

Commercial/Industrial and Multifamily Technical Reference Manual

Version 2018.3

Effective Date: January 1,2018

Efficiency Maine Trust 168 Capitol Street Augusta, ME 04330 efficiencymaine.com

Table of Contents

INTRODUCTION	4
TRM CHANGE LOG	10
LIGHTING EQUIPMENT	19
Prescriptive Lighting: Lighting Fixtures – Interior Spaces (New Fixtures), Codes S21, S51, S61, S81	20
Prescriptive Lighting: Lighting Fixtures – Interior Spaces (Retrofit/Replacement Lamps), Codes S40,S52, S62, S64,	
S51R, S61R, S81R, S110R	
Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (New Construction), Code S71	
(Inactive)	24
Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (Retrofit), Code S70 (Inactive)	26
Prescriptive Lighting: Lighting Fixtures – LED Exit Sign, Code X10 (Inactive)	28
Prescriptive Lighting: Lighting Fixtures – Exterior Spaces (New fixtures), Codes S11, S13, S17, S23	30
Prescriptive Lighting: Lighting Fixtures – Exterior Spaces (Retrofit/Replacement Lamps), Codes S6, S8, S11R, S13R	
S17R, S23R	
Prescriptive Lighting: Lighting Controls – Interior Spaces, Codes L60.1, L70.1, L71.1	33
Prescriptive Lighting: Lighting Fixtures – Refrigerated Spaces, Codes S30, S32	
Prescriptive Lighting: Lighting Controls – Refrigerated Spaces, Code L50	
VARIABLE FREQUENCY DRIVES	
Advanced Rooftop Controls	
Prescriptive VFD: Variable Frequency Drives (VFDs) for HVAC, Codes SFA, SFP, RFA, RFP, BEF, CWP, HHWP	
HVAC EQUIPMENT	
Prescriptive HVAC: Unitary Air Conditioners, Codes AC1-AC6 (Inactive)	
Prescriptive HVAC: Heat Pump Systems, Codes AH1-AH5, WH	
Prescriptive HVAC: Packaged Terminal Air Conditioners and Heat Pumps (Inactive)	
Prescriptive HVAC: Demand Control Ventilation, Codes DCVE, DCVN	
Prescriptive HVAC: Variable Refrigerant Flow, Code VRF	
Ductless Heat Pump – Commercial/Industrial, Codes DHP1L-DHP4L	
Ductless Heat Pump – Multifamily, Code MPDHPNC	
Ductless Heat Pump Retrofit – Low-Income Multifamily, Code LIDHP	
Prescriptive HVAC: Modulating Burner Controls for Boilers and Heaters, Code AF1	
Prescriptive HVAC: Boiler Stack Heat Exchanger (Boiler Economizer), Code AF2	
Prescriptive HVAC: Boiler Reset/Lockout Controls, Code AF3	
Prescriptive HVAC: Oxygen Trim for Boilers and Heaters, Code AF4	
Prescriptive HVAC: Boiler Turbulator, Code AF5	
Prescriptive HVAC: Programmable Thermostat, Code AF6	
Prescriptive HVAC: Efficient Boilers and Furnaces, Codes G9-G11, G01M, G07M, G08M, G15M, G16M, H2L, H3L,	
H2SM, H2MM, H3VSM, H3SM, H3MM	
Electronically Commutated Supply Fan Motor (ECMSF)	
Electronically Commutated Hot Water Smart Pump (ECMHW)	72
REFRIGERATION EQUIPMENT	73
Prescriptive Refrigeration: Evaporator Fan Motor Control for Cooler/Freezer, Code R10	74
Prescriptive Refrigeration: Door Heater Controls for Cooler/Freezer, Code R20	75
Prescriptive Refrigeration: Zero Energy Doors for Coolers/Freezers, Codes R30, R31	77
Prescriptive Refrigeration: High-Efficiency Evaporative Fan Motors, Codes R40, R41, R42	78
Prescriptive Refrigeration: Floating-Head Pressure Controls, Codes R50, R51, R52	80
Prescriptive Refrigeration: Discus & Scroll Compressors, Codes R60, R61, R62, R63, R70, R71, R72, R73, R74	82
Prescriptive Refrigeration: ENERGY STAR® Reach-in Coolers and Freezers, Code R80	
Prescriptive Refrigeration: ENERGY STAR® Commercial Ice Makers, Code R90	86

WATER HEATING EQUIPMENT	88
Prescriptive Water Heating: Tankless Water Heater, Code WH1M	
AGRICULTURAL EQUIPMENT	90
Prescriptive Agricultural: New Vapor-Tight High Performance T8 Fluorescent Fixtures (Inactivie)	
Prescriptive Agricultural: Plate Heat Exchangers for Milk Processing (Inactive)	
Prescriptive Agricultural: Adjustable Speed Drives for Dairy Vacuum Pumps, Codes VP <x></x>	93
Prescriptive Agricultural: Scroll Compressors, Codes AMSC <x></x>	
Prescriptive Agricultural: Adjustable Speed Drives on Ventilation Fans (Potato Storage Equipment), Code	S ASD <x>95</x>
Prescriptive Agricultural: High-Volume Low-Speed Fans, Code AOLSF	98
COMMERCIAL KITCHEN EQUIPMENT	99
ENERGY STAR® Natural Gas Kitchen Equipment, Codes G17–G22	100
Demand Control Kitchen Ventilation, Code DCKV	102
High Efficiency Pre-Rinse Spray Valve, Code HPSV	103
COMPRESSED AIR EQUIPMENT	105
Prescriptive Compressed Air: High-Efficiency Air Compressors, Codes C1–C4	
Prescriptive Compressed Air: High-Efficiency Dryers, Codes C10–C16	108
Prescriptive Compressed Air: Receivers, Codes C20–C27	109
Prescriptive Compressed Air: Low Pressure Drop Filters, Codes C30–C33	111
Prescriptive Compressed Air: Air-Entraining Nozzles, Code C40	112
THERMAL ENVELOPE	114
Multifamily Building Attic/Roof/Ceiling Insulation, Code MIA	115
Multifamily Building Wall Insulation, Code MIW	117
Multifamily Building Basement Insulation, Code MIB	119
COMMERCIAL LAUNDRY EQUIPMENT	121
Multifamily Common Area Clothes Washer, Code MCW	122
Multifamily Common Area Clothes Dryer, Code MCD	124
COMMERCIAL AND INDUSTRIAL CUSTOM PROGRAM	125
Advanced Building, Codes AB – <x></x>	
Custom – C&I Custom Electric Projects, Codes CC <x>, CG<x>, CSS<x>, CSolar</x></x></x>	127
Custom – C&I Custom Natural Gas Projects, Codes CC <x>, CG<x>, CSS<x></x></x></x>	129
Custom – C&I Custom Thermal Projects, Codes CC <x>, CG<x>, CSS<x></x></x></x>	131
Custom – C&I Custom Distributed Generation Projects, Codes CC <x>, CG<x>, CSS<x>, CSolar</x></x></x>	133
APPENDIX A: GLOSSARY	137
APPENDIX B: ENERGY PERIOD FACTORS AND COINCIDENCE FACTORS	142
APPENDIX C: CARBON DIOXIDE EMISSION FACTORS	148
APPENDIX D: PARAMETER VALUES REFERENCE TABLES	150

Introduction

PURPOSE

The Efficiency Maine Trust Residential/Retail and Commercial/Industrial and Multifamily Technical Reference Manuals (TRMs) provide documentation for the Trust's calculation of energy and demand savings from energy-efficiency measures. Each TRM serves as a central repository and common point of reference for the methods, formulas, assumptions, and sources that are used to estimate savings from energy-efficiency measures, and provides a common platform for analyzing energy savings across measures and programs. The importance of the TRM is derived from the importance of energy and demand savings calculations, which are at the foundation of the Trust's program planning and management, cost-effectiveness analysis, program evaluation, Annual Report, and Independent System Operator – New England (ISO-NE) Forward Capacity Market (FCM) participation.

GENERAL FORMAT

The TRM is organized by end use and then by measure category, which may include one or more measures. Each measure category is presented in its own section as a measure characterization, following a standard format. The measure characterization includes: a measure overview; energy and demand savings algorithms; baseline assumptions; deemed parameter values or instructions for inputs to savings algorithms, measure life and measure costs and impact factors for calculating adjusted gross savings and net savings. When there is a set of common values across measures, summary tables are provided at the end of the relevant section or in an appendix.

Where deemed savings values are specified, Efficiency Maine Trust (the Trust or EMT) uses integer values when reporting in units of kWh, one decimal place when reporting in units of MMBtu, and three decimal places for all demand (kW) values.

GUIDANCE & COMMON ASSUMPTIONS

In using the Trust's TRMs, it is helpful to note the following:

- **Gross savings**: Algorithms are specified for *gross* savings. To calculate *adjusted gross* savings or *net* savings, impact factors that account for verified measure performance (adjusted gross) and attribution (net) must be applied. The formulas used to calculate adjusted gross and net savings are described below.
- **Annual savings**: Algorithms are specified for *annual* savings. Unless otherwise noted, annual savings are assumed to be realized for each year of the measure life.
- *Unit savings:* Algorithms are specified for *per unit* savings. The Trust's programs' databases track and record the number of units delivered through the program.
- **Meter-level savings**: Savings are assumed to be those that occur at the customer's meter (or point of use for non-electric savings); line losses are not included in these calculations.
- **Non-electric savings**: When applicable, savings are counted for natural gas, oil, propane, kerosene, wood, and/or water. The deemed unit savings, algorithms and assumptions for these non-electric impacts are described in the measure characterizations whenever those savings are counted. If a non-electric impact is not described for a measure, it can be assumed that no non-electric impacts are counted for that measure.
- In-Service Rate (ISR): The in-service rate represents the percentage of program units that are installed or implemented. Unless otherwise stated in the measure-specific sections of this TRM, the ISR is set to 100 percent for all commercial measures for the following reasons:

- Purchased units are assumed to be installed. In the commercial sector, it is uncommon for customers to purchase equipment and not immediately install or use it.
- The Trust's programs include some level of verification of the measure purchase and/or installation.
 These verification procedures ensure that projects and savings are counted only for measures that are implemented.
- The effects of non-implemented units may be identified in the program impact evaluation and accounted for in the energy and demand realization rates (RRs).
- For most commercial measures, it is common to assume ISR = 100% or, equivalently, not include an ISR factor. For example, the 2013–2015 Massachusetts TRM assumes a 100% ISR for all commercial measures except screw-in measures, stating that "All installations have 100% in service rate since all programs include verification of equipment installations." Many other TRMs, including New York, Connecticut, and the Mid-Atlantic TRM, do not include an ISR in savings equations for commercial measures.
- Coincidence Factors (CF): Coincidence factors are provided for the summer and winter on-peak periods as
 defined by the ISO-New England for the FCM, and are calculated consistently with the FCM methodology.
 Electric demand reduction during the ISO New England peak periods is defined as follows:
 - Summer on-peak: average demand reduction from 1:00 PM to 5:00 PM on non-holiday weekdays in June, July, and August
 - Winter on-peak: average demand reduction from 5:00 PM to 7:00 PM on non-holiday weekdays in December and January
- Life: "Life" refers to the effective useful life of the measure. It represents the equivalent number of years the savings are expected to be realized. Lifetime savings = annual savings x life. Measure life takes one or more of the following aspects into consideration: 1) projected equipment life, 2) documented equipment warranty, 3) measure persistence, and 4) savings persistence. Life is set to represent a conservative estimate of the aggregate life of all measures of that type installed and not the characterization of the life of a single, specific installed measure.
- **Deemed savings value vs. deemed savings algorithm:** For some measures, deemed savings values are provided representing the estimated average savings per unit for the measure. The deemed savings value may be based directly on the results from an evaluation or other research study, or may be based on a set of deemed input parameters applied to the stated energy and demand savings algorithms.

For other measures, deemed values are provided for only some of the parameters in the algorithm and actual values for a given measure are required to calculate savings. In these cases, project-specific (or "actual") data recorded in the relevant program tracking database are used in combination with the TRM deemed parameters to compute savings.

useful life of the measure so that future savings are less than first year savings and changes in usage behavior over time.

¹ Measure persistence is a quantification of how long the measure will remain in place. Causes of reduced measure persistence include any activity that removes the measure or eliminates the savings, such as equipment upgrade, refurbishment or renovation of the building, closure of a business, and override of efficiency controls.
² Savings persistence is a quantification of how long the defined savings will remain. Causes of reduced savings persistence include a change to the baseline over the

- **Project-specific ("actual") data for parameter inputs:** The savings methods for most commercial measures specify "Actual" data for at least one of the input parameters. Actual data refers to values that are specific to the project. Unless otherwise stated, these actual project data should be collected and documented on the project application forms. For some measures, the TRM provides alternative values if the actual data are unknown.
- Data Sources for deemed parameter inputs: Wherever possible, deemed parameter values and assumptions are based on Maine-specific research and data. When such data are not available, the TRM relies on relevant data sources from other areas within the U.S.; in doing so, data sources from neighboring states and regions are prioritized. In some cases, engineering judgment and scaling for regional differences are used.
- **Project type:** The project type describes the underlying scenario that is assumed for the savings calculation of a given measure. The decision type has implications for the baseline efficiency case and the measure cost assumptions as shown below.³ For each energy-efficiency measure, the TRM identifies the relevant project type, or types, corresponding to the scenarios in which the given measure may be implemented.

Decision Type	Scenario	Baseline	Measure Cost
New Construction	Customer is in the market to purchase new equipment for a new construction or new capacity project or as part of a planned renovation or to add controls to improve the performance of new equipment	Federal standards or standard market practice for new equipment	Incremental cost: difference between the cost of baseline and cost of high-efficiency equipment
Replace on Burnout	Customer is in the market to purchase new equipment to replace existing equipment that has worn out or otherwise needs replacing	Federal standards or standard market practice for new equipment	Incremental cost: difference between the cost of baseline and cost of high-efficiency equipment
Retrofit	Customer's existing equipment is in working order and has remaining useful life or customer is adding controls to improve the performance of operating equipment in an existing facility	Existing equipment or conditions	Full measure cost: cost of the high-efficiency equipment (including installation)

- *Efficiency standards:* The TRM anticipates the effects of changes in efficiency standards for some measures, including shifts in the baseline for CFLs due to changes in Federal standards for lighting products under the Energy Independence & Security Act of 2007 (EISA).
- **TRM Updates**: The TRMs are reviewed and updated annually, or more frequently if needed, to reflect new information obtained through research and evaluation studies, changes in program offerings (measures), and shifts in technology and baselines. Annual updates to the TRM are published as a new version (Version YYYY.1) with a specific effective date. Inter-year updates are published as iterations to the version year (Version YYYY.x) with changes and effective date indicated.

³ Table adapted from National Action Plan for Energy Efficiency (2008). Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers. Energy and Environmental Economics, Inc. and Regulatory Assistance Project. < https://www.epa.gov/sites/production/files/2015-08/documents/napee_report.pdf>.

SAVINGS FORMULAS

The formulas and inputs used to calculate the deemed gross annual energy ($\Delta kWh/yr$ (electricity) and $\Delta MMBtu/yr$ (natural gas and other fuels)) and gross max demand (ΔkW) savings for each measure are described in the measure sections. The formulas used to calculate adjusted gross savings, on-peak demand savings, and lifetime savings are described below. For measures that have different gross max demand savings for winter and summer, max heating (ΔkW_H) and max cooling (ΔkW_C) demand savings are reported. For measures where coincident demand reductions are estimated directly, winter (ΔkW_{WP}) and summer peak (ΔkW_{SP}) demand savings are reported and the coincidence factors set to 100 percent.

Adjusted Gross Savings

Adjusted gross savings represent the total energy and demand savings achieved by measures implemented through the Trust's programs. The adjusted gross savings values are calculated by applying various evaluation parameters to the gross annual energy and demand savings:

Adjusted Gross Annual kWh = Δ kWh/yr × ISR × RR_E

Adjusted Gross Lifetime kWh = $\Delta kWh/yr \times ISR \times RR_E \times Measure Life$

Adjusted Gross Annual MMBtu⁴ = Δ MMBtu/yr × ISR × RR_E

Adjusted Gross Lifetime MMBtu⁴ = Δ MMBtu/yr × ISR × RR_E × Measure Life

Adjusted Gross Summer On-Peak kW = Δ kW × ISR × RR_D × CF_S

Adjusted Gross Winter On-Peak kW = Δ kW × ISR × RR_D × CF_W

The Adjusted Gross Summer On-Peak kW value is equivalent to the Demand Reduction Value reported to the ISO-NE FCM.

Net Savings

Net savings represent the total realized energy and demand savings that are attributable to the Trust's programs. These net savings are calculated by applying the net-to-gross (NTG) factors, such as free ridership (FR) and spillover (SO), to the adjusted gross savings.

Net Annual kWh = Δ kWh/yr × ISR × RR_E × (1 – FR + SO)

Net Lifetime kWh = Δ kWh/yr × ISR × RR_E × (1 – FR + SO) × Measure Life

Net Summer On-Peak kW = Δ kW × ISR × RR_D × CF_S × (1 – FR + SO)

Net Winter On-Peak kW = Δ kW × ISR × RR_D × CF_W × (1 – FR + SO)

Note the parameter (1 - FR + SO) may be replaced with the NTG ratio.

⁴ In this document and other reporting documents, fossil fuel savings are reporting in unit of MMBtu. In the program tracking database (effRT), natural gas savings are calculated in units of therms and then must be converted to MMBtu.

SAVINGS CALCULATIONS

The actual calculation of energy efficiency savings, pursuant to the algorithms and assumptions documented in the TRM, occurs in the Trust's program tracking databases. In 2012, the Trust initiated a significant effort to upgrade and transform its existing program-specific databases into a comprehensive, unified database system that supports multiple programs with standardized internal processes, features, and quality. This initiative builds on the foundation of the successful Efficiency Maine Reporting and Tracking (effRT) database system that historically supported the Business Programs to create a new multi-program database system, effRT 2.0. As part of this effort, the Trust is mapping the TRM deemed values and algorithms into effRT, and establishing processes for updates to effRT to coincide with TRM updates.

As of January 1, 2014, the Trust added adjustment factors for the in-service rate (ISR) and the evaluated realization rate (RR) to the formulas used to calculate the demand reduction value (DRV) for Forward Capacity Market (FCM monthly reporting. Results using these two additional factors are referred to as *Adjusted Gross Savings* in the effRT report.

TRM Change Log

Change Type	TRM Section	Description	Effective Date	effRT Update
PY2014 Add	dendum			
Correction	Table 32 - Installed Fixture Rated Wattage Reduction Table (SAVEEE)	 Corrected the SAVE_{EE} values to show the average wattage reduction per fixture code. The previous values showed the fixture wattage rather than the wattage reduction. Added wattage savings values for new measure codes S51 and S61. 	11/12/2013	N/A
New	Prescriptive Lighting: Lighting Fixtures – Interior Spaces (New Construction)	Added new fixture codes: • Code S51 – LED Recessed Fixtures • Code S61 – LED High/Low Bay Fixtures	11/12/2013	Y
New	Prescriptive Lighting: Lighting Fixtures – Interior Spaces (Retrofit)	 Added new fixture codes: Code S50 – LED Recessed Fixtures Code S60 – LED High/Low Bay Fixtures 	11/12/2013	Y
New	Prescriptive Lighting: Lighting Fixtures – Refrigerated Spaces	 Added new fixture codes: Code S32 – LED Refrigerated Case Light – Horizontal (Retrofit) Code S33 – LED Refrigerated Case Light – Horizontal (New Construction) 	11/12/2013	Y
Revision	Table 31 – Installed Measure Wattage and Cost Table (WattsEE, SAVEEE, CostEE)	Added fixture wattage values for new measure codes S50, S51, S60, S61, S32 and S32	11/12/2013	Y
Revision	Table 35 – Installed Costs for Prescriptive Lighting High Efficiency Measures	Added measure costs for new measure codes S50, S51, S60, and S61.	11/12/2013	Υ
New	Prescriptive DHP Retrofit: Ductless Heat Pump Retrofit	Added two new measures: DHP Retrofit (Electric Heat Baseline) DHP Retrofit (Non-Electric Heat Baseline)	12/17/2013	Y
Revision	Table 29 – Commercial Coincidence Factors and Energy Period Factors	Added coincidence and energy period factors for the two new DHP Retrofit measures	12/17/2013	Y
Revision	Appendix G: Custom Projects – Process Documentation	Updated eligibility requirements to reflect a mid- year change announced in a January 30, 2013 program opportunity notice	2/25/2014	N/A
PY2015 Upo	dates			
New	Multifamily Efficiency Program lighting measures	Added Multifamily Efficiency Program for retrofit lighting measures (superseded by subsequent modification)	7/1/2014	N/A
Revision	Prescriptive HVAC: Unitary Air-Conditioners	Updated baseline efficiency for Window AC units to reflect change to federal minimum efficiency standards	7/1/2014	N/A
Revision	Natural Gas Heating Equipment	Update baseline efficiency values based on new federal minimum efficiency requirements; updated measure costs	7/1/2014	Y
Other	Prescriptive Lighting: Lighting Controls – Interior Spaces	Revised description of savings calculation method to improve clarity; the change does not change the savings estimation approach	7/1/2014	N/A
Revision	Prescriptive HVAC: PTAC and PTHP	Updated baseline efficiency values	7/1/2014	N/A

Change Type	TRM Section	Description	Effective Date	effRT Update
New	Prescriptive HVAC: Ductless Heat Pump Retrofit	Updated the existing Ductless Heat Pump Retrofit measure to include multi-head option; updated measure cost	7/1/2014	Y
Other	Small Business Direct Install Program	The PY2014 Direct Install Pilot Program is changed to the Small Business Direct Install Program in PY2015.	7/1/2014	N/A
Revision	DHP Retrofit	Updated the formula to include an HSPF adjustment factor and updated the annual EFLH value based on updates to the DHP workbook. Updates also included CF and EPF values for this measure.	7/1/2014	Y
Revision	HVAC: VRF	Updated baseline COP to reflect cold climate operation.	9/23/2014	Y
Revision	DHP Retrofit	Updated measure life	9/27/2014	Υ
Other	DHP Retrofit	Removed qualifications table, revised measure cost for 4 zones to be 4+ zones	11/30/2014	Y
Other	Introduction	Updated TRM Update section. Inter-year updates will be released as iterations of the complete document.	11/30/2014	N
Other	Prescriptive Lighting: Lighting Fixtures – Multifamily (Retrofit), Prescriptive Lighting: Lighting Controls – Multifamily	Moved Multifamily lighting measures from Commercial TRM to Multifamily TRM	1/1/2015	N
Other	Prescriptive DHP	Removed Multifamily option. Included in Multifamily TRM	1/1/2015	N
Other	Custom Electric, Custom Natural Gas	Removed Multifamily section. Included in Multifamily TRM. Custom Natural Gas criteria updated.	1/1/2015	N
Other	Custom Natural Gas	Modified minimum savings threshold	3/1/2015	N
New	Prescriptive HVAC	Added new measures: Boiler Turbulator, Modulating Burner Controls, Oxygen Trim Controls, Boiler Economizer, Programmable Thermostats, Boiler Reset/Lockout Controls	3/1/2015	Y
New	Prescriptive Water Heating	Tankless Water Heater	3/1/2015	Υ
New	Prescriptive Lighting	Added new measure codes:	3/1/2015	Y
New	Prescriptive Lighting: Lighting Fixtures – Interior Spaces (New Construction)	Added new fixture codes: • Code S81 – LED Linear Ambient Fixtures	3/1/2015	Y
New	Prescriptive Lighting: Lighting Fixtures – Interior Spaces (Retrofit)	Added new fixture codes: • Code S80 – LED Linear Ambient Fixtures	3/1/2015	Y

Change Type	TRM Section	Description	Effective Date	effRT Update
New	Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (New Construction)	Added new fixture codes: • Code S71 – LED StairwayFixtures	3/1/2015	Y
New	Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (Retrofit)	Added new fixture codes: • Code S70 – LED Stairway Fixtures	3/1/2015	Y
PY2016 Up				
Revision	Lighting Equipment	Revised waste heat factors for cooling. Added waste heat factor for heating	7/1/2015	Y
Revision	Lighting Equipment	Revised sub-division for LED Flood/Spot and High/Low Bay fixtures.	7/1/2015	Y
Revision	Appendix E: Lighting Costs	Revised measure costs for lighting measures	7/1/2015	Υ
Revision	Ductless Heat Pump	Changed decision type to Lost Opportunity. Revised parameters based on updated modeling.	7/1/2015	Y
Revision	Prescriptive HVAC	Updated measure cost for Unitary A/C, Heat Pump Systems, Oxygen Trim Controls	7/1/2015	Y
Revision	Prescriptive Refrigeration	Updated measure cost for R80, R90	7/1/2015	Υ
Revision	Prescriptive Agriculture	Updated measure cost for vapor-tight high performance T8,	7/1/2015	Y
Revision	Prescriptive Agriculture	Adjustable Speed Drive savings calculation updated to reflect Variable Frequency Drive Evaluation Protocol	7/1/2015	Y
Revision	Prescriptive Natural Gas	Updated measure cost for natural gas heating equipment and natural gas kitchen equipment	7/1/2015	Y
Revision	Custom Incentives	Updated measure life for heating system replacement/upgrade and maintenance	7/1/2015	Υ
Other	Appendix: Carbon Dioxide Emission Factors	Added carbon dioxide emission factors table	7/1/2015	N
Other	Lighting	Expanded Hospital entries to include all health care facilities	7/1/2015	Y
Other	Appendix: Average Annual Lighting Operating Hours and other Lookup Tables	Added annual operation hours reference for nursing homes/assisted living/health care and agriculture, added health care ventilation rates	7/1/2015	N
Other	Multiple	Updated kBtuh per kW conversion factor from 3.413 to 3.412	7/1/2015	Y
Revision	S11	New wattage sub-division added	7/1/2015	Υ
Correction	Ductless Heat Pump	Corrected measure life to 15 years	7/1/2015	N
Revision	Table 25 Measure Life Reference for Custom Projects	Added Solar PV to table with measure life of 20 years	7/1/2015	Y
Revision	Appendix B	Corrected energy period factors for custom single shift process	7/1/2015	Y
New	Prescriptive HVAC Efficient Oil or Propane Boilers and Furnaces	New measure for PY16	9/1/2015	Y

Change Type	TRM Section	Description	Effective Date	effRT Update
PY2017 Up	odates			
Revision	All	Free ridership and spillover rates updated for all measures based on draft evaluation reports for BIP and LCP; measures not yet evaluated assigned default FR of 25% and default SO of 0%	7/1/2016	Y
Other	Prescriptive Lighting	All non-LED measures have been removed, new measure codes added	7/1/2016	Y
Other	Prescriptive Lighting – Interior	Summer and winter peak demand savings algorithms added to clarify that interactive effects for cooling systems only apply to summer peak demand savings	7/1/2016	N
Revision	Prescriptive Lighting – Fixtures with Integrated Controls	Demand savings algorithms updated to properly reflect decreased wattage and decreased run time	7/1/2016	N
Revision	Table: Installed Fixture Rated Wattage Table (Wattsee)	Removed non-LED fixtures, revised wattage based on updated binning, added new fixtures	7/1/2016	Y
Revision	Table: Installed Fixture Rated Wattage Reduction Table (SAVEEE)	Revised wattage based on updated binning, removed ineligible fixtures	7/1/2016	Y
Revision	Table: Existing Fixture Rated Wattage Table	Added new measures eligible for controls	7/1/2016	Y
Revision	Table: Measure Costs for Prescriptive Lighting	Removed non-LED fixtures, revised costs based on updated binning, added new fixtures	7/1/2016	Y
Other	Table: Savings Factors for Lighting Controls	Added Cooler/Freezer Case factor to table	7/1/2016	N
Revision	VFD	Savings factors updated based on more recent study, ineligible sizes removed	7/1/2016	Y
Other	Ductless Heat Pump MF and LIMF	Added multifamily and low-income multifamily ductless heat pump measures from Multifamily TRM to Commercial TRM; multifamily TRM to be discontinued in 2017	7/1/2016	N
Other	Efficient Oil or Propane Boilers and Furnaces	Ineligible sizes removed	7/1/2016	Y
Revision	Natural Gas Heating Equipment	Modified savings algorithm to use annual heat load, measure cost for G7, G15 and G16 updated based on recent projects when available	7/1/2016	Y
Other	Commercial Kitchen Equipment	Split kitchen equipment into separate section	7/1/2016	N
New	Demand Control Kitchen Ventilation	New measure	7/1/2016	Y
Other	Custom	Revised description to better describe small and large custom programs	7/1/2016	N
Other	Custom Thermal Projects	Renamed Custom Greenhouse Gas Projects to Custom Thermal Projects and added an energy content by fuel type reference table	7/1/2016	N
Other	Title	Renamed Commercial TRM to Commercial/Industrial and Multifamily TRM	7/1/2016	N

Change Type	TRM Section	Description	Effective Date	effRT Update
Other	Appendix G: Custom Projects – Process Documentation	Appendix removed	7/1/2016	N
New	Prescritive Lighting & Appendicies	New measure S81 added to Lighting Fixtures – Interior Spaces (Retrofit/Replacement Lamps). S81 and new bins for S52 added to Appendix: Lighting Installed Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD), Appendix: Prescriptive Lighting Measure Cost	10/1/2016	Y
Correction	Appendix: Lighting Installed Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD)	LED Retrofit Kit 2x2 Recessed Fixture bin wattage corrected	7/1/2016	N
Revision	Appendix: Prescriptive Lighting Measure Cost	S52 measure costs updated	10/1/2016	Υ
New	Prescritive Lighting & Appendicies	New measure S40 added to Lighting Fixtures – Interior Spaces (Retrofit/Replacement Lamps), Appendix: Lighting Installed Baseline Fixture Rated Wattage Tables and Baseline Lighting Power Density (LPD)	7/1/2016	Y
Other	Reference tables in Appendices	Combined into a single table Table: Installed Fixture Rated Wattage Table (Watts _{EE}), Table: Installed Fixture Rated Wattage Reduction Table (SAVE _{EE}), and Table: Measure Costs for Prescriptive Lighting. Combined all parameter values reference tables into a single appendix.	N/A	N
Revision	Prescriptive Lighting	New fixture retrofit measure codes added to interior and exterior measures in support of Small Business Direct Install.	7/1/2016	Y
Revision	Lighting Reference Tables	Added separate parameter values for SBDI based on specific program participating measures.	7/1/2016	Y
New	High Efficiency Pre-Rinse Spray Valve	New measure added	11/1/2016	Υ
Revision	ENERGY STAR® Natural Gas Kitchen Equipment	Savings estimates and measure cost updated based on current ENERGY STAR® calculator.	11/1/2016	Υ
Revision	Lighting Reference Tables	Added new bin to S11 Pole-Mounted Streetlights and Parking Fixtures specifically for 1000 W MH replacements.	12/1/2016	Y
Revision	Lighting Reference Tables	Revised wattages and costs for S6, S8, S11, S17, S51 and S61 based on program analysis.	12/1/2016	Υ
Revision	Lighting Reference Table	Revised wattage on S11 and costs for S6, S13, S51, S52, S61 based on review of Q1 and Q2 program projects	1/1/2017	Υ
Correction	Lighting Fixtures with Integrated Controls	Corrected equation to properly calculate peak demand reduction	4/1/2017	N

Change Type	TRM Section	Description	Effective Date	effRT Update
Revision	High Efficiency Pre-Rinse	Added savings for electric resistance water	1/1/2017	Υ
	Spray Valve	heater, updated measure cost to be actual		
Revision	Reference Lighting Annual	Revised reference hours table to use KEMA	4/1/2017	N
	Operating Hours	Lighting Load Shape Project values and added a		
		facilty/space type reference table based on		
		Michigan Statewide Commercial and Industrial		
		Lighting Hours-of-Use Study		
Revision	Tankless Water Heater	Added Propane	4/1/2017	Υ
Other	Custom Programs	Updated descriptions to match program	7/1/2016	N
		implementation		
New	Custom Program –	Added new measure to separate out DG from	7/1/2016	N
	Distributed Generation	other custom programs		
Revision	Prescriptive Gas	Updated savings formula	5/1/2017	Υ
PY2018 Up	•			
New	HVAC Equipment	The addition of the "Electronically Commutated	TBD	N
		Hot water Circulator Pump Motors" measure to	7.2.2	
		the HVAC equipment section as per the		
		recommendation from Michaels Energy June 14,		
		2017 memo		
New	HVAC Equipment	The addition of the "Electronicically Commutated	TBD	N
	The Equipment	Supply Fan Motor" measure to the HVAC		
		equipment section as pet the recommendation		
		from Michaels Energy June 14, 2017 memo		
New	HVAC Equipment	The addition of the "Advanced Rooftop Controls"	TBD	N
	The Equipment	measure to the HVAC equipment section as per		
		the recommendation from Michaels Energy June		
		14, 2017 memo		
Other	HVAC Equipment	Incorporate Gas Equipment measures into HVAC	N/A	N
o tinei	Trivite Equipment	equipment section, combine all boiler/furnace	, , , .	
		measures into a single table		
New	Custom Program	Created Advanded Building entry to	N/A	N
	- Custom Fregram	contextualize parameters	,,,	.,
Revision	HVAC Equipment	Addition of oversize factor, rated input capcity of	7/1/17	Υ
1101131011	Tivite Equipment	unit, and effective full load hours for heating	,, _, _,	
		(and corresponding values) to the natural gas		
		heating equipment, codes G1-G16, CNG1-CNG16,		
		G01M, G07M, G08M, G15M, G16M, H1M, H2M,		
		H3M		
Revision	HVAC Equipment	Set PACT and Unitary measures to "inactive"	7/1/17	N
Revision	HVAC Equipment	Updated AH and DHP EFLH as per	7/1/17	N
	- 1	recommendations from Nexant, Business	, -,	
		Incentive Program Impact Evaluation,		
		unpublished draft, May 2017		
Revision	Prescriptive Lighting	Updated waste heat factors for interactive	7/1/2017	Υ
		effects based on new derivation	., _, ,	
Other	Appendix D	Added derivation of interactive effects	7/1/2017	N
J	pp = =	1	., =, =0=,	<u> </u>

Change Type	TRM Section	Description	Effective Date	effRT Update
Revision	Prescriptive Non-Lighting Measures	Used Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017 RR Demand values to adjust both the summer and winter peak Coincidence Factors; RRD Dchanged to 100% to reflect this change	7/1/17	Y
New	Table 41	Created new table in Appendix D to reflect the changes made to the prescriptive non-lighting measures Coincidence Factors	7/1/17	N
Correction	Lighting	Updated waste heat factors consistent with derivation in Appendix D (update was not included in published 7/1/17 version)	7/1/17	Y
Correction	Variable Refrigerant Flow	Added conversion factor (kBtu to kWh)	7/1/17	Υ
New	Thermal Envelope	Added new measures for multifamily thermal envelope upgrades	8/1/17	Y
New	Commercial Laundry Equipment	Added new measures for multifamily common area clothes washers and dryers	8/1/17	Y
Revision	Appendix D: Installed Measure Wattage and Cost Table	Wattage and Cost updated with FY18 SBI specific measures.	9/1/17	N
Revision	Appendix D: Installed Measure Wattage and Cost Table	Cost updated with most recent program data for S11, S13, S17, S23, S30, S51, S52, S61, S81, L60.1, L70.1 S6, S64, S110 removed from CIP portion of the table (moved to Retail/Residential TRM)	10/1/17	Y
Revision	HVAC Equipment	Updated incremental cost with most recent program data for AF1, AF6, G01M, G07M, G08M and VRF	10/1/17	Y
Revision	HVAC Equipment	Updated capacity bins for G07M and G08M	10/1/17	Υ
Revision	Water Heating Equipment	Updated incremental cost for WH1	10/1/17	Υ
Revision	C&I Custom	Updated RR _e and RR _d with findings from the LCP Evaluation	10/1/17	Y
Revision	ECM Supply Fan and Hot Water Smart Pump	Made active 10/1/2017	10/1/17	Y
Revision	Appendix B	Added ECM Supply Fan and Hot Water Smart Pump	10/1/17	Y
Revision	Appendix D: Installed Measure Wattage and Cost Table	Wattage and Cost updated with FY18 SBI specific measures changes (S52, S81, S110).	1/1/18	Y
Revision	Appendix D: Installed Measure Wattage and Cost Table	Cost updated with most recent program data for S11, S13, S21, S30, S51, S52, S61, S81, L60.1, L70.1	1/1/18	Y

Change	TDM Costion	Description	Effective	effRT
Туре	TRM Section	Description	Date	Update

Correction: indicates a correction to an existing error in the previous TRM.

