) Measure Life Study	
Prepared for The Massachusetts Joint Utilities.	ERS 2005 Measure Life Study
Environmental Protection Agency (2000) Life Cycle Cost	EDA 2000 Lifequale Cost Estimate for
Estimate for an ENERGY STAR Qualified Boiler	ENERGY STAR Qualified Boiler xls
Environmental Protection Assure (2000) Life C. L.C.	EDA 2000 Lifements Cost Estimate
Environmental Protection Agency (2009). Life Cycle Cost	EPA_2009_Lifecycle_Cost_Estimate_for_
Environmental Protection Agency (2009). Life Cycle Cost	EPA_2009_Lifecycle_Cost_Estimate_for_
Estimate for ENERGY STAR Room Air Conditioner.	ENERGY_STAR_Room_Air_Conditioner.xls
Environmental Protection Agency (2010). Life Cycle Cost	EPA_2010_Lifecycle_Cost_Estimate_for_
Estimate for ENERGY STAR Programmable Thermostat.	ENERGY_STAR_Programmable_Thermostat.xls
Environmental Protection Agency (2014). Savings	
Calculator for Energy Star Qualified Appliances.	ENERGY_STAR_2015_Appliance_Calculator.xlsx

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 424 of 435

FULL CITATION	DIGITAL DOCUMENT FILENAME
Energy Star Commercial Kitchen Equipment Saving	
Calculator http://www.energystar.gov/products/certified-	
products/detail/commercial-food-service-equipment.	ENERGY_STAR_2015_Commercial_Kitchen_Equi
Accessed on 3/31/15 Savings Calculator for ENERGY STAR® Cartified	pment_savings_Calculator_Gas.xis
Commercial Kitchen Equipment: Oven Calcs <	
http://www.energystar.gov/buildings/sites/default/uploads/	
files/commercial_kitchen_equipment_calculator.xlsx >.	ENERGY_STAR_2015_Commercial_Kitchen_Equi
Tool downloaded August 10, 2015.	pment_Savings_Calculator_Electric.xls
Environmental Protection Agency (2012). Freezers	
Qualified Product List. July 18, 2012	ENERGY_STAR_2012_Freezers_Product_List.xls
Federal Energy Management Program (2011). Energy	
Cost Calculator for Faucets and Showerheads. Accessed	FEMP_2011_Energy_Cost_Calculator_for_Faucets
on 10/12/2011.	_2011 10 12
Food Service Technology Center (2015). Gas	
Combination Oven Life-Cycle Cost Calculator.	
http://www.fishnick.com/saveenergy/tools/calculators/gco	Food_Service_Technology_Center_2015_Gas_Com
mbicalc.php. Accessed 10/2/2015	bination_Oven_Lifecycle_Cost_Calc.pdf
Food Service Technology Center (2015). Gas Rack Oven	
Life-Cycle Cost Calculator.	Food Service Technology Conten 2015 Con Book
ckovencalc nhp. Accessed 10/2/2015	Oven Lifecycle Cost Calc ndf
Each Service Technology Conter (2015) Cos Conveyor	
Oven Life-Cycle Cost Calculator	
http://www.fishnick.com/saveenergy/tools/calculators/gco	Food Service Technology Center 2015 Gas Con
nvovencalc.php. Accessed 10/2/2015	veyor_Oven_Lifecycle_Cost_Calc.pdf
Food Service Technology Center (2011). Gas Fryer Life-	FSTC_2011_Gas_Fryer_LifeCycle_Cost_Calculatio
Cycle Cost Calculation. Accessed on 10/12/2011.	n_2011 10 12
GDS Associates, Inc. (2007). Measure Life Report:	
Residential and Commercial/Industrial Lighting and	
HVAC Measures. Prepared for The New England State	GDS_2007_Measure_Life_Report_Residential_and
Program working Group.	_CI_Lighting_and_HVAC_Measures
GDS Associates, Inc. (2009). Natural Gas Energy	
Efficiency Potential in Massachusetts. Prepared for	GDS_SummitBlue_2009_Natural_Gas_Energy_Effi
HEC, Inc. (1995). Analysis of Door Master Walk-In Cooler Anti Sweet Door Hester Controls Installed at Ten	
Sites in Massachusetts, Prenared for New England Power	HEC 1995 Analysis of Door Master Walk-
Service Company.	In Cooler Anti-Sweat Door Heater Controls
HEC Inc (1996) Analysis of Savings from Walk-In	HEC 1996 Analysis of Savings from Walk-
Cooler Air Economizers and Evaporator Fan Controls.	In Cooler Air Economizers and Evap Fan Contr
Prepared for New England Power Service Company.	ols
Hewitt, D. Pratt, J. & Smith, G. (2005). Tankless Gas	
Water Heaters: Oregon Market Status. Prepared for the	Hewitt_Pratt_Smith_2005_Tankless_Gas_Water_H
Energy Trust of Oregon.	eaters_Oregon_Market_Status
ICF International (2008). Energy/Demand Savings	
Calculation and Reporting Methodology for the	
Massachusetts ENERGY STAR ® Homes Program.	ICF_2008_Energy_Demand_Savings_Calculation_
riepareu ioi joint Management Committee.	reporting_methodology_MA_ESH_Program