New: indicates a measure that was not included in the previous TRM.

Revision: indicates a revision to the savings or costs of an existing measure.

Other: indicates a change to an existing measure or existing text that does not affect savings or cost calculation.

Note that the change log provides a running history of changes. The order of precedence is in reverse order of date. More recent changes may supersede previous changes. Previous change log entries are not changed so as to provide historic reference of past changes.

Lighting Equipment

Prescriptive Lighting	g: Lighting Fixtures – Interior Spaces (New Fixtures), Codes S21, S51, S61, S81	
Last Revised Date	10/1/2017 (retroactive to 7/1/2016)	
MEASURE OVERVIEW	V	
Description	This measure involves the purchase and installation of high-efficiency interior lighting fixtures instead of new standard-efficiency fixtures.	
Primary Energy	Electric	
Impact		
Sector	Commercial/Industrial	
Program(s)	C&I Prescriptvie Program, Small Business Direct Install Program	
End-Use	Lighting	
Project Type	New construction, Replace on burnout	
GROSS ENERGY SAVI	NGS ALGORITHMS (UNIT SAVINGS)	
Demand Savings	$\Delta kW = (LPD_{BASE} x Area - Qty_{EE} x Watts_{EE}) / 1,000 x WHF_d$	
	ΔkW_{SP} = (LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1,000 x WHF _d x CF _S	
	ΔkW_{WP} = (LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1,000 x CF _W	
Annual Energy	ΔkWh/yr = (LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1,000 x HoursWk x Weeks x WHF _{e,cool}	
Savings	Δ MMBtu/yr ⁵ = -(LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) / 1,000 x HoursWk x Weeks x WHF _{e,heat}	
Definitions	Unit = Lighting fixture upgrade measure	
	Qty _{EE} = Quantity of energy-efficient fixtures	
	Watts _{EE} = Watts of energy-efficient fixture (based on the specified installed fixture type) (Watts)	
	SAVE _{EE} = Average wattage reduction of fixture (based on the specified installed fixture type) (Watts)	
	LPD _{BASE} = Baseline maximum lighting power density (LPD) for space type (Watts/ft²)	
	Area = Area of the building or space associated with the design LPD _{BASE} value (ft ²)	
	HoursWk = Weekly hours of equipment operation (hrs/week)	
	Weeks = Weeks per year of equipment operation (weeks/year)	
	WHF _d = Waste heat factor for demand to account for cooling savings from efficient	
	WHF _{e,cool} lighting	
	WHF _{e,heat} = Waste heat factor for energy to account for cooling savings from efficient lighting	g
	= Waste heat factor for energy to account for increased heating load from efficient	t
	1,000 lighting	
	BC = Conversion: 1,000 Watts per kW	
	EEC = Baseline Cost	
	= Installed Fixture Cost	
EFFICIENCY ASSUMPT		
Baseline Efficiency	The baseline is represented by building code or standard design practice for the building or space type.	:e
Efficient Measure	High-efficiency lighting system that exceeds building code by at least 20%.	

⁵ Fuel interactive effects are distributed across fuels types as follows: 76% Oil, 10% Natural Gas, 7% Propane, 7% Kerosene.

Prescriptive Lighting: Lighting Fixtures – Interior Spaces (New Fixtures), Codes S21, S51, S61, S81									
PARAMETER VALUES									
Measure/Type	Qty _{EE}	Watts _{EE}	Watts _{EE} SAVE _{EE} Area Life (yrs)						Cost (\$)
New construction	Actual	Table 31 ⁶	Table 3	31 ⁶	Act	ual		15 ⁷	Table 31
Measure/Type	HoursWk	Weeks	WHF	18	WHF	e,cool	WHF _{e,heat} ¹⁰		LPD_{BASE}
New construction	Actual ¹¹	Actual	1.144	1	1.0	06	0.0	00159	Table 33 ⁶
IMPACT FACTORS									
Program	ISR	RR_E	RR_D	CF	s ¹²	CF	W	FR	SO
C&I Prescriptive	100%	99% ¹³	101% ¹³	Tabl	e 29	Table	e 29	26% ¹⁴	1.6%15
Small Business Direct Install	100%	100%16	100%	Tabl	e 29	Table 29		25% ¹⁷	0%18

⁶ See Appendix D. The fixture wattage and wattage reduction values are based on the specified fixture type. The baseline LPD is based on the specified space type.

⁷ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

⁸ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix D: Parameter Values Reference Tables for derivation and input assumptions.

⁹ Ibid.

¹⁰ Ibid.

¹¹ Use actual hours when known. If hours are unknown, use the values from Table 34 or Table 35.

¹² See Appendix B.

¹³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Values for prescriptive measures.

¹⁴ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹⁵ Ibid.

¹⁶ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

 $^{^{\}rm 17}$ Program not yet evaluated, assume default FR of 25%.

¹⁸ Program not yet evaluated, assume default SO of 0%.

					/Davidant Lamps), Codes S4							
Prescriptive Lighting S64, S21R, S5		_	-	ces (Retrofit,	/Replacemen	t Lamps),	Codes S40), S52, S62,				
Last Revised Date	10/1/20	17 (retroactive	e to 7/1/2016	6)								
MEASURE OVERVIEW	,											
Description	This mea	his measure involves the purchase and installation of high-efficiency interior lamps or retrofit										
	kits to re	ts to replace existing operating lighting equipment (retrofit). Note S40 is only applicable to										
	Small Bu	ısiness Direct I	Install									
Primary Energy	Electric											
Impact												
Sector	Comme	rcial/Industria										
Program(s)	C&I Pres	criptive Progr	am, Small Bu	siness Direct I	nstall Program							
End-Use	Lighting											
Project Type	Retrofit											
GROSS ENERGY SAVIN	NGS ALGO	RITHMS (UNI	T SAVINGS)									
Demand Savings	ΔkW	= (Qty	BASE x Watts	_{ASE} – Qty _{EE} x W	atts _{EE}) / 1,000	x WHF _d						
	ΔkW_{SP}	= (Qty	BASE X Watts	ASE – QtyEE x W	atts _{EE}) / 1,000	x WHF _d x C	CF _S					
	ΔkW_{WP}	= (Qty	BASE x Watts	_{ASE} – Qty _{EE} x W	atts _{EE}) / 1,000	x CF _w						
Annual Energy	∆kWh/y	r = (Qty	BASE X Watts	ASE – QtyEE x W	'atts _{EE}) / 1,000	x HoursWl	x Weeks x	WHF _{e,cool}				
Savings	ΔMMBt	MMBtu/yr ¹⁹ = -(Qty _{BASE} x Watts _{BASE} – Qty _{EE} x Watts _{EE}) / 1,000 x HoursWk x Weeks x WHF _{e,heat}										
Definitions	Unit	, , , , , , , , , , , , , , , , , , , ,										
	Qty _{BASE}	= Quantit	y of baseline	fixtures								
	Watts _{BAS}	se = Watts o	of baseline fix	cture (based o	n the specified	existing fi	xture type)	(Watts)				
	QtyEE	= Quantit	y of energy-	efficient fixtur	es							
	Watts _{EE}	= Watts o (Watts)		cient fixture (l	based on the s	pecified in	stalled fixtu	re type)				
	HoursW			inment onera	ntion (hrs/weel	()						
	Weeks	•	•		eration (weeks/	=						
	WHF _d				account for cod	•	gs from effic	rient				
	WHF _{e,coo}			or deriland to t		Jiiig Javiii	63 110111 61110	Sicire				
	WHF _{e,hea}			or energy to ac	count for cool	ing savings	s from efficie	ent lighting				
	e,riea				count for incre	_						
	1,000	lighting										
	_,			Vatts per kW								
EFFICIENCY ASSUMPT	IONS		,	I								
Baseline Efficiency	The exis	ting lighting sy	/stem.									
Efficient Measure	High-eff	iciency lighting	g system that	t exceeds build	ding code.							
PARAMETER VALUES												
Measure/Type	Qty _{BASE}	Watts _{BASE}	Qty _{EE}	Watts _{EE}	HoursWk ²⁰	Weeks	Life (yrs)	Cost (\$)				
All but S40	Actual	Table 32 ²¹	Actual	Table 31 ²¹	Actual	Actual	13 ²²	Table 31 ²³				
S40	Actual	Table 32	Actual	TUDIC JI	Actual	Actual	7 ²⁴	Table 31				

¹⁹ Fuel interactive effects are distributed across fuels types as follows: 76% Oil, 10% Natural Gas, 7% Propane, 7% Kerosene

 $^{^{\}rm 20}$ Use actual hours when known. If hours are unknown, use the values from Table 34 or Table 35.

²¹ See Appendix D. The fixture wattages are based on the specified fixture types for baseline and installed fixtures.

²² GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS

²³Actual project costs collected for SBI. For C&I Prescriptive see Appendix D: Parameter Values Reference Tables

²⁴ Based on 25,000 hour rated life and 3772 hours of use per year.

Prescriptive Lighting: Lighting Fixtures – Interior Spaces (Retrofit/Replacement Lamps), Codes S40, S52, S62, S64, S21R, S51R, S61R, S81R, S110R										
Measure/Type	WHF _d	WI	HF _{e,cool} ²⁶	F _{e,cool} ²⁶ WHF						
Retrofit	1.144		1.06	0.00159						
IMPACT FACTORS										
Program	ISR		RR_E		RR	D	CF _S	CF_W	FR	SO
C&I Prescriptive	100%)	99%²	8	1019	% ²⁸	Table 29 ²⁹	Table 29 ²⁹	26% ³⁰	1.6%31
Small Business Direct Install	100%)	100%	100% ³²		% ³²	Table 29 ²⁹	Table 29 ²⁹	25% ³³	0%³⁴

²⁵ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix D: Parameter Values Reference Tables for derivation and input assumptions.

²⁶ Ibid.

²⁷ Ibid.

²⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

²⁹ See Appendix B.

³⁰ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³¹ Ibid.

³² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

 $^{^{\}rm 33}$ Program not yet evaluated, assume default FR of 25%.

³⁴ Program not yet evaluated, assume default SO of 0%.

Prescriptive Lightin	: Lighting Fixtures with Integrated Co	ntrols – Interior Spaces (New Construction), Code						
Last Revised Date	10/1/2017 (retroactive to 7/1/2015)							
MEASURE OVERVIEV								
Description	new standard-efficiency fixtures (new cor conditions: include integral controls, oper packaged together with the luminaire und off of remote sensors, where the luminain features enabling communication with a n	istallation of LED stairway lighting fixtures instead of struction). The fixtures must meet one of the following ate off of remote sensors where remote sensor is ler a single model number, or be designed to operate e and sensors are sold separately, but the luminaire has emote sensor. Controls must ensure that the luminaire t state when there are no occupants in the vicinity.						
Primary Energy	Electric							
Impact								
Sector	Commercial/Industrial							
Program(s)	C&I Prescriptive Program							
End-Use	Lighting							
Project Type	New construction, Replace on burnout							
GROSS ENERGY SAVI	IGS ALGORITHMS (UNIT SAVINGS)							
Demand Savings	Δ Kw = (WHF _d / 1,000) x (LPD _{BASE} x Watt	s _{BASE} – Qty _{EE} x Watts _{EE})						
	ContOutRed $x \times CR_s$]	$ts_{BASE} - Qty_{EE} \times Watts_{EE}) \times CF_S + (Qty_{EE} \times Watts_{EE} \times Qty_{EE} \times Watts_{EE}) \times CF_W + (Qty_{EE} \times Watts_{EE} \times Qty_{EE} \times Watts_{EE})$						
Annual Energy	$\Delta kWh/yr = (HoursWk x Wks x WHF_{e,cool} / 1,000) x [(LPD_{BASE} x Area - Qty_{EE} x Watts_{EE}) + (Qty_{EE} x Watts_{EE$							
Savings	= (Hourswax was x w							
Savings		$_{\rm tt}$ / 1,000) x [(LPD _{BASE} x Area – Qty _{EE} x Watts _{EE}) + (Qty _{EE} x						
Definitions	Unit = Lighting fixture upgrad	e measure						
	(Watts)	icient fixtures ent fixture (based on the specified installed fixture type) ction of fixture (based on the specified installed fixture						
	type) (Watts)	nting power density (LPD) for space type (Watts/ft2)						
	5,62	space associated with the design LPD value (ft2)						
	•	ment operation (hrs/week)						
		ipment operation (weeks/year)						
		on sensor set point (must be minimum of 50%)						
	Occ = % occupancy for space	· · · · · · · · · · · · · · · · · · ·						
		demand to account for cooling savings from efficient						
	lighting	energy to account for cooling savings from efficient						
	efficient lighting	energy to account for increased heating load from						
	1,000 = Conversion: 1,000 Wa	·						
	CR _s = Coincidence reduction							
	CR _w = Coincidence reduction	tactor for winter						

Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (New Construction), Code S71 (Inactive)										
EFFICIENCY ASSUMP	TIONS									
Baseline Efficiency	The baseline type.	the baseline is represented by building code or standard design practice for the building or space type.								
Efficient Measure	· ·	High-efficiency lighting system that exceeds building code with controls that automatically control the connected lighting systems.								
PARAMETER VALUES	6									
Measure/Type	Qty _{EE}	Watts _{EE}	$SAVE_{EE}$		Area	Hours	Wk ³⁵	Weeks	Life (yrs)	Cost (\$)
Retrofit	Actual	Table 31 ²¹	Table 31 ²¹	Д	ctual	ctual Act		Actual	13 ³⁶	Table 31 ³⁷
Measure/Type	ContOutRed	l Occ	WHF	38 d	WHF	e,cool	WHF	e,heat 40	CR_S	CR_W
Retrofit	Actual	Actual	1.14	4	1.	06	0.00	0159	18% ⁴¹	12% ⁴²
IMPACT FACTORS							-			
Program	ISR	RRE	RR)	C	CF _S		Fw	FR	SO
C&I Prescriptive	100%	99%43	1019	6 ⁴⁴	Table	e 29 ⁴⁵	Table 29 ⁴⁶		26% ⁴⁷	1.6%48

 $^{^{35}}$ Use actual hours when known. If hours are unknown, use the values from Table 34 or Table 35.

³⁶ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

³⁷ See Appendix D: Parameter Values Reference Tables

³⁸ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix D: Parameter Values Reference Tables for derivation and input assumptions.

³⁹ Ibid.

⁴⁰ Ibid.

⁴¹ Reduction of demand due to reduced coincidence driven by controls measured against install wattage. The Cadmus Group, Inc. (2012). Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study.

 ⁴² Ibid.
 ⁴³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

⁴⁴ Ibid.

⁴⁵ See Appendix B.

⁴⁶ See Appendix B.

⁴⁷ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴⁸ Ihid

Prescriptive Lighting	g: Lighting Fixtures with Integrated Controls – Interior Spaces (Retrofit), Code \$70 (Inactive)
(Inactive)	5. Lighting Fixtures with integrated controls interior spaces (Netrolity, Code 370
Last Revised Date	7/1/2016
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of LED stairway lighting fixtures to replace
Description	existing operating lighting equipment (retrofit). The fixtures must meet one of the following
	conditions: include integral controls, operate off of remote sensors where remote sensor is
	packaged together with the luminaire under a single model number, or be designed to operate
	off of remote sensors, where the luminaire and sensors are sold separately, but the luminaire
	has features enabling communication with a remote sensor. Controls must ensure that the
	luminaire reverts to lower-power, lower-light output state when there are no occupants in the
	vicinity.
Primary Energy	Electric
Impact	
Sector	Commercial/Industrial
Program(s)	C&I Prescriptive Program, Small Business Direct Install Program
End-Use	Lighting
Project Type	3 3
	NGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	$\Delta kW = (WHF_d / 1,000) \times [(Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE}) + (Qty_{EE} \times Watts_{EE} \times ContOutRed)$
	x (1 – Occ))]
	$\Delta kW_{SP} = (WHF_d / 1,000) \times [(Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE}) + (Qty_{EE} \times Watts_{EE} \times ContOutRed)]$
	x (1 - Occ) x CFS
	$\Delta kW_{WP} = (1 / 1,000) \times [(Qty_{BASE} \times Watts_{BASE} - Qty_{EE} \times Watts_{EE}) + (Qty_{EE} \times Watts_{EE} \times ContOutRed \times (1 / 1,000) \times (Qty_{BASE} \times Watts_{EE}) + (Qty_{EE} \times$
	– Occ)) x CF _W]
Annual Energy	Δ kWh/yr = (HoursWk x Wks x WHF _{e,cool} / 1,000) x [(Qty _{BASE} x Watts _{BASE} – Qty _{EE} x
Savings	Watts _{EE}) + (Qty _{EE} x Watts _{EE} x ContOutRed x $(1 - Occ)$)]
	Δ MMBtu/yr = -(HoursWk x Wks x WHF _{e,heat} / 1,000) x [(Qty _{BASE} x Watts _{BASE} - Qty _{EE} x
	Watts _{EE}) + (Qty _{EE} x Watts _{EE} x ContOutRed x (1 – Occ))]
Definitions	Unit = Lighting fixture upgrade measure
	Qty _{BASE} = Quantity of baseline fixtures
	Watts _{BASE} = Watts of baseline fixture (based on the specified existing fixture type) (Watts)
	Qty _{EE} = Quantity of energy-efficient fixtures
	Watts _{EE} = Watts of energy-efficient fixture (based on the specified installed fixture type) (Watts)
	HoursWk = Weekly hours of equipment operation (hrs/week)
	Weeks = Weeks per year of equipment operation (weeks/year)
	ContOutRed = % light output reduction sensor set point (must be minimum of 50%)
	Occ = % occupancy for space (default to 10%)
	WHF _d = Waste heat factor for demand to account for cooling savings from efficient lighting
	WHF _{e,cool} = Waste heat factor for energy to account for cooling savings from efficient lighting
	WHF _{e,heat} = Waste heat factor for energy to account for increased heating load from efficient lighting
	1,000 = Conversion: 1,000 Watts per kW

Prescriptive Lighting: Lighting Fixtures with Integrated Controls – Interior Spaces (Retrofit), Code S70 (Inactive)												
EFFICIENCY ASSUMPTIONS												
Baseline Efficiency	The existing	he existing lighting system.										
Efficient Measure	High-efficie	ncy lighting s	syste	m that	excee	ds build	ding co	de with	control	s that aut	omat	ically
	control the	connected li	ghtir	ng syste	ems.							
PARAMETER VALUES	ES											
Measure/Type	Qty _{BASE}	Watts _{BASE}	Q	tyee	Wa	tts _{EE}	Hours	sWk ⁴⁹ Weel		s Life	(yrs)	Cost (\$)
Retrofit	Actual	Table 32 ⁵⁰	Ac	Actual T		e 31 ⁵¹ Ac		ual	Actua	ıl 13	52	Table 31 ⁵³
Measure/Type	ContOutRe	d Occ		WHF	54 d	WHF	e,cool 55	WHF	56 e,heat			
Retrofit	Actual	Actual		1.14	44 1.0		0.00		159			
IMPACT FACTORS												
Program	ISR	RR_E		RR	l _D	С	Fs	С	F _W	FR		SO
C&I Prescriptive	100%	99%57		1019	% ⁵⁸	Table	e 29 ⁵⁹	Table	e 29 ⁶⁰	26% ⁶	1	1.6% ⁶²
Small Business Direct Install	100%	100%63	3	1009	% ⁶⁴	Table	e 29 ⁶⁵	Table	e 29 ⁶⁶	25% ⁶	7	0% ⁶⁸

⁵⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive

⁴⁹ Use actual hours when known. If hours are unknown, use the values from Table 34 or Table 35.

 $^{^{50}}$ See Appendix D. The fixture wattages are based on the specified fixture types for baseline and installed fixtures.

⁵¹ Ibid.

⁵² GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

⁵³ See Appendix D: Parameter Values Reference Tables.

 ⁵⁴ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28 37. See Appendix D: Parameter Values Reference Tables for derivation and input assumptions.
 ⁵⁵ Ibid.

⁵⁶ Ibid.

Measures.
⁵⁸ Ibid.

⁵⁹ See Appendix B.

 ⁶⁰ See Appendix B.
 ⁶¹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁶² Ihid

⁶³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

⁶⁴ Ibid.

⁶⁵ See Appendix B.

⁶⁶ See Appendix B.

 $^{^{\}rm 67}$ Program not yet evaluated, assume default FR of 25%.

⁶⁸ Program not yet evaluated, assume default SO of 0%.

Prescriptive Lighting	g: Lighting	Fixtures – LE	D Exit Sig	· .	nactive)	S ELD EXIT SIGN, C	oue XIO (mactive)				
Last Revised Date	7/1/2016			(
MEASURE OVERVIEW	1										
Description	This meas	ure involves t	he purchas	e and installation	of new LED exit sign	ns to replace	existing,				
	operating	pperating incandescent or fluorescent exit signs (retrofit).									
Primary Energy	Electric										
Impact											
Sector	Commerc	ial/ Industrial									
Program(s)	C&I Presc	riptive Prograi	ກ, Small Bເ	isiness Direct Inst	tall Program						
End-Use	Lighting										
Project Type	Retrofit										
GROSS ENERGY SAVIN	NGS ALGOR	RITHMS (UNIT	SAVINGS)								
Demand Savings	Δ kW	= (Qty _{BASE}	x Watts _{BASE}	– Qty _{EE} x Watts _{EE}	/ 1,000) x WHF _d						
	ΔkW_{SP}	= (Qty _{BASE}	x Watts _{BASE}	– Qty _{EE} x Watts _{EE}	/ 1,000) x WHF _d x C	Fs					
	ΔkW_{WP}	= (Qty _{BASE}	x Watts _{BASE}	– Qty _{EE} x Watts _{EE}	/ 1,000) x CF _W						
Annual Energy	∆kWh/yr	= (Qty _{BASE})	x Watts _{BASE}	– Qty _{EE} x Watts _{EE}	/ 1,000) x HoursYr x	WHF _{e,cool}					
Savings	∆MMBtu,	$/yr = -(Qty_{BASE})$	x Watts _{BAS}	E – QtyEE x Watts	_{EE} / 1,000) x HoursYr	$x WHF_{e,heat}$					
Definitions	Unit										
	Qty _{BASE}	= Quantity	of baseline	fixtures							
	Qty _{EE}	= Quantity	of installed	l fixtures							
	Watts _{BASE}	= Watts of	baseline fix	ture (based on tl	he specified existing	fixture type)	(Watts)				
	Watts _{EE}		Energy-effi	cient fixture (bas	ed on the specified i	nstalled fixtu	re type)				
		(Watts)									
	HoursYr			ours (hrs/yr)							
	WHF _d				ount for cooling savi	•					
	$WHF_{e,cool}$			• •	unt for cooling savin	_					
	WHF _{e,heat}		eat factor fo	or energy to acco	unt for increased he	ating load fro	om efficient				
		lighting	4 000 11								
	1,000	= Conversion	on: 1,000 V	/atts per kW							
EFFICIENCY ASSUMPT			<u></u>								
Baseline Efficiency		candescent o		nt exit sign.							
Efficient Measure	Exit sign il	lluminated wit	h LED.								
PARAMETER VALUES		Large Lorge Large Large Control									
Measure/Type	Qty _{BASE}	Watts _{BASE}	QtyEE	Watts _{EE}	HoursYr	Life (yrs)	Cost (\$)				
Retrofit	Actual	Table 32 ⁶⁹	Actual	Table 31 ⁷⁰	8,760 ⁷¹	13 ⁷²	Table 31 ⁷³				
Measure/Type	WHF _d ⁷⁴	WHF _{e,cool} ⁷⁵	WHF _{e,heat}								
Retrofit	1.144	1.06	0.00159)							

⁶⁹ See Appendix D. The fixture wattages are based on the specified fixture types for baseline and installed fixtures.

 $^{^{70}}$ See Appendix D. The fixture wattages are based on the specified fixture types for baseline and installed fixtures.

⁷¹ Exit signs operate continuously, so annual operating hours are 8,760 hours/year (24 hours/day x 365 days/year = 8,760 hours/year).

⁷² GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

⁷³ See Appendix D: Parameter Values Reference Tables.

⁷⁴ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix D: Parameter Values Reference Tables for derivation and input assumptions.

⁷⁵ Ibid.

⁷⁶ Ibid.

Prescriptive Lighting: Lighting Fixtures – LED Exit Signs, Code X10 (Inactive)									
IMPACT FACTORS									
Program	ISR	RR _E	RR_D	CF _S	CF _W	FR	SO		
C&I Prescriptive	100%	99% ⁷⁷	101% ⁷⁷	Table 29 ⁷⁸	Table 29 ⁷⁸	26% ⁷⁹	1.6%80		
Small Business	100%	100%81	100%81	Table 29 ⁷⁸	Table 29 ⁷⁸	25% ⁸²	0% ⁸³		
Direct Install	10076	100/0	100/0	Table 29	Table 23	25/0	070		

⁷⁷ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

⁷⁸ See Appendix B.

⁷⁹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁸⁰ Ibid

⁸¹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

⁸² Program not yet evaluated, assume default FR of 25%.

⁸³ Program not yet evaluated, assume default SO of 0%.

Processing Lighting Lighting Eightures Exterior Coaces (New Figures) Codes C11 C12 C17 C22												
Prescriptive Lighting: Lighting Fixtures – Exterior Spaces (New fixtures), Codes S11, S13, S17, S23 Last Revised Date 7/1/2013												
	7/1/	71/2013										
ription					•			_	ency exte	rior ligh	ting	
			ead o	of new st	anda	ard-efficie	ency lighting	fixtures.				
Energy	Elec	tric										
Impact												
Sector		mmercial/Industrial										
gram(s)	C&I	Prescrip	tive I	Program	, Sm	all Busine	ess Direct Ins	tall Program				
nd-Use	Ligh	ting										
ct Type	New	onstr /	construction, Replace on burnout									
SAVIN	GS AL	LGORITHMS (UNIT SAVINGS)										
Savings	Δ kV	V	= Q	ty _{EE} x SA	VEEE	/ 1,000						
Savings	ΔkV	Vh/yr	= Q	ty _{EE} x SA	VEEE	/ 1,000 x	HoursWk x	Weeks				
Unit		= Lightii	ng fixt	ture upg	rade	measure	<u>;</u>					
Qty_{EE}		= Quant	ity of	installe	d fix	tures						
Watts												
$SAVE_{EE}$		= Avera	ge wa	attage re	duct	tion of fix	ture (based	on the specifie	ed installe	d fixture	e type)	
		(Watt	s)									
LPD_{BASE}		= Baseli	ne ma	aximum	light	ting powe	er density (LP	D) for space t	ype (Wat	ts/ft²)		
Area		= Area d	of the	building	ors	space ass	ociated with	the design LP	D _{BASE} valu	e (ft²)		
HoursV	Vk	= Week	ly hοι	urs of eq	uipn	nent oper	ration (hrs/w	eek)				
Weeks		= Week	s per	year of e	qui	pment op	eration (wee	eks/year)				
1,000		= Conve	rsion	: 1,000 V	Vatt	s per kW						
UMPTI	ONS											
						•			pe.			
ure Hi	gh-eff	iciency	lightiı	ng syster	n th	at exceed	ds building co	ode.				
ALUES												
ma C)tv	\M/att	c	SAVE-	_	Area	I DD	Hours\M/k ⁸⁴	\Maaks	Life	Cost (\$)	
rpe d	CLAEE	vvall	DEE	JAVLE	Ε	Alea	LF DBASE	HOUISVVK	VV CCK3	(yrs)	Cost (5)	
ion A	ctual	Table 3	31 ⁸⁵	Table 3	1 ⁸⁶	Actual	Table 33 ⁸⁷	Actual	Actual	15 ⁸⁸	Table 31 ⁸⁹	
RS												
am	ISI	R				RR_D	CFs	CFw	F	R	SO	
ive	100)%	9	9% ⁹⁰		101% ⁹⁰	Table 29 ⁹¹	Table 29 ⁹³	26	% ⁹²	1.6% ⁹³	
ess tall	100)%	10	00%94		100%³²	Table 29 ²⁹	Table 29 ²⁹	25% ⁹⁵		0% ⁹⁶	
	d Date RVIEW ription Energy Impact Sector Fram(s) Ind-Use Et Type Savings Gavings Gavings Unit QtyEE WattsE SAVEEE LPDBASE Area HoursV Weeks 1,000 UMPTI Incy Bu Jure Hi ALUES Impe Co On Ac RS Impe Co On Ac RS Impe Co Incy Bu Jure Hi Inc	RAVINGS ALGAVINGS ALGAVING	d Date 7/1/2013 RVIEW ription This measur fixtures instenergy Electric Impact Sector Commercial fram(s) C&I Prescripted-Use Lighting Et Type New constructions AkW Savings AkWh/yr Unit Elighting CytyEE Quant WattsEE = Watts SAVEEE = Average (Watts Area = Area Cyty Building code of Use High-efficiency ALUES Type QtyEE Watts Con Actual Table 3 RS INC. 100% INC. 100%	ription This measure invisitures instead of fixtures and fixtures are large with a construction of the fixture of fixtures are large with a construction of fixtures are large with a constructi	ription This measure involves the fixtures instead of new st Energy Electric Impact Sector Commercial/Industrial Tram(s) C&I Prescriptive Program Ind-Use Lighting Et Type New construction, Replace SAVINGS ALGORITHMS (UNIT SAVINGS) AkW = QtyEE x SAVINGS ALGORITHMS (UNIT SAVINGS) AkWh/yr = QtyEE x SAVINGS	ription This measure involves the puristures instead of new stands. Energy Electric Impact Sector Commercial/Industrial Tram(s) C&I Prescriptive Program, Smind-Use Lighting Et Type New construction, Replace or SAVINGS ALGORITHMS (UNIT SAVING Savings AkW = QtyEE x SAVEEE Savings AkW = QtyEE x SAVEEE Savings AkW/yr = QtyEE x SAVEEE Savings AkW/yr = Quantity of installed fix WattsEE = Watts of energy-efficient SAVEEE = Average wattage reduct (Watts) LPDBASE = Baseline maximum light Area = Area of the building or shoursWk = Weekly hours of equipment of the Weeks = Weeks per year	d Date 7/1/2013 RVIEW ription This measure involves the purchase an fixtures instead of new standard-efficient fixtures. Sector Commercial/Industrial fixtures. Sector Commercial/Industrial fixtures. C&I Prescriptive Program, Small Busines fixture Lighting fixture uncomposed for the program for t	d Date 7/1/2013 RVIEW ription This measure involves the purchase and installation fixtures instead of new standard-efficiency lighting Energy Electric Impact Sector Commercial/Industrial ram(s) C&I Prescriptive Program, Small Business Direct Instand-Use Lighting to Type New construction, Replace on burnout SAVINGS ALGORITHMS (UNIT SAVINGS) davings ΔkW = QtyEE x SAVEE / 1,000 x HoursWk x x x x y y y y y y y y y y y y y y y	RVIEW ription This measure involves the purchase and installation of high-effici fixtures instead of new standard-efficiency lighting fixtures. Energy Electric Electric	RVIEW Tription This measure involves the purchase and installation of high-efficiency exteristives instead of new standard-efficiency lighting fixtures. Energy Electric Impact Sector Commercial/Industrial Tram(s) C&I Prescriptive Program, Small Business Direct Install Program Ind-Use Lighting It Type New construction, Replace on burnout SAVINGS ALGORITHMS (UNIT SAVINGS) Iavings AkW = QtyEE x SAVEEE / 1,000 Iavings AkWh/yr = QtyEE x SAVEEE / 1,000 x HoursWk x Weeks Unit = Lighting fixture upgrade measure QUYEE = Quantity of installed fixtures WattSEE = Watts of energy-efficient fixture (based on the specified installed fixt) SAVIEE = Average wattage reduction of fixture (based on the specified installed (Watts) LPDBASE = Baseline maximum lighting power density (LPD) for space type (Wattaee = Area of the building or space associated with the design LPDBASE value HoursWk = Weekly hours of equipment operation (hrs/week) Weeks = Weeks per year of equipment operation (weeks/year) 1,000 = Conversion: 1,000 Watts per kW UMPTIONS The Building code or standard design practice for the building or space type. UMPTIONS The QtyEE WattsEE SAVEE Area LPDBASE HoursWk84 Weeks on Actual Table 3185 Table 3186 Actual Table 3387 Actual Actual RS The QtyEE WattsEE SAVEEE Area LPDBASE HoursWk84 Weeks on Actual Table 3185 Table 3186 Actual Table 3291 Table 2991 268 Table 2091 Tabl	RVIEW ription This measure involves the purchase and installation of high-efficiency exterior ligh fixtures instead of new standard-efficiency lighting fixtures. Energy Electric Electric	

⁸⁴ Use actual when available; otherwise, use 4,380 (operating 12 hrs 365 days a year).

⁸⁵ See Appendix D. The installed fixture wattage and wattage reduction values are based on the specified installed fixture type.

⁸⁶ See Appendix D. The installed fixture wattage and wattage reduction values are based on the specified installed fixture type.

⁸⁷ See Appendix D. The baseline LPD is based on the specified space type.

⁸⁸ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

⁸⁹ See Appendix D: Parameter Values Reference Tables.

⁹⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

⁹¹ See Appendix B.

⁹² Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁹³ Ibid

⁹⁴ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

⁹⁵ Program not yet evaluated, assume default FR of 25%.

⁹⁶ Program not yet evaluated, assume default SO of 0%.

Prescriptive Lighting: Lighting Fixtures – Exterior Spaces (Retrofit/Replacement Lamps), Codes S6, S8, Prescriptive Lighting: Lighting Fixtures – Exterior Spaces (Retrofit/Replacement Lamps), Codes S6, S8,													
S11R, S1													
Last Revised	Date	7/1/201	.6										
MEASURE OVERV	'IEW												
Descrip	otion	This me	asur	e involve	es the	pur	chase and	lins	tallation o	f hig	h-efficien	cy exterior lig	hting
		fixtures	to re	eplace ex	kisting	g ope	erating lig	htin	g equipme	ent (retrofit).		
Primary En	nergy	Electric	ctric										
Im	pact												
Se	ector	Comme	rcial	/Industri	al								
Progra	am(s)	C&I Pre	scrip	tive Prog	gram,	Sma	II Busines	s Di	rect Instal	ll Pro	ogram		
End	l-Use	Lighting											
Project `		Retrofit											
GROSS ENERGY SA		1	RITHI	MS (UNI	T SAV	'ING	S)						
Demand Sav	<u>_</u> _	Δ kW							Watts _{EE}) /				
Annual Energy Sav		∆kWh/y							Watts _{EE}) /	1,0	00 x Hours	sWk x Weeks	
Definitions	Unit		= Lighting fixture upgrade measure										
	Qty₅			antity of									
	Qty₅			antity of									
					seline	fixtu	ure (base	d on	the speci	fied	existing o	r baseline fixt	ure type)
	Wat		•	atts)									
					ergy-	effici	ent fixtur	e (b	ased on th	ne sp	pecified ins	stalled fixture	type)
	Wee		•	atts)									
	1,00			-					tion (hrs/v		-		
							•	•	ation (we	eks/	year)		
			: Cor	iversion:	1,00	0 Wa	itts per k\	N					
EFFICIENCY ASSU													
Baseline Efficie		The exist											
Efficient Meas		High-effic	cienc	y lighting	g syst	em t	hat excee	eds k	ouilding co	de.			
PARAMETER VALI						1				07		1 ()]	
Measure/Ty		Qty _{BASE}		atts _{BASE}	Qty		Watts		HoursWl		Weeks	Life (yrs)	Cost (\$)
Retro		Actual	Actual Table 32 ⁹⁸ Actual Table 31 ⁹⁸ Actual Actual 2							13 ⁹⁹	Table 32 ¹⁰⁰		
IMPACT FACTORS	1		ı								05		
Prog		ISR				RR _D	_	CF _S	CF _W		FR 2 CO (104	SO 1. 50/105	
C&I Prescrip		100%		99%¹	01	1(01% ¹⁰²	Га	ble 29 ¹⁰³	Га	ble 29 ¹⁰³	26%104	1.6%105
Small Busin		100%	100% 100% ¹⁰⁶ 100% ¹⁰⁶ Table 29 ¹⁰³ Table 29 ¹⁰³				25% ¹⁰⁷	0% ¹⁰⁸					
Direct In:	stall												

⁹⁷ Use actual when available; otherwise, use 4,380 (operating 12 hrs 365 days a year).

 $^{^{98}}$ See Appendix D. The baseline and installed fixture wattages are based on the specified baseline fixture type.

⁹⁹ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

¹⁰⁰ Actual project cost collected for SBI. For C&I Prescriptive see Appendix D: Parameter Values Reference Tables.

¹⁰¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

¹⁰² Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

¹⁰³ See Appendix B.

¹⁰⁴ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹⁰⁵ Ibid

¹⁰⁶ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

¹⁰⁷ Program not yet evaluated, assume default FR of 25%.

¹⁰⁸ Program not yet evaluated, assume default SO of 0%.

		Prescriptive Lighting: Lighting Controls – Interior Spaces, Codes L60.1, L70.1, L71.1							
		ols – Interior Spaces, Codes L60.1, L70.1, L71.1							
Last Revised Date	10/1/2017 (ret	roactive to 7/1/2016)							
MEASURE OVERVIEW									
Description	This measure in	nvolves the installation of lighting controls on new or existing interior lighting							
	fixtures.								
Primary Energy Impact	Electric								
Sector	Commercial/In	dustrial							
Program(s)	C&I Prescriptiv	e Program, Small Business Direct Install Program							
End-Use	Lighting								
Project Type	Retrofit								
GROSS ENERGY SAVING	S ALGORITHMS	(UNIT SAVINGS)							
Demand Savings	Δ kW	= Qty _{FIXTURES} x Watts / 1,000 x WHF _d							
	Δ k W_{SP}	= Qty _{FIXTURES} x Watts / 1,000 x WHF _d x CF _S							
	Δ k W_{WP}	= Qty _{FIXTURES} x Watts / 1,000 x CF _W							
Annual Energy Savings	∆kWh/yr	= Qty _{FIXTURES} x Watts / 1,000 x HoursWk x Weeks x SVG x WHF _{e,cool}							
	∆MMBtu/yr ¹⁰⁹	= -Qty _{FIXTURES} x Watts / 1,000 x HoursWk x Weeks x SVG x WHF _{e,heat}							
Definitions	Unit	= Lighting control project or space							
	Qty _{FIXTURES}	= Total quantity of fixtures connected to the new controls							
	Watts	= Wattage per fixture connected to the new control (Watts)							
	HoursWk	= Weekly hours of equipment operation before installation of controls (hrs/week)							
	Weeks	= Weeks per year of equipment operation (weeks/year)							
	SVG	= % of annual lighting energy saved by lighting control (%)							
	WHF _d	= Waste heat factor for demand to account for cooling savings from reduced run time							
	$WHF_{e,cool}$	= Waste heat factor for energy to account for cooling savings from reduced run time							
	$WHF_{e,heat}$	= Waste heat factor for energy to account for increased heating load from efficient lighting							
	1,000	= Conversion: 1,000 Watts per kW							
EFFICIENCY ASSUMPTIO	•	, F							
Baseline Efficiency		The baseline case is a manual switch in the absence of controls.							
Efficient Measure		ols that automatically control the connected lighting systems.							
<u> </u>									

¹⁰⁹ Fuel interactive effects are distributed across fuels types as follows: 76% Oil, 10% Natural Gas, 7% Propane, 7% Kerosene.

Prescriptive Lighting: Lighting Controls – Interior Spaces, Codes L60.1, L70.1, L71.1											
PARAMETER VALUES											
Measure/Type	Qty	Watts ¹¹⁰			HoursWk		Weeks	SVG		Life (yrs)	Cost (\$)
Retrofit	Actual	Tab	ole 31 or Table 32		Actual		Actual	Table 36 ¹¹²		10 ¹¹³	Table 32 ¹¹⁴
Measure/Type	WHF _d	115	WHF _{e,cool}		'HF _{e,heat} ¹¹⁷						
Retrofit	1.144		1.06	(0.00159						
IMPACT FACTORS											
Program	ISR		RR_E		RR_D	CFs		CF _W		FR	SO
C&I Prescriptive	100%	, 0	99%118	101% ¹¹⁸		Т	able 29 ¹¹⁹	Table 29 ¹¹⁹		26% ¹²⁰	1.6%121
Small Business Direct Install	100%	ó	100%122		100%122		able 29 ¹¹⁹	Table 29 ¹¹⁹		25%123	0%124

¹¹⁰ See Appendix D: Parameter Values Reference Tables. The controlled fixture may be selected from either the baseline or installed wattage tables. The controlled wattage is determined using the wattage tables and the selected of controlled fixture type.

¹¹¹ Use actual hours when known. If hours are unknown, use the values from Table 34 or Table 35.

¹¹² See Appendix D: Parameter Values Reference Tables. The savings factor is determined using the Lighting Control Savings table and the space type specified in the project Data Collection and Information Form. If the space type is unknown, use the "Other" space type value.

¹¹³ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

¹¹⁴ See Appendix D: Parameter Values Reference Tables.

¹¹⁵ Derived from the concept set forth in Rundquist, R.A., Johnson, K.F., Aumann, D.J. (1993). Calculating Lighting and HVAC Interactions. ASHRAE Journal, 35(11), 28-37. See Appendix D: Parameter Values Reference Tables for derivation and input assumptions.

¹¹⁶ Ibid.

¹¹⁷ Ibid.

¹¹⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

¹¹⁹ See Appendix B.

¹²⁰ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹²¹ Ibid.

¹²² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

¹²³ Program not yet evaluated, assume default FR of 25%.

¹²⁴ Program not yet evaluated, assume default SO of 0%.

Prescriptive Lighting: Lighting: Retrigerated Spaces, Codes 530, 532									
	Lighting Fixtures – Refrigerated Spaces, Codes S30, S32								
Last Revised Date	11/12/2013								
MEASURE OVERVIEW									
Description	This measure involves the purchase and installation of high-efficiency lighting fixtures in refrigerated spaces instead of standard lighting fixtures (new construction projects) or to replace existing operating lighting fixtures (retrofit). The new fixtures may be installed vertically or horizontally in the refrigerated cases.								
Primary Energy Impact	Electric								
Sector	Commercial/Industrial								
Program(s)	C&I Prescriptive Program, Small Business Direct Install Program								
End-Use	Lighting								
Project Type	Retrofit								
	INGS ALGORITHMS (UNIT SAVINGS)								
Demand Savings	For retrofit vertical: $\Delta k = (Qty_{BASE} \times Watts_{BASE} - \#doors \times Watts_{EE}) / 1,000 \times BF$ $\Delta kW_{SP} = (Qty_{BASE} \times Watts_{BASE} - \#doors \times Watts_{EE}) / 1,000 \times BF \times CF_{S}$ $\Delta kW_{WP} = (Qty_{BASE} \times Watts_{BASE} - \#doors \times Watts_{EE}) / 1,000 \times CF_{W}$ For retrofit horizontal: $\Delta kW = (Qty_{BASE} \times Watts_{BASE} - \#feet \times Watts_{EE}) / 1,000 \times BF$ $\Delta kW_{SP} = (Qty_{BASE} \times Watts_{BASE} - \#feet \times Watts_{EE}) / 1,000 \times CF_{W}$ $\Delta kW_{WP} = (Qty_{BASE} \times Watts_{BASE} - \#feet \times Watts_{EE}) / 1,000 \times CF_{W}$								
Annual Energy	For retrofit-vertical:								
Savings	$\Delta kWh/yr = (Qty_{BASE} \times Watts_{BASE} - \#doors \times Watts_{EE}) / 1,000 \times HoursWk \times Weeks \times BF$ For retrofit horizontal: $\Delta kWh/yr = (Qty_{BASE} \times Watts_{BASE} - \#feet \times Watts_{EE}) / 1,000 \times HoursWk \times Weeks \times BF$								
Definitions	Unit = Lighting fixture upgrade measure QtyBASE = Quantity of baseline fixtures #doors = Quantity of refrigerated doors with installed LED fixtures #feet = Horizontal feet of new lighting fixture(s) (ft) SAVEEE = Average wattage reduction per door (vertical) or per foot (horizontal) with LED (Watts) WattsBASE = Watts of baseline fixture (based on the specified baseline fixture type) (Watts) WattsEE = Watts per refrigerated door (vertical) or per foot (horizontal) with LED fixture (Watts) HoursWk = Weekly hours of equipment operation (hrs/week) Weeks = Weeks per year of equipment operation (weeks/year) BF = Bonus factor to account for refrigeration savings due to reduced waste heat 1,000 = Conversion: 1,000 Watts per kW								
EFFICIENCY ASSUMPTION									
Baseline Efficiency	For new construction projects, the baseline is represented by building code or standard design practice for the building or space type. For retrofit projects, the baseline is the existing lighting system.								
Efficient Measure	High-efficiency lighting system that exceeds building code.								

Prescriptive Lighting: Lighting Fixtures – Refrigerated Spaces, Codes S30, S32											
PARAMETER VALUES											
Measure/Type	Qty _{BASE}	Watts	Watts _{BASE}		#doors, #feet			atts _{EE}	SAVEEE		
New construction	N/A	N/A	N/A		Actual			I/A	Table 31 ¹²⁵		
Retrofit	Actual	Table 3	Table 32 ¹²⁵		Actual			e 31 ¹²⁵	N/A		
Measure/Type	HoursWk ¹²⁶	Weel	Weeks		BF			Life (yrs)		Cost (\$)	
New construction	Actual	Actua	Actual		1.29 ¹²⁷			15 ¹²⁸		Table 32 ¹²⁹	
Retrofit	Actual	Actua	Actual		1.29^{127}			13 ¹²⁸		Table 32 ¹²⁹	
IMPACT FACTORS											
Program	ISR	RR_E	RR_D		CF _S	CF _W		FR		SO	
C&I Prescriptive	100%	99% ¹³⁰	101% ¹³⁰		Table 29 ¹³¹	Table 29 ¹³¹		26% ¹³²		1.6% ¹³³	
Small Business Direct Install	100%	100%134	100%134		Table 29 ¹³¹	Table 29 ¹³¹		25% ¹³⁵		0%136	

¹²⁵ See Appendix D. The fixture wattage and wattage reduction values are based on the specified fixture types for both baseline and installed fixtures.

¹²⁶ Use actual when available; otherwise use 4,057 (retail average annual operating hours, From New York Technical Reference Manual, 2010).

¹²⁷ For prescriptive refrigerated lighting measures, the default value is 1.29 (calculated as (1 + (1.0 / 3.5))), based on the assumption that all lighting in refrigerated cases is mechanically cooled, a typical refrigeration efficiency 3.5 COP, and assuming 100% of lighting heat needs to be mechanically cooled at time of summer peak. ¹²⁸ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

 $^{^{\}rm 129}$ See Appendix D: Parameter Values Reference Tables.

¹³⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

¹³¹ See Appendix B.

¹³² Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹³³ Ibid.

¹³⁴ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR

¹³⁵ Program not yet evaluated, assume default FR of 25%.

¹³⁶ Program not yet evaluated, assume default SO of 0%.

Prescriptive Lighting	g: Lighting	g Controls -	Refrigerated	l Spaces, Co	de L50					
Last Revised Date	7/1/2013	3								
MEASURE OVERVIEW										
Description	This mea	his measure involves the purchase and installation of occupancy-based lighting controls on								
	new high	w high-efficiency lighting fixtures in refrigerated spaces. The program does not provide								
	incentive	entives for lighting controls on existing inefficient lighting.								
Primary Energy	Electric									
Impact										
Sector		cial/Industria								
Program(s)	C&I Pres	criptive Prog	ram, Small Bus	iness Direct	Install Progr	am				
End-Use	Lighting									
Project Type	Retrofit									
GROSS ENERGY SAVIN	IGS ALGO	RITHMS (UN	IT SAVINGS)							
Demand Savings	ΔkW	•	tts / 1,000 x B							
Annual Energy	∆kWh/yr	= Qty x Wa	itts / 1,000 x H	oursWk x W	eeks x SF x B	F				
Savings										
Definitions	Unit	, , , , , ,								
	Qty		y of fixtures co							
	Watts		wattage of the				ol (Watts)			
	HoursWk	•	hours of equip	•	•	-				
	Weeks		per year of equ							
	SF	= Savings hours	factor, or perc	entage of sa	vings resulti	ng from a	reduction in	operating		
	BF	= Bonus f	actor to accou	nt for refrige	ration savin	gs due to	reduced wast	e heat		
	1,000		sion: 1,000 Wa	_						
EFFICIENCY ASSUMPT	IONS									
Baseline Efficiency	No occup	oancy sensor								
Efficient Measure	Lighting	controls which	ch automatical	ly control co	nnected ligh	ting syste	ms based on	occupancy.		
PARAMETER VALUES										
Measure/Type	Qty	Watts ¹³⁷	HoursWk ¹³⁸	Weeks	SF ¹³⁹	BF ¹⁴⁰	Life (yrs)	Cost (\$) ¹⁴²		
New construction	Actual	Table 31	Actual	Actual	30.7%	1.29	10	Table 32		
Retrofit	Actual	Table 31	Actual	Actual	30.7%	1.29	9	Table 32		

¹³⁷ See Appendix D. The controlled fixture may be selected from either the baseline or installed wattage tables. The controlled wattage is determined using the wattage tables and the selected of controlled fixture type.

¹³⁸ Use actual when available; otherwise, use 168 HoursWk and 52 Weeks (assuming equipment operates 24 hours per day, year round).

¹³⁹ US DOE, "Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting." Refrigerated cases were metered for 12 days to determine savings from occupancy sensors. Assumes that refrigerated freezers and refrigerated coolers will see the same amount of savings from sensors.

¹⁴⁰ For prescriptive refrigerated lighting measures, the default value is 1.29 (calculated as (1 + (1.0 / 3.5))). Based on the assumption that all lighting in refrigerated cases is mechanically cooled, with a typical 3.5 COP refrigeration system efficiency, and assuming 100% of lighting heat needs to be mechanically cooled at time of summer peak.

¹⁴¹ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

¹⁴² See Appendix D: Parameter Values Reference Tables.

Prescriptive Lighting: Lighting Controls – Refrigerated Spaces, Code L50									
IMPACT FACTORS									
Program	ISR	RR_E	RR_D	CFs	CF _W	FR	SO		
C&I Prescriptive	100%	99% ¹⁴³	101% ¹⁴⁴	Table 29 ¹⁴⁵	Table 29 ¹⁴⁵	26% ¹⁴⁶	1.6% ¹⁴⁷		
Small Business Direct Install	100%	100%148	100%148	Table 29 ¹⁴⁵	Table 29 ¹⁴⁵	25% ¹⁴⁹	0%150		

¹⁴³ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

¹⁴⁴ Ibid.

¹⁴⁵ See Appendix B.

¹⁴⁶ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹⁴⁷ Ibid

¹⁴⁸ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

¹⁴⁹ Program not yet evaluated, assume default FR of 25%.

¹⁵⁰ Program not yet evaluated, assume default SO of 0%.

Variable Frequency Drives

Advanced Rooftop Cont	trols							•	
Last Revised Date	6/2/2017								
MEASURE OVERVIEW									
Description	cooling to int drive which o modulating t	This measure involves the installation of a rooftop controller to rooftop units that provide cooling to interior spaces. The installed equipment must incorporate a variable frequency drive which controls RTU supply fan speed. The installed system must be capable of modulating the fan speed based on based on the RTU heating, cooling, ventilation or other control input, and must be installed on an existing constant volume RTU.							
Primary Energy Impact	Electricity								
Sector	Commercial,	Indus	strial						
Program(s)	C&I Prescript	ive P	rogram						
End-Use	Electricity, Sp	ace o	cooling						
Project Type	Retrofit	7-1							
GROSS ENERGY SAVINGS	ALGORITHMS	(UNI	T SAVIN	GS)					
Demand Savings	ΔkW	= H	IP _{VFD} x [OSVG					
Annual Energy Savings	ΔkWh/yr	= H	IP _{VFD} x E	SVG					
Definitions	Unit HP _{VFD} ESVG DSVG	= T = e	otal ho energy s	rsepower o avings facto	ntrol multiple n f motor(s) conr or (kWh/yr/hp) tor (kW/hp)	nected to VFD	(hp)		
EFFICIENCY ASSUMPTION	S								
Baseline Efficiency	The baseline	refle	cts an e	xisting RTU	without supply	fan speed or	damper con	trols.	
Efficient Measure	The high-efficontrol based		y case ir	nvolves the	installation of	controls that a	allow for fan	speed	
PARAMETER VALUES									
Measure/Type	HP _{VFD}			SVG	DSVG	Life (Cost (\$)	
Value	Actual		304	49.5 ¹⁵¹	.432	7 ¹⁵	2	Table 2	
IMPACT FACTORS									
Program	ISR	RI	R _E ¹⁵³	RR_D	CF _S	CF _W	FR ¹⁵⁴	SO ¹⁵⁵	
C&I Prescriptive	100%	10	00%	N/A	N/A	N/A	25% ¹⁵⁶	0%157	

¹⁵¹ The baseline equipment controls are assumed to be constant volume units. The ESVG and DSVG have been increased by 50% relative to the values used for the prescriptive VFD measure to reflect the increased savings for the installation of this measure on constant volume units.

¹⁵² The lifetime is assumed to be half of the life of a new RTU.

¹⁵³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

¹⁵⁴ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall).

¹⁵⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

¹⁵⁶ Measure not yet evaluated, assume default FR of 25%.

¹⁵⁷ Measure not yet evaluated, assume default SO of 0%.

Prescriptive VFD: Va	riable Freque	ency Dri	ves (VFDs) for H	IVAC, Co	odes SI	A, SFP, RFA,	RFP, BE	EF, CV	VP, HHWP
Last Revised Date	7/1/2013	·								
MEASURE OVERVIEW										
Description	electric moto also known a and inverter This measure supply fans, hot water cir use the Custo	This measure involves the purchase and installation of a variable frequency drive (VFD) on an electric motor serving HVAC loads. A VFD is a specific type of adjustable-speed drive. VFDs are also known as adjustable-frequency drives (AFDs), variable-speed drives (VSDs), AC drives, and inverter drives. This measure covers VFDs on 5 HP to 100 HP motors for the following HVAC equipment: supply fans, return fans, building exhaust fans, chilled water distribution pumps, and heating not water circulation pumps. For VFDs on other equipment type or serving non-HVAC loads, use the Custom Measure approach. This measure is not eligible for new construction applications for which VSDs are required per Section 503.2.5.1 of IECC 2009.								
Primary Energy	Electric									
Impact										
Sector	Commercial									
Program(s)	C&I Prescript	ive Prog	ram							
End-Use	VFDs for HVA	AC								
Project Type	Retrofit									
GROSS ENERGY SAVIN	GS ALGORITH	MS (UNI	T SAV	'INGS)						
Demand Savings	ΔkW	= HP _\	_{VFD} x D	SVG						
Annual Energy Savings	∆kWh/yr	= HP _\	_{VFD} x E	SVG						
Definitions	Unit =	1 VFD (1	that n	nay control	multiple	motors	5)			
	HP _{VFD} =	Total ho	orsepo	ower of mo	tor(s) cor	nected	l to VFD (hp)			
		energy	saving	gs factor (k\	Nh/yr/hp)				
		- demand	d savi	ngs factor (I	kW/hp)					
EFFICIENCY ASSUMPTI										
Baseline Efficiency	The baseline									
Efficient Measure	_	•		volves a VFI) installe	d on ex	isting HVAC e	quipmen	t to re	educe the
	average mot	or speed	l							
PARAMETER VALUES	1								T	
Measure/Type	HP _{VFD}			SVG		VG	Life (Cost (\$)
All	Actual		Та	ble 1	Tab	le 1	1315	oŏ		Table 2
IMPACT FACTORS	ICD	0.0		D.D.			CF.			
Program	ISR	RR₅ 112.2		RR _D 100% ¹⁶⁰		F _S 29 ¹⁶¹	CF _W	FR 52% ²		SO 1 COV 163
C&I Prescriptive	100%	112.2	-	100%100	rable	29***	Table 29 ¹⁶¹	52%		$1.6\%^{163}$

¹⁵⁸ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

¹⁵⁹ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

¹⁶⁰ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D

¹⁶¹ See Appendix C.

¹⁶² Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹⁶³ Ihid

Table 1 – VFD Energy and Peak Demand Savings Factors (ESVG and DSVG)^{164,165}

Measure Code	Measure Description	ESVG (kWh/yr/hp)	DSVG (kW/hp)
SFA, SFP	Supply Fans	2,033	0.288
RFA, RFP	Return Fans	1,788	0.302
BEF	Exhaust Fans	755	0.12
CWP	Chilled Water Pumps	1,633	0.183
HHWP	Heating Hot Water Circulation Pump	1,548	0.096

Table 2 - Measure Costs for VFD¹⁶⁶

Cumulative Motor HP Controlled by Each VFD (HP _{VFD})	Measure Cost (\$)
5	\$2,425
7.5	\$2,648
10	\$2,871
15	\$3,317
20	\$3,763
25	\$4,209
30	\$4,655

¹⁶⁴ Values for exhaust fans were taken from National Grid 2001 values averaged from previous evaluations of VFD installations. Values are those used for existing construction, except for chilled water pumps, which is used for new construction. National Grid existing construction baseline is similar to Vermont baseline for new and existing applications.

¹⁶⁵ Values for applications other than exhaust fans were taken from: Cadmus. *Variable Speed Drive Loadshape Study*. Prepared for Northeast Energy Efficiency Partnership. August 2014.

¹⁶⁶ Cost data estimated based on correlation between total cost and controlled HP results from: Navigant, NEEP Incremental Cost Study Phase Two Final Report, January 2013, Table 15.

HVAC Equipment

Prescriptive HVAC: U	Initary Air C	onditioners Code		escriptive HVAC: Unita	y Air Conditioners, Co	ues act-act (inactive				
Last Revised Date	7/1/2013	onunioners, coue	S ACT-ACO (III	active						
MEASURE OVERVIEW	//1/2013									
Description Description	equipment includes hig	This measure involves the purchase and installation of new high-efficiency air conditioning equipment instead of new standard-efficiency air conditioning equipment. This measure includes high-efficiency electrically operated air-cooled single package and split system air conditioners, including room or window air conditioners for commercial/industrial facilities.								
Primary Energy Impact	Electric									
Sector	Commercia									
Program	C&I Prescrip	otive Program								
End-Use	HVAC									
Project Type	New constr	uction, Retrofit								
GROSS ENERGY SAVIN	GS ALGORITI	HMS (UNIT SAVING	S)							
Demand Savings	ΔkV	or equipment with rated size < 5.4 tons ($< 65,000$ Btuh): Δ kW = Tons \times 12 \times (1/SEER _{BASE} $-$ 1/SEER _{EE}) or equipment with rated size ≥ 5.4 tons ($\ge 65,000$ Btuh):								
Annual Energy	For equipme	r equipment with rated size < 5.4 tons ($< 65,000$ Btuh):								
Savings		$\Delta kWh/yr$ = Tons × 12 × (1/SEER _{BASE} – 1/SEER _{EE}) × EFLH _C								
S		For equipment with rated size ≥ 5.4 tons ($\geq 65,000$ Btuh):								
		Δ kWh /yr = Tons × 12 × (1/EER _{BASE} – 1/EER _{EE}) × EFLH _C								
Definitions	Tons SEERBASE SEERBASE EERBASE EERLE EFLHC 12	SEER _{BASE} = Cooling seasonal energy efficiency ratio of the baseline equipment < 5.4 tons (Btuh/Watt) SEER _{EE} = Cooling seasonal energy efficiency ratio of the efficient equipment < 5.4 tons (Btuh/Watt) EER _{BASE} = Cooling energy efficiency ratio of the baseline equipment ≥ 5.4 tons (Btuh/Watt) EER _{EE} = Cooling energy efficiency ratio of the efficient equipment ≥ 5.4 tons (Btuh/Watt) EFLH _C = Cooling equivalent full load hours per year (hrs/yr)								
EFFICIENCY ASSUMPTION	1									
Baseline Efficiency Efficient Measure	Rated coolii requiremen	mum cooling efficieng and heating effic ts on the program I diency Maine website	iency of new equ Data Collection a	uipment must m and Measure Cod	eet or exceed th de Reference For	e minimum				
PARAMETER VALUES	<u> </u>			Γ		T				
Measure/Type	Tons	SEER _{BASE} , EER _{BASE}	SEER _{EE} , EER _{EE}	EFLH _C	Life (yrs)	Cost (\$)				
Unitary AC < 11.25 tons	Actual	Table 3	Actual	829 ¹⁶⁷	15 ¹⁶⁸	Table 3				
Unitary AC ≥ 11.25 tons	Actual	Table 3	Actual	605 ¹⁶⁷	15 ¹⁶⁸	Table 3				
Window AC	Actual	Table 3	Actual	829 ¹⁶⁷	9 ¹⁶⁹	Table 3				

¹⁶⁷ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-3 and 0-4. Values are for the NE-North region.

¹⁶⁸ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

 $^{^{\}rm 169}$ Default assumptions used in the ENERGY STAR $^{\rm @}$ calculator, April 2013.

Prescriptive HVAC: U	Prescriptive HVAC: Unitary Air Conditioners, Codes AC1-AC6 (Inactive)										
IMPACT FACTORS											
Program	ISR	RR_E	RR_D	CFs	CF_W	FR	SO				
C&I Prescriptive	100%	99% ¹⁷⁰	101% ¹⁷¹	Table 29 ¹⁷²	Table 29 ¹⁷³	52% ¹⁷⁴	1.6% ¹⁷⁵				

Table 3 – Baseline Efficiency Values and Measure Cost for Unitary AC Systems

Equipment Type	Cooling Capacity (Tons)	Cooling Capacity (Btuh)	Base Efficiency ^A	Incremental Cost (\$/ton) ^B
	< 5.4 (Split System)	< 65,000 (Split System)	13.0 SEER	\$115
	< 5.4 (Single Package)	< 65,000 (Single Package)	13.0 SEER	\$115
Air Conditioners, Air-Cooled	≥ 5.4 and < 11.25	≥ 65,000 and < 135,000	11.2 EER	\$91
	≥ 11.25 and < 20	≥ 135,000 and < 240,000	11.0 EER	\$99
	≥ 20 and < 63.3	≥ 240,000 and < 760,000	10.0 EER	\$100 ^c
	≥ 63.3	≥ 760,000	9.7 EER	\$100 ^c
Window AC	All	All	11.0 EER ^C	\$50 ^D

^A IECC 2009, Table 503.2.3(1): Minimum Efficiency Requirements: Electrically Operated Unitary Air Conditioners and Condensing Units.

^B The total incremental cost values are comparable to the values found in Navigant, NEEP Incremental Cost Study Report Final, September 2011, Table 1-15.

^c Vermont TRM 2014 Tier 1.

^D The baseline efficiency and measure cost for window AC units is based on a 10,000 Btu/h unit (same as assumption for window AC in the Residential TRM).

¹⁷⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

¹⁷¹ Ibid.

¹⁷² See Appendix B.

¹⁷³ See Appendix B.

¹⁷⁴ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹⁷⁵ Ibid.

	Prescriptive HVAC: Heat Pump Systems, Codes AH1-AH5, WH
Prescriptive HVAC: He	eat Pump Systems, Codes AH1-AH5, WH
Last Revised Date	7/1/2017
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of a new high-efficiency heat pump system instead of a new standard-efficiency heat pump. It includes high-efficiency electric airto-air, water source (open loop), and ground source (closed loop) heat pump systems.
Primary Energy	Electric
Impact	
Sector	Commercial
Program	C&I Prescriptive Program
End-Use	HVAC
Project Type	New construction, Retrofit
GROSS ENERGY SAVING	GS ALGORITHMS (UNIT SAVINGS)
Demand Savings	For air-to-air equipment < 5.4 tons (< 65,000 Btuh):
	$\Delta kW_C = CAP_C \times 12 \times (1/SEER_{BASE} - 1/SEER_{EE})$
	$\Delta kW_H = CAP_H \times 12 \times (1/HSPF_{BASE} - 1/HSPF_{EE})$
	For air-to-air equipment ≥ 5.4 tons (≥ 65,000 Btuh) and all water and ground source
	equipment:
	$\Delta kW_C = CAP_C \times 12 \times (1/EER_{BASE} - 1/EER_{EE})$
	$\Delta kW_H = CAP_H \times 12 \times (1/COP_{BASE} - 1/COP_{EE}) / 3.412$
Annual Energy Savings	For air-to-air equipment < 5.4 tons (< 65,000 Btuh):
	$\Delta kWh_C/yr$ = CAP _C × 12 × (1/SEER _{BASE} – 1/SEER _{EE}) × EFLH _C
	Δ kWh _H /yr = CAP _H / 1,000 × (1/HSPF _{BASE} – 1/HSPF _{EE}) × EFLH _H
	For air-to-air equipment ≥ 5.4 tons (≥ 65,000 Btuh) and all water and ground source
	equipment:
	$\Delta kWh_{C}/yr$ = CAP _C × 12 × (1/EER _{BASE} – 1/EER _{EE}) × EFLH _C
	$\Delta kWh_H/yr = CAP_H / 1,000 \times (1/COP_{BASE} - 1/COP_{EE}) \times EFLH_H / 3.412$
Definitions	Unit = 1 new heat pump CAP _C = Rated cooling capacity of the heat pump in tons (tons) CAP _H = Rated heating capacity of the heat pump (Btuh) SEER _{BASE} = Cooling seasonal energy efficiency ratio of the baseline equipment (Btuh/Watt) HSPF _{BASE} = Heating seasonal performance factor of the baseline equipment (Btuh/Watt) HSPF _{EE} = Heating seasonal performance factor of the efficient equipment (Btuh/Watt) EER _{BASE} = Cooling energy efficiency ratio of the baseline equipment (Btuh/Watt) EER _{BASE} = Cooling energy efficiency ratio of the baseline equipment (Btuh/Watt) ECOP _{BASE} = Heating coefficient of the efficient equipment (Btuh/Watt) COP _{BASE} = Heating coefficient of performance of the baseline equipment COP _{EE} = Heating coefficient of performance of the efficient equipment EFLH _C = Cooling equivalent full load hours per year (hrs/yr) EFLH _H = Heating equivalent full load hours per year (hrs/yr) 12 = Conversion: 1 ton = 12 kBtuh 3.412 = Conversion: 3.412 kBtuh per kW
EFFICIENCY ASSUMPTION	
Baseline Efficiency	Meets minimum cooling and heating efficiency requirements based on IECC 2009, Table 503.2.3(2).
Efficient Measure	Rated cooling and heating efficiency of new equipment must meet or exceed the minimum requirements on the program Data Collection and Measure Code Reference Forms (available on the Efficiency Maine website: http://www.efficiencymaine.com/).

Prescriptive HVAC: He	Prescriptive HVAC: Heat Pump Systems, Codes AH1-AH5, WH											
PARAMETER VALUES												
Massure/Tune	CAPc	САРн	176	$SEER_{BASE}$	SEER _{EE}	HS	PF _{BASE}	HSPF _E	EFLH _C ¹⁷⁷	EFLH _H ¹⁷⁸	Life	Cost
Measure/Type	CAPC	САРН	ł	EER_BASE	EEREE	CC)P _{BASE}	COPE	EFLUC	СГСПН	(yrs) 15 ¹⁷⁹ 15 ¹⁷⁹	(\$/ton)
Heat Pump < 5.4 tons	Actual	Actu	ıal	Table 4	Actual	Ta	ble 4	Actua	l 829	2,200	15 ¹⁷⁹	\$100 ¹⁸⁰
Heat Pump ≥ 5.4 tons	Actual	Actu	ıal	Table 4	A otual	Т	Table 4	Actual	829	1,600	1 5 179	\$100 ¹⁸⁰
and < 11.25 tons	Actual	ACTU	lai	Table 4	Actual T		DIE 4	Actua	029	1,000	15	\$100
Heat Pump ≥ 11.25	A stual	A ct.	ادر	Table 1	A otual	Table 4		A =4=1	605	1 600	4 - 179	\$100 ¹⁸⁰
tons	Actual	Actu	ldl	Table 4	Actual Ta		bie 4	Actua	l 605	1,600	15	\$100
IMPACT FACTORS												
Program	ISF	}		RRE	RR_D		С	Fs	CF _W	FR		SO
C&I Prescriptive	100	%	11	2.2% ¹⁸¹	100%18	31	Table	29 ¹⁸²	Table 29 ¹⁸²	52% ¹⁸	3	1.6%184

Table 4 – Efficiency Requirements and Measure Cost for Heat Pump Systems

	Rated Cool	ing Capacity, CAP _c	Base Efficiency ^A		
Equipment Type	Tons	Btuh	Cooling	Heating	
	< 5.4 (split system)	< 65,000 (split system)	13.0 SEER	7.7 HSPF	
	< 5.4 (single package)	< 65,000 (single package)	13.0 SEER	7.7 HSPF	
Air-Cooled	≥ 5.4 and < 11.25	≥ 65,000 and < 135,000	11.0 EER	3.3 COP	
	≥ 11.25 and < 20	≥ 135,000 and < 240,000	10.6 EER	3.2 COP	
	≥ 20	≥ 240,000	9.5 EER	3.2 COP	
Water Source	< 1.4	< 17,000	11.2 EER	4.2 COP	
water source	≥ 1.4 and < 11.25	≥ 17,000 and < 135,000	12.0 EER	4.2 COP	
Groundwater Source (open loop)	< 11.25	< 135,000	16.2 EER	3.6 COP	
Ground Source (closed loop)	< 11.25	< 135,000	13.4 EER	3.1 COP	

^A IECC 2009, Table 503.2.3(2). Minimum Efficiency Requirements: Electrically Operated Unitary and Applied Heat Pumps.