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 425 of 435

FULL CITATION	DIGITAL DOCUMENT FILENAME
ICF International (2012). 2013 Prescriptive Modeling Summary Final	ICF_2012_2013_Prescriptive_Modeling_Summary. pdf
KEMA, Inc. (2010). 2007/2008 Large C&I Programs, Phase 1 Report Memo for Lighting and Process Measures. Prepared for Western Massachusetts Electric Company.	KEMA_2010_2007_2008_Large_C_I_Programs_R eport_Memo_for_Lighting_and_Process_Measures. pdf
KEMA (2011). 2007/2008 Large C&I Programs Final Report. Prepared for Western Massachusetts Electric Company.	KEMA_2011_WMECO_2007- 2008_Large_CI_Programs_Final_Report
KEMA (2011). C&I Unitary HVAC LoadShape Project – Final Report. Prepared for the Regional Evaluation, Measurement & Verification Forum.	KEMA_2011_NEEP_EMV_CI_Unitary_HVAC_L oad_Shape_Project
KEMA and SBW (2011). Impact Evaluation of 2008 and 2009 Custom CDA Installations. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.	KEMA_SBW_2011_LCIEC_Impact_Evaluation_20 08-2009_Custom_CDA_Installations
KEMA (2012). Impact Evaluation of 2010 Custom Process and Compressed Air Installations. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.	KEMA_2012_Custom_Process_and_CAIR_Report. pdf
KEMA (2012). Impact Evaluation of the 2010 Custom Lighting Installations. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council.	KEMA_2012_Custom_Lighting_Final_Report.pdf
KEMA, Inc. (2012). Massachusetts Program Administrators Final Report – Commercial and Industrial Non-Energy impacts Study.	KEMA_2012_MA_CI_NEI_REPORT.pdf
KEMA (2013). Impact Evaluation of 2011 Prescriptive Gas Measures. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council	KEMA_2013_Prescriptive_Gas_Impact_Eval_PY2 011.pdf
KEMA (2013). Massachusetts Combined Heat and Power Program Impact Evaluation 2011-2012. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council	KEMA_2013_MA_CI_CHP_IMPACT_EVAL.pdf
KEMA (2013). Process Evaluation of the 2012 Bright Opportunities Program. MA LCIEC Project 17.	KEMA_2013_Upstream_Ltg_Process_Eval.pdf
KEMA, Inc. (2014). Impact Evaluation of the Massachusetts Upstream Lighting Program, Final Report	KEMA_2014_MA_CI_UPSTREAM_LIGHTING_I MPACT_EVAL.pdf
Lawrence Berkeley National Laboratory (2002). Quantifying the Value That Wind Power Provides as a Hedge Against Volatile Natural Gas Prices	LBL_2002_Hedge_Value.pdf
MA PAs (2015). 2016-2018 MA Lighting Worksheet	MA_PAs_2015_Lighting_Worksheet_2016- 2018.xlsx
MA PAs (2015). ECM Circulator Pump Savings Calculations Workbook	MA_PAs_2015_ECM_Circulator_Pumps_Savings_ Doc.xls
MA PAs (2015). 2016-2018 HEHE Savings Workbook	MA_PAs_2016_2018_HEHE_Calculations.xlsx
MA PAs (2015). 2016-2018 Cool Smart Savings Workbook	MA_PAs_2016_CoolSmart_Calculations.xlsx