¹⁷⁶ Use actual heating capacity based on application form or equipment specifications. If the heating capacity is unknown, calculate heating capacity based on cooling capacity as follows: for equipment < 5.4 tons: heating capacity = cooling capacity; for equipment ≥ 5.4 tons, heating capacity = cooling capacity × 13,900 / 12,000.

¹⁷⁷ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-3 and 0-4. Values are for the NE-North region.

¹⁷⁸ EMT assumes 2,200 heating full load hours for heat pumps smaller than 5.4 tons (65,000 BTUh) and 1,600 heating full load hours for heat pumps larger than or equal to 5.4 tons.

¹⁷⁹ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

¹⁸⁰ Efficiency Vermont Technical Reference User Manual (TRM) 2014, Table 1, page 40.

¹⁸¹ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

¹⁸² See Appendix B

¹⁸³ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹⁸⁴ Ibid.

Prescriptive HVAC:	Package	d Termi	nal Air Co	ndition	•		_		and meat i a	mps (mactive)
Last Revised Date	7/1/201							, , , , , , , , , , , , , , , , , , ,		
MEASURE OVERVIEW	1									
Description				•			_	efficiency p Ps) equipm	_	
	standar	d-efficier	cy PTAC c	r PTHP e	quipment	•				
Primary Energy	Electric									
Impact										
Sector	Comme	rcial								
Program	C&I Pre	scriptive	Program							
End-Use	HVAC									
Project Type			n, Retrofit							
GROSS ENERGY SAVII	NGS ALG	ORITHMS	(UNIT SA	VINGS)						
Demand Savings	Δ k W_{C}	$= CAP_C /$	1,000 × (1	/EER _{BASE}	– 1/EER _{EE})					
	Δ k W_H	= CAP _H /	1,000 × (1	L/COP _{BASE}	- 1/COPE	E) / 3.412				
Annual Energy	Δ kWh _c /	yr =	= CAP _C / 1,	000 × (1,	/EER _{BASE} –	1/EER _{EE})	\times EFLH _C			
Savings	Δ kWh _H /	'yr =	= CAP _H / 1,	$000 \times (1)$	/COP _{BASE} –	1/COPEE	× EFLH _H /	3.412		
Definitions	Unit	= 1	PTAC or I	PTHP						
	CAP_C	= R	ated cool	ing capac	ity of the	new equ	ipment (Bti	uh)		
	CAP _H	= R	lated heat	ing capa	city of the	new equ	ipment (Bt	uh)		
	EER _{BASE}	= C	Cooling en	ergy effic	ciency ratio	o of the b	aseline eq	uipment (B	tuh/Watt)	
	EEREE	= C	Cooling en	ergy effic	ciency ratio	o of the e	efficient equ	uipment (B [.]	tuh/Watt)	
	COP _{BASE}		_		•			e equipme		
	COPEE		_		•			it equipme	nt	
	EFLH _C					•	year (hrs/y	-		
	EFLH _H					-	year (hrs/y	r)		
	3.412	= 0	Conversion	ı: 3.412 k	Btuh per l	k W				
EFFICIENCY ASSUMPT										
Baseline Efficiency			•				_	ating efficie		
								ective Septe		
Efficient Measure		Rated cooling and heating efficiency of new equipment must meet or exceed the minimum								
		requirements on the program Data Collection and Measure Code Reference Forms (available on the Efficiency Maine website: http://www.efficiencymaine.com/).								
PARAMETER VALUES	l	tticiency	Maine we	ebsite: <u>ht</u>	tp://www	<u>.efficienc</u>	<u>cymaine.co</u>	<u>m/</u>).		
					COP _{BAS}				Life	Cost
Measure/Type	CAP _C	CAP _H	EER _{BASE}	EER _{EE}	E	COPEE	EFLH _C ¹⁸⁵	EFLH _H ¹⁸⁶	(yrs) ¹⁸⁷	(\$) ¹⁸⁸
PTAC	Actual	Actual	Table 5	Actual	Table 5	Actual	829	N/A	15	\$75
PTHP	Actual	Actual	Table 5	Actual	Table 5	Actual	605	2,200	15	\$75

¹⁸⁵ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-3 and 0-4. Values are for the NE-North region.

¹⁸⁶ EMT assumes 2,200 heating full load hours for heat pumps smaller than 5.4 tons (65,000 BTUh) and 1,600 heating full load hours for heat pumps larger than or equal to 5.4 tons.

¹⁸⁷ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

¹⁸⁸ Environmental Protection Agency, ENERGY STAR® Market & Industry Scoping Report Packaged Terminal Air Conditioners and Heat Pumps, December 2011.

Prescriptive HVAC:	Prescriptive HVAC: Packaged Terminal Air Conditioners and Heat Pumps (Inactive)						
IMPACT FACTORS							
Program	ISR	RR_E	RR_D	CF _S	CF _W	FR	SO
C&I Prescriptive	100%	99% ¹⁸⁹	101% ¹⁸⁹	Table 29 ¹⁹⁰	Table 29 ¹⁹⁰	52% ¹⁹¹	1.6% ¹⁹²

Table 5 - Baseline Efficiencies for PTAC and PTHP (effective September 20, 2012)¹⁹³

	Equipment Cl	ass	Minimum Energy Con	servation Standards		
Equipment	Category ^A	Cooling Capacity (Btu/h)	Cooling (EER)	Heating (COP)		
		< 7,000	11.7	N/A		
	Standard Size	7,000 – 15,000	$13.8 - (0.300 \times Cap^{B})$	N/A		
PTAC		> 15,000	9.3	N/A		
PIAC		< 7,000	9.4	N/A		
	Non-Standard Size	7,000 – 15,000	$10.9 - (0.213 \times Cap^{B})$	N/A		
		> 15,000	7.7	N/A		
		< 7,000	11.9	3.3		
	Standard Size	7,000 – 15,000	$14.0 - (0.300 \times Cap^{B})$	3.7 – (0.052 x Cap ^B)		
PTHP		> 15,000	9.5	2.9		
PIMP		< 7,000	9.3	2.7		
	Non-Standard Size	7,000 – 15,000	$10.8 - (0.213 \times Cap^{B})$	$2.9 - (0.026 \times Cap^{B})$		
		> 15,000	7.6	2.5		

A Standard size PTAC or PTHP refers to equipment with wall sleeve dimensions having an external wall opening ≥ 16 inches high or ≥ 42 inches wide, and a cross-sectional area ≥ to 670 square inches. Non-standard size refers to PTAC or PTHP equipment with existing wall sleeve dimensions having an external wall opening of < 16 inches high or < 42 inches wide, and a cross-sectional area < 670 square inches.

^B "Cap" means cooling capacity in thousand Btu/h at 95 °F outdoor dry-bulb temperature.

¹⁸⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

¹⁹⁰ See Appendix B.

¹⁹¹ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

¹⁹² Ibid.

¹⁹³ Standards for Packaged Terminal Air Conditioners and Heat Pumps: http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/45.

Prescriptive HVAC: Dem	and Con	trol Ventilation	. Codes DCV	-	TTV/TC. Dellia	na control ven	chacion,	Codes DCVE, DCVN
Last Revised Date	7/1/201		,	, -				
MEASURE OVERVIEW								
Description	This me	asure involves in	stallation of c	lemand contr	ol ventilat	tion (DCV) c	n nev	v high-
	efficien	cy HVAC systems	to reduce he	ating/cooling	requirem	ents when	spaces	s are
	unoccup	pied. Typically, Do	CV involves th	ne installation	of CO ₂ se	nsors and c	contro	ls to
	measur	e CO2 levels in the	e controlled s	pace and the	outdoorv	ventilation a	air and	d to reduce
	heating,	cooling of the ve	entilated air d	uring low occ	cupancy po	eriods.		
		asure is not eligil			plications	s for which	DCV is	already
	required	d per Section 503	.2.5.1 of IECC	2009.				
Primary Energy Impact	Electric							
Sector	Comme	rcial						
Program(s)	C&I Pres	scriptive Program	1					
End-Use	HVAC							
Project Type		nstruction, Retro						
GROSS ENERGY SAVINGS A		•	-					
Demand Savings	ΔkW			ate \times SF _{kW} \times 1				
Annual Energy Savings	ΔkWh/y			ate × SF _{kW} × 1	2 / EER _{EE} >	< EFLH _C		
Definitions	Unit		V system					
	Area			ed space bene	_			(6.2)
			-	r ventilation r		•		· •
	SF _{kW}		_	ne average de		-	_	•
	FED		•	vided to the co		•		· ·
	EER _{EE}			ficiency ratio				
			/1.1 (Btuh/W	or customer in	iiormatioi	n, eek may	be est	imateu as
	EFLH _C			ลเเ) t full load hoเ	ire (bre/vr	-1		
	12		rersion: 12 kB		113 (1113/ YI)		
EFFICIENCY ASSUMPTIONS		- 6011	CISIOII. 12 KD	tun per ton				
Baseline Efficiency		system installed	on the HVAC	units.				
Efficient Measure		h-efficiency HVA			stalled.			
PARAMETER VALUES		,,,						
Measure/Type	Area	VentilationRate	s SF _{kW}	EER _{EE}	EFLH _C	Life (yrs)		Cost (\$)
	\$2 100 (Retroi							
All	Actual	Table 37	0.000433	194 Actual	719 ¹⁹⁵	10 ¹⁹⁶		350 (NC) ¹⁹⁷
IMPACT FACTORS				•				·
Program	ISR	RRE	RR_D	CFs	CFw	FF		SO
C&I Prescriptive	100%	112.2% ¹⁹⁸	100% ¹⁹⁸	Table 29 ¹⁹⁹	Table 29	9 ¹⁹⁹ 52%	200	1.6% ²⁰¹

¹⁹⁴ The demand cooling load saving factor is dependent on the amount of ventilated air brought into the conditioned space, which in turns depend on the occupancy within the space. If the space is frequently filled to its designed capacity, then there will not be any demand savings. This is because the system will bring in the corresponding amount of ventilated air required for the occupants, which is the same as the baseline system minimum ventilation. However, from our past experience, such spaces are typically occupied 85% to 90% of their designed capacities. Thus, there is an approximate savings of 10% to 15% in the amount of ventilated air brought in. This also translates to about the same amount of demand saved in conditioning the ventilated air.

¹⁹⁵ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-2. Values are for the NE-North region.

¹⁹⁶ Studies have shown that the typical life of most electronic control devices and sensor is approximately 10 years

¹⁹⁷ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011

¹⁹⁸ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

¹⁹⁹ See Appendix B

²⁰⁰ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

²⁰¹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

5 1 .1 ID/46 1/	Prescriptive HVAC. Variable Reingerant Flow, Code VR
•	ariable Refrigerant Flow, Code VRF
Last Revised Date	10/1/2017 (retroactive to 7/1/2017)
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of a new high-efficiency variable
	refrigerant flow (VRF) AC or heat pump system instead of a new standard-efficiency variable
	refrigerant flow (VRF) AC or heat pump system.
Primary Energy Impact	
Sector	Commercial
Program(s)	C&I Prescriptive Program
End-Use	HVAC
Project Type	New construction, Replace on burnout/End of useful life
GROSS ENERGY SAVING	SS ALGORITHMS (UNIT SAVINGS)
Demand savings	
	$kW_{c} = kBtu/hr_{capacity} * \left(\frac{1}{IEER_{base}} - \frac{1}{IEER_{ee}}\right)$ $kW_{h} = kBtu_{heat\ load} * \left(\frac{1}{COP_{hase}} - \frac{1}{COP_{ee}}\right) * \frac{1}{EFLH_{h}}$
	$N_{c} - RBtu/N_{capacity} + \sqrt{IEER_{base}} - \overline{IEER_{ee}}$
	$kW_{1} - kRtu_{2} + kRtu_{3} + k \left(\frac{1}{2} - \frac{1}{2}\right) * \frac{1}{2}$
	COP_{base} COP_{ee} $EFLH_h$
Annual energy savings	
	$kWh_c = kBtu/hr_{capacity} * \left(\frac{1}{IFFR} - \frac{1}{IFFR}\right) * EFLH_c$
	$\langle IEER_{base} IEER_{ee} \rangle$
	. 1 1 1
	$kWh_{h} = kBtu_{heat\ load} * \left(\frac{1}{COP_{base}} - \frac{1}{COP_{ee}}\right) * \frac{1}{3.412}$
	COP_{base} COP_{ee} 3.412
Definitions	LBL /L
Definitions	kBtu/hr _{capacity} = Cooling capacity of equipment = Integrated energy efficiency ratio for baseline system
	base
	,ee
	"
	near load
	,
	COP _{ee} = Coefficient of performance for VRF system at 47°F db/43°F wb outdoor air 3.412 = Conversion factor: kBtu/kWh
EFFICIENCY ASSUMPTION	,
Baseline Efficiency	Air cooled variable refrigerant flow unit that meets minimum efficiency standards of 90.1-
Efficient Managemen	2007.
Efficient Measure	High-efficiency variable refrigerant flow unit with IEER of 17 or greater.

²⁰² New England average heating load from 2003 CBECs

Prescriptive HVAC: Va	Prescriptive HVAC: Variable Refrigerant Flow, Code VRF							
PARAMETER VALUES (D								
Measure/Type	kBtu/hr _{capaci}	ig IEER _{base}	IEER _{ee}	$EFLH_c$	EFLH _h	kBtu _{heat load}	COP _{base}	COP_{ee}
VRF HVAC System	Actual	12.7 ²⁰³	Actual	829 ²⁰⁴	2.25 ²⁰⁶	Actual		
	Condition	ed Space					Life	Cost (\$) ²⁰⁷
Measure/Type	(sq.	t.)					(yrs)	Cost (\$)
VRF HVAC System	Actu	al					20	\$3.10/sf
IMPACT FACTORS								
Program	ISR	RR_E	RR_D	CFs		CF _W	FR	SO
C&I Prescriptive	100% 1	12.2% ²⁰⁸	100%209	Table 29 ²¹⁰ Table 29 ²¹¹		52% ²¹²	1.6% ²¹³	

 $^{^{203}}$ ANSI/ASHRAE/IES Addenda CE and CP to ANSI/ASHRAE/IESNA 90.1-2007, Table 6.8.1M, VRF Air Cooled (cooling mode) ≥ 65,000 Btu/h and < 135,000 Btu/h.

²⁰⁴ KEMA, NEEP C&I Unitary HVAC Loadshape Project, June 2011, Table 0-3 and 0-4. Values are for the NE-North region.

²⁰⁵ EMT assumes 1,600 heating full load hours.

 $^{^{206}}$ ANSI/ASHRAE/IES Addenda CE and CP to ANSI/ASHRAE/IESNA 90.1-2007, Table 6.8.1M, VRF Air Cooled (heating mode) \geq 65,000 Btu/h and < 135,000 Btu/h (cooling capacity) 17° F db/15°F wb outdoor air.

²⁰⁷ Based on project data. VRF = \$3.61/sf. Standard Efficiency Heat Pump with same capacity = \$0.51/sf.

²⁰⁸ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

 $^{^{209}}$ RRD used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

²¹⁰ See Appendix C.

²¹¹ See Appendix C.

 $^{^{212}}$ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

²¹³ Ibid.

Ductless Heat Pump	- Commercial/Industrial, Codes DHP1L-DHP4L
Last Revised Date	
MEASURE OVERVIEN	
Description	This measure involves the purchase and installation of a high-efficiency ductless heat pump (DHP) system as the primary heating system in new construction, gut-rehab, or planned retirement/upgrade projects. The new DHP equipment may have one (single-head) or multiple (multi-head) indoor units per outdoor unit.
Energy Impacts	Electric
Sector	Residential
Program(s)	C&I Prescriptive Program
End-Use	Cooling, Heating
Decision Type	New construction, replace on burnout
GROSS ENERGY SAV	INGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	$\Delta kW = max(\Delta kW_C, \Delta kW_H)$
	$\Delta kW_{C} = CAP_{COOL} \times [(1 / EER_{B}) - (1 / EER_{EE})] / 1,000$ $\Delta kW_{SP} = \Delta kW_{C} \times CF_{S}$ $\Delta kW_{H} = CAP_{HEAT} \times [(1 / HSPF_{B}) - (1 / HSPF_{EE})] / 1,000$ $\Delta kW_{WP} = \Delta kW_{H} \times CF_{W}$
Annual Energy	$\Delta kWh_{C} = CAP_{COOL} \times [(1/SEER_{B}) - (1/SEER_{EE})] \times EFLH_{COOL} / 1,000$
Savings	$\Delta kWh_{H} = CAP_{HEAT} \times [1/(HSPF_{B}) - 1/(HSPF_{EE})] \times ADJ \times EFLH_{HEAT} / 1,000$
Definitions	Unit = 1 ductless heat pump (DHP) system HSPF _B = Heating seasonal performance factor of the baseline DHP (Btu/Watt-hr) HSPF _{EE} = Heating seasonal performance factor of the high-efficiency DHP (Btu/Watt-hr) CAP _{Cool} = Rated cooling capacity of the DHP (kBtu/h) CAP _{Heat} = Rated heating capacity of the DHP (kBtu/h) SEER _B = Seasonal energy efficiency ratio for baseline cooling unit (Btu/Watt-hr) SEER _E = Seasonal energy efficiency ratio for high-efficiency DHP (Btu/Watt-hr) EER _B = Energy efficiency ratio for baseline cooling unit (Btu/Watt-hr) EER _E = Energy efficiency ratio for high-efficiency DHP (Btu/Watt-hr) EFLH _{COOL} = Cooling equivalent full load hours EFLH _{HEAT} = Heating equivalent full load hours ADJ = Adjustment factor to account for realized HSPF during Maine winter
EFFICIENCY ASSUMP	
	The baseline case assumes that the business would be heated with new ductless heat pumps that meet Federal minimum efficiency requirement for units manufactured on or after January 1, 2015: HSPF=8.2 and SEER=14.0.
Efficient Measure	The high-efficiency case assumes a new high-efficiency ductless heat pump that meets minimum efficiency requirements for program rebate: HSPF=12.0 (single-head), 10.0 (multi-head). Ductless heat pump is sized to provide 100% of the heat load of the area served at 11°F ambient temperature.

Ductless Heat Pump	– Commerc	cial/Industria	l, Codes DF	IP1L	-DHP4L						
PARAMETER VALUES	S										
Measure	CAPHEAT	CAP _{COOL}	$HSPF_E$	Н	SPF_B	SE	EERE	SEEF	R _B Life	(yrs)	Cost (\$)
DHP NC/ROB	Actual	Actual	Actual	8	8.2 ²¹⁴ Actual		ual 14 ²¹⁵		216	Table 6	
Measure	EERE	EER _B	ADJ		EFLH	HEAT	EF	LH _{COOL}			
DHP NC/ROB	Actual	11.7 ²¹⁷	0.7921	.8	1,19	5 ²¹⁹	7	09 ²²⁰			
IMPACT FACTORS											
Program	ISR	RR_E	RR_D		CFs		CFw		FR		SO
C&I Prescriptive	100%221	100%222	100%222	Т	able 29 ²	223	Table :	29 ²²³	33% ²²⁴		1.6% ²²⁵

Table 6 – Measure Cost for DHP Equipment²²⁶

# of Indoor Units per Outdoor Unit	Measure Cost (\$)
1	\$682
2	\$682
3	\$682
4+	\$682

 $^{^{214}}$ Federal minimum efficiency requirement for units manufactured on or after January 1, 2015.

²¹⁵ DOE standards for central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015

⁽http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75).

²¹⁶ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 2.

²¹⁷ DOE standards for central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015 (http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75).

²¹⁸ Adjustment factor is estimated using the weather bin analysis for Portland, Bangor, and Caribou, ME, and manufacturer curves to estimate unit efficiency during each weather bin.

²¹⁹ Ibid

²²⁰ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

²²¹ EMT assumes that all purchased units are installed (i.e., ISR = 100%).

²²² This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

²²³ See Appendix B.

²²⁴ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

²²⁵ IBid.

²²⁶ The measure cost is based on program average incremental cost. Measure cost will be refined for number of zones as data become available.

	Ductless Heat Pump – Multifamily, Code MPDHPNC
Ductless Heat Pump	o – Multifamily, Code MPDHPNC
Last Revised Date	7/1/2015
Description	This measure involves the purchase and installation of a high-efficiency ductless heat pump
	(DHP) system as the primary heating system in new construction, gut-rehab, or planned
	retirement/upgrade multifamily projects.
Energy Impacts	Electric
Sector	Residential
Program(s)	Multifamily Program
End-Use	Cooling, Heating
Decision Type	New Construction, Replace on Burnout
DEEMED GROSS EN	ERGY SAVINGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	$\Delta kW_{max} = 0.57$, $\Delta kW_{WP} = 0.18$, $\Delta kW_{SP} = 0.02$
Annual Energy	Δ kWh/yr = 874
Savings	$\Delta kWh_H = 845$
	$\Delta kWh_C = 29$
GROSS ENERGY SAV	/INGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	Modeled
Annual Energy	Modeled ²²⁷
Savings	Heating and cooling savings are modeled using TMY3 data for Portland, Bangor, and Caribou,
	ME. Results are weighted based on population (71.2% Portland, 23.4% Bangor, 5.4% Caribou). ²²⁸
	Savings were calculated based on a model employing the following key assumptions:
	 Average annual Heat Loss is 30 MMBtu per year per housing unit corresponding to an
	average UA of 161 MMBtu/h/deg F.
	 DHP's contribution to heating does not exceed 50% of the home's heating load in any
	temperature bin. Even in temperature bins in which 100% of the home's heating load
	can be supplied by the DHP, the DHP supplies 50% of the heating load, and the
	remaining 50% is supplied by the existing heating system to account for behavior
	effects. ²²⁹
	 DHP heating output capacity and DHP heating efficiency vary linearly with outside air
	temperature.
	 Heating is called for when outside air temperature is less than or equal to 65°F.
	 Cooling is called for when outside air temperature is greater than or equal to 70°F.
Definitions	Unit = 1 ductless heat pump (DHP) system
	HSPF _B = Heating seasonal performance factor of the baseline DHP (Btu/Watt-hr)
	HSPF _{EE} = Heating seasonal performance factor of the high-efficiency DHP (Btu/Watt-
	CAP _{Cool} hr)
	CAP _{Heat} = Rated cooling capacity of the DHP (kBtu/h)
	SEER _B = Rated heating capacity of the DHP (kBtu/h)
	SEER _E = Seasonal energy efficiency ratio for baseline cooling unit (Btu/Watt-hr)
	= Seasonal energy efficiency ratio for high-efficiency DHP (Btu/Watt-hr)

²²⁷ Based on Excel Workbook for Ductless Heat Pump.

 $^{^{228}}$ Calculated based on population of each region; U.S. Census Bureau Census 2010 Summary File 1 population by census tract.

²²⁹ Heat load offset of 50% is extrapolated from other findings. Ecotope, Ductless Heat Pump Retrofits in Multifamily and Small Commercial Buildings, December 7, 2012 reported savings were equivalent to 43%–75% heat load offset in multifamily buildings.

Ductless Heat Pump	Ductless Heat Pump – Multifamily, Code MPDHPNC										
EFFICIENCY ASSUM	PTIONS										
Baseline Efficiency	The baseling	ne case assum	nes the mult	ifamily units	wo	uld be h	eated	with r	new ductle	ess h	eat pumps
	that meets	Federal mini	mum efficie	ncy requirer	men	it for uni	ts man	ufact	ured on o	r afte	er January
	1, 2015: HS	SPF=8.2 and S	SEER=14.0.								
Efficient Measure	The high-e	fficiency case	assumes a i	new <i>high-eff</i>	ficie	<i>ncy</i> duct	less he	at pu	mp that n	neets	minimum
	efficiency r	equirements	for program	rebate: HSI	PF=:	12.0 Btu	/W-h F	ISPF=	12.0 and 9	SEER:	=18.0.
PARAMETER VALUE	S										
Measure	CAP_{Heat}	CAP _{Cool}	$HSPF_E$	$HSPF_\mathtt{B}$	S	SEERE	SEE	R_B	Life (yrs	s)	Cost (\$)
DHP Retrofit	17.5 ²³⁰	14.2 ²³⁰	13.2 ²³⁰	8.2 ²³¹	2.	5.6^{230}	14 ²	32	18 ²³³		\$682 ²³⁴
IMPACT FACTORS	IMPACT FACTORS										
Program	ISR	ISR RR _E RR _D CF _S CF _W FR SO									
C&I Prescriptive	100%235	100% ²³⁶	100% ²³⁶	00% ²³⁶ Table 31 ²³⁷ Table 31 ²³⁷ 11.0% ²³⁸ 1.0% ²³⁸						1.0% ²³⁸	

 $^{^{230}}$ Weighted average values of the most popular units that have been incentivized under the Efficiency Maine program.

²³¹ Federal minimum efficiency requirement for units manufactured on or after January 1, 2015.

²³² DOE standards for central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015 (http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75).

²³³ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1.

²³⁴ The incremental cost is the difference in cost between a typical high-efficiency unit (\$1,645 based on Fujitsu model 12RLS2, ecomfort.com) and a typical baseline unit (\$963 based on LG model LS093HE, ecomfort.com).

 $^{^{235}}$ EMT assumes that all purchased units are installed (i.e., ISR = 100%).

²³⁶ This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

²³⁷ See Appendix B.

²³⁸ Opinion Dynamics, Efficiency Maine Multifamily Efficiency Program Evaluation Final, March 2014; Table 1-2.

Ductless Heat Pump I	Retrofit – Low-Income Multifamily, Code LIDHP
Last Revised Date	7/1/2015
MEASURE OVERVIEW	
Description	This measure involves the purchase and installation of a high-efficiency ductless heat pump (DHP) system to supplement the existing heating system in electric heated homes and to replace existing window air conditioning units. The new DHP equipment may have one (single-head) or multiple (multi-head) indoor units per outdoor unit.
Energy Impacts	Electric
Sector	Residential
Program(s)	Low-Income Program
End-Use	Cooling, Heating
Decision Type	Retrofit
DEEMED GROSS ENER	RGY SAVINGS ALGORITHMS (UNIT SAVINGS)
Demand Savings	$\Delta kW_{max} = 0.89$ $\Delta kW_{WP} = 0.62$ $\Delta kW_{SP} = 0.00$
Annual Energy Savings	Δ kWh/yr = 3,013
Demand Savings	Modeled
Annual Energy	Modeled ²³⁹
Savings	Heating and cooling savings are modeled using TMY3 data for Portland, Bangor, and Caribou, ME. Results are weighted based on population (71.2% Portland, 23.4% Bangor, 5.4% Caribou). ²⁴⁰
	Savings were calculated based on a model employing the following key assumptions:
	 Average annual heat loss is 30 MMBtu, corresponding to an average UA of 161 MMBtu/h/deg F.
	 DHP's contribution to heating does not exceed 35% of the home's heating load in any temperature bin. Even in temperature bins in which 100% of the home's heating load can be supplied by the DHP, the DHP supplies 35% of the heating load, and the remaining 65% is supplied by the existing heating system to account for distribution and behavior effects.²⁴¹
	 DHP heating output capacity and DHP heating efficiency (both baseline and efficient units) vary linearly with outside air temperature. Heating is called for when outside air temperature is ≤ to 65°F.
	 Heating is called for when outside air temperature is ≤ to 65°F. Cooling is called for when outside air temperature is ≥ to 70°F. For homes that have equivalent of whole home air conditioning already installed, DHP will replace the cooling load equivalent to the DHP's rated capacity. For homes that have existing partial cooling (i.e., 1 or 2 existing window air conditioning units), it is unknown if the DHP will be installed in the same areas served by the existing window air conditioning units. If installed in the same area, the DHP will replace the existing cooling load and result in positive savings due to increased efficiency. However, if installed in a different area, the DHP may result in additional cooling load and hence increased energy use. Without any in-situ data, zero net savings is assumed for homes with existing partial cooling. For homes with no existing cooling equipment, it is assumed that the DHP will be used to its full cooling capacity.

²³⁹ Based on Excel Workbook for Ductless Heat Pump.
²⁴⁰ Calculated based on population of each region; U.S. Census Bureau Census 2010 Summary File 1 population by census tract.

²⁴¹ Heat load offset of 16% is consistent with findings of the Low-Income Weatherization Program Evaluation, NMR Group, 7/1/2015.

Ductless Heat Pump	Retrofit –	Low-Income	Multifami	ily, Code LII	OHP							
Definitions	Unit	= 1	ductless he	eat pump (E	HP) sys	stem						
	EF _B	= E1	fficiency Fa	ctor of elec	tric bas	eboard	d heating	system (Btu/V	Vatt-hr)			
	$HSPF_E$	= H	eating seas	onal perfor	mance	factor	of the hig	gh-efficiency D	HP (Btu/Watt-			
	CAP_{Cool}	hı	hr)									
	CAP_{Heat}	= R	ated coolin	g capacity o	of the D	HP (kB	Stu/h)					
	SEERB	= R	ated heatin	g capacity	of the D	HP (kE	3tu/h)					
	SEERE	= Se	easonal ene	ergy efficier	cy ratio	for b	aseline D	HP (Btu/Watt-	hr)			
	%COOL _{FL}	JLL = Se	easonal ene	ergy efficier	cy ratio	for h	igh-efficie	ency DHP (Btu/	Watt-hr)			
		= P	ercentage c	of homes w	ith exist	ting co	oling equ	ipment equiva	lent of a whole			
	%COOL _N	_{ONE} ho	ome air cor	ditioner (e	quivale	nt of 3	window	air conditionin	g units)			
	%FUEL	= P	ercentage o	of homes w	ith no e	xisting	cooling e	equipment				
		= H	= Home heating fuel distribution excluding coal and other									
EFFICIENCY ASSUMI	PTIONS											
Baseline Efficiency	The base	The baseline case assumes the home retains its existing electric resistance, natural gas, oil,										
	kerosene	e, or propan	e heating s	ystem and ι	ıses a v	vindov	v air cond	itioning unit fo	or cooling (or			
	has no co	ooling). A we	eighted ave	rage of the	blende	d base	eline fuel	heating systen	ns and electric			
	resistanc	e heating sy	stems in M	laine home	s and si	ngle p	ackage ai	r conditioner a	re used in the			
	model (s	ee Table 7).										
Efficient Measure	The high	-efficiency c	ase assume	es the home	eretain	s its ex	isting hea	ating system a	nd adds a new			
	high-effic	ciency DHP t	that meets	minimum e	fficienc	y requ	iirements	for program r	ebate:			
	HSPF=12	.0 Btu/W-h.										
PARAMETER VALUE	S											
Measure	CAP _{Heat}	CAP_{Cool}	$HSPF_E$	EF _B	SE	ER _E	SEER _B	%COOL _{FUL}	L %COOL _{NONE}			
DHP Retrofit	17.5 ²⁴²	14.2 ²⁴³	13.2 ²⁴⁴	3.4 ²⁴⁵	25.	6 ²⁴²	9.8^{246}	40% ²⁴⁷	21% ²⁴⁸			
Measure								Life (yrs)	Cost (\$)			
DHP Retrofit								18 ²⁴⁹	\$Actual ²⁵⁰			
IMPACT FACTORS												
Program	ISR	RRE	RR		F _S		CF _w	FR	SO			
Low-Income	100% ²⁵¹	100%25	² 100%	252 0.0	0.0% ²⁵³ 69.5% ²⁵³			0%254	0% ²⁵⁴			

²⁴² Weighted average values of the most popular units that have been incentivized under the Efficiency Maine program.

²⁴³ Weighted average values of the most popular units that have been incentivized under the Efficiency Maine program.

²⁴⁴ Weighted average values of the most popular units that have been incentivized under the Efficiency Maine program.

²⁴⁵ Assumes electric baseboard heating system has virtually no distribution losses.

²⁴⁶ Federal minimum efficiency requirement for units manufactured before January 1, 2015.

²⁴⁷ Portland Press Herald, http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea. In 2010, an estimated 79% of customers in ISO-New England region had room air conditioners. Of the 79%, 40% of homes had equivalent of whole home air conditioning (3 window units); 39% of homes had total cooling capacity equivalent of 1 or 2 window air conditioning units. The remaining 21% have no cooling equipment installed.

²⁴⁸ Portland Press Herald, http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea /. In 2010, an estimated 79% of customers in ISO-New England region had room air conditioners. Of the 79%, 40% of homes had equivalent of whole home air conditioning (3 window units); 39% of homes had total cooling capacity equivalent of 1 or 2 window air conditioning units. The remaining 21% have no cooling equipment installed.

²⁴⁹ GDS Associates, Inc., Measure Life Report – Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007; Table 1.

 $^{^{\}rm 250}\,\text{Total}$ cost to program that covers 100% of installation cost.

²⁵¹ EMT assumes that all purchased units are installed (i.e., ISR = 100%).

²⁵² This measure is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

²⁵³ See Appendix B.

 $^{^{\}rm 254}$ Program assumes no free ridership or spillover for the low-income direct install program.