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 426 of 435

FULL CITATION	DIGITAL DOCUMENT FILENAME
National Grid (2008). National Grid 2008 Steam Trap	
Savings Calculation.	National Grid 2008 steam trap loss chart.xls
	National_Grid_2014_ShowerStart_Savings_Final_2
National Grid (2014). Review of ShowerStart evolve.	015-2-9.xlsx
MassSave (2010). Energy Analysis: Hotel Guest	
Occupancy Sensors. Prepared for National Grid and	NGRID_NSTAR_Energy_Analysis_Hotel_Guest_O
NSTAR.	ccupancy_Sensors
Navigant Consulting and Illume Advising (2015).	
Fixed and the second se	Navigant Illume 2014 Behavior Program Impact
Massachusetts Program Administrators	Evaluation.docx
Navigant Consultant (2015). Comprehensive Review of	
Non-Residential Training and Education Programs, with a	
Focus on Building Operator Certification	Navigant_2015_BOC_Review.pdf
NEEP (2012). Advanced Power Strips Deemed Savings	NEED 2012 ADS Doomod Sourings Doport ndf
Methodology.	NEEr_2012_AFS_Deemed_Savings_Report.pdf
Nexant (2006). DSM Market Characterization Report.	Nexant_2006_DSM_Market_Characterization_Rep
Prepared for Questar Gas.	ort.pdf
Nexus Market Research (2011). Estimated Net-To-Gross	
(NTG) Factors for the Massachusetts Program	
Administrators (PAs) 2010 Residential New Construction	TeterTech 2011 Federated NTC 2010 Car Decen
Programs, Residential HEHE and Multi-Family Gas Programs and Commercial and Industrial Gas Programs	ams ndf
	unio.pui
Nexus Market Research and RLW Analytics (2004).	
and Vermont 2003 Residential Lighting Programs	
Submitted to The Cape Light Compact, State of Vermont	NMR RLW 2004 Impact Evaluation MA RI VT
Public Service Department for Efficiency Vermont, N	_2003_Residential_Lighting_Programs
Nexus Market Research, RLW Analytics and GDS	
Associates (2009). Residential Lighting Markdown	
Impact Evaluation. Prepared for Markdown and Buydown	NMR_RLW_GDS_2009_Residential_Lighting_Mar
Program Sponsors in C1, MA, KI, and V1.	kdown_impact_Evaluation
NMR Group (2011). Massachusetts Appliance Turn-In	
for National Grid NSTAR Electric Cape Light Compact	NMR 2011 MA Appliance Turn-
and Western Massachusetts Electric Company.	In Program Evaluation
NMR Group, Inc., Tetra Tech (2011). Massachusetts	
Special and Cross-Sector Studies Area, Residential and	
Low-Income Non-Energy Impacts (NEI) Evaluation.	Tetra_Tech_and_NMR_2011_MA_Res_and_LI_N
Prepared for Massachusetts Program Administrators	EI_Evaluation.pdf
NMR Group, Inc., KEMA, Inc., The Cadmus Group, Inc.,	
Dorothy Conant (2012). Massachusetts 2011 Baseline	NMD 2012 MA DNC 2011 Descling Desired 10
Final Report	5-12 ndf
NMR Group Inc. KEMA Inc. The Cadmus Group Inc.	ip us
Dorothy Conant (2012). Final UDRH Inputs: Addendum	
to Massachusetts 2011 Baseline Study of Single-family	
Residential New Construction, Final Report.	NMR_2012_MA_Baseline_UDRH_Addendum.pdf

Massachusetts Technical Reference Manual

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 427 of 435

Appendix D: Table of Referenced Documents

FULL CITATION	DIGITAL DOCUMENT FILENAME
NMR Group Inc. (2014). Northeast Residential Lighting Hours of Use Study.	NMR_2014_ Northeast_Residential_Lighting_HOU.pdf
NMR Group (2015). Baseline Sensitivity Analysis Spreadsheet, 2016-2018 Plan Version. Prepared for the Massachusetts PAs.	NMR_2015_Baseline_Sensitivity_Analysis_2016_2 018_Plan_Version.xlsx
NMR Group, Inc. (2014). Massachusetts Electric and Gas Program Administrators Code Compliance Results for Single-Family Non-Program Homes in Massachusetts.	NMR_2014_SF_Code_Compliance_Results.pdf
Pacific Gas & Electric Company – Customer Energy Efficiency Department (2007). Work Paper PGECOFST101, Commercial Convection Oven, Revision #0.	PGE_2007_Commercial_Convection_Oven_Work_ Paper_PGECOFST10.pdf
Opinion Dynamics Corporation (2009). Massachusetts Residential Saturation Survey (RASS) - Volume 1: Summary Results and Analysis. Prepared for Cape Light Compact, National Grid, NSTAR Electric, Unitil and Western Massachusetts Electric Company.	ODC_2009_MA_Residential_Appliance_Saturation Survey Vol1 Summary Results Analysis
Optimal Energy, Inc. (2008). MEMO: Non-Electric Benefits Analysis Update. Prepared for NSTAR.	Optimal_2008_NonElectric_Benefits_Analysis_Up date
Patel, Dinesh (2001). Energy Analysis: Dual Enthalpy Control. Prepared for NSTAR.	Patel_2001_Energy_Analysis_Dual_Enthalpy_Cont rols
RLW Analytics (2002). Market Research for the Rhode Island, Massachusetts, and Connecticut Residential HVAC Market. Prepared for National Grid, Northeast Utilities, NSTAR, Fitchburg Gas and Electric Light Company and United Illuminating.	RLW_2002_Market_Research_RI_MA_CT_Reside ntial HVAC Market
RLW Analytics (2003). Small Business Solutions Program Year 2002 Impact Evaluation - Final Report. Prepared for NSTAR.	RLW_2003_NSTAR_Small_Business_Solutions_P Y2002_Impact_Evaluation
RLW Analytics (2005). Impact and Process Evaluation Building Operator Training and Certification (BOC) Program Final Report.	RLW_2005_BOC_Evaluation.pdf
RLW Analytics (2007). Impact Evaluation Analysis of the 2005 Custom SBS Program. Prepared for National Grid.	RLW_2007_NGRID_Impact_Evaluation_Analysis_ 2005_Custom_SBS_Program
RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid.	RLW_2007_NGRID_SBS_Custom_Measure_Impa ct_Evaluation
RLW Analytics (2008). Business & Construction Solutions (BS/CS) Programs Measurement & Verification - 2006 Final Report. Prepared for NSTAR Electric and Gas.	RLW_2008_NSTAR_BS_CS_Programs_Measurem ent_and_Verification_2006_Final_Report
RLW Analytics (2008). Coincidence Factor Study: Residential Room Air Conditioners. Prepared for Northeast Energy Efficiency Partnerships' New England Evaluation and State Program Working Group.	RLW_2008_Coincidence_Factor_Study_Residential _Room_Air_Conditioners
Select Energy Services (2004). Analysis of Cooler Control Energy Conservation Measures. Prepared for NSTAR.	SelectEnergy_2004_NSTAR_Analysis_Cooler_Con trol_Energy_Conservation_Measures
Steven Winter Associates, Inc (2012). Heat Pump Water Heaters Evaluation of Field Installed Performance.	SWA_2012_HPWH_Field_Evaluation_Report.pdf

FULL CITATION	DIGITAL DOCUMENT FILENAME
TetraTech (2015). National Grid, NSTAR, Western Massachusetts Electric Company, Unitil, and Cape Light Compact 2013 Commercial and Industrial Electric Programs Free-ridership and Spillover Study. TetraTech (2015). National Grid, Eversource, Unitil, Berkshire Gas, Columbia Gas of MA, and Liberty Utilities 2014-2015 Commercial and Industrial Natural Gas Programs Free-ridership and Spillover Study. August 2015.	TetraTech_2015_CI_FR_SO_Electric_Report.pdf
The Cadmus Group (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid.	Cadmus_2009_Impact_Evalulation_2007_AMP_an d_LI_Weatherization_Program
The Cadmus Group (2010). Western Massachusetts Small Business Energy Advantage Impact Evaluation Report Program Year 2008. Prepared for Western Massachusetts Electric Company.	Cadmus_2010_WMECO_SBEA_Impact_Evalulatio n_Report_PY2008
The Cadmus Group (2011). Memo: Wi-fi Programmable Thermostat Billing Analysis. Prepared for Keith Miller and Whitney Domigan, National Grid	Cadmus_2011_WiFi_Programmable_Thermostat_B illing_Analysis_Memo.pdf
The Cadmus Group (2011). 2010 Net-to-Gross Findings: Home Energy Assessment. The Electric and Gas Program Administrators of Massachusetts.	Cadmus_2011_2010_NTG_HES.pdf
The Cadmus Group (2012). Massachusetts 2011 Residential Retrofit and Low Income Net-to-Gross Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts	CADMUS_2012_ HES Net-to-Gross Impact Evaluation.pdf
The Cadmus Group, Inc. (2012). Brushless Fan Motors Impact Evaluation. Prepared for: The Electric and Gas Program Administrators of Massachusetts	CADMUS_2012_BFM_Impact_Evaluation_Report. pdf
The Cadmus Group, Inc. (2012). Demand Impact Model. Prepared for the Massachusetts Program Administrators	Cadmus_2012_Demand_Impact_Model_User_Guid e.pdf
Residential Retrofit Multifamily Program Impact Analysis. Prepared for the Massachusetts Program Administrators	Cadmus_2012_Multifamily_Impacts_Analysis_Rep ort.pdf
The Cadmus Group, Inc. (2012). Low Income Single Family Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts.	CADMUS_2012_Single_Family_Low_Income_Imp act_Eval.docx
The Cadmus Group (2012). Home Energy Services Impact Evaluation. Prepared for Massachusetts Program Administrators.	CADMUS_2012_ HES_Impact_Evaluation_Report.pdf
The Cadmus Group, Inc. (2012) Memo to HEHE Program Administrators Re: Impacts of Upcoming Federal Standards on HEHE. Gas Space and Water Heating Measures; June 8, 2012.	CADMUS_2012_HEHE_Codes_and_Standards_Im pacts.pdf
The Cadmus Group (2012). Non-Controls Lighting Evaluation for the Massachusetts Small Business Direct Install Program: Multi-Season Study. Prepared for Massachusetts Utilities.	CADMUS_2012_SBDI_Non- Controls Lighting Multi-Season Study.pdf