Table 7. Parameters for Existing Heating Systems

Fuel	Baseline: Main Heating Equipment	Efficiency Measure	Share	Efficiency							
	Heating Baseli	ne Assumptions									
			Calculated								
Electric	Electric Baseboard	HSPF	Separately	3.4							
Gas	Gas-Fired Forced Hot Water Boiler	AFUE	6%	75%							
Gas	Gas-Fired Steam Boiler	AFUE	3%	75%							
Propane	Propane-Fired Forced Hot Water Boiler	AFUE	8%	75%							
Propane	Propane-Fired Steam Boiler	AFUE	4%	75%							
Oil	Oil-Fired Forced Hot Water Boiler	AFUE	22%	75%							
Oil	Oil-Fired Steam Boiler	AFUE	22%	75%							
Oil	Oil-Fired Ducted Furnace	AFUE x Duct Efficiency	22%	56%							
Wood	Wood Stove	AFUE	12%	60%							
Blended	Blended MMBtu Baseline	Blended Efficiency	100.0%	76%							
	•	Duct Efficiency		75%							
	Cooling Baseline Assumptions										
Electric	Single-Package Air Conditioner	SEER	40%	14							
Electric	Single-Package Air Conditioner	EER	40%	12							

Sources

DOE standards for boilers manufactured on or after September 1, 2012

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72)

DOE standards for furnaces manufactured on or after May 1, 2013

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72)

US DOE: Better Duct Systems for Home Heating and Cooling (http://www.nrel.gov/docs/fy05osti/30506.pdf) DOE standards for central air conditioners and central air conditioning heat pumps manufactured on or after January 1, 2015 (http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75)

Maine Governor's Energy Office, SPACE HEATING FUEL COMPARISON CALCULATOR

(http://www.maine.gov/energy/fuel_prices/heating-calculator.php)

DOE standards for AC and Heat Pump (on or after January 23, 2006, and before January 1, 2015)

(http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75)

		_						and rieaters, code A	
Prescriptive HVAC: N			ontrol	for Boilers a	ind Heaters	, Code AF	1		
Last Revised Date	10/1/2017	7							
MEASURE OVERVIEW									
Description	This meas	ure is for a	non-re	sidential boile	er providing h	eat with a	current turnd	own capacity	
	less than 6	5:1 betwee	n the h	igh firing rate	and low firin	g rate. The	modulating b	urner controls	
	will reduc	e burner st	artup a	ind shutdown	and allow the	e burners t	o meet load n	nore	
			_	h firing rate ar		-			
	increased	turn down	rate to	eliminate sta	rtup and shu	tdown whe	n the load is l	ower than the	
	low firing	rate.							
Energy Impacts	Natural ga	ıs, Heating	oil, Pro	pane					
Sector	Commerci	ial, Industr	ial						
Program(s)	C&I Presci	riptive Prog	gram						
End-Use	Boilers, Sp	ace heatin	ig, Proc	ess heating					
Decision Type	Retrofit								
GROSS ENERGY SAVING	SS ALGORIT	HMS (UNI	T SAVII	NGS)					
Annual energy savings	ΔMMBtu/	1MBtu/yr = Ngi x SF x T / 1,000							
Definitions	Unit	= Mod	ulating	burner contro	l installed on	a single bo	oiler		
	Ngi	= Boile	r/heate	er gas input siz	e (MBtuh)				
	SF	= Estim	nate of	annual fuel co	nsumption co	onserved b	y modulating	burner	
	Т	= Hour	s of op	eration. (Space	e heating = Ef	ffective full	load heating	hours (EFLH))	
	1,000	= Conv	ersion	1,000 MBtu pe	er MMBtu				
EFFICIENCY ASSUMPTION	ONS								
Baseline Efficiency	A baseline	boiler hig	h and lo	ow firing rate i	atio must be	a maximu	m of 6:1 or be	subject to	
	loads of le	ss than 30	% of th	e boiler/heate	r full firing ra	ate for at le	ast 60% of the	e time.	
Efficient Measure	A boiler b	urner must	have a	turn down ra	te of 10:1 or	greater and	d be able to e	ffectively	
	modulate	the burne	r firing	rate between	the low and h	nigh firing r	ates.		
PARAMETER VALUES (I	DEEMED)								
Measure/Type	Ngi	SF ²⁵⁵	Т	(Process)	T (Space H	eating) ²⁵⁶	Life (yrs) ²⁵⁷	Cost (\$) ²⁵⁸	
All	Actual	3%	Hours	of Operation					
IMPACT FACTORS									
Program	ISR	RF	R _E ²⁵⁹	RR _D	CFs	CFw	FR ²⁶⁰	SO ²⁶¹	
C&I Prescriptive	100%	10	00%	N/A	N/A	N/A	52% ²⁶²	1.6% ²⁶³	

²⁵⁵ Xcel Energy, 2010/2011/2012 Triennial Plan, Minnesota Electric and Matural Gas Conservation Improvement Program, E,G002/CIP-09-198. Page 474: 80% baseline boiler to 83% overall efficiency with improvement.

²⁵⁶ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

²⁵⁷ Illinois Statewide Technical Reference Manual version 4.0, measure 4.4.20 – High Turndown Burner.

²⁵⁸ Based on program data 7/1/2016-8/30/2017. Supplier cost of unit + 20% mark up plus labor (\$1.07*1.2+\$0.86)/Mbtu/h

²⁵⁹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

²⁶⁰ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall).

²⁶¹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

²⁶² Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

²⁶³ Ibid.

Prescriptive HVAC: Bo	oiler Stack Ho	eat Exchang	er (Boiler	Economizer), (Code AF2							
Last Revised Date	3/1/2015 (No	ew)										
MEASURE OVERVIEW												
Description	water on the	iler stack economizers are heat exchangers with hot flue gas on one side and boiler feed iter on the other. The waste heat from the stack is used to preheat the boiler feed water, sich reduces the energy required by the boiler to heat the water.										
	There are tw	o types of sta	ack heat ex	changers: standa	ard and conde	ensing. C	onder	nsing units				
		0, ,	_	even more enei	.	•		•				
		•		the flue gas to c	•		_					
				e added, which	increases the	cost of t	he un	it.				
Energy Impacts	Natural gas,	Heating oil, F	Propane									
Sector	Industrial											
Program(s)	C&I Prescript											
End-Use	Boiler, Proce	ss heat recov	very									
	Decision Type Retrofit											
GROSS ENERGY SAVING		-										
Annual energy savings	ΔMMBtu/yr											
Definitions				ıdd stack heat ex	changer							
	_	•		/IBH = MBtu/h)								
		Equivalent f		•								
	SF =	Estimate of exchanger	annual gas	consumption co	nserved by a	dding bo	iler st	ack heat				
	1,000 =	Conversion	1,000 MBtu	ı per MMBtu								
EFFICIENCY ASSUMPTION	ONS											
Baseline Efficiency	Assumed to	be a non-con	densing bo	iler with no exist	ing stack hea	t exchan	ger in	stalled.				
Efficient Measure	Assumed to	be a boiler w	ith newly ir	stalled stack he	at exchanger.							
PARAMETER VALUES (DEEMED)											
Measure/Type	CAP _{INPUT}	EFL	H ²⁶⁴	SF ²⁶⁵	Life (yr:	s) ²⁶⁶	(Cost (\$) ²⁶⁷				
Standard Economizer	Actual	1,6	500	5%	20		\$1,5	00/MMBtu/h				
Condensing	Actual	Actual 1,600 10% 20 \$2,120/MMBt						20/MMBtu/h				
Economizer	Actual	Actual 1,000 1070 20 \$2,120/19/19/10/10										
IMPACT FACTORS			.					T				
Program	ISR	RR_E^{268}	RR_D	CFs	CF _W		FR ²⁶⁹ SO ²⁷					
C&I Prescriptive	100%	100%	N/A	N/A	N/A	52%	271	1.6% ²⁷²				

Prescriptive HVAC: Boiler Reset/Lockout Controls, Code AF3

²⁶⁴ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

²⁶⁵ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.

²⁶⁶ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks. The study references NYSERDA Deemed Savings Database, Rev 09-082006.

²⁶⁷ Ibid.

²⁶⁸ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

²⁶⁹ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall).

²⁷⁰ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

²⁷¹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

²⁷² Ihid

Prescriptive HVAC: Be Last Revised Date	3/1/2015 (N								
MEASURE OVERVIEW	3, 1, 2013 (11	CVV							
Description	non-resident achieve ener	e involves the tial boiler that gy savings by	does not c reducing th	urrently have ne hot water s	sucl	h controls ins ly temperatu	stalled. I ire as a f	Reset (controls on of
	temperature achieve ener high enough lockout tem								
Energy Impacts		Heating oil, P	ropane						
Sector	Commercial,								
Program(s)		d Prescriptive Program							
End-Use		ilers, Space heating, Process heating							
Decision Type	Retrofit								
GROSS ENERGY SAVING	S ALGORITHI	MS (UNIT SAV	INGS)						
Annual energy savings	ΔMMBtu/yr		× EFLH x SF						
Definitions	Unit	= 1 boiler	retrofitted	with reset and	d loc	kout controls	5		
	CAP _{INPUT}			y (MBH = MB)			
	EFLH	•		heating hour					
	SF		of annual	fuel consump	tion	conserved by	y adding	g boile	r reset
		controls							
	1,000	= Conversi	on 1,000 N	lBtu per MM	3tu				
EFFICIENCY ASSUMPTION	•								
Baseline Efficiency		be a boiler wi							
Efficient Measure		be a boiler wi	th newly in:	stalled reset a	and I	ockout contr	ols.		
PARAMETER VALUES (DEEMED)								
Measure/Type	CAP _{INPUT}	EFL	H ²⁷³	SF ²⁷⁴		Life (yrs	s) ²⁷⁵		Cost (\$) ²⁷⁶
All	Actual 1,600 8% 20 \$612/b					512/boiler			
IMPACT FACTORS	T		T		,				
Program	ISR	RR_{E}^{277}	RR_D	CFs		CF_W	FR ²		SO ²⁷⁹
C&I Prescriptive	100%	100%	N/A	N/A		N/A	52%	280	$1.6\%^{281}$

²⁷³ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

²⁷⁴ Illinois Statewide TRM version 4, measure 4.4.4. http://www.icc.illinois.gov/electricity/TRM.aspx.

²⁷⁵ Ibid.

²⁷⁶ Ibid.

²⁷⁷ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

²⁷⁸ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall).

²⁷⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

²⁸⁰ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

²⁸¹ Ibid.

Last Revised Date 3/1/2015 (New MEASURE OVERVIEW	Dunnaminting IIV/60	T.	f ¬	-:1	d 11 t	1	A F 4					
This measure is for a non-residential boiler providing heat without controls for the amount of excess oxygen provided to the burner for combustion. The amount of oxygen is dependent on the amount of air provided. The measure involves the installation of an oxygen sensor in the flue exhaust and a fuel valve and combustion air controls to adjust from that sensor. Energy Impacts Natural gas, Heating oil, Propane	•				a Heaters, Co	ode	AF4					
Description This measure is for a non-residential boiler providing heat without controls for the amount of excess oxygen provided to the burner for combustion. The amount of oxygen is dependent on the amount of air provided. The measure involves the installation of an oxygen sensor in the flue exhaust and a fuel valve and combustion air controls to adjust from that sensor. Energy Impacts Natural gas, Heating oil, Propane Sector Commercial, Industrial Program(s) C&I Prescriptive Program End-Use Boilers, Space heating, Process heating Decision Type Retrofit GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS) Annual energy savings AMMBtu/yr = Ngi x SF x T / 1,000 Definitions Ngi = Boiler/Heater gas input size (MBtu/hr) SF = Estimate of annual fuel consumption conserved by adding oxygen trim controls T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A bioler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF ₅ CF _W FR ²⁸⁷ SO ²⁸⁸		3/1/201	.5 (New)									
of excess oxygen provided to the burner for combustion. The amount of oxygen is dependent on the amount of air provided. The measure involves the installation of an oxygen sensor in the flue exhaust and a fuel valve and combustion air controls to adjust from that sensor. Energy Impacts Natural gas, Heating oil, Propane Sector Commercial, Industrial Program(s) C&I Prescriptive Program End-Use Boilers, Space heating, Process heating Decision Type Retrofit GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS) Annual energy savings AMMBtu/yr = Ngi x SF x T / 1,000 Definitions Ngi = Boiler/Heater gas input size (MBtu/hr) SF = Estimate of annual fuel consumption conserved by adding oxygen trim controls T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF ₅ CF _W FR ²⁸⁷ SO ²⁸⁸	MEASURE OVERVIEW											
dependent on the amount of air provided. The measure involves the installation of an oxygen sensor in the flue exhaust and a fuel valve and combustion air controls to adjust from that sensor. Energy Impacts Natural gas, Heating oil, Propane Sector Commercial, Industrial Program(s) End-Use Boilers, Space heating, Process heating Decision Type Retrofit GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS) Annual energy savings AMMBtu/yr = Ngi x SF x T / 1,000 Definitions Ngi = Boiler/Heater gas input size (MBtu/hr) SF = Estimate of annual fuel consumption conserved by adding oxygen trim controls T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	Description											
Energy Impacts Natural gas, Heating oil, Propane Sector Commercial, Industrial Program(s) C&I Prescriptive Program Sector Energy Impacts Sector Commercial, Industrial Program(s) C&I Prescriptive Program Sector End-Use Boilers, Space heating, Process heating Decision Type Retrofit Retrofit Retrofit Sector Sector Retrofit Retrofit			excess oxygen provided to the burner for combustion. The amount of oxygen is									
Energy Impacts Natural gas, Heating oil, Propane		depend	ent on tl	he amoun	t of air provid	ed. ˈ	The measi	ure involve	s the installat	ion c	of an	
Energy Impacts Natural gas, Heating oil, Propane		oxygen	sensor ii	n the flue	exhaust and a	fue	l valve and	d combusti	on air control	s to	adjust	
Sector Commercial, Industrial		from the	at senso	r.								
Program(s) C&I Prescriptive Program End-Use Boilers, Space heating, Process heating Decision Type Retrofit GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS) Annual energy savings	Energy Impacts	Natural	gas, Hea	ating oil, P	ropane							
Boilers, Space heating, Process heating	Sector	Comme	rcial, Inc	dustrial								
Decision Type Retrofit GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS) Annual energy savings ΔMMBtu/yr = Ngi x SF x T / 1,000 Definitions Unit Ngi = Boiler/Heater gas input size (MBtu/hr) SF = Estimate of annual fuel consumption conserved by adding oxygen trim controls T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS	Program(s)	C&I Pres	scriptive	Program								
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS) Annual energy savings ΔMMBtu/yr = Ngi x SF x T / 1,000 Definitions Unit Ngi = Single boiler with oxygen trim sensor and control installed Ngi = Boiler/Heater gas input size (MBtu/hr) SF = Estimate of annual fuel consumption conserved by adding oxygen trim controls T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficienty A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	End-Use	Boilers,	Space h	eating, Pro	ocess heating							
Annual energy savings Definitions Definitions Unit = Single boiler with oxygen trim sensor and control installed Ngi = Boiler/Heater gas input size (MBtu/hr) SF = Estimate of annual fuel consumption conserved by adding oxygen trim controls T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) Actual Hours of Operation In Actual 2% Actual Hours of Operation Ngi SF ²⁸⁶ RR ₀ CF ₅ CF _W FR ²⁸⁷ SO ²⁸⁸	Decision Type	Retrofit										
Definitions Ngi = Boiler/Heater gas input size (MBtu/hr) SF = Estimate of annual fuel consumption conserved by adding oxygen trim controls T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RRε ²⁸⁶ RRD CF ₅ CF _W FR ²⁸⁷ SO ²⁸⁸	GROSS ENERGY SAVING	S ALGORI	THMS (UNIT SAV	INGS)							
Ngi	Annual energy savings	ΔMMBt	u/yr = 1	Ngi x SF x	Γ/1,000							
SF = Estimate of annual fuel consumption conserved by adding oxygen trim controls T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	Definitions	Unit	= 9	Single boil	er with oxyge	n tri	m sensor	and contro	l installed			
Controls T		Ngi	= [Boiler/Hea	iter gas input	size	(MBtu/hr)				
T = Hours of operation. (Space heating = Effective full Load heating hours (EFLH)) 1,000 = Conversion 1,000 MBtu per MMBtu EFFICIENCY ASSUMPTIONS Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸		SF	= E	Estimate o	of annual fuel o	cons	sumption (conserved	by adding oxy	gen	trim	
### EFFICIENCY ASSUMPTIONS Baseline Efficiency			c	controls								
Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸		T	= H	Hours of o	peration. (Spa	ice l	neating = E	Effective fu	II Load heatin	g ho	urs (EFLH))	
Baseline Efficiency A baseline boiler utilizes a single point positioning for burner combustion control. Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸		1,000	= (Conversio	n 1,000 MBtu	per	MMBtu					
Efficient Measure A boiler burner will have an oxygen control system allowing the combustion air to be adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	EFFICIENCY ASSUMPTIO	NS										
adjusted based upon operating parameters and the output of oxygen sensors in the flue exhaust or other comparable control scenarios. PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	Baseline Efficiency	A baseli	ne boile	r utilizes a	single point p	osit	tioning for	burner co	mbustion con	trol.		
PARAMETER VALUES (DEEMED) Measure/Type Ngi SF ²⁸² T (Process) T (Space Heating) ²⁸³ Life (yrs) ²⁸⁴ Cost (\$) All Actual 2% Actual Hours of Operation Operation MPACT FACTORS RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	Efficient Measure	A boiler	burner	will have a	an oxygen con	trol	system al	lowing the	combustion a	ir to	be	
PARAMETER VALUES (DEEMED)Measure/TypeNgi SF^{282} T (Process)T (Space Heating)^{283}Life (yrs)^{284}Cost (\$)AllActual 2% Actual Hours of Operation $1,600 EFLH$ 15 \$20,000^{285}IMPACT FACTORSProgramISR RR_E^{286} RR_D CF_S CF_W FR^{287} SO^{288}		adjusted	d based	upon ope	rating parame	ters	and the d	utput of o	xygen sensors	in th	ne flue	
Measure/TypeNgi SF^{282} T (Process)T (Space Heating) 283 Life (yrs) 284 Cost (\$)All Actual Actual Pours of Operation1,600 EFLH15\$20,000 285 IMPACT FACTORSProgramISR RR_E^{286} RR_D CF_S CF_W CF_W CF_W CF_W		exhaust	or othe	r compara	ble control sc	ena	rios.					
Measure/Type NgT SF ²⁶² T (Process) Heating) ²⁸³ Life (yrs) ²⁶⁴ Cost (\$)	PARAMETER VALUES (D	EEMED)										
All Actual 2% Actual Hours of Operation 1,600 EFLH 15 \$20,000 ²⁸⁵ IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	Maacura/Tuna	Mai	CF282	_	(Draces)		T (Sp	oace	Life (vrs)284		Cost (¢)	
All Actual 2% Operation 1,600 EFLH 15 \$20,000 ²⁸⁵	ivieasure/ rype	INGI	31	'	(Process)		Heati	ng) ²⁸³	Life (yrs)		Cost (\$)	
IMPACT FACTORS Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	٨١١	Actual	20/	Actual Hours of				ć	20 000 ²⁸⁵			
Program ISR RR _E ²⁸⁶ RR _D CF _S CF _W FR ²⁸⁷ SO ²⁸⁸	All	Actual	Z70	Operation 1,000 EFER 15 5.				20,000				
0 - 0 - 0 - 0	IMPACT FACTORS											
C&I Prescriptive 100% 100% N/A N/A N/A 52% ²⁸⁹ 1.6% ²⁹⁰	Program	ISR		RR _E ²⁸⁶	RR _D		CF _S	CF _w	FR ²⁸⁷		SO ²⁸⁸	
	C&I Prescriptive	100%									1.6%290	

²⁸² United States EPA, Climate Wise: Wise Rules for industrial Efficiency, July 1998.

²⁸³ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

²⁸⁴ Michigan Master Database of Deemed Savings - 2014 - Weather Sensitive Commercial, Adjusted for Maine heating hours.

²⁸⁵ CODES AND STANDARDS ENHANCEMENT INITIATIVE (CASE) PROCESS BOILERS, 2013 California Building Energy Efficiency Standards, California Utilities Statewide Codes and Standards Team, October 2011, pg. 22

²⁸⁶ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

²⁸⁷ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall).

²⁸⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

²⁸⁹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

²⁹⁰ Ibid.

Prescriptive HVAC: Bo	oiler Turbulate	or, Code AF	5						or, code Ar.			
Last Revised Date	3/1/2015 (Ne	w)										
MEASURE OVERVIEW												
Description	This measure	involves the	installation	of turb	ulators i	n the tubes o	f firetube b	oilers to	help			
	increase heat	transfer effic	ciency. Norr	nally lo	cated ins	ide of only th	e last pass	tubes,				
	turbulators he	elp recreate l	ost turbule	nce and	dextract	the maximun	n heat tran	sfer pos	sible			
	before the gas	e the gases exit the unit.										
Energy Impacts	Natural gas, H	leating oil, Pı	ropane									
Sector	Commercial, I	ndustrial										
Program(s)	C&I Prescripti											
End-Use	Boilers, Space	heating, Pro	cess heatin	g								
Decision Type	Retrofit											
GROSS ENERGY SAVING		•	•									
Annual energy savings	ΔMMBtu/yr =											
Definitions		single boiler										
	-	Boiler input	. , ,									
		Oversize fact	•									
		•	•			nprovement o	of 1% is gai	ned per	each			
		40°F reduction	•	•	erature ²	91						
		Equivalent fu										
	1	Conversion 1	.,000 MBtu	per MN	∕IBtu							
EFFICIENCY ASSUMPTION	_	1 11 1										
Baseline Efficiency	Assumed to b											
Efficient Measure	Assumed to b	e a boiler wi	in newly ins	talled t	turbulato	rs in the boile	er tubes.					
PARAMETER VALUES (05	1 4		- FELLI	192 1:5- /-	1293	C + /	/ C \ 294			
Measure/Type	CAP _{INPUT}	OF	Δ	Ŀ	EFLH ²	Life (y	/rs) ²³³	Cost				
All	Actual	ol 0.70 ²⁹⁵ Actual 1,600 20 \$15 turbu						•				
IMPACT FACTORS												
Program	ISR	RR_E^{296}	RR_D		CF _S	CF _w	FR ²⁹⁷		SO ²⁹⁸			
C&I Prescriptive	100%	100% 100% N/A N/A N/A 52% ²⁹⁹ 1.6% ³⁰⁰										

²⁹¹ http://energy.gov/sites/prod/files/2014/05/f16/steam25_firetube_boilers.pdf.

²⁹² EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

²⁹³ CenterPoint Energy, Triennial CIP/DSM Plan 2010-2012, June 1, 2009.

²⁹⁴ http://energy.gov/sites/prod/files/2014/05/f16/steam25 firetube boilers.pdf.

²⁹⁵ PA Consulting, KEMA, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, March 22, 2010. This factor implies that boilers are 30% oversized on average.

²⁹⁶ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

²⁹⁷ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall).

²⁹⁸ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

²⁹⁹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³⁰⁰ Ibid.

Prescriptive HVAC: Pr	rogrammable	e Thermos	tat, Code AF	6							
Last Revised Date	10/1/2017										
MEASURE OVERVIEW											
Description	This measure	s measure involves the purchase and installation of a single programmable thermostat									
	connected to	a single b	oiler.								
Energy Impacts	Natural gas,	Heating oil	, Propane								
Sector	Commercial,	Industrial									
Program(s)	C&I Prescrip	tive Progra	m								
End-Use	Space heating	ng									
Decision Type	Retrofit										
GROSS ENERGY SAVING	S ALGORITHI	MS (UNIT S	AVINGS)								
Annual energy savings	ΔMMBtu/yr	= (CAP _{INPUT}	× EFLH × % _{SAVI}	E) / 1,000							
Definitions	Unit =	Single the	rmostat conn	ected to a single	e boiler						
	CAP _{INPUT} =	Boiler inp	ut capacity (M	1Btu/hr)							
	EFLH =	= Equivalen	t full load hou	irs							
	% _{SAVE} =	= Savings p	ercentage with	n installation of	a programi	mable thermos	tat				
	1,000 =	- Conversio	n 1,000 MBtu	per MMBtu							
EFFICIENCY ASSUMPTION	ONS										
Baseline Efficiency	Assumed to	be a non-p	rogrammable	thermostat.							
Efficient Measure	Assumed to	be a progra	ımmable theri	mostat with set	backs.						
PARAMETER VALUES (DEEMED)										
Measure/Type	CAP _{INPU}	Т	EFLH ³⁰¹	%save ³¹	02	Life (yrs) ³⁰³	Cost (\$) ³⁰⁴				
All	Actual		1,600	.068		8	\$157				
IMPACT FACTORS											
Program	ISR	RR_E	RR _D	CFs	CFw	FR	SO				
C&I Prescriptive	100%	100%	N/A	N/A	N/A	52% ³⁰⁵	1.6%³06				

³⁰¹ EMT assumes 1,600 heating full load hours for all natural gas heating equipment. The value is comparable to the recommended value of 1,400 FLH for Massachusetts, which has a shorter heating season than Maine, determined in the following study: KEMA, Project 15 Prescriptive Gas – Final Program Evaluation Report, June 2012, Table ES 2.

³⁰² New York Technical Reference Manual, Commercial Programmable Thermostat ESF, revised 10.15.10. While designated as a percentage, the value should be used as a decimal in the savings algorithm.

³⁰³ Illinois Statewide Technical Reference Manual version 4.0, measure 4.4.18 – Small Commercial Programmable Thermostats. 100% persistence factor has been assumed for Maine due to the nature of a new measure and lack of data. http://www.icc.illinois.gov/electricity/TRM.aspx.

 $^{^{304}}$ Based on program data 7/1/2016-8/30/2017. Supplier cost of unit + 20% mark up plus labor (\$67*1.2+\$77).

 $^{^{305}}$ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³⁰⁶ Ibid.

Prescriptive HVAC: Boile			7M, G08M, G15M, G16M, H2L, H3L, H1M,							
H2SM, H2MM,	H3VSM, H3	SM, H3MM								
Last Revised Date	7/1/2017									
MEASURE OVERVIEW										
Description	This measu	re involves the purchase and inst	allation of a new high-efficiency natural gas							
	furnace, bo	ce, boiler, or unit heater instead of a new code-compliant unit with equivalent								
	capacity.	·								
Energy Impacts	Natural Gas	, Heating oil, Propane, Compress	sed Natural Gas							
Sector	Commercia	, Industrial								
Program(s)	C&I Prescrip	otive Program, C&I Midstream								
End-Use	Space Heati	ng								
Decision Type	Replace on	burnout, New Construction								
GROSS ENERGY SAVING										
Annual energy savings	ΛΜΜRtu/w	= AHL x (1 / EffBASE – 1 / EffEE)								
		can be calculated as follows:								
	Where 7the	can be calculated as follows.								
	From Manu	al J:	From Equipment Capacity:							
	AHL = 186,6	48 X DL / (T _i -T _o) / 1,000,000	AHL = CAP x EFLH _h / OF / 1,000,000							
Definitions	Unit	= Single boiler								
	AHL	= Annual Heat Load (MMBtu/y)								
	Eff _{BASE}	= Efficiency of baseline boiler (i								
	Eff _{EE}	= Efficiency of new, efficient bo	·							
	186,648	•	of TMY3 heating degree hours for Portland,							
		Bangor, and Caribou, ME								
	DL	= Design Load from Manual J								
	Ti	= Indoor Design Temperature u	sed in Manual J							
	To	= Outdoor Design Temperature	used in Manual J							
	1,000,000	= BTU to MMBTU conversion								
	OF	= Oversize Factor								
	CAP	=Rated Input Capacity of Unit (I	Btu/hr)							
	EFLH _h	=Effective full load hours for he	eating							
EFFICIENCY ASSUMPTIO	NS									
Baseline Efficiency			sponding federal standards for Commercial							
	Packaged B	oilers.								
Efficient Measure	An efficient	boiler that meets or exceeds the	EEEE values as listed in Table 8							

Prescriptive HVAC: Boilers and Furnaces, Codes G9-G11, G01M, G07M, G08M, G15M, G16M, H2L, H3L, H1M, H2SM, H2MM, H3VSM, H3SM, H3MM										
PARAMETER VALUES (DI	EEMED)									
Measure/Type	AHL		Eff _B	307,308 ASE	Eff_{EE}	Life (yrs) ³⁰⁹	Cost (\$) ³¹⁰		
Boiler	Calculate	۸	Т	able 8	A stual	1	24	Table 8		
Furnace	Calculate	u	10	able 8	Actual	2	L8	Table 8		
Measure/Type	DL		Ti	To	OF	Сар		ELFH _h		
Boiler	Actual	۸۸	ctual	Actual	1.7 ³¹¹	Actua	,ı	2661 ³¹²		
Furnace	Actual	A	Lluai	Actual	1.7	Actua	31	2001		
IMPACT FACTORS										
Program	ISR	RF	R _E ³¹³	RR_D	CFs	CF _w	FR ³¹⁴	SO ³¹⁵		
Downsteam	100%	1000/ 1000		NI/A	NI/A	NI/A	52% ³¹⁶	1.6%317		
Midstream	100%	10	00% N/A		N/A	N/A	25% ³¹⁸	0%319		

 $http://buildings databook.eren.doe.gov/docs\%5CDataBooks\%5C2011_BEDB.pdf,$

³⁰⁷ U.S. Federal Standards for Commercial Packaged Boilers. http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/74.

³⁰⁸ U.S. Federal Standards for Commercial Warm Air Furnaces. http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/71.

 $^{^{309}}$ "Buildings Energy Data Book," 2011. Table 5.3.9. Published by the Department of Energy.

 $^{^{}m 310}$ Incremental cost difference between quoted installation cost and efficient quoted installation cost.

³¹¹ DEPARTMENT OF ENERGY 10 CFR Parts 429 and 430 [Docket No. EERE-2012-BT-TP-0024] RIN: 1904-AC79 Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and Boilers. Page 62. https://energy.gov/sites/prod/files/2015/02/f19/2014 FB TP NOPR.pdf

³¹² ³¹² 7,777 HDD multiplied by 24 hrs per day, divided by an average 70.14°F temperature difference between the 99% winter design outdoor air dry bulb and indoor design heating temperature of 72°F. The average temperature was the weighted average of Portland, Bangor, and Caribou.

³¹³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

³¹⁴ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall)

³¹⁵ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

³¹⁶ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³¹⁷ Ibid

³¹⁸ Measure not yet evaluated, assume default FR of 25%.

³¹⁹ Measure not yet evaluated, assume default SO of 0%.

Table 8 - Commercial Boiler and Furnace Efficiencies: Baseline Efficiencies and Efficient Minimums

Equipment Type	Subcategory	Measure Code	CAP _{INPUT} (MBtu/hr)	Eff _{BASE} ³²⁰	Eff _{EE}	Eff Ref ³²¹	Incremental Cost ³²²	Cost Ref ³²³
Commercial Warm Air Furnace	Gas-fired—NG & Propane	G01M	< 300	80% Et	90% AFUE	[1]	\$300	[A]
Commercial Warm Air Furnace	Oil-Fired	H1M	< 300	81% Et	82% Et	[1]	\$300	[D]
		G07M	< 350	82% AFUE	95% AFUE	[2]	\$2,003	[B]
Hot Water		G08M	≥350 & < 500	80% Et	95% Et	[3]	\$2,800	
Commercial Packaged Boilers	Gas-fired—NG & Propane	G9	≥500 & < 1,000	80% Et	95% Et	[3]	64 002 2 47	[4]
T dellaged zenere		G10	≥1,000 & < 2,500	80% Et	95% Et	[3]	\$1,982+3.47 MBH	[A]
		G11	≥2,500	82% Ec	95% Et	[3]		
		H2SM	< 200	84% AFUE	87% AFUE	[2]	\$484	
	Oil-fired	1123111	≥200 & < 300	84% AFUE	87% AFUE	[2]	\$927	
Hot Water		H2MM	≥300 & < 500	82% Et	85% Et	[3]	\$983	
Commercial Packaged Boilers			≥500 & < 1,000	82% Et	85% Et	[3]	\$1,039	[D]
T donaged Boners		H2L	≥1,000 & < 2,500	82% Et	87% Et	[3]	\$7,612	ļ 1
			≥2,500	84% Ec	87% Et	[3]	\$8,416	
			< 300	80% AFUE	82% AFUE	[2]	\$1,200	[C]
Steam Commercial Packaged Boilers	Gas-fired — NG & Propane	Inactive	≥300 & < 2,500	77% Et	82% Et	[3]	\$3,125	[C]
			≥2,500	77% Et	82% Et	[3]	\$3,800	[C]
		H3VSM	< 200	82% AFUE	85% AFUE	[2]	\$326	
		H3SM	≥200 & < 300	82% AFUE	84% AFUE	[2]	\$592	
		Н3ММ	≥300 &7 < 500	81% Et	84% Et	[3]	\$725	
Steam Commercial Packaged Boilers	Oil-fired		≥500 & < 1,000	81% Et	84% Et	[3]	\$858	[D]
		H3L	≥1,000 & < 2,500	81% Et	84% Et	[3]	\$2,826	
			≥2,500	81% Et	85% Et	[3]	\$4,738	

³²⁰ Where AFUE is annual fuel utilization efficiency, Et is thermal efficiency and Ec is combustion efficiency as defined in 10 CFR 431.82.

 $[\]frac{321}{\text{https://www.ecfr.gov/cgi-bin/text-idx?SID=0436f2692d9b501e05e0ec53e15c26d3\&mc=true\&tpl=/ecfrbrowse/Title10/10CllsubchapD.tpl}$

^{[1] 10} CFR 431.77

^{[2] 10} CFR 430.32

^{[3] 10} CFR 431.87

^[4] IECC 2009, Table 503.2.3(4).

³²² Incremental cost difference between standard equipment and efficient equipment based on program data 7/1/2016-8/30/0217, online research (performed Aug-Oct 2017) and distributor interviews..

^{323 [}A] Based on incremental cost assumptions in the Mid-Atlantic TRM Version 3.0. For boilers, the incremental cost is based on the on the correlation between equipment size and incremental cost in the "Lost Opportunity Incremental Cost" table.

[[]B] Based on sample of FY16 projects and survey of standard-efficiency boilers performed June 2016.

[[]C] Based on incremental cost gathered from various program participating contractors June 2015.

[[]D] Program estimates

Equipment Type	Subcategory	Measure Code	CAP _{INPUT} (MBtu/hr)	Eff _{BASE} 320	Eff _{EE}	Eff Ref ³²¹	Incremental Cost ³²²	Cost Ref ³²³
Infrared Unit Heater	Gas-Fired – NG & Propane	G15M	All	80%	n/a	[4]	\$425	[B]
Warm Air Unit Heater	Gas-Fired – NG & Propane	G16M	All	80%	93% Et	[4]	\$525	[B]

Floatura disalle. Como		b. Fa. 26	-t /FCD (CE)		Liectronically confi	Tratacca Supply 1	arriviotor (Eervis	
Electronically Comm		opiy Fan ivi	otor (ECIVISE)					
Last Revised Date	7/1/2017							
MEASURE OVERVIEW								
Description	This measure involves the installation of an electronically commutated motor (ECM) or							
		permanent magnet motor (BLPM) as part of a new high efficiency HVAC system or as						
	a new replacement for an existing HVAC fan motor.							
Primary Energy	Electric							
Impact								
Sector	Commercial							
Program(s)	C&I Prescriptive Program, C&I Midstream							
End-Use	HVAC Motors							
Project Type	New Construction or Retrofit							
GROSS ENERGY SAVI	NGS ALGORI	THMS (UNIT	SAVINGS)					
Demand Savings	$\Delta kW = 0.16 \text{ summer } kW^{324}$							
	ΔkW = 0.18 winter kW^{325}							
Annual Energy	Δ kWh/yr = 387.8 for heating only ³²⁶							
Savings	= 73.0 for cooling only ³²⁷							
	= 460.8 for heating and cooling							
Definitions	Unit = 1 HVAC fan motor							
EFFICIENCY ASSUMPT	TIONS							
Baseline Efficiency	The baseline is an HVAC fan with a permanent split capacitor (PSC) motor							
Efficient Measure	The high-efficiency case involves an HVAC fan with an electronically commutated motor or brushless permanent magnet motor							
PARAMETER VALUES								
Measure/Type	Life (yrs) Co		ost (\$)					
All			200 ³²⁹					
IMPACT FACTORS	·	<u> </u>			1	L		
Program	ISR	RR_E	RR_D	CF _S	CF _W	FR ³³⁰	SO ³³¹	
C&I Prescriptive	100%	100%	100%	Table 29 ³³²	Table 29 ³³³	25%	0%	

³²⁴ UI/Eversource C&LM Program Savings Documentation – 2017, Page 145.