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 429 of 435

FULL CITATION	DIGITAL DOCUMENT FILENAME
The Cadmus Group, Inc. (2012), Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study	CADMUS_2012_SBDI_PrePostLightingControl.pd f
The Cadmus Group CPUC Clothes Washers Study	CADMUS_CPUC_Clothes_Washer_Study.pdf
The Cadmus Group, Massachusetts Low-Income Measure Assessment	MA LI Measure Assessment_25Nov11.xlsx
The Cadmus Group (2012). Impact Evaluation of the 2011-2012 ECM Circulator Pump Pilot Program. Savings Values shown on excel sheet: MA_PAs_ECM_Circulator_Pumps_Savings_Doc.xls	CADMUS_2012_ECM_Circulator_Pump_Pilot_Re port_Final.pdf
The Cadmus Group (2013). 2012 Residential Heating, Water Heating, and Cooling Equipment Evaluation: Net- to-Gross, Market Effects, and Equipment Replacement Timing.	CADMUS_2013_HEHE_Cool Smart_NTG_Evaluation_Report.pdf
The Cadmus Group (2013). HES Realization Rate Results Memo. June 2013	CADMUS_2013_HES_Realization_Rate_Results_ Memo.pdf
The Cadmus Group (2015). High Efficiency Heating Equipment Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts	CADMUS_2014_HEHE_Impact Evaluation.pdf
The Cadmus Group, Inc. (2015). Massachusetts Low- Income Multifamily Initiative Impact Evaluation. Prepared for the Electric and Gas Program Administrators of Massachusetts	CADMUS_2015_Low_Income_Multifamily_Impac t_Evaluation.pdf
The Cadmus Group, Inc. (2015). Massachusetts Residential Lighting Cross-Sector Sales Research.	CADMUS_2015_Lighting_Cross_Sector_Sales_Re search Memo.docx
The Cadmus Group (2015). Ductless Mini-Split Heat Pump (DMSHP) Final Heating Season Results. Prepared for The Electric and Gas Program Administrators of Massachusetts.	CADMUS_2015_Cool_Smart_DMSHP_Heating_R esults_Memo.PDF
The Cadmus Group (2015). Multistage Lighting Net-to- Gross Assessment: Overall Report. Prepared for the Electric Program Administrators of Massachusetts.	CADMUS_2015_Multistage_Lighting_NTG_Overa ll_Report.docx
United Illuminating Company and Connecticut Light & Power Company (2010). UI and CL&P Program Savings Documentation for 2011 Program Year.	2011_CT_PSD
USA Technologies Energy Management Product Sheets (2006).	USATech_2006_Energy_Management_Product_Sh eets

Appendix E: Acronyms

ACRONYM	DESCRIPTION
AC	Air Conditioning
AFUE	Annual Fuel Utilization Efficiency (see the Glossary)
AHU	Air Handling Unit
Btu	British Thermal Unit (see the Glossary)
CF	Coincidence Factor (see the Glossary)
CFL	Compact Fluorescent Lamp
CHP	Combined Heat and Power
COP	Coefficient of Performance (see the Glossary)
DCV	Demand Controlled Ventillation
DHW	Domestic Hot Water
DOER	Department of Energy Resources
DSM	Demand Side Management (see the Glossary)
ECM	Electrically Commutated Motor
EER	Energy Efficiency Ratio (see the Glossary)
EF	Efficiency Factor
EFLH	Equivalent Full Load Hours (see the Glossary)
ES	ENERGY STAR® (see the Glossary)
FCM	Forward Capacity Market
FR	Free-Ridership (see the Glossary)
HE	High-Efficiency
HID	High-Intensity Discharge (a lighting technology)
HP	Horse Power (see the Glossary)
HSPF	Heating Seasonal Performance Factor (see the Glossary)
HVAC	Heating, Ventilating, and Air Conditioning
ISO	Independent System Operator
ISR	In-Service Rate (see the Glossary)
kW	Kilo-Watt, a unit of electric demand equal to 1,000 watts
kWh	Kilowatt-Hour, a unit of energy (1 kilowatt of power supplied for one hour)
LED	Light-Emitting Diode (one type of solid-state lighting)
LCD	Liquid Crystal Display (a technology used for computer monitors and similar displays)
MMBtu	One million British Thermal Units (see "Btu" in the Glossary)
MW	Megawatt – a measure of electric demand equal to 1,000 kilowatts
MWh	Megawatt-hour – a measure of energy equal to 1,000 kilowatt-hours
NEB	Non-Electric Benefit (see the Glossary)
NEI	Non-Energy Impact
NE-ISO	New England Independent System Operator
NTG	Net-to-Gross (see the Glossary)
O&M	Operations and Maintenance
PA	Program Administrator (see the Glossary)
PARIS	Planning And Reporting Information System (a DOER database - see the Glossary)
PC	Personal Computer
RR	Realization Rate (see the Glossary)
SEER	Seasonal Energy Efficiency Ratio (see the Glossary)
SO	Spillover (see the Glossary)
SPF	Savings Persistence Factor (see the Glossary)
SSL	Solid-State Lighting (e.g., LED lighting)
VSD	Variable-Speed Drive

Appendix F: Glossary

This glossary provides definitions as they are applied in this TRM for Massachusetts' energy efficiency programs. Alternate definitions may be used for some terms in other contexts.

TERM	DESCRIPTION	
Adjusted Gross Savings	Gross savings (as calculated by the measure savings algorithms) that have been subsequently adjusted by the application of all impact factors except the net-to-gross factors (free-ridership and spillover). For more detail, see the section on Impact Factors for Calculating Adjusted Gross and Net Savings.	
AFUE	Annual Fuel Utilization Efficiency. The measure of seasonal or annual efficiency of a furnace or boiler. AFUE takes into account the cyclic on/off operation and associated energy losses of the heating unit as it responds to changes in the load, which in turn is affected by changes in weather and occupant controls.	
Baseline Efficiency	The level of efficiency of the equipment that would have been installed without any influence from the program or, for retrofit cases where site-specific information is available, the actual efficiency of the existing equipment.	
Btu	British thermal unit. A Btu is approximately the amount of energy needed to heat one pound of water by one degree Fahrenheit.	
Coefficient of Performance (COP)	Coefficient of Performance is a measure of the efficiency of a heat pump, air conditioner, or refrigeration system. A COP value is given as the Btu output of a device divided by the Btu input of the device. The input and output are determined at AHRI testing standards conditions designed to reflect peak load operation.	
Coincidence Factor (CF)	Coincidence Factors represent the fraction of connected load expected to occur concurrent to a particular system peak period; separate CF are found for summer and winter peaks. The CF given in the TRM includes both coincidence and diversity factors multiplied into one number. Coincidence factors are provided for peak periods defined by the NE-ISO for FCM purposes and calculated consistent with the FCM methodology.	
Connected Load kW Savings	The connected load kW savings is the power saved by the equipment while in use. In some cases the savings reflect the maximum power draw of equipment at full load. In other cases the connected load may be variable, which must be accounted for in the savings algorithm.	
Deemed Savings	Savings values (electric, fossil fuel and/or non-energy benefits) determined from savings algorithms with assumed values for all algorithm parameters. Alternatively, deemed savings values may be determined from evaluation studies. A measure with deemed savings will have the same savings per unit since all measure assumptions are the same. Deemed savings are used by program administrators to report savings for measures with well-defined performance characteristics relative to baseline efficiency cases. Deemed savings can simplify program planning and design, but may lead to over- or under-estimation of savings depending on product performance.	
Deemed Calculated Savings	Savings values (electric, fossil fuel and/or non-energy benefits) that depend on a standard savings algorithm and for which at least one of the algorithm parameters (e.g., hours of operation) is project specific.	
Demand Savings	The reduction in demand due to installation of an energy efficiency measure, usually expressed as kW and measured at the customer's meter (see Connected Load kW Savings).	
Demand Side Management (DSM)	Strategies used to manage energy demand including energy efficiency, load management, fuel substitution, and load building.	
Diversity	A characteristic of a variety of electric loads whereby individual maximum demands occur at different times. For example, 50 efficient light fixtures may be installed, but they are not necessarily all on at the same time. See Coincidence Factor.	
TERM	DESCRIPTION	
---	--	--
Diversity Factor	This TRM uses coincidence factors that thus this TRM has no separate diversity 1) the percent of maximum demand savi the time of the company's peak demand, group of users to their coincident maxim	incorporate diversity (See Coincidence Factor), factors. A diversity factor is typically calculated as: ngs from energy efficiency measures available at or 2) the ratio of the sum of the demands of a um demand.
End Use	Refers to the category of end use or service provided by a measure or technology (e.g., lighting, cooling, etc.). For the purpose of this manual, end uses with their PARIS codes	
	Include:ALghtLightingHVACHVACCMoDrMotors & DrivesDRefrRefrigerationEHoWaHot WaterFComACompressed AirGProcProcess**For residential measures, "process" is uconsumer electronics, or do not conformindustrial measures, "process" is used fopump systems, or efficient models of specific	HEUBeBehaviorIenvlInsulation & Air SealingJGchpCombined Heat & PowerKSdhwSolar Hot WaterLDmdRDemand ResponseMPvElPhotovoltaic Panelsseed for products that have low savings, such asto existing end use categories. For commercial andr systematic improvements to manufacturing orexially equipment not covered in other end uses.
Energy Efficiency Ratio (EER)	The Energy Efficiency Ratio is a measur specified peak, design temperature, or ou steady-state rate of heat energy removal Btuh output divided by watts input.	e of the efficiency of a cooling system at a atdoor temperature. In technical terms, EER is the (i.e. cooling capacity) of a product measured in
ENERGY STAR® (ES)	Brand name for the voluntary energy eff Environmental Protection Agency.	iciency labeling initiative sponsored by the U.S.
Energy Costing Period	 A period of relatively high or low system defined by ISO-NE are: Summer Peak: 6am–10pm, Monday Summer Off-Peak: Summer hours in Monday–Friday, all day on Saturday Winter Peak: 6am–10pm, Monday–October–December Winter Off-Peak: Winter hours not Monday–Friday, all day on Saturday October–December. 	n energy cost, by season. The energy periods 7–Friday (except ISO holidays), June–September not included in the summer peak hours: 10pm–6am, and Sunday, and ISO holidays, June–September Friday (except ISO holidays), January–May and included in the sinter peak hours: 10pm–6am, and Sunday, and ISO holidays, January–May and
Equivalent Full Load Hours (EFLH)	The equivalent hours that equipment wo consume its estimated annual kWh consu	uld need to operate at its peak capacity in order to umption (annual kWh/connected kW).
Free Rider	A customer who participates in an energ some or all of the same measure(s) on th installation, if the program had not been	y efficiency program, but would have installed eir own, with no change in timing of the available.
Free-Ridership Rate	The percentage of savings attributable to measures in the absence of program inter	participants who would have installed the rvention.
Gross kW	Expected demand reduction based on a c equipment installed through an energy es	comparison of standard or replaced equipment and fficiency program.
Gross kWh	Expected kWh reduction based on a com equipment installed through an energy ex-	parison of standard or replaced equipment and fficiency program.