 $^{^{325}}$ UI/Eversource C&LM Program Savings Documentation – 2017, Page 145.

³²⁶ Calculated using equations from UI/Eversource C&LM Program Savings Documentation – 2017, Page 145, using weighted average Maine HDD of 7,777.

³²⁷ Calculated using equations from UI/Eversource C&LM Program Savings Documentation – 2017, Page 145, using weighted average Maine CDD of 480.

³²⁸ UI/Eversource C&LM Program Savings Documentation – 2017, Page 327.

³²⁹ Estimated incremental cost for efficient motor only. Sachs and Smith, 2003, Page 12.

³³⁰ Measure not yet evaluated, assume default FR of 25%.

³³¹ Measure not yet evaluated, assume default FR of 25%.

 $^{^{\}rm 332}\,{\rm See}$ Appendix C. Reference impact factors for "VFDs on Supply Fan".

³³³ Ihid

				Elec	tronically Commuta	teu not water	Smart Pump (ECMHW	
Electronically Comm	utated Hot V	Vater Smart	Pump (ECI	ИHW)				
Last Revised Date	7/1/2017							
MEASURE OVERVIEW								
Description	This measure involves the installation of hot water circulation pumps with electronically							
	commutated (EC) motors, and the installation of controls to modulate the speed of the							
	circulation pump to match the system load.							
Primary Energy	Electric							
Impact								
Sector	Commercial							
Program(s)	C&I Prescriptive Program, C&I Midstream							
End-Use	Hot Water Heating							
Project Type	Retrofit							
GROSS ENERGY SAVIN	GS ALGORITH	MS (UNIT SA	/INGS)					
Demand Savings	$\Delta kW = (\Delta kWh/yr)/Hours$							
Annual Energy	ΔkWh/yr = See Table 9							
Savings								
Definitions	Unit = 1 Circulation pump motor							
EFFICIENCY ASSUMPTI	ONS							
Baseline Efficiency	The baseline is a permanent split-capacitor motor							
Efficient Measure	The high-efficiency case involves an electronically commutated motor and controls to reduce							
	motor speed with reduced heating load							
PARAMETER VALUES								
Measure/Type	Hours				Life (y	rs)	Cost	
All	4,858 ³³⁴				20		Table 9	
IMPACT FACTORS		<u>'</u>	1			•		
Program	ISR	RR_E	RR_D	CFs	CFw	FR ³³⁵	SO	
C&I Prescriptive	100%	100%	100%	Table 29 ³³⁶	Table 29 ³³⁷	25%	0%	

Table 9 - Savings and Measure Cost for EC Circulator Pump Motors

Rated Current (Amps)	Energy Savings ³³⁸ (kWh/yr)	Measure Cost ³³⁹ (\$)
< 1.25	426	\$368
1.25 – 5	804	\$758
> 5	2,586	\$1,018

³³⁴ Annual hours per year from October 1 through April 30 where the dry bulb temperature is less than 55°F. Weighted average of Portland, Bangor, and Caribou.

³³⁵ Measure not yet evaluated, assume default FR of 25% and SO of 0%.

³³⁶ See Appendix C. Reference impact factors for "VFDs on Heating Hot Water Pumps".

³³⁷ Ibid.

³³⁸ Efficiency Vermont TRM User Manual No. 2014-87 (3/16/2015), page 29. Adjusted by ratio of hours from ME to VT (4858 to 4684).

³³⁹ From Efficiency Vermont TRM User Manual No. 2014-87 (3/16/2015), page 29.

Refrigeration Equipment

Prescriptive Refriger	ation: Evapo	orator Fan M	otor (Control	for Co	ooler/F	reezer,	Code R	10	
Last Revised Date	7/1/2013					· ·				
MEASURE OVERVIEW										
Description	(coolers and fans while the fan to provide	This measure involves the installation of evaporator fan controls on refrigeration systems (coolers and freezers). These systems save energy by turning off cooler/freezer evaporator fans while the compressor is not running, and instead turning on an energy-efficient 35 watt fan to provide air circulation. This measure is not eligible for systems already equipped with electronically commutated motor (ECM) evaporator fan motors.								
Primary Energy	Electric									
Impact										
Sector	Commercial									
Program(s)		tive Program								
End-Use	Refrigeratio									
Project Type		uction, Retrofi								
GROSS ENERGY SAVIN	l	-		•						
Demand Savings		$(kW_{EVAP} \times n_{EV})$								
Annual Energy Savings	ΔkWh/yr =	$(kW_{EVAP} \times n_{EV})$	_{AP} – kW	I_{CIRC}) × (2	1 – DC	C _{COMP}) × F	Hours ×	BF		
Definitions		1 evaporator								
		Connected lo					n (kW)			
		Number of co								
		Connected lo				ting fan	(kW)			
		Duty cycle of		•						
	BF =	Bonus factor			_		•	_	•	an with a
	Hours	lower watta	-	_		en the c	ompres	sor is no	t running	
EFFICIENCY ASSUMPTI		Annual opera	iting n	ours (nrs	s/yr)					
	1	an sustam ag	امممنا	with oit	-borck	22424 2	olo or D	CC 0.100	aratar fans m	otors and
Baseline Efficiency	_	on system eq or fan control		withell	iiei si	iaueu-po	JIE OI P	oc evapo	טומנטו ומווצ וו	iotors alla
Efficient Measure		on system wit		vanorat	or fan	control	and a si	maller w	attage circul	ating fan
PARAMETER VALUES	ATEMISEIAU	on system wil	.ii aii e	ναμυταιι	oi iail	CONTROL	uliu a Si	maner W	arrage circui	aung idili
Measure/Type	kW _{EVAP}	n _{EVAP} kV	√ _{CIRC}	DCcc	NAD	ВЕ	:	Hours	Life (yrs)	Cost (\$)
All			35 ³⁴¹	50%		Table		Actual	10 ³⁴⁴	\$2,254 ³⁴⁵
IMPACT FACTORS	0.123	7.0.04		J 5070		Table	<u> </u>	Actual	1 10	YZ,ZJT
Program	ISR	RRE	F	RR_D	(CFs	CF	w	FR	SO
C&I Prescriptive	100%	112.2% ³⁴⁶		0% ³⁴⁶		le 29 ³⁴⁷	Table		52% ³⁴⁸	1.6%349

³⁴⁰ Based on a weighted average of 80% shaded-pole motors at 132 watts and 20% PSC motors at 88 watts. This weighted average is based on discussions with refrigeration contractors and is considered conservative (market penetration estimated at approximately 10%).

 $^{^{\}rm 341}\,\rm Wattage$ of fan is used by Freeaire and Cooltrol.

³⁴² A 50% duty cycle is assumed based on examination of duty cycle assumptions from Richard Traverse, Freeaire Refrigeration (35%-65%), Cooltrol (35%-65%), Natural Cool (70%), Pacific Gas & Electric (58%). Also, manufacturers typically size equipment with a built-in 67% duty factor and contractors typically add another 25% safety factor, which results in a 50% overall duty factor.

³⁴³ See Appendix F.

³⁴⁴ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

³⁴⁵ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

³⁴⁶ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

³⁴⁷ See Appendix C.

³⁴⁸ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³⁴⁹ Ihid

Prescriptive Refrige	Prescriptive Refrigeration: Door Heater Controls for Cooler/Freezer, Code R20							
Last Revised Date	7/1/2013							
MEASURE OVERVIEW	i							
Description	This measure	invol	ves the i	nstallation of	door heater co	ontrols on refr	rigeration syste	ems (coolers
	and freezers)	. Doo	r heater	controls save	energy by allo	wing "on-off"	control of the	door
							or conductivity	level. Door
		ols are	not app	licable to free	zers or cooler	s with "zero e	nergy" doors.	
Primary Energy	Electric							
Impact								
Sector	Commercial							
Program(s)	C&I Prescript		ogram					
End-Use	Refrigeration							
Project Type	New constru							
GROSS ENERGY SAVII		HMS (I	UNIT SA	/INGS)				
Demand Savings			\times n _{door} \times					
Annual Energy	Δ kWh/yr = k	$\Delta kWh/yr = kW_{door} \times n_{door} \times BF \times Hours \times SF$						
Savings								
Definitions		Unit = 1 door heater control						
		kW _{door} = Connected load kW of a typical reach-in cooler or freezer door with a heater (kW)						
				rs controlled b	•			
						eliminating h	eat generated	by the door
				ering the cool				
			_	s factor to acc	ount for cyclir	ng of door hea	ters after insta	illation of
		ontrol			,			
		nnual	operatir	ng hours (hrs/	yr)			
EFFICIENCY ASSUMPT	•							
Baseline Efficiency			_				condensation.	
Efficient Measure		eezer	glass do	or with either	a humidity-ba	ased or condu	ctivity-based d	oor-neater
242445	control.							
PARAMETER VALUES		1		DE			1:(- ()	(c)
Measure/Type	kW _{door} ³⁵⁰		n _{door}	BF	SF	Hours	Life (yrs)	Cost (\$)
All		0.075 for cooler						
INADACT FACTORS	0.200 for fre	0.200 for freezer Actual Table 38 Table 10 8,700 10 \$300						
IMPACT FACTORS	ICD	-) I	DD.	CF	CE	ED.	
Program	ISR		RR _E .2% ³⁵⁵	RR _D 100% ³⁵⁵	CF _s Table 29 ³⁵⁶	CF _W Table 29 ³⁵⁶	FR 52% ³⁵⁷	SO 1.6% ³⁵⁸
C&I Prescriptive	100%	112	.2%	100%	Table 29	Table 29	52%	1.0%

³⁵⁰ Based on range of wattages from two manufacturers and metered data (cooler 50-130 W, freezer 200-320 W).

³⁵¹ See Appendix F.

³⁵² Refrigeration equipment is assumed to operate continuously.

³⁵³ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

³⁵⁴ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

³⁵⁵ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

³⁵⁶ See Appendix C.

³⁵⁷ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³⁵⁸ Ibid.

Table 10 – Savings Factor for Door Heater Controls³⁵⁹

Control Type	SF
Conductivity	80% ³⁶⁰
Humidity	55% ³⁶¹

³⁵⁹ Based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F, and manufacturers assumption that 65% of heat generated by door enters the refrigerated case (1 + 0.65/COP).

³⁶⁰ Door Miser savings claim.

³⁶¹ R.H. Travers' Freeaire Refrigeration, estimated savings.

Prescriptive Refrige	ration: Zero	Energy D	Doors	for Coole	rs/Freezers, Co	des R30, R31			
Last Revised Date	7/1/2013	7/1/2013							
MEASURE OVERVIEW	1								
Description	systems (coo projects. The conductivity doors are gla	This measure involves the purchase and installation of zero energy doors for refrigeration systems (coolers and freezers) instead of standard doors for new construction or retrofit projects. The zero energy doors consist of two or three panes of glass and include a low-conductivity filler gas (e.g., argon) and low-emissivity glass coatings. Standard cooler or freezer doors are glass doors that typically have electric resistance heaters within the door frames to prevent condensation from forming on the glass and to prevent frost formation on door							
Primary Energy	Electric								
Impact									
Sector	Commercial								
Program(s)	C&I Prescript	ive Progr	am						
End-Use	Refrigeration	1							
Project Type	New constru								
GROSS ENERGY SAVI	GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)								
Demand Savings	Δ kW =	$\Delta kW = kW_{door} \times BF$							
Annual Energy	ΔkWh/yr =	$\Delta kWh/yr = kW_{door} \times BF \times Hours$							
Savings									
Definitions		1 zero en	٠,						
					ypical reach-in co				
					cooling load fror	_	neat gen	erate	d by the
				-	the cooler or fr	eezer			
		Annual o	perat	ing hours (h	rs/yr)				
EFFICIENCY ASSUMPT	1								
Baseline Efficiency					ontinuously heat	•			
Efficient Measure		_			vents condensat		ole pane	s of g	ass, inert
DADAAGTED WALLES	gas, and low-	e coating	gs ins	tead of usin	g electrically ger	nerated neat.			
PARAMETER VALUES	1.1.4 262	, ,		D.E.		1:6 /	`	l	0 (4)
Measure/Type	kW _{door} ³⁶² BF Hours Life (yrs) Cost (\$)								
Cooler (R30)	0.075 Table 38 ³⁶³ 8,760 10 ³⁶⁴ \$275 ³⁶⁵ 0.200 Table 38 ³⁶³ 8,760 10 ³⁶⁴ \$800 ³⁶⁵								
Freezer (R31) IMPACT FACTORS	0.200		rabi	e 38555	8,760	10364			\$800 ³⁶⁵
	ISR	DD		DD	CE	CE	ED.		50
Program		RR _E 112.2%		RR _D 101% ³⁶⁶	CF _S Table 29 ³⁶⁷	CF _W Table 29 ³⁶⁷	FR 52% ³		SO 1.6% ³⁶⁹
C&I Prescriptive	100%	112.2%	0-00	101%300	Table 29507	Table 29507	52%		1.6%

³⁶² Based on range of wattages from two manufacturers and metered data (cooler 50-130 W, freezer 200-320 W).

³⁶³ See Appendix D: Parameter Values Reference Tables.

³⁶⁴ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

³⁶⁵ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011

³⁶⁶ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

³⁶⁷ See Appendix B.

³⁶⁸ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³⁶⁹ Ihid

Prescriptive Refriger	Prescriptive Refrigeration: High-Efficiency Evaporative Fan Motors, Codes R40, R41, R42								
Last Revised Date	7/1/2013	7/1/2013							
MEASURE OVERVIEW	N								
Description	This measure involves the purchase and installation of a new high-efficiency brushless DC fan								
	electronica	ally commu	tated motor (ECM) o	n a refrigeration	on system, in	stead of conve	ntional,		
	shaded-po	le or perma	anent split capacitor	(PSC) evaporat	or fan motor	. Refrigeration	systems		
	typically co	ontain two	to six evaporator fan	s that run near	ly 24 hours p	er day, 365 da	ys a year.		
	If the syste	em has sing	le-phase power, elec	tricity usage ca	an be reduce	d by choosing b	orushless		
	DC, or ECM	۱, motors. ۱	This measure is not e	ligible for high	-efficiency m	otors installed	in new		
			coolers and freezer a	pplications, as	high-efficien	cy motors are	required		
	by federal	codes and	standards. ³⁷⁰						
Primary Energy	Electric								
Impact									
Sector	Commercia								
Program(s)		iptive Progi	ram						
End-Use	Refrigerati								
Project Type		New construction (refrigerated cases only), Retrofit (refrigerated cases and walk-in							
	coolers/freezers)								
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)									
Demand Savings	ΔkW	$\Delta kW = (kW_{BASE} - kW_{BDC}) \times BF$							
Annual Energy	∆kWh/yr	$\Delta kWh/yr = (kW_{BASE} - kW_{BDC}) \times Hours \times DC_{EVAP} \times BF$							
Savings									
Definitions		= 1 ECM fa							
			ed load kW of the bas	•					
	kW_{BDC}		ed load kW of a brush	•	rator fan (kW	/)			
	DC _{Evap}		le of the evaporator f						
			ctor for reduced cool	•					
		= Annual o	perating hours (hrs/y	/r)					
EFFICIENCY ASSUMPTI	1								
Baseline Efficiency			n equipped with either		or PSC evap	orator fan mot	or.		
Efficient Measure	A refrigera	tion system	n with a brushless DC	tan ECM.					
PARAMETER VALUES	1 271	1 272	272	274	275	, ,276			
	kW _{BASE} ³⁷¹	kW _{BDC} ³⁷²	DC _{Evap} ³⁷³	BF ³⁷⁴	Hours ³⁷⁵	Life (yrs) ³⁷⁶	Cost (\$)		
Walk-in	0.123	0.040	100% for cooler,	Table 38	8,760	15	Table 11		
Cooler/Freezer (R40)			94% for freezer		,				
Refrigerated	0.123	0.040	100% for cooler,	Table 38	8,760	15	Table 11		
Warehouse (R41)	_		94% for freezer		,	-			
Merchandise Case	0.123	0.040	100% for cooler,	Table 38	8,760	15	Table 11		
(R42)			94% for freezer						

 $^{^{\}rm 370}$ Energy Independence and Securities Act of 2007, Section 312.

³⁷¹ Based on a weighted average of 80% shaded-pole motors at 132 watts and 20% PSC motors at 88 watts. This weighted average is based on discussions with refrigeration contractors and is considered conservative (market penetration estimated at approximately 10%).

³⁷² Based on research for typical power demand high-efficiency evaporator fan motors for refrigeration applications (40 Watts).

³⁷³ A evaporator fan in a cooler runs all the time, but a freezer runs only 8,273 hours per year due to defrost cycles (4 20-min defrost cycles per day),

³⁷⁴ SeeAppendix D: Parameter Values Reference Tables.

³⁷⁵ Refrigeration equipment is assumed to operate continuously.

³⁷⁶ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

Prescriptive Refriger	Prescriptive Refrigeration: High-Efficiency Evaporative Fan Motors, Codes R40, R41, R42							
IMPACT FACTORS								
Program	Program ISR RR _E RR _D CF _S CF _W FR SO							
C&I Prescriptive								

Table 11 – Measure Costs for Evaporative Fan Motors³⁸¹

Measure Code	Application	Measure Cost
R40	Walk-in Coolers/Freezers	\$60
R41	Refrigerated Warehouses	\$135
R42	Merchandise Cases	\$25

³⁷⁷ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

³⁷⁸ See Appendix B.

³⁷⁹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³⁸⁰ Ibid.

³⁸¹ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

Prescriptive Refrigera	tion: Floating	-Head Press	ure Contro	ls, Codes R50	, R51, R52				
Last Revised Date	7/1/2013	7/1/2013							
MEASURE OVERVIEW									
Description	condenser sys	This measure involves the purchase and installation of a "floating-head pressure control" condenser system on a refrigeration system. The floating-head pressure control changes the condensing temperatures in response to different outdoor temperatures so that as the outdoor temperature drops, the compressor does not have to work as hard to reject heat							
	from the cool			nessor does no	illave to work	Cas Haru to	reject neat		
Primary Energy Impact	Electric	ici oi iicczci	<u> </u>						
Sector	Commercial								
Program(s)	C&I Prescripti	ive Program							
End-Use	Refrigeration								
Project Type	New construction, Retrofit								
GROSS ENERGY SAVING	GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)								
Demand Savings	ΔkW	$\Delta kW = HP_{COMPRESSOR} \times \Delta kWh/hp / FLH$							
Annual Energy Savings	∆kWh/yr	= HP _{COMPRESSO}	$_{ m DR} imes \Delta kWh/h$	np					
Definitions	HP _{COMPRESSOR} ∆kWh/hp FLH	= Compressor = Average k ¹ = Full load h	Wh savings	per hp (kWh/yı	r/hp)				
EFFICIENCY ASSUMPTIO	NS								
Baseline Efficiency	A refrigeratio	n system wit	hout a floati	ng-head pressi	ure control sys	tem.			
Efficient Measure	A refrigeratio	n system wit	h a floating-	head pressure	control system	١.			
PARAMETER VALUES									
Measure/Type	HP _{COMPRESSO}	or Δk\	Wh/hp	FLH	Life (y	/rs)	Cost (\$)		
All	Actual	Та	ble 12	7,221 ³⁸²	1038	33	Table 13		
IMPACT FACTORS									
Program	ISR	RR_E	RR_D	CF _S	CF _W	FR	SO		
C&I Prescriptive	100%	112.2% ³⁸⁴	100%384	Table 29 ³⁸⁵	Table 29 ³⁸⁵	52% ³⁸⁶	1.6% ³⁸⁷		

³⁸² The refrigeration is assumed to be in operation every day of the year, while savings from floating-head pressure control are expected to occur when the temperature outside is below 75°F, or 8,125 hours. However, due to varied levels of savings at different temperatures, the full load hours are assumed to be 7,221 hours.

 $^{^{383}}$ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

³⁸⁴ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

³⁸⁵ See Appendix B.

³⁸⁶ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³⁸⁷ Ihid

Table 12 – Floating-Head Pressure Control kWh Savings per Horsepower (kWh/yr/hp)³⁸⁸

	Range of Saturated Suction Temperature (SST)								
Compressor Type	Low Temperature (-35°F to -5°F SST) (0°F to 30°F SST) (35°F to 55°F SST) (Ref. Temp -20°F SST) (Ref. Temp 45°F SST)								
Standard Reciprocating	695	727	657						
Discus	607	598	694						
Scroll	669	599	509						

Table 13 – Measure Costs for Floating-Head Pressure Control³⁸⁹

Measure Code	Description	Measure/Incremental Cost
R50	Controlling 1 Coil	\$518
R51	Controlling 2 Coils	\$734
R52	Controlling 3 Coils	\$984

 $^{^{\}rm 388}$ Average savings values are based on previous EMT projects.

³⁸⁹ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

Prescriptive Refrigerat	ion: Discus & Sc	roll C	ompre	ssors, Cod	es R60, R61, R	62, R63, R70	, R71, R	72, R73, R74		
Last Revised Date	7/1/2013	7/1/2013								
MEASURE OVERVIEW										
Description	This measure inv	This measure involves the purchase and installation of a high-efficiency discus or scroll								
	compressor in a	compressor in a refrigeration system. The high-efficiency discus or scroll compressor								
	increases operat	ing ef	ficiency	and reduc	es energy consu	ımption of the	system	•		
Primary Energy Impact	Electric									
Sector	Commercial									
Program(s)	C&I Prescriptive	Progr	am							
End-Use	Refrigeration									
Project Type	New construction	n, Ret	trofit							
GROSS ENERGY SAVINGS	ALGORITHMS (U	NIT S	AVINGS	5)						
Demand Savings	Δ kW = HP	COMPRE	$_{\rm SSOR} imes \Delta$	kWh/hp / F	LH					
Annual Energy Savings	Δ kWh/yr = HP	COMPRE	$_{\rm SSOR} imes \Delta$	kWh/hp						
Definitions	Unit	= 1	compre	essor						
	HP _{COMPRESSOR}	= Co	ompres	sor horsepo	ower (hp)					
	∆kWh/hp	= k\	Wh per	HP (kWh/yı	r/hp)					
	FLH	= Fu	ıll load	hours (hrs/	yr)					
EFFICIENCY ASSUMPTION	NS									
Baseline Efficiency	Standard herme	tic or	semi-he	ermetic reci	procating comp	ressor.				
Efficient Measure	High-efficiency o	liscus	or scro	ll compress	or.					
PARAMETER VALUES										
Measure/Type	HP _{COMPRESSOR}		∆kV	Vh/hp	FLH	Life (yrs)	Cost (\$)		
All	Actual	200								
IMPACT FACTORS										
Program	ISR	ISR RR _E RR _D CF _S CF _W FR SO								
C&I Prescriptive	100%	112.	.2% ³⁹²	100%392	Table 29 ³⁹³	Table 29 ³⁹³	52% ³⁹⁴	1.6% ³⁹⁵		

³⁹⁰ Derived from Washington Electric Coop data by West Hill Energy Consultants. The freezer is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5,858 hours.

³⁹¹ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-1.

³⁹² Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

³⁹³ See Appendix B

³⁹⁴ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

³⁹⁵ Ibid.

Table 14 – Compressor kWh Savings per Horsepower (kWh/hp)³⁹⁶

		Temperature Range									
	Low Temperature (-35°F to -5°F SST)	·									
Compressor Type	(Ref. Temp –20°F SST)	(Ref. Temp –20°F SST) (Ref. Temp 20°F SST) (Ref. Temp 45°F SST)									
Discus	517	601	652								
Scroll	208	432	363								

Table 15 – Measure Costs for Discus and Scroll Compressors³⁹⁷

Equipment	Measure	Size	Measure/Incremental
Туре	Code	(hp)	Cost
	R60	3	\$650
Discus	R61	4	\$765
Discus	R62	5	\$900
	R63	6	\$1,330
	R70	2	\$400
	R71	3	\$525
Scroll	R72	4	\$600
	R73	5	\$1,000
	R74	6	\$1,300

³⁹⁶ Savings calculations summarized in <Compressor kWh compared.xls>; calculations performed in spreadsheet tool <Refrigeration Compressor Evaluation Vers. 2.01 July 2003.xls>.

³⁹⁷ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

Prescriptive Refrigeration	on: ENERG	Y STAR® Reach-i	•	_	rs, Code R80	COOICIS and Tre	ezers, code Roc			
Last Revised Date	7/1/2013				,					
MEASURE OVERVIEW										
Description	This measu	his measure involves the purchase and installation of a new ENERGY STAR®-qualified								
	commercia	al cooler (refrigera	ator) or freez	er instead	of a new standard-	efficiency	cooler or			
	freezer.									
Primary Energy Impact	Electric									
Sector	Commercia	al								
Program(s)	C&I Prescr	iptive Program								
End-Use	Refrigerati	on								
Project Type	New const	ruction, Retrofit								
GROSS ENERGY SAVINGS	ALGORITHM	IS (UNIT SAVING	S)							
Demand Savings	ΔkW	$\Delta kW = \Delta kWh_{UNIT} / FLH$								
Annual Energy Savings	∆kWh/yr	= ΔkWh_{UNIT}								
Definitions	Unit	= 1 reach-in coo	ler or freezer	•						
	ΔkWh_{UNIT}	-		ings from h	nigh-efficiency unit	(kWh/yr)				
	FLH	= Full load hours	s (hrs/yr)							
EFFICIENCY ASSUMPTION										
Baseline Efficiency		•			least 15 cubic feet					
					daily energy consu					
Efficient Measure					least 15 cubic feet	interior vo	lume that			
	meet ENEF	RGY STAR® MDEC	requirement	S.						
PARAMETER VALUES			1	1		1				
Measure/Type		\kWh _{UNIT}		.H	Life (yrs)		st (\$)			
All	,	Table 16	5,85	58 ³⁹⁸	12 ³⁹⁹	1.	55 ⁴⁰⁰			
IMPACT FACTORS				1						
Program	ISR	RR _E	RR _D	CF _S	CF _W	FR	SO			
C&I Prescriptive	100%	112.2% ⁴⁰¹	100%401	Table 29	⁴⁰² Table 29 ⁴⁰²	52% ⁴⁰³	1.6%404			

³⁹⁸ Derived from Washington Electric Coop data by West Hill Energy Consultants. The freezer is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5,858 hours.

³⁹⁹ Environmental Protection Agency, "Savings Calculator for ENERGY STAR Qualified Commercial Kitchen Equipment." Accessed April 8, 2013.

⁴⁰⁰ Representative cost of participating units based on the following cost data from Vermont TRM 2014: Solid Ref/Freezer Tier 1 \$95 one door; \$125 two door; \$155 three door – Tier 2 is TWICE Tier 1; Glass Freezer only 1 Tier \$142 < 15 cu ft; \$166 15–50 cu ft; \$407 > 50 cu ft.

⁴⁰¹ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁴⁰² See Appendix B.

⁴⁰³ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴⁰⁴ Ihid

Table 16 – Stipulated Annual Energy Consumption and Savings for Commercial Reach-in Coolers and Freezers

		Internal	•	nsumption per Unit h/yr)	Annual Energy
Equipment Type	Туре	Volume (cubic feet)	Federal Code ⁴⁰⁵ⁱ	Qualifying Products ⁴⁰⁶	Savings per Unit (kWh/yr)
	0 11 1 5	15 ≤ V < 30	907	655	252
	Solid Door	30 ≤ V < 50	1226	971	255
Coolers/Refrigerators	(VCS.SC.M)	50 ≤ V	1637	1174	463
	Glass Door (VCT.SC.M)	15 ≤ V < 30	1135	819	316
		30 ≤ V < 50	1774	1212	562
	(VC1.3C.IVI)	50 ≤ V	2595	1946	649
	Solid Door	15 ≤ V < 30	2310	1624	686
	(VCS.SC.L)	30 ≤ V < 50	3716	3138	578
Freezers	(VC3.3C.L)	50 ≤ V	5522	4506	1016
	Class Door	15 ≤ V < 30	3458	2172	1286
	Glass Door (VCT.SC.L)	30 ≤ V < 50	5311	3540	1771
	(VC1.3C.L)	50 ≤ V	7692	5218	2474

Note: V = internal volume (ft³)

⁴⁰⁵ Derived from Department of Energy Docket Number EERE-2010_BT-STD_0003; Energy Conservation Program: Energy Conservation Standards for Commercial Refrigeration Equipment, Table I.1

⁴⁰⁶ Derived from ENERGY STAR Program Requirements: Product Specification for Commercial Refrigerators and Freezers, Eligibility Criteria. DRAFT 1: Version 4.0, Table 1

Prescriptive Refrigera	tion: ENERGY	STAR® Comr	mercial Ice	Makers, C	ode R90		•	
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description	makers that m applications (d efficiency ice and fan motor January 2015)	nis measure involves the purchase and installation of new self-contained air-cooled ice akers that meet current ENERGY STAR® or CEE Tier 2 specifications for use in commercial oplications (e.g., hospitals, hotels, food service, and food preservation) instead of standard-ficiency ice makers. High-efficiency ice makers typically use high-efficiency compressors and fan motors and thicker insulation. A list of qualified CEE commercial ice makers (as of nuary 2015) is available at:						
		cee1.org/sites	s/default/file	es/library/9	558/2015-01_lce	_Machines.x	dsx.	
Primary Energy Impact	Electric							
Sector	Commercial							
Program(s)	C&I Prescripti	ve Program						
End-Use	Refrigeration	•						
Project Type	New construc		ICC)					
GROSS ENERGY SAVING		-	-					
Demand Savings		∆kWh _{ICEMACHIN}	-					
Annual Energy Savings		∆kWh _{ICEMACHIN}		1				
Definitions	Unit ∆kWh _{ICEMACHINI} FLH	= Average	ercial ice mal annual ener hours (hrs/y	gy savings f	rom high-efficien	icy ice machi	ne (kWh/yr)	
EFFICIENCY ASSUMPTIO	NS							
Baseline Efficiency	Commercial id	e maker that	meets the fe	ederal minii	num efficiency re	equirements	•	
Efficient Measure	Commercial id	e maker that	meets curre	nt ENERGY	STAR® or CEE Tie	r 2 specificat	tions.	
PARAMETER VALUES								
Measure/Type	Δ kWh _{ICE}	EMACHINE	FLI	H	Life (yrs)	C	Cost (\$)	
All	Table	e 17	5,858	8 ⁴⁰⁷	8 ⁴⁰⁸		\$0 ⁴⁰⁹	
IMPACT FACTORS								
Program	ISR	RR_E	RR_D	CFs	CF _W	FR	SO	
C&I Prescriptive	100%	112.2%410	100%410	Table 29 ⁴	¹¹ Table 29 ⁴¹¹	52% ⁴¹²	1.6%413	

⁴⁰⁷ Derived from Washington Electric Coop data by West Hill Energy Consultants. The freezer is assumed to always be plugged in but because of compressor and fan cycling the full load hours are 5,858 hours.

⁴⁰⁸ Environmental Protection Agency, "Savings Calculator for ENERGY STAR Qualified Commercial Kitchen Equipment." Accessed April 8, 2013.

 $^{^{\}rm 409}$ ENERGY STAR* Commercial Kitchen Equipment Calculator.

⁴¹⁰ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁴¹¹ See Appendix B.

 $^{^{412}}$ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴¹³ Ihid

Table 17 – CEE Specifications for Air-Cooled Self-Contained Ice Makers⁴¹⁴

Equipment	Harvest Rate range (lbs ice per day)	Savings (kWh/yr)
	≤ 175 lbs ice per day	758
Air Cooled,	> 175 and ≤ 400 lbs ice per day	2,344
Self-Contained	> 400 and ≤ 600 lbs ice per day	6,029
	> 600 lbs ice per day	8,045

 $^{^{414}}$ From CEE, High Efficiency Specifications for Commercial Ice Makers effective 07/01/2011, and energystar.gov.

Water Heating Equipment

Prescriptive Water He	ating: Tanklo	ess Water	He	ater,	Code W					eater, code writiv
Last Revised Date	10/1/2017									
MEASURE OVERVIEW										
Description	This measur	This measure involves the purchase and installation of a new tankless (on-demand) natural								
	gas water he	gas water heater instead of a new storage natural gas water heater.								
Energy Impacts	Natural gas,	Propane								
Sector	Commercial	, Industrial								
Program(s)	C&I Midstre	am								
End-Use	Water heati	ng								
Decision Type	New, Replac	e on burno	ut							
GROSS ENERGY SAVING	S ALGORITHM	1S (UNIT SA	IIV	NGS)						
Annual energy savings	ΔMMBtu/yr	= [GAL x 8 1,000,0			$[T_{WH} - T_{in}]$) x (1/ TE ₁	BASE —	1/ TE _{EE}) / 1,0	000,000] +[S	L x 8760 /
Definitions	Unit	= Single v	vate	er hea	ter					
	GAL	= Average	e an	nount	of hot w	ater cons	ume	d annually po	er water heat	er (gal/yr)
	T _{WH}	,,								
	T _{in}	= Average water at the main (°F)								
	TE _{BASE}	E _{BASE} = Thermal efficiency for baseline stand-alone tank water heater								
	TEEE	•								
	8.33	= Density				_	ater			
	1	= Specific								
	1,000,000	= Convers								
	Input	= Input ra		_			-			
	Tank	= Tank vo						-		
	SL ⁴¹⁵				•		r) for	gas fired sto	orage water h	neaters
		(SL = In	out	/ 800	+ 110 x γ	Tank)				
EFFICIENCY ASSUMPTIO										
Baseline Efficiency	Assumed to Efficiency ar			-		_	heat	er with a Fed	deral Minimu	m Thermal
Efficient Measure	Assumed to	be a newly	ins	talled	tankless	water he	ater	with a minin	num efficienc	y of 0.82.
PARAMETER VALUES (D		·								•
Measure/Type	GAL	T _{WH}		T _{in}	TE _{BASE}	TEEE	Inp	ut Tank	Life (yrs)	Cost (\$)
< 155,000Btuh	A at 1416		F.0	0418		A atrial	٠- ۸	75	20420	¢700 ⁴²¹
≥ 155,000Btuh	Actual ⁴¹⁶	126.2 ⁴¹⁷	50	.8 ⁴¹⁸	0.80419	Actual	Act	150	20,20	\$780 ⁴²¹
IMPACT FACTORS				Ц		•	•	•	•	
Program	ISR	RR_{E}^{422}		F	RR_D	CFs		CF_W	FR ⁴²³	SO ⁴²⁴
C&I Prescriptive	100%	100%		١	N/A	N/A		N/A	25%	0%

⁴¹⁵ Commercial Water Heating Equipment, Gas-fired storage water heaters http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/51.

⁴¹⁶ Use actual annual hot water gallons per year. Alternatively, default values from the DEER Database (<u>www.deeresources.com</u>) may be used based on building type.

⁴¹⁷ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014.

⁴¹⁸ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.
419 Federal Standards for Commercial Gas Water Heaters. http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/51.

⁴²⁰ DEER Database, updated 2/5/2014. http://www.deeresources.com/files/DEER2013codeUpdate/download/DEER2014-EUL-table-update_2014-02-05.xlsx.

⁴²¹ Incremental cost is shown as calculated by GDS engineering review of available cost data. Average tankless water heater \$1,356. Average gas storage water heater \$576.

⁴²² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

⁴²³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall).

⁴²⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

Agricultural Equipment

Prescriptive Agricultural	: New Vap	or-Tight			<u>′ </u>		rescent Fix			
Last Revised Date	7/1/2013							•	•	
MEASURE OVERVIEW	•									
Description	This meas	This measure involves the purchase and installation of new High-Performance T8 (HPT8)								
	lamps and	amps and ballasts with vapor-tight housing.								
Primary Energy Impact	Electric									
Sector	Commerci	al								
Program(s)	C&I Presci	iptive Pro	ogram	1						
End-Use	Agricultur	e								
Project Type	New cons	truction,	Retro	fit						
GROSS ENERGY SAVINGS A	ALGORITHM	IS (UNIT	SAVIN	IGS)						
Demand Savings	ΔkW	= (Qty _B	BASE × V	Watts _{BASE}	- Qty _{EE} ×	Watts	S _{EE}) / 1,000			
Annual Energy Savings	∆kWh/yr	= (Qty _B	BASE × V	Watts _{BASE}	- Qty _{EE} ×	Watts	S _{EE}) / 1,000)	× Hours	Wk x Weeks	
Definitions	Unit	Jnit = 1 new fixture with 1–4 lamps and 1 ballast								
	Qty _{BASE}	, , , , , , , , , , , , , , , , , , ,								
	Qty _{EE}	Qty _{EE} = Quantity of new efficient fixtures (fixtures)								
	Watts _{BASE}				ixture (Wa	-	kture)			
	Watts _{EE}				Watts/fix	•				
	HoursWk		-				tion (hrs/we	-		
	Weeks		•	•		•	ration (weel	ks/year)		
	1,000	= Conv	ersion	n: 1,000 \	Watts per	kW				
EFFICIENCY ASSUMPTIONS										
Baseline Efficiency	T12 lightir									
Efficient Measure	High-Perfo	ormance `	T8 lan	nps and	ballasts w	th var	oor-tight ho	using.		
PARAMETER VALUES				1			425		1	
Measure/Type	Qty _{BASE}	Qty _{EE}		tts _{BASE}	Watts		oursWk ⁴²⁵	Weeks		Cost (\$)
New Construction	Actual	Actual		e 32 ⁴²⁶	Table 31		Actual	Actual		\$96429
Retrofit	Actual	Actual	Table	e 32 ⁴²⁶	Table 31	21	Actual	Actual	13 ⁴²⁸	\$96429
IMPACT FACTORS		T			1 -		1	Г		
Program	ISR	RRE		RR _D		F _S	CF _W		FR = 22.4/32	SO
C&I Prescriptive	100%	112.2%	0 0	100%430	^o Table	29431	Table 2	.9*31	52% ⁴³²	1.6%433

⁴²⁵ Use actual hours when known. If hours are unknown, use the values from Table 35.

⁴²⁶ See Appendix E. The baseline fixture wattage is determined using the Baseline Fixture Rated Wattage table and the baseline fixture type specified in the project Data Collection and Information form.

⁴²⁷ See Appendix D.

⁴²⁸ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

⁴²⁹ Measure Costs assume 50% retrofit and 50% market opportunity for 1 lamp fixture based on cost data provided in Vermont TRM 2014.

⁴³⁰ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁴³¹ See Appendix B

 $^{^{432}}$ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴³³ Ihid

Prescriptive Agricultural: Plate Heat Exchangers for Milk Processing (Inactive)										
Last Revised Date	7/1/2013				, G					
MEASURE OVERVIEW	, ,									
Description		This measure involves the purchase and installation of a plate heat exchanger (PHX) that uses								
	-		•		ween 55°F	-				
	_			_	y required f	_		•		
		acted from	the milk to	o preheat v	water for do	omestic ho	t water (D	HW) applic	cations.	
Primary Energy Impact	Electric									
Sector	Commerc									
Program(s)		riptive Pro	gram							
End-Use	Agricultur									
Project Type		struction, R		۵۱						
GROSS ENERGY SAVING		-		-						
Demand Savings	ΔkW	-	/yr / Hours							
Annual Energy	∆kWh/yr		_{COMP} + ∆kW		/ 4 000					
Savings	∆kWh _{COM}				ER / 1,000					
- C		$\Delta kWh_{DHW} = MPD \times 365 \times CP_{MILK} \times ETR \times EF_{HX} \times DHW / 3,412$								
Definitions		Unit = 1 PHX for milk processing								
		\(\Delta kWh_{COMP} = Compressor annual kWh reduction \) \(\Lambda kWh_{DHW} = Domestic hot water annual kWh reduction \)								
	∆kWh _{DHW}									
	ETR	•			duction (°F)					
	MPD		ds of milk		• •	1				
	CP _{MILK}	•			د (Btu/lb-°F سام (۱۸/۵++))				
	EER		of cooling s al operatir	•	· · ·					
	Hours		•	-	device (%)					
	EF _{HX} DHW		ator for ele	-						
	365		ersion: 365		•					
	3,412		ersion: 3,4		•					
	1,000		ersion: 1,0	•						
EFFICIENCY ASSUMPTION										
Baseline Efficiency	No PHX.									
Efficient Measure		lled: mav b	e with or v	without DF	IW heat red	laim.				
PARAMETER VALUES		,,								
Measure/Type	MPD	EER	ETR	CP _{MILK}	Hours	EF _{HX}	DHW	Life (yrs)	Cost (\$)	
PHX without DHW	Actual	Actual	35 ⁴³⁴	0.93435	2,850 ⁴³⁶	N/A	0	20 ⁴³⁷	2,500 ⁴³⁸	
PHX with Electric DHW	Actual	Actual	35 ⁴³⁴	0.93435	2,850 ⁴³⁶	59%	1.0	20 ⁴³⁷	2,500 ⁴³⁸	

⁴³⁴ Estimated average temperature reduction: PHX typically reduce milk temperatures from 98°F to temperatures to between 55°F and 70°F.

⁴³⁵ K M Sahay, K. K. Singh, *Unit Operations of Agricultural Processing*, 2001; page 346.

⁴³⁶ Full load operating hours of 2,850 hours per year assume 6 hours per day of full load operation during milking, with an additional 10% cycle time to maintain tank temperature during non-milking hours.

⁴³⁷ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

⁴³⁸ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

Prescriptive Agriculti	Prescriptive Agricultural: Plate Heat Exchangers for Milk Processing (Inactive)								
IMPACT FACTORS	IMPACT FACTORS								
Program	ISR	RR_E	RR_D	CF _S	CF_W	FR	SO		
C&I Prescriptive	100%	99% ⁴³⁹	101% ⁴³⁹	Table 29 ⁴⁴⁰	Table 29 ⁴⁴⁰	52% ⁴⁴¹	1.6%442		

Prescriptive Agricultural: Adjustable Speed Drives for Dairy Vacuum Pumps, Codes VP<X>

				Agricultural: Adjusta	•	•	mps, Codes VP <x></x>	
Prescriptive Agricultural:		Speed Driv	es for Daii	y Vacuum Pu	mps, Codes \	/P <x></x>		
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description		This measure involves the purchase and installation of an Adjustable Speed Drive (ASD)						
		•	•	cuum pump. T	his prescriptive	e measure inc	ludes dairy	
	•	mps smaller	than 30 HP.					
Primary Energy Impact	Electric							
Sector	Commercia	1						
Program(s)	C&I Prescri	ptive Prograi	n					
End-Use	Agriculture							
Project Type		uction, Retro						
GROSS ENERGY SAVINGS A	LGORITHMS	(UNIT SAVI	NGS)					
Demand Savings	Δ kW	= HI	P x 0.746 x L	$F / M_{EFF} - (0.04)$	195 x 2 x #Milk	Units + 1.772	9)	
Annual Energy Savings	∆kWh/yr	= Δl	kW x DRT x 3	365				
Definitions	Unit	= Ne	ew ASD					
	HP			ating of vacuur	•			
	LF		•	factor for cons	tant speed vac	uum pump (%	%)	
	M _{EFF}		otor efficier					
	#MilkUnits			ilk units proces				
	DRT		•	e, hours per da	•	ump operation	on (hrs/day)	
	365			65 days per ye				
	0.746			.746 kW per h				
	0.0495, 2, 1			efficients for a	verage ASD sp	eed and proc	essed milk	
		ur	its					
EFFICIENCY ASSUMPTIONS	1							
Baseline Efficiency			· · · · · · · · · · · · · · · · · · ·	ating at consta				
Efficient Measure	Dairy vacuu	ım pump wit	h adjustable	e speed drive in	nstalled.			
PARAMETER VALUES				T	Г	T	- (4)	
Measure/Type	HP	LF 1444	M _{EFF} ⁴⁴³	#MilkUnits	DRT	Life (yrs)	Cost (\$)	
All	Table 18	75% ⁴⁴⁴	Actual	Actual	Actual	15 ⁴⁴⁵	\$5,322 ⁴⁴⁶	
IMPACT FACTORS			T	T				
Program	ISR	RR_E	RR _D	CF _S	CF _w	FR	SO	

⁴³⁹ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 1-1. Realization Rates for Prescriptive Measures.

⁴⁴⁰ See Appendix B.

⁴⁴¹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴⁴² Ibid.

⁴⁴³ Use rated motor efficiency for the actual equipment. If the actual efficiency value is unknown, use the values in Table 18 for existing or new motors.

 $^{^{\}rm 444}$ Assumed value based on typical operations.

⁴⁴⁵ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

⁴⁴⁶ Average Incremental costs based on interviews with suppliers in Maine, the review of Efficiency Maine projects and incremental costs based from the Efficiency Vermont TRM Users Manual No. 2010-64, 12/14/10 by GDS Associates, December 2011.

C&I Prescriptive 100% 112.2% ⁴⁴⁷ 100% ⁴⁴⁸ Table 29 ⁴⁴⁹ Table 29 ⁴⁴⁹ 52% ⁴⁵⁰ 1.6% ⁴⁵¹
--

Table 18 – Standard Motor Efficiency⁴⁵²

Measure	Size (HP)	Existing Motor	New Motor
MILK: Vacuum Pump with Adjustable Speed Drive Package – 7.5 HP	7.5	89.5%	91.7%
MILK: Vacuum Pump with Adjustable Speed Drive Package – 10 HP	10	90.2%	91.7%
MILK: Vacuum Pump with Adjustable Speed Drive Package – 15 HP	15	91.0%	93.0%
MILK: Vacuum Pump with Adjustable Speed Drive Package – 30 HP	30	92.4%	94.1%

⁴⁴⁷ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁴⁴⁸ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁴⁴⁹ See Appendix B.

⁴⁵⁰ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

¹⁵¹ Ibid.

⁴⁵² Values are the highest minimum efficiency values for each size category from the Energy Policy Act of 1992 (for existing motors) and NEMA Premium Efficiency (for new motors).

					ptive Agricultural: Sc	Ton Compresso	is, codes AMSCCA			
Prescriptive Agricultural	: Scroll Compi	ressors,	Codes AMSC	<x></x>						
Last Revised Date	7/1/2013									
MEASURE OVERVIEW										
Description	This measure	his measure involves the purchase and installation of a high-efficiency scroll compressor								
	for use in the	r use in the milk cooling process.								
Primary Energy Impact	Electric	ectric								
Sector	Commercial									
Program(s)	C&I Prescripti	ve Progr	am							
End-Use	Agriculture									
Project Type	New construc	tion, Ret	trofit							
GRISS ENERGY SAVINGS A	LGORITHMS (U	NIT SAV	'INGS)							
Demand Savings	ΔkW	kW = $HP_{COMPRESSOR} \times \Delta kWh/hp / FLH$								
Annual Energy Savings	∆kWh/yr	$\Delta kWh/yr = HP_{COMPRESSOR} \times \Delta kWh/hp$								
Definitions	Unit		w scroll compre							
	HP _{COMPRESSOR}	= Com	pressor horsepo	wer (hp)						
	∆kWh/hp	= kWh	savings per HP	(kWh/hp/yr)						
	FLH	= Full l	oad hours (hrs/	yr)						
EFFICIENCY ASSUMPTIONS	5									
Baseline Efficiency	Standard herr	netic co	mpressor. (Note	e: kWh savings	based on an av	erage size	dairy farm in			
	Maine with 10	00 milkir	ng cows.)							
Efficient Measure	High-efficienc	y scroll d	compressor.							
PARAMETER VALUES										
Measure/Type	HP _{COMPRESS}	SOR	∆kWh/hp	FLH	Life (y	rs)	Cost (\$)			
All	Actual		432 ⁴⁵³	2,850 ⁴⁵⁴	1545	55	Table 19			
IMPACT FACTORS					•	•				
Program	ISR	RR_E	RR _D	CFs	CF _W	FR	SO			
C&I Prescriptive	100%	112.29 456	100%457	Table 29 ⁴⁵⁸	Table 29 ⁴⁵⁸	52% ⁴⁵⁹	1.6%460			

Table 19 - Measure Costs for Scroll Compressor⁴⁶¹

Equipment Type	Size (HP)	Measure/Incremental Cost				
	2	\$400				
	3	\$525				
Caroll Compressor	5	\$1,000				
Scroll Compressor	6	\$1,300				
	7.5	\$1,538				
	10	\$2,051				

Prescriptive Agricultural: Adjustable Speed Drives on Ventilation Fans (Potato Storage Equipment), Codes ASD<X>

⁴⁵³ Average savings value based on Wisconsin Focus on Energy Dairy Audit tool, used for a 100 herd dairy farm in Maine.

⁴⁵⁴ Full load operating hours of 2,850 hours per year assume 6 hours per day of full load operation during milking, with an additional 10% cycle time to maintain tank temperature during non-milking hours.

⁴⁵⁵ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

⁴⁵⁶ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

 $^{^{457}}$ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁴⁵⁸ See Appendix B.

⁴⁵⁹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴⁶⁰ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴⁶¹ Average incremental costs based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

Prescriptive Agricultur	ral: Adjustable	e Spe	ed Drives o	n Ventilat	ion Fans (Pot	ato Storage	Equipm	ent), Codes	
ASD <x></x>									
Last Revised Date	7/1/2013								
MEASURE OVERVIEW									
Description			•		stallation of an			• •	
		e vent	ilation fans.	Savings are	e realized durir	ng periods wh	en less tl	han full speed	
	is required.								
Primary Energy Impact	Electric								
Sector	Commercial								
Program(s)	C&I Prescripti	ve Pro	gram						
End-Use	Agriculture								
Project Type	New construc	tion, R	Retrofit						
GROSS ENERGY SAVING	S ALGORITHMS	S (UNI	T SAVINGS)						
Demand Savings	ΔkW =	kW = $HP_{VFD} \times LF / EF \times (A + B \times SF_F + C \times SF_F^2 - (A + B \times SF_H + C \times SF_H^2))$							
	=	$= HP_{VFD} \times 0.71$							
Annual Energy Savings	ΔkWh/yr =	$\Delta kWh/yr = HP_{VFD} \times LF/EF \times HOU_{HALF} \times (A + B \times SF_F + C \times SF_F^2 - A + B \times SF_H + C \times SF_H^2)$							
	=	HP_{VFD}	× 2540						
Definitions	Unit =	1 new	/ ASD						
	HP _{VFD} =	Total	fan horsepo	wer connec	cted to the ASI	O (hp)			
	LF =	Load f	factor						
	EF =	Moto	r efficiency						
	HOU _{HALF} =	Hours	of use at ha	alf power					
	A, B, C =	Fan D	efault Curve	e Correlatio	n Coefficients				
	SF _F =	Speed	d factor for f	ull speed					
	SF _H =	Speed	d factor for h	nalf speed					
EFFICIENCY ASSUMPTIO	NS								
Baseline Efficiency	Standard ven	tilatior	n fan with no	o adjustable	speed drive i	nstalled.			
Efficient Measure	Ventilation fa	n with	ASD installe	ed.					
PARAMETER VALUES									
Measure/Type	HP _{VFE})			HOU _{HALF}	Life (yrs	5)	Cost (\$)	
All	Actua	ıl			3600 ⁴⁶²	15 ⁴⁶³		Table 20	
Measure/Type	LF		EF	Α	В	С	SF_F	SF _F SF _H	
All	0.8464		0.91464	0.22465	-0.87 ⁴⁶⁵	1.65 ⁴⁶⁵	1	0.5	
IMPACT FACTORS									
Program	ISR		RR_E	RR_D	CFs	CFw	CF _w FR		
C&I Prescriptive	100%		112.2%466	100%467	Table 29 ⁴⁶⁸	Table 29 ⁴⁶⁸	52% ⁴⁶⁹	1.6% ⁴⁷⁰	

⁴⁶² Fans can run at half speed 24/7 from December 1 to April 30 as reported by Steve Belyea, ME Dept of Agriculture, evaluation.

⁴⁶³ GDS Associates, Inc., Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group (SPWG), June 2007 and the 2005 Measure Life Study Report prepared for The Massachusetts Joint Utilities, by ERS.

⁴⁶⁴ Program assumption.

⁴⁶⁵ Fan Default Curve Correlation Coefficients for VFD. Variable Frequency Drive Evaluation Protocol, SBW Consulting, Inc., Table 1.

⁴⁶⁶ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

 $^{^{467}}$ RRD used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁴⁶⁸ See Appendix B.

⁴⁶⁹ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴⁷⁰ Ibid.

Table 20 – Measure Cost for ASD on Ventilation Fans⁴⁷¹

Size	
(hp)	Measure Cost
3	\$963
5	\$1,105
7.5	\$1,467
10	\$1,745
15	\$2,525
20	\$2,725

⁴⁷¹ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011.

									•			
Prescriptive Agricultura	ıl: High-Volu	ıme Lo	w-Speed	Fans, Co	de A	OLSF						
Last Revised Date	7/1/2013											
MEASURE OVERVIEW												
Description	This measu	re invo	lves the pu	rchase ar	nd in	stallati	on of hi	gh-volume lo	w-speed (F	IVLS) fans		
	in a free sta	a free stall dairy barn to move large amounts of air efficiently (with lower noise).										
Primary Energy Impact	Electric	ectric										
Sector	Commercia	l										
Program(s)	C&I Prescrip	otive Pi	rogram									
End-Use	Agriculture											
Project Type	New constr	uction,	Retrofit									
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)												
Demand Savings	ΔkW	$= (HP_{BASE} / M_{EFF,BASE} - HP_{HVLS} / M_{EFF,HVLS}) \times 0.746 \times LF$										
Annual Energy Savings	∆kWh/yr	$kWh/yr = \Delta kW \times Hours$										
Definitions	Unit	Jnit = 1 new HVLS										
	HP _{BASE}	= Tota	ıl combined	horsepo	wer	of exist	ing fan	motors (hp)				
	M _{EFF,BASE}		rage motor			_	•	tors (%)				
	HP _{HVLS}		ıl combined									
	M _{EFF,HVLS}		ed motor ef			w HVLS	fan (%)					
	LF		rage motor									
	Hours		ual operatir	•								
	0.746	= Con	version: 0.7	46 kW pe	er hp)						
EFFICIENCY ASSUMPTION												
Baseline Efficiency	•			imately 1	.0–1	.3 tour-	toot tan	s replaced by	/ 1 HVLS).			
Efficient Measure	HVLS ventil	ation to	ans.									
PARAMETER VALUES	1											
Measure/Type	HP _{BASE}		M _{EFF,BASE}	HP _{HVLS}		EFF,HVLS	LF 2 2 2 4 4 7 7	Hours	Life (yrs)	Cost (\$)		
All	Actual		80% ⁴⁷²	Actual	Α	ctual	80%473	³ 3,660 ⁴⁷⁴	15 ⁴⁷⁵	1,165 ⁴⁷⁶		
IMPACT FACTORS	16-			1	1							
Program	ISR		RR _E	RR _D		CF _S		CF _W	FR = 204480	SO		
C&I Prescriptive	100%		112.2% ⁴⁷⁷	100%	+/0	Table	29479	Table 29 ⁴⁷⁹	52% ⁴⁸⁰	1.6%481		

⁴⁷² Conservative estimate for efficiency of existing 1–2 hp fan motors, based on minimum efficiency requirements in the Energy Policy Act of 2007.

⁴⁷³ Assumed value based on typical operations.

⁴⁷⁴ Fan typically operates 5 months out of the year or approximately 3,660 hours.

⁴⁷⁵ PA Consulting Group for the State of Wisconsin Public Service Commission, Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

⁴⁷⁶ Average incremental cost for this measure has not changed since the Efficiency Maine TRM revision 8/15 2010 based on interviews with suppliers in Maine and the review of Efficiency Maine projects by GDS Associates, December 2011

⁴⁷⁷ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁴⁷⁸ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁴⁷⁹ See Appendix C.

⁴⁸⁰ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁴⁸¹ Ihid

Commercial Kitchen Equipment

ENERGY STAR® Natural	Gas Kitchen	Equipment	, Codes G17-	-G22						
Last Revised Date	7/1/2013									
MEASURE OVERVIEW										
Description	This measure	his measure involves the purchase and installation of new high-efficiency natural gas								
	kitchen equip	itchen equipment.								
Primary Energy Impact	Natural gas									
Sector	Commercial,	Industrial								
Program(s)	C&I Prescript	&I Prescriptive Program								
End-Use	Natural gas	latural gas								
Project Type	New construc	New construction, Retrofit								
GROSS ENERGY SAVINGS	ALGORITHMS	(UNIT SAVIN	IGS)							
Annual Energy Savings	ΔMMBtu/yr	$= \Delta MMB$	TU _{UNIT}							
Definitions	Unit	= 1 new k	itchen equipn	nent						
	Δ MMBTU _{UNIT}	= Deemed	l annual MME	stu savings pe	er unit (MMBt	tu/yr)				
EFFICIENCY ASSUMPTION	IS									
Baseline Efficiency	Standard-effi	ciency natur	al gas kitchen	equipment.						
Efficient Measure	High-efficiend	cy natural ga	s kitchen equ	ipment.						
PARAMETER VALUES										
Measure/Type	∆MMBTUun	NIT			Life (yrs)	Cost (\$)			
All	Table 21				124	182	Table 21			
IMPACT FACTORS										
Program	ISR	RR_E	RR _D	CFs	CFw	FR	SO			
C&I Prescriptive	100%	0% 100% ⁴⁸³ N/A N/A N/A 25% ⁴⁸⁴								

⁴⁸² Energy Protection Agency, Savings Calculator for ENERGY STAR® Qualified Commercial Kitchen Equipment. Accessed April 9, 2013. The calculator uses a 12-year measure life value for the life-cycle cost analysis for ovens, fryers, griddles, and steamers.

⁴⁸³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

⁴⁸⁴ Measure not yet evaluated, assume default FR of 25%.

 $^{^{\}rm 485}$ Measure not yet evaluated, assume default SO of 0%.

Table 21 – Natural Gas Kitchen Equipment Measure Detail 486

			Deemed Savings	
Measure Code	Description	Size	ΔTherms _{unit}	Incremental Cost (\$/unit)
G17	Fryer	Standard	508	0
G17	TTYET	Large Vat	415	\$1,120
G19	Convection oven	Any	129	\$0
G20	Combination oven	30 pans	730	\$0
		3 pan	766	\$260
G21	Chaamaan	5 pan	962	\$0
GZI	Steamer	6 pan	1,054	\$870
		10 pan	1,622	\$870
		2 feet wide	57	\$360
		3 feet wide	131	\$360
G22	Griddle	4 feet wide	206	\$360
		5 feet wide	280	\$360
		6 feet wide	355	\$360

⁴⁸⁶ Savings and measure cost values are based on: ENERGY STAR® Commercial Kitchen Equipment Calculator. Accessed November 2016 using default assumptions.

Demand Control Kitche	n Ventilation	, Cod	e DCK	V				,,,,,,	ation, code bckv	
Last Revised Date	7/1/2016 (Ne	ew Me	easure [·]	for PY17)						
MEASURE OVERVIEW										
Description	This measure	invol	ves the	installation	n of a controls pa	ackage on the	e ventilation	on ex	khaust	
	system of co	mmer	cial cod	oking equipi	ment to be oper	ated in tande	m with a	dedi	cated	
	Make-Up Air	ake-Up Air (MUA) unit serving the space. The installed system must be capable of								
	varying the ra	arying the rate of kitchen exhaust air through VFD control and the rate of outside air								
	delivered to	the sp	ace thr	ough VFD c	or outside air dar	mper modula	tion. The i	nsta	lled	
	system must	have t	therma	al and opaci	ty (smoke) senso	ors.				
Primary Energy Impact	Natural gas									
Sector	Commercial,	Indust	trial							
Program(s)	C&I Prescript	&I Prescriptive Program								
End-Use	Natural gas, S	latural gas, Space heating								
Project Type	Retrofit									
GROSS ENERGY SAVINGS	ALGORITHMS	(UNIT	SAVIN	IGS)						
Annual Energy Savings	ΔMMBtu/yr	= 63	11 x HF	x AHL / (Ef	f _{heat} x 1,000,000)				
Definitions	Unit			olled Exhaus						
	611				exhaust fan hors	sepower ⁴⁸⁷				
	HP			fan horsepo						
	AHL			_	l (Btu) of outside	e air through	MUA unit			
	Eff_{heat}		_	efficiency o						
	1,000,000	= C	onvers	ion of Btu to	o MMBtu					
EFFICIENCY ASSUMPTION										
Baseline Efficiency				d commercia	al kitchen ventila	ation system	with dedic	cate	d MUA and	
	standard on/									
Efficient Measure				•	vith VFDs and in	terlocked cor	ntrols that	vary	/ based on	
	the energy re	equire	d for co	ooking exha	ust effluence.					
PARAMETER VALUES										
Measure/Type	HP		Α	HL ⁴⁸⁸	Eff _{heat} 489	Life (yr	s) ⁴⁹⁰		ost (\$) ⁴⁹¹	
All	Actual		Δ	ctual	Actual	15			,000 per	
	Actual	Actual			7101001		ex	naust fan		
IMPACT FACTORS	,									
Program	ISR		R _E ⁴⁹²	RR_D	CFs	CF _W	FR ⁴⁹³		SO ⁴⁹⁴	
C&I Prescriptive	100%	10	00%	N/A	N/A	N/A	25% ⁴⁹⁵		0% ⁴⁹⁶	

⁴⁸⁷ Commercial Kitchen Demand Ventilation Controls study, PG&E, PGECOFST116, June 2009, average reduction and fan horsepower.

⁴⁸⁸ Refer to the Food Service Technology Center Outside Air Load Calculator (http://www.fishnick.com/ventilation/oalc/oac.php). Enter a design Outdoor Air Flow as 1 CFM under Air Setpoints and retrieve the Total Annual Heating Load in **Btu**, do not retrieve the Design Heating Load.

⁴⁸⁹ Expressed as a decimal, i.e., 80% AFUE is .80.

⁴⁹⁰ DEER Database 2014.

⁴⁹¹ GDS review of regional databases and TRMs.

⁴⁹² This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

⁴⁹³ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes the program overall values from the Business Incentive Program Evaluation (Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-8. NTG Impacts for Program Overall).

⁴⁹⁴ Opinion Dynamics Corporation, Evaluation of the Efficiency Maine Trust Business Program, November 30, 2011, Table 5-10. Participant Spillover.

⁴⁹⁵ Measure not yet evaluated, assume default FR of 25%.

⁴⁹⁶ Measure not yet evaluated, assume default SO of 0%.

High Efficiency	/ Pre-Rinse Spray Valves (HPSV)
Last Revised	1/1/2017
Date	
MEASURE OVER	RVIEW
Description	This measure involves the installation of a high efficiency pre-rinse spray valve in
	Commercial/Industrial kitchens
Energy Impacts	Natural Gas, Heating Oil, Propane, Electric
Sector	Commercial, Industrial
Program(s)	C& I Prescriptive Program
End-Use	Boilers, Water Heating
Decision Type	Retrofit, ROB
GROSS ENERGY	SAVINGS ALGORITHMS (UNIT SAVINGS)
Annual energy	Δ MMBtu/yr = (Vol _{base} – Vol _{ee}) x 60 x Hours x Days x 8.33 x 1 x (T_{out} – T_{in}) / Eff / 1,000,000
savings	$\Delta kWh/yr = (Vol_{base} - Vol_{ee}) \times 60 \times Hours \times Days \times 8.33 \times 1 \times (T_{out} - T_{in}) / Eff / 1,000,000 \times 0.003413$
Annual water savings	Δ Gallons/yr = (Vol _{base} – Vol _{ee}) x 60 x Hours x Days
Definitions	Unit = Single pre-rinse spray valve
	Vol _{base} = Base case flow in gallons per minute (gal/min)
	Vol _{ee} = Efficient case flow in gallons per minute (gal/min)
	60 = Conversion factor: minutes per hour (min/hr
	Hours = Hours per day that the pre-rinse spray valve is used at the site (hrs/day)
	Days = Days per year (days/yr)
	8.33 = Conversion factor: pounds per gallon of water (lb/gal)
	1 = Heat capacity of water (Btu/lb/°F)
	T _{out} = Average mixed hot water discharge (after spray valve) temperature (°F)
	T _{in} = Average water temperature at the main (°F)
	Eff _{elec} = Efficiency of electric water heater supplying hot water to pre-rinse spray valve (%)
	Eff _{fuel} = Efficiency of fuel water heater supplying hot water to pre-rinse spray valve
	1,000,000 = Conversion: 1,000,000 Btu/MMBtu
EFFICIENCY ACC	0.003413 = Conversion: 0.003413 MMBtu/kWh
EFFICIENCY ASS	
Baseline	For Retrofit, the baseline is the standard defined by The Energy Policy Act. For ROB, the baseline is
Efficiency	the average population efficiency taken from an evaluation report for California Urban Water
=	Conservation Council.
Efficient	High efficiency pre-rinse spray valve with a maximum flowrate of 1.15 gallons per minute.
Measure	

High Efficiency	High Efficiency Pre-Rinse Spray Valves (HPSV)										
PARAMETER VALUES (DEEMED)											
Measure/Typ	e	Vol _{base}	Vol _{ee} ⁴⁹⁷	T _{out} ⁴⁹⁸	T _{in} ⁴⁹⁹	Hours	Days ⁵⁰⁰	Eff _{fuel} ⁵⁰¹	Eff _{elec} 502	Life ⁵⁰³ (yrs)	Cost (\$)
•	Point of 1.6 rchase/Replace on Burnout		1.15	120	50.8	Table 22	312 days/yr	80%	98%	5	Actual
Food Service Retrofit	9	2.25 ⁵⁰⁵									
Grocery Retro	fit	2.15 ⁵⁰⁶									
IMPACT FACTOR	IMPACT FACTORS										
Measure/Type		ISR	RR _E ⁵⁰⁷	RR_D	CF _S			CF _W		FR ⁵⁰⁸	SO ⁵⁰⁹
All	1	.00%	100%	N/A		N/A		N/A		25%	0%

Table 22 - Hours per Day that the Pre-Rinse Spray Valve is used at Different Sites

Site	Hours ^{510,511} (hrs/day)
Small, quick-service restaurants	0.5
Medium-sized casual dining restaurants	1.5
Large institutional establishments with cafeteria	3.0
Grocery Store	0.1

⁴⁹⁷ The FSTC recommends a pre-rinse spray valve with a flow rate of 1.15 gallons per minute or less, and with a cleanability performance of 26 seconds per plate or less, based on the ASTM Standard Test Method for Performance of Pre-Rinse Spray Valves. http://www.fishnick.com/equipment/sprayvalves/

⁴⁹⁸ According to ASTM F2324 03 Cleanability Test the optimal operating conditions are at 120F discharge temperature.

⁴⁹⁹ Standard Building America DHW Schedules, weighted average by population of all Maine water main sources.

^{500 312} days/yr is based on an assumption of 6 days/week and 52 weeks/year

⁵⁰¹ Federal Standards for Commercial Gas Water Heaters. http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/51

⁵⁰² NREL, Building America Research Benchmark Definition, 2009, p.12, http://www.nrel.gov/docs/fy10osti/47246.pdf

⁵⁰³ Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), SBW Consulting, 2007, p. 30. http://www.allianceforwaterefficiency.org/WorkArea/DownloadAsset.aspx?id=976

⁵⁰⁴ The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 GPM at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. https://www3.epa.gov/watersense/products/prsv.html

⁵⁰⁵ Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), SBW Consulting, 2007, p. 30. http://www.allianceforwaterefficiency.org/WorkArea/DownloadAsset.aspx?id=976
506 Ibid.

⁵⁰⁷ This program is new and has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100% realization rate.

⁵⁰⁸ This program is new and has not yet been evaluated. Until the next program impact evaluation, standard assumption of 25% is to be used.

⁵⁰⁹ This program is new and has not yet been evaluated. Until the next program impact evaluation, standard assumption of 0% is to be used.

⁵¹⁰ Hours based on PG&E savings estimates, algorithms, sources (2005), Food Service Pre-Rinse Spray Valves with review of 2010 Ohio Technical Reference Manual and Act on Energy Business Program Technical Resource Manual Rev05.