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 433 of 435

TERM	DESCRIPTION	
Gross Savings	A saving estimate calculated from objective technical factors. In this TRM, "gross savings" are calculated with the measure algorithms and do not include any application of impact factors. Once impact factors are applied, the savings are called "Adjusted Gross Savings". For more detail, see the section on Impact Factors for Calculating Adjusted Gross and Net Savings.	
High Efficiency (HE)	Refers to the efficiency measures that are installed and promoted by the energy efficiency programs.	
Horsepower (HP)	A unit for measuring the rate of doing work. One horsepower equals about three-fourths of a kilowatt (745.7 watts).	
Heating Seasonal Performance Factor (HSPF)	A measure of the seasonal heating mode efficiencies of heat pumps expressed as the ratio of the total heating output to the total seasonal input energy.	
Impact Factor	Generic term for a value used to adjust the gross savings estimated by the savings algorithms in order to reflect the actual savings attributable to the efficiency program. In this TRM, impact factors include realization rates, in-service rates, savings persistence, peak demand coincidence factors, free-ridership, spillover and net-to-gross factors. See the section on Impact Factors for more detail.	
In-Service Rate	The percentage of units that are actually installed. For example, efficient lamps may have an in-service rate less than 100% since some lamps are purchased as replacement units and are not immediately installed. The in-service rate for most measures is 100%.	
Measure Life	The number of years that an efficiency measure is expected to garner savings. These are generally based on engineering lives, but sometimes adjusted based on observations of market conditions.	
Lost Opportunity	Refers to a measure being installed at the time of planned investment in new equipment or systems. Often this reflects either new construction, renovation, remodeling, planned expansion or replacement, or replacement of failure.	
Measure	A product (a piece of equipment), combination of products, or process designed to provide energy and/or demand savings. Measure can also refer to a service or a practice that provides savings. Measure can also refer to a specific combination of technology and market/customer/practice/strategy (e.g., direct install low income CFL).	
Net Savings	The final value of savings that is attributable to a program or measure. Net savings differs from gross savings (or adjusted gross savings) because it includes adjustments due to free-ridership and/or spillover. Net savings is sometimes referred to as "verified" or "final" savings. For more detail see the section on Impact Factors for Calculating Adjusted Gross and Net Savings.	
Net-to-Gross Ratio	The ratio of net savings to the adjusted gross savings (for a measure or program). The adjusted gross savings include any adjustment by the impact factors other than free-ridership or spillover. Net-to-gross is usually expressed as a percent.	
Non-Electric Benefits (NEBs)	Quantifiable benefits (beyond electric savings) that are the result of the installation of a measure. Fossil fuel, water, and maintenance are examples of non-electric benefits. Non-electric benefits can be negative (i.e. increased maintenance or increased fossil fuel usage which results from a measure) and therefore are sometimes referred to as "non-electric impacts".	
Non-Participant	A customer who is eligible to participate in a program, but does not. A non-participant may install a measure because of a program, but the installation of the measure is not through regular program channels; as a result, their actions are normally only detected through evaluations.	
On-Peak kW	See Summer/Winter On-peak kW	
Operating Hours	Hours that a piece of equipment is expected to be in operation, not necessarily at full load (typically expressed per year).	