⁵¹¹ Grocery Store duration from: Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), SBW Consulting, 2007, Table 3-6, p. 24. http://www.allianceforwaterefficiency.org/WorkArea/DownloadAsset.aspx?id=976

Compressed Air Equipment

									,	
Prescriptive Compressed		ficiency Air	Comp	ressor	s, Cod	les C1-	C4			
Last Revised Date	7/1/2013									
MEASURE OVERVIEW										
Description	This measur	e involves th	e purc	hase ar	nd insta	allation	of a high	n-effici	ency varia	ble
	frequency d	rive (VFD) or	load/r	no-load	air cor	mpresso	r.			
Primary Energy Impact	Electric									
Sector	Commercial	ommercial/Industrial								
Program(s)	C&I Prescrip	&I Prescriptive Program								
End-Use	Compressed	ompressed air								
Project Type	New constru	lew construction, Retrofit								
GROSS ENERGY SAVINGS A	LGORITHMS (UNIT SAVING	GS)							
Demand Savings	ΔkW	ΔkW = HP _{COMPRESSOR} × $\Delta kW/HP$								
Annual Energy Savings	∆kWh/yr	= HP _{COMF}	PRESSOR 3	× ΔkW/	HP × H	lours/W	eek × W	/eeks		
Definitions	Unit	= 1 new	compi	ressor						
	HP _{COMPRESSOR}	= HP of t	the pro	posed	compr	essor (ł	np)			
	ΔkW/HP	= Stipula	ated sa	vings p	er com	presso	based	on con	npressor s	ize (kW/hp)
	Hours/Weel	c = Total c	perati	ing hou	rs per	week (h	rs/week	()		
	Weeks	= Total c	perati	ing wee	eks per	year (w	eek/yr)			
EFFICIENCY ASSUMPTIONS										
Baseline Efficiency	Inlet modula	ation fixed-sp	eed co	ompres	sor. ⁵¹²					
Efficient Measure	VFD or load,	/no-load air c	ompre	essor.						
PARAMETER VALUES										
Measure/Type	HP	ΔkW/H	P I	Hours/\	Week	We	eks	Life	(yrs)	Cost (\$)
All	Actual	Table 2	3	Actu	ıal	Act	:ual	1	5 ⁵¹³	\$164/HP ⁵¹⁴
IMPACT FACTORS			•							
Program	ISR	RR_E	R	R_D	C	Fs	CF	W	FR	SO
C&I Prescriptive	100%	112.2%515	100)% ⁵¹⁶	Table	e 29 ⁵¹⁷	Table	29 ⁵¹⁷	52% ⁵¹⁸	1.6%519

⁵¹² Stipulated measure savings derived from 149 actual Efficiency Maine projects – inlet modulation fixed-speed compressors were the dominant baseline machines among this sample of projects.

⁵¹³ 2005 Measure Life Study prepared for the Massachusetts Joint Utility by Energy Resource Solutions (2005). Measure life study prepared for the Massachusetts Joint Utilities.

⁵¹⁴ Based on a correlation between measure cost and compressor horsepower using measure cost data from 149 custom compressed air projects completed by Efficiency Maine between 2007 and 2011.

⁵¹⁵ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁵¹⁶ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁵¹⁷ See Appendix C.

⁵¹⁸ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁵¹⁹ Ihid

Table 23 – Stipulated Savings per Compressor Based on Compressor Size⁵²⁰

Measure Code	НР	ΔkW/HP
C1	≤ 15	0.2556
C2	16 HP – 30 HP	0.2358
C3	31 HP – 60 HP	0.2154
C4	> 60 HP	0.1861

⁵²⁰ (kW/HP) values are derived from 149 actual custom compressed air projects completed by Efficiency Maine between 2007 and 2011.

Prescriptive Compressed	d Air: High-E	fficiency Dry	yers,	Codes					<u>, , , , , , , , , , , , , , , , , , , </u>	ryers, codes cio cio
Last Revised Date	7/1/2017									
MEASURE OVERVIEW										
Description	This measure involves the purchase and installation of high-efficiency cycling or VFD-equipped refrigerated air dryers. The dryers must be properly sized and equipped with automated controls that cycle the refrigerant compressor (or reduce the output for VFD modes) in response to compressed air demand.									
Primary Energy Impact	Electric									
Sector	Commercial	Commercial/Industrial								
Program(s)	C&I Prescriptive Program									
End-Use	Compressed air									
Project Type	New construction, Retrofit									
GROSS ENERGY SAVINGS ALGORITHMS (UNIT SAVINGS)										
Demand Savings	ΔkW	$= CFM_{DRY}$	$= CFM_{DRYER} \times \Delta kW/CFM$							
Annual Energy Savings	∆kWh/yr	$= CFM_{DRY}$	= $CFM_{DRYER} \times \Delta kW/CFM \times Hours/Week \times Weeks$							
Definitions	Unit	= 1 new dryer								
	CFM _{DRYER}		= Full-flow rated capacity of refrigerated air dryer (CFM)							
	ΔkW/CFM	= Stipulated input power reduction per full-flow rating (CFM) of dryer (kW/CFM)) of dryer			
	Hours/Weel	•	= Total operating hours per week (hrs/week)							
	Weeks	= Total operating weeks per year (week/yr)								
EFFICIENCY ASSUMPTIONS	S									
Baseline Efficiency	Non-cycling refrigerated air dryer.									
Efficient Measure	High-efficiency cycling or VFD-equipped refrigerated air dryer.									
PARAMETER VALUES										
Measure/Type	CFM _{DRYER}	ΔkW/CF	M	Hours/\	Week We					Cost (\$)
All	Actual	Table 2	4	Actual		Act	Actual 1		5 ⁵²¹	\$6.54/CFM ⁵²²
IMPACT FACTORS	,									
Program	ISR	RR_E		RR _D		CFs		CF _W		SO
C&I Prescriptive	100%	112.2% ⁵²³	10	00% ⁵²⁴	Table	e 29 ⁵²⁵	Table	29 ⁵²⁵	52% ⁵²⁶	1.6%527

Table 24 – Input Power Reduction per Full-Flow Rating (CFM) of Dryer⁵²⁸

Measure Code	Dryer CFM	ΔkW/CFM			
C10	< 100	0.00474			
C11, C12	≥ 100 and < 200	0.00359			
C13, C14	≥ 200 and < 300	0.00316			
C15	≥ 300 and < 400	0.00290			
C16	≥ 400	0.00272			

⁵²¹ 2005 Measure Life Study prepared for the Massachusetts Joint Utility by ERS.

⁵²² Based on historical measure cost for EMT projects, provided by Greg Scott, Trask-Decrow Machinery.

⁵²³Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

 $^{^{524}}$ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁵²⁵ See Appendix C.

⁵²⁶ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁵²⁷ Ibid.

⁵²⁸ Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2013-2015 Program Years – Plan Version, October 2012, Page 262.

Prescriptive Compresse	d Air: Receive	rs, Codes C	C20-C27		<u> </u>			
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description	system to din	his measure involves the installation of appropriately sized receivers in a compressed air stem to diminish the downstream drop in pressure that results from surges in demand, iminating the need for artificially high compressor output pressure. Note: When there is						
			city in a compre					
		• .	natic dips in the	•	. •	•		
	•		r output pressui		•	•		
			the desired leve		to artificially i	iigii icvcis t	o sastani	
Primary Energy Impact	Electric	pressure at	the desired leve					
Sector	Commercial/I	ndustrial						
Program(s)	C&I Prescripti	ve Program						
End-Use	Compressed a	air						
Project Type	New construc							
GROSS ENERGY SAVINGS	ALGORITHMS (UNIT SAVIN	IGS)					
Demand Savings	ΔkW		$_{\rm RESSOR} \times 0.746 \times 10^{-1}$					
Annual Energy Savings	∆kWh/yr	= HP _{COMP}	$_{\rm RESSOR} \times 0.746 \times 10^{-1}$	Δpsi / 2 × SAVI	E × Hours/Wee	ek × Weeks		
Definitions	Unit	= 1 air re						
	HP _{COMPRESSOR}		essor horsepow					
	Δpsi	_	e reduction in s		., ,			
	SAVE	_	e percentage d				•	
	Hours/Week		ompressed air s			-	•	
	Weeks		ompressed air s		ing weeks per	year (week,	/yr)	
FEELCHENCY ACCUMANTION	0.746	= Conver	rsion: 0.746 kW	per np				
EFFICIENCY ASSUMPTIONS			.:46 :000		-:4			
Baseline Efficiency Efficient Measure	•	•	vith inadequate vith receivers in:			oly sizod ro	coiver	
Efficient Measure	•	•	set point on sy			lely sizeu re	ceivei	
PARAMETER VALUES	capacity allow	ring a lower	set point on sy	stem pressure	•			
Measure/Type	HP _{COMPRESSOR}	HP _{COMPRESSOR} Δpsi Hours/Week Weeks SAVE Life (yrs) Cost (\$)						
All	Actual	5 ⁵²⁹	Actual	Actual	1%/2 psi ⁵³⁰	10 ⁵³¹	Table 25	
IMPACT FACTORS	1				, 15-5	1		
Program	ISR	RR _E RR _D CF _S CF _W FR SO						
C&I Prescriptive	100%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

⁵²⁹ Compressed air systems generally range in operating pressure from 105 psi to 115 psi and since most compressed air end uses do not require pressure higher than 100psi, 5psi is a conservative maximum pressure drop available to systems lacking in storage capacity based on achieved results from previous Efficiency Maine projects.

⁵³⁰ Rule of thumb from Paul Shaw at Scales Industrial Technologies and the instructor of the Compressed Air Challenge course: 1% demand reduction for every 2 psi system pressure reduction.

⁵³¹ 2012 Technical Reference User Manual, Efficiency Vermont, 12/19/12, page 193.

⁵³² Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

 $^{^{533}}$ RR $_{\text{D}}$ used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁵³⁴ See Appendix C.

⁵³⁵ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁵³⁶ Ibid.

Table 25 – Measure Cost for Compressed Air Receivers⁵³⁷

Measure Code	Added Capacity (Gallons)	Cost (\$)
C20	60	\$360 ^A
C21	80	\$630
C22	120	\$1,058
C23	200	\$1,418
C24	240	\$1,463
C25	400	\$2,195
N/A	500	\$3,360
C26	660	\$5,327
C27	1060	\$7,492

^A Cost data projected based on correlation between cost and HP for other size levels.

 $^{^{\}rm 537}$ Cost data provided by Greg Scott, Trask-Decrow Machinery.

Prescriptive Compressed	d Air: Low Pr	essure D	rop Filters, C	•	B	<u> </u>		
Last Revised Date	7/1/2013							
MEASURE OVERVIEW								
Description	This measur	e involves	the purchase	and installation	n of low pressu	re drop (LP	D) filters in	
	compressed	air system	ns to remove	oil particulates	or other conta	minates fro	m the	
	compressed	air at the	front end of t	he distribution	system. The re	duction in p	oressure drop	
	across these	filters tra	nslates direct	ly to an allowab	le reduction in	the output	pressure set	
	point of the	compress	or.					
Primary Energy Impact	Electric							
Sector	Commercial	/Industrial						
Program(s)	C&I Prescrip	tive Progr	am					
End-Use	Compressed	lair						
Project Type	New constru	ıction, Ret	rofit					
GROSS ENERGY SAVINGS A	ALGORITHMS	(UNIT SAV	/INGS)					
Demand Savings	Δ kW	= HP _{cc}	MPRESSOR × 0.74	16 × Δpsi / 2 × S	AVE			
Annual Energy Savings	∆kWh/yr	= HPcc	MPRESSOR × 0.74	16 × Δpsi / 2 × S	AVE × HoursW	k × Weeks		
Definitions	Unit	= 1 lov	v pressure dro	op filter				
	HP _{COMPRESSOR}	= Com	pressor horse	epower (hp)				
	Δpsi	= Calc	ulated system	pressure reduc	ction per LDP fi	ilter (psi)		
	SAVE	= Aver	age percenta	ge demand red	uction per pres	ssure drop (%/psi)	
	HoursWk	= Tota	I compressed	air system ope	rating hours pe	er week (hr	s/week)	
	Weeks	= Tota	I compressed	air system ope	rating weeks p	er year (we	ek/yr)	
	0.746	= Conv	version: 0.746	kW per hp				
EFFICIENCY ASSUMPTIONS	5							
Baseline Efficiency	Compressed	l air systen	n with standa	rd filters (that r	esult in a large	drop in pre	ssure as air	
	passes throu	ıgh filter).						
Efficient Measure	Compressed	l air systen	n with low-pre	essure drop filte	ers.			
PARAMETER VALUES								
Measure/Type	HP _{COMPRESSR}	Δpsi SAVE Hours/Week Weeks Life (yrs) Cost (\$)						
All	Actual	Actual 2 ⁵³⁸ 1%/2 psi ⁵³⁹ Actual Actual 4 ⁵⁴⁰ \$4.60/HP ⁵⁴¹						
IMPACT FACTORS	,		,	,	,			
Program	ISR	RR_E	RR _D	CF _S	CF _W	FR	SO	
C&I Prescriptive	100%	112.2% 542	100% ⁵⁴³	Table 29 ⁵⁴⁴	Table 29 ⁵⁴⁴	52% ⁵⁴⁵	1.6% ⁵⁴⁶	

⁵³⁸ Based on information derived from the Compressed Air Challenge and confirmed with Trask-Decrow Machinery.

⁵³⁹ Rule of thumb from Paul Shaw at Scales Industrial Technologies and the instructor of the Compressed Air Challenge course: 1% demand reduction for every 2 psi system pressure reduction.

⁵⁴⁰ Rhode Island Technical Reference, 2012 Program Year. EMT uses the average of measure life for retrofit (3 years) and for new construction (5 years).

⁵⁴¹ Based historical measure cost data for EMT projects, provided by Greg Scott, Trask-Decrow Machinery.

 $^{^{\}rm 542}$ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁵⁴³ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁵⁴⁴ See Appendix C.

 $^{^{545}}$ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁵⁴⁶ Ihid

Prescriptive Compresse	d Air. Air-En	training No	عماده	Code	40				ing Nozzies, code C40
Last Revised Date	7/1/2017	training No.	22163	s, coue c	40				
MEASURE OVERVIEW	//1/201/								
	This mass are	. :			ا مدمد ا	ماداه	of air autro	:.:	+ + h
Description			•					•	to reduce the
							is, while ma	intaining per	ormance by
<u> </u>	inducing the	TIOW OT AIR SU	irrou	inding th	e nozzie	₹.			
Primary Energy Impact	Electric								
Sector	Commercial/								
Program(s)	C&I Prescript								
End-Use	Compressed								
Project Type	New constru	•							
GROSS ENERGY SAVINGS	ALGORITHMS	(UNIT SAVIN	IGS)						
Demand Savings	ΔkW	$= \Delta kW_{NOZZLE} >$	< %U	se					
Annual Energy Savings	∆kWh/yr	$= \Delta kW_{NOZZLE}$	۷% v	se × Hou	rsWk ×	Weeks	5		
Definitions	Unit	= 1 nozzle							
	Δ k W_{NOZZLE}	= Average de	man	nd savings	per no	zzle (k	:W)		
	HoursWk	= Weekly ho	ırs o	f operati	on (hrs/	/week))		
	Weeks	= Weeks per	year	of opera	tion (w	eeks/y	r)		
	% Use	= % of comp	esso	or operati	ng hou	rs whe	n nozzle is	n use (%)	
EFFICIENCY ASSUMPTION	IS								
Baseline Efficiency	Compressed	air system w	ith s	tandard r	ozzles	(witho	ut air-entra	ining design)	•
Efficient Measure	Compressed	air system w	ith a	ir-entrair	ing noz	zzles.			
PARAMETER VALUES	•	•							
Measure/Type	Δ k W_{NOZZLE}	Hours/We	eek	Wee	ks	%	Use	Life (yrs)	Cost (\$)
All	Table 26	Actual		Actu	al	59	% ⁵⁴⁷	10 ⁵⁴⁸	14 ⁵⁴⁹
IMPACT FACTORS									
Program	ISR	RR_E		RR_D	CF	s	CFw	FR	SO
C&I Prescriptive	100%	112.2% ⁵⁵⁰							

⁵⁴⁷ Assume 5% based on an average of 3 seconds per minute. Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor runtime is assumed. Stationary air nozzles are commonly more wasteful, as they are often mounted on machine tools and can be manually operated, resulting in the possibility of a long-term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor runtime is used. From 2012 Technical Reference User Manual, Efficiency Vermont, 12/19/12, page 184.

⁵⁴⁸ 2012 Technical Reference User Manual, Efficiency Vermont, 12/19/12, page 186.

⁵⁴⁹ 2010 Ohio Technical Reference Manual, Vermont Energy Investment Corp, August 6, 2010, pages 226–227.

 $^{^{550}}$ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁵⁵¹ RRD used to adjust Summer and Winter CF to account for BIP program evalution findings as presented in Appendix D.

⁵⁵² See Appendix C.

⁵⁵³ Nexant, Business Incentive Program Process Evaluation, Published October 31, 2016, page 58.

⁵⁵⁴ Ihid

Table 26 – Stipulated Savings for Standard Nozzle vs. Air-Entraining Nozzle CFM

Size	Standard Nozzle CFM ^A	Air-Entraining Nozzle CFM ^B	Δ kW/CFM ^B	Δ kW nozzle ^C
1/8"	21	6	0.19	2.85
1/4"	58	11	0.15	7.05

^A Machinery's Handbook, 25th Ed. Ed by Erik Oberg (Et Al). Industrial Press, Inc. ISBN-10: 0831125756

^B 2010 Ohio Technical Reference Manual, Vermont Energy Investment Corp, August 6, 2010 Pg 226-227.

 $^{^{\}text{C}} \Delta kW_{\text{NOZZLE}} = (Flow_{\text{Standard}} - Flow_{\text{AE}}) \times \Delta kW/CFM$

Thermal Envelope

Multifamily Attic/Roo	f/Ceiling Insul	ation (MIA)							
Last Revised Date	8/1/2017 (new	measure)							
MEASURE OVERVIEW									
Description	floor must also	nis measure involves the insulation of the attic floor to decrease heating and cooling losses. The attic por must also be air-sealed prior to insulation application. The total savings below reflect savings due the added insulation and improved air sealing.							
Energy Impacts	Natural Gas								
Sector	Residential/Co	mmercial							
Program(s)	Low Income								
End-Use	Heating, Coolin	g							
Decision Type	Retrofit	<u> </u>							
GROSS ENERGY SAVINGS A		NIT SAVINGS)							
Demand savings	If mechanical c	ooling equipment is present							
	$\Delta kW_{SP} = \Delta kWh$	x LSF _{SP}							
Annual Energy savings	Δ MMBtu _{NG} = Δ	MMBtu _{HEAT} / EFF							
	If mechanical c	ooling equipment is present							
	Δ kWh = Δ MME	Stucool / EER x 1000							
	ΔMMBtu _{HEAT} =HDD x 24 x [SQFT x (1/RVAL _{PRE} + 1/ RVAL _{POST}) + ΔCFM50 x 14.8 x 0.018 x 60]/1,000,000								
	∆MMBtu _{cool} =	CDD x 24 x [SQFT x (1/RVAL _{PRE} + 1/ RVAL _{POST}) + ΔCFM50 x 14.8 x 0.018 x 60] /1,000,000							
Definitions	Unit	= Attic/roof insulation project							
	Δ MMBtu _{HEAT}	= Reduction in annual heat loss due to improved insulation and associated air sealing							
	∆MMBtucool	= Reduction in annual heat gain due to improved insulation and associated air sealing							
	EFF	= Efficiency factor of heating system (Btu/Btu)							
	EER	= Energy-efficiency ratio of cooling system (Btu/Wh)							
	1000	= Conversion factor (kW/MW)							
	HDD	= Heating Degree Days (°F days)							
	CDD	= Cooling Degree Days (°F-days)							
	24	=Conversion factor (hours/day)							
	SQFT	= Area of attic insulation (ft²) assumed in temperature bin analysis							
	RVALPRE	= Pre-upgrade attic R-value (ft²-°F-hr/Btu) assumed in temperature bin analysis							
	RVAL _{POST}	= Post-upgrade attic R-value (ft²-°F-hr/Btu) assumed in temperature bin analysis							
	∆CFM50	= Change in air infiltration measured at 50 Pascals (ft³/minute)							
	14.8	= LBNL Conversion factor (CFM50/CFM _{natural})							
	0.018 = Heatloss from air infiltration (Btu/CFM _{natural} /°F)								
	60	= Conversion factor (minutes/hour)							
	1,000,000	= Conversion factor (MMBtu/Btu)							
	LSF _{SP}	= Summer peak load shape factor (kW/kWh/yr)							
EFFICIENCY ASSUMPTIONS	1								
Baseline Efficiency	The baseline is	the existing (pre-upgrade) insulation							
Efficient Measure	The high-efficie	ency case is the upgraded insulation							

Multifamily Attic/Roo	f/Ceiling Insula	ation (MIA)							
PARAMETER VALUES (DEE	MED)								
Measure	EFF ⁵⁵⁵	EER ⁵⁵⁶	HDD ⁵⁵⁷	С	DD ⁵⁵⁸	Life (yrs)) 559	Cos	t (\$) ⁵⁶⁰
Attic/Roof Insulation	Actual or 80.5	Actual or 9	ctual or 9.8 9350 229 25				4/[1000 ft ²]		
Measure	SQFT ⁵⁶¹	RVAL _{PRE} 56	2 RVAL _{POST} ⁵⁶	3	ΔCFN	150 ⁵⁶⁴		LS	F _{SP} ⁵⁶⁵
Attic/Roof Insulation	Actual	Actual	Actual	А	ctual or 39	2/[1000 ft ²]		0.0	00176
IMPACT FACTORS							•		
Program	ISR ⁵⁶⁶	RRe ⁵⁶⁷	RR _D ⁵⁶⁷	CFs ⁵⁶⁸		CFw ⁵⁶⁸	FR	569	SO ⁵⁷⁰
Low Income Initiatives	100%	100%	100%	100%		100%	0	%	0%

⁵⁵⁵ If actual heating system efficiency is unknown use stated value. Stated value is for a representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁵⁵⁶ If actual cooling equipment efficiency is unknown use stated value. Stated value is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F: http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is about 9 years, most units will meet this standard.

⁵⁵⁷ Heating Degree Days based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) with an indoor heating design temperature of 70°. A higher indoor heating design temperature was selected for attic insulation to account for temperature stratification within the building.

⁵⁵⁸ Cooling Degree Days based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) with an indoor cooling design temperature of 70°.

⁵⁵⁹ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁵⁶⁰ Average cost of sampled 2016 projects where attic insulation was itemized separately on contractor invoice (N=58).

⁵⁶¹ Actual square footage of insulation installed. This value should exclude area not insulated due to structures and framing.

⁵⁶² Actual R-value for existing attic floor construction including insulation, sheathing and other construction materials

⁵⁶³ Actual resulting R-value from insulation installation including insulation, sheathing and other construction materials

⁵⁶⁴ If blower door test results are not available use stated ΔCFM50 value per 1000 square feet insulated. Stated value is based on FY16 project blower-door tests for projects consisting of only air sealing and attic insulation minus the average CFM50 reduction of air sealing only projects.

⁵⁶⁵ Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins

 $^{^{566}}$ EMT assumes insulation is fully installed (i.e. ISR = 100%).

⁵⁶⁷ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵⁶⁸ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁵⁶⁹ Program assumes no free ridership for Low Income Initiatives

⁵⁷⁰ Program not yet evaluated, assume default SO of 0%.

Multifamily Wall Insul	ation (MIW)						
Last Revised Date	8/1/2017 (new measure)						
MEASURE OVERVIEW	6/1/2017 (flew fileasure)						
Description Description	is measure involves the insulation of wall cavaties to decrease heating and cooling losses. The walls ust also be air-sealed prior to insulation application. The total savings below reflect savings due to the ded insulation and improved air sealing.						
Energy Impacts	Natural Gas						
Sector	Residential/Commercial						
Program(s)	Low Income						
End-Use	Heating, Cooling						
Decision Type	Retrofit						
	LGORITHMS (UNIT SAVINGS)						
Demand savings	If mechanical cooling equipment is present $\Delta kW_{SP} = \Delta kWh \times LSF_{SP}$						
Annual Energy savings	$ \Delta MMBtu_{NG} = \Delta MMBtu_{HEAT} / EFF $ If mechanical cooling equipment is present $ \Delta kWh = \Delta MMBtu_{COOL} / EER \times 1000 $ $ \Delta MMBtu_{HEAT} = HDD \times 24 \times [SQFT \times (1/RVAL_{PRE} + 1/RVAL_{POST}) + \Delta CFM50 \times 14.8 \times 0.018 \times 60]/1,000,000 $ $ \Delta MMBtu_{COOL} = CDD \times 24 \times [SQFT \times (1/RVAL_{PRE} + 1/RVAL_{POST}) + \Delta CFM50 \times 14.8 \times 0.018 \times 60]/1,000,000 $						
Definitions	Unit= Attic/roof insulation projectΔMMBtuHEAT= Reduction in annual heat loss due to improved insulation and associated air sealingΔMMBtuCOOL= Reduction in annual heat gain due to improved insulation and associated air sealingEFF= Efficiency factor of heating system (Btu/Btu)EER= Energy-efficiency ratio of cooling system (Btu/Wh)1000= Conversion factor (kW/MW)HDD= Heating Degree Days (°F-days)CDD= Cooling Degree Days (°F-days)24= Conversion factor (hours/day)SQFT= Area of attic insulation (ft²) assumed in temperature bin analysisRVALPRE= Pre-upgrade attic R-value (ft²-°F-hr/Btu) assumed in temperature bin analysisACFM50= Change in air infiltration measured at 50 Pascals (ft³/minute)14.8= LBNL Conversion factor (CFM50/CFMnatural)0.018= Heatloss from air infiltration (Btu/CFMnatural)1,000,000= Conversion factor (MMBtu/Btu)LSFsP= Summer peak load shape factor (kW/kWh/yr)						
EFFICIENCY ASSUMPTIONS							
Baseline Efficiency	The baseline is the existing (pre-upgrade) insulation						
Efficient Measure	The high-efficiency case is the upgraded insulation						

Multifamily Wall Insul	ation (MIW)								
PARAMETER VALUES (DEE	MED)								
Measure	EFF ⁵⁷¹	EER ⁵⁷²	HDD ⁵⁷³		CDD ⁵⁷⁴	Life	(yrs) ⁵⁷⁵	Cos	st (\$) ⁵⁷⁶
Attic/Roof Insulation	Actual or 80.5	Actual or 9	0.8 7777		229		25	1	2/[1000 ft ²]
Measure	SQFT ⁵⁷⁷	RVAL _{PRE} 57	8 RVAL _{POST} 57	'9		∆CFM50 ⁵⁸⁰		LS	F _{SP} ⁵⁸¹
Attic/Roof Insulation	Actual	Actual	Actual		Actual	or 710/[1000	ft ²]	0.0	00176
IMPACT FACTORS									
Program	ISR ⁵⁸²	RRe ⁵⁸³	RR_D^567	(CFs ⁵⁸⁴	CFw ⁵⁶⁸	F	R ⁵⁸⁵	SO ⁵⁸⁶
Low Income Initiatives	100%	100%	100%	:	100%	100%		0%	0%

⁵⁷¹ If actual heating system efficiency is unknown use stated value. Stated value is for a representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁵⁷² If actual cooling equipment efficiency is unknown use stated value. Stated value is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F: http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is about 9 years, most units will meet this standard.

⁵⁷³ Heating Degree Days based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) with an indoor heating design temperature of 65°.

⁵⁷⁴ Cooling Degree Days based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) with an indoor cooling design temperature of 70°.

⁵⁷⁵ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁵⁷⁶ Average cost of sampled 2016 projects where wall insulation was itemized separately on contractor invoice (N=42).

⁵⁷⁷ Actual square footage of insulation installed. This value should exclude area not insulated due to structures and framing.

⁵⁷⁸ Actual R-value for existing attic floor construction including insulation, sheathing and other construction materials

⁵⁷⁹ Actual resulting R-value from insulation installation including insulation, sheathing and other construction materials

 $^{^{580}}$ If blower door test results are not available use stated Δ CFM50 value per 1000 square feet insulated. Stated value is based on FY16 project blower-door tests for projects consisting of only air sealing and attic insulation minus the average CFM50 reduction of air sealing only projects.

⁵⁸¹ Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins

 $^{^{582}}$ EMT assumes insulation is fully installed (i.e. ISR = 100%).

⁵⁸³ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁵⁸⁴ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁵⁸⁵ Program assumes no free ridership for Low Income Initiatives

⁵⁸⁶ Program not yet evaluated, assume default SO of 0%.

Multifamily Basement	Inculation (N	IID)						
-		•						
Last Revised Date	8/1/2017 (new	measure)						
MEASURE OVERVIEW								
Description		nvolves the insulation of the rim joist and the basement wall (at least 2 feet below grade)						
		ith 1" spray foam to decrease heating losses. The rim joist must also be air-sealed prior to insulation						
	• •	e total savings below reflect savings due to the added insulation and improved air sealing.						
Energy Impacts	Natural Gas							
Sector	Residential/Cor	mmercial						
Program(s)	Low Income							
End-Use	Heating, Coolin	g						
Decision Type	Retrofit							
GROSS ENERGY SAVINGS A	LGORITHMS (UN	NIT SAVINGS)						
Demand savings	If mechanical co	ooling equipment is present						
	$\Delta kW_{SP} = \Delta kWh$	x LSF _{SP}						
Annual Energy savings	Δ MMBtu _{NG} = Δ	MMBtu _{HEAT} / EFF						
0.		ooling equipment is present						
		Stucool / EER x 1000						
	ΛΜΜΒτυ _{μεδτ} =Η	HDD x 24 x [SQFT x (1/RVAL _{PRE} + 1/ RVAL _{POST}) + ΔCFM50 x 14.8 x 0.018 x 60]/1,000,000						
	Δ MMBtu _{COOL} = CDD x 24 x [SQFT x (1/RVAL _{PRE} + 1/RVAL _{POST}) + Δ CFM50 x 14.8 x 0.018 x 60] /1,000,000							
Definitions	Unit	= Attic/roof insulation project						
Beminions	Δ MMBtu _{HEAT}	= Reduction in annual heat loss due to improved insulation and associated air sealing						
	∆MMBtucool	= Reduction in annual heat gain due to improved insulation and associated air sealing						
	EFF	= Efficiency factor of heating system (Btu/Btu)						
	EER	= Energy-efficiency ratio of cooling system (Btu/Wh)						
	1000	= Conversion factor (kW/MW)						
	HDD	= Heating Degree Days (°F·days)						
	CDD	= Cooling Degree Days (*F-days)						
	24	=Conversion factor (hours/day)						
	SQFT	= Area of attic insulation (ft²) assumed in temperature bin analysis						
	RVAL _{PRE}	= Pre-upgrade attic R-value (ft²-°F-hr/Btu) assumed in temperature bin analysis						
	RVAL _{POST}	= Post-upgrade attic R-value (ft²-°F-hr/Btu) assumed in temperature bin analysis						
		= Change in air infiltration measured at 50 Pascals (ft ³ /minute)						
	14.8	= Heatloss from air infiltration (Btu/CFM _{natural} /°F)						
	0.018	= Conversion factor (minutes/hour)						
	1 000 000	= Conversion factor (MMBtu/Btu)						
	1,000,000	= Summer peak load shape factor (kW/kWh/yr)						
EEEICIENICV ACCUMADTIONIC	LSF _{SP}	- Summer peak load shape factor (kwy/kwhi/yi/						
EFFICIENCY ASSUMPTIONS		the existing language to a subting						
Baseline Efficiency		the existing (pre-upgrade) insulation						
Efficient Measure	The high-efficie	ency case is the upgraded insulation						

Multifamily Basement	Insulation (M	IB)						
PARAMETER VALUES (DEE	MED)							
Measure	EFF ⁵⁸⁷	EER ⁵⁸⁸	HDD ⁵⁸⁹	CDD ⁵⁹⁰	Life (yrs) 591	Cost	t (\$) ⁵⁹²
Attic/Roof Insulation	Actual or 80.5	Actual or 9.	Actual or 9.8 3954		25	25 1,1		7/[1000 ft ²]
Measure	SQFT ⁵⁹³	RVAL _{PRE} 594	RVAL _{POST} ⁵⁹	5	$\Delta CFM50^{596}$		LS	F _{SP} ⁵⁹⁷
Attic/Roof Insulation	Actual	Actual	Actual	Actual	or 259/[1000 ft ²]]	0.0	0176
IMPACT FACTORS								
Program	ISR ⁵⁹⁸	RR _E ⁵⁹⁹	RR_D^567	CFs ⁶⁰⁰	CFw ⁵⁶⁸	FR ⁶⁰	1	SO ⁶⁰²
Low Income Initiatives	100%	100%	100%	100%	100%	0%		0%

⁵⁸⁷ If actual heating system efficiency is unknown use stated value. Stated value is for a representative heating system efficiency based on NMR Group, Maine Single-Family Residential Baseline Study, September 14, 2015.

⁵⁸⁸ If actual cooling equipment efficiency is unknown use stated value. Stated value is set to the federal standard of 9.8 according to DOE Federal Test Procedure 10 CFR 430, Appendix F: http://buildingsdatabook.eere.energy.gov/TableView.aspx?table=7.5.1. The code was effective for products manufactured on or after October 1, 2000. Since the measure life for room air-conditioners is about 9 years, most units will meet this standard.

⁵⁸⁹ Heating Degree Days based on weighted temperature bin analysis using TMY3 temperature bins for Portland (71.2%), Bangor (23.4%) and Caribou (5.4%) with an indoor heating design temperature of 50°. A lower indoor design temperature was selected for basement insulation to account for temperature stratification within the building and assumes an unheated basement.

⁵⁹⁰ It is assumed that the basement is not air conditioned and heat gain through the basement wall does not contribute to the cooling load of the building.

⁵⁹¹ GDS Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for the New England State Program Working Group, June 2007; Table 1.

⁵⁹² Average cost of sampled 2016 projects where basement insulation was itemized separately on contractor invoice (N=42).

⁵⁹³ Actual square footage of insulation installed. This value should exclude area not insulated due to structures and framing.

⁵⁹⁴ Actual R-value for existing attic floor construction including insulation, concrete and other construction materials

⁵⁹⁵ Actual resulting R-value from insulation installation including insulation, concrete and other construction materials

 $^{^{596}}$ If blower door test results are not available use stated Δ CFM50 value per 1000 square feet insulated. Stated value is based on FY16 project blower-door tests for projects consisting of only air sealing and attic insulation minus the average CFM50 reduction of air sealing only projects.

⁵⁹⁷ Based on temperature bin analysis of ductless heat pump seasonal cooling using TMY3 temperature bins

 $^{^{598}}$ EMT assumes insulation is fully installed (i.e. ISR = 100%).

⁵⁹⁹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶⁰⁰ Peak coincidence factors for this measure are embedded in the evaluated peak demand impacts.

⁶⁰¹ Program assumes no free ridership for Low Income Initiatives

⁶⁰² Program not yet evaluated, assume default SO of 0%.

Commercial Laundry Equipment

Last Revised Date	8/1/2017 (new measure)					
MEASURE OVERVIEW	O/1/2017 (New Measure)					
Description	This measure involves the purchase and installation of a new ENERGY STAR®-certified clothes washer in					
	place of an existing top load clothes washer.					
	The associated water heater and clothes dryer must be natural gas.					
Energy Impacts	Natural Gas					
Sector	Residential/Commercial					
Program(s)	Low Income					
End-Use	Process					
Decision Type	Retrofit					
DEEMED GROSS ENERGY S	AVINGS (UNIT SAVINGS)					
Demand savings	$\Delta kW = 0.108$ $\Delta kW_{SP} = 0.005$ $\Delta kW_{WP} = 0.007$					
Annual energy savings	Δ kWh/yr = 105					
	Δ MMBtu _{GAS} /yr = 6.624					
Annual water savings	Δ Gallons/yr = 17,320					
GROSS ENERGY SAVINGS A	LEGORITHMS (UNIT SAVINGS)					
Demand savings	$kW = \Delta kWh/yr / Loads^{603}$					
Annual Energy savings	$\Delta