TERM	DESCRIPTION	
PARIS	Planning And Reporting Information System, a statewide database maintained by the Department of Energy Resources (DOER) that emulates the program administrators' screening model. As a repository for quantitative data from plans, preliminary reports, and reports, PARIS generates information that includes funding sources, customer profiles, program participation, costs, savings, cost-effectiveness and program impact factors from evaluation studies. DOER developed PARIS in 2003 as a collaborative effort with the Department of Public Utilities and the electric program administrators. Beginning with the 2010 plans, PARIS holds data from gas program administrators.	
Participant	A customer who installs a measure through regular program channels and receives any benefit (i.e. incentive) that is available through the program because of their participation. Free-riders are a subset of this group.	
Prescriptive Measure	A prescriptive measure is generally offered by use of a prescriptive form with a prescribed incentive based on the parameters of the efficient equipment or practice.	
Program Administrator (PA)	Those entities that oversee public benefit funds in the implementation of energy efficiency programs. This generally includes regulated utilities, other organizations chosen to implement such programs, and state energy offices. The Massachusetts electric PAs include Cape Light Compact, National Grid, NSTAR, Western Massachusetts Electric Company (WMECo), and Unitil. The Massachusetts natural gas PAs include Bay State Gas, Berkshire Gas, and New England Gas.	
Realization Rate (RR)	The ratio of measure savings developed from impact evaluations to the estimated measure savings derived from the TRM savings algorithms. This factor is used to adjust the estimated savings when significant justification for such adjustment exists. The components of the realization rate are described in detail in the section on Impact Factors.	
Retrofit	The replacement of a piece of equipment or device before the end of its useful or planned life for the purpose of achieving energy savings. "Retrofit" measures are sometimes referred to as "early retirement" when the removal of the old equipment is aggressively pursued.	
Savings Persistence Factor (SPF)	Percentage of first-year energy or demand savings expected to persist over the life of the installed energy efficiency equipment. The SPF is developed by conducting surveys of installed equipment several years after installation to determine the operational capability of the equipment. In contrast, <i>measure persistence</i> takes into account business turnover, early retirement of installed equipment, and other reasons the installed equipment might be removed or discontinued. Measure persistence is generally incorporated as part of the measure life, and therefore is not included as a separate impact factor.	
Seasonal Energy Efficiency Ratio (SEER)	A measurement of the efficiency of a central air conditioner over an entire season. In technical terms, SEER is a measure of equipment the total cooling of a central air conditioner or heat pump (in Btu) during the normal cooling season as compared to the total electric energy input (in watt-hours) consumed during the same period.	
Seasonal Peak kW	See Summer/Winter Seasonal Peak kW, and Summer/Winter On-Peak Peak kW.	
Sector	A system for grouping customers with similar characteristics. For the purpose of this manual, the sectors are Commercial and Industrial (C&I), Small Business, Residential, and Low Income.	
Spillover Rate	The percentage of savings attributable to the program, but additional to the gross (tracked) savings of a program. Spillover includes the effects of (a) participants in the program who install additional energy efficient measures outside of the program as a result of hearing about the program and (b) non-participants who install or influence the installation of energy efficient measures as a result of being aware of the program.	
Summer/Winter On-Peak kW	The average demand reduction during the summer/winter on-peak period. The summer on- peak period is 1pm-5pm on non-holiday weekdays in June, July and August; the winter on- peak period is 5pm-7pm on non-holiday weekdays in December and January.	

Massachusetts Technical Reference Manual

D.P.U. 15-160 to D.P.U. 15-169 Three-Year Plan 2016-2018 October 30, 2015 Exhibit 1, Appendix V Page 435 of 435

Appendix F: Glossary

TERM	DESCRIPTION
Summer/Winter Seasonal Peak kW	The demand reduction occurring when the actual, real-time hourly load for Monday through Friday on non-holidays, during the months of June, July, August, December, and January, as determined by the ISO, is equal to or greater than 90% of the most recent 50/50 system peak load forecast, as determined by the ISO, for the applicable summer or winter season.
Ton	Unit of measure for determining cooling capacity. One ton equals 12,000 Btu.
Watt	A unit of electrical power. Equal to 1/1000 of a kilowatt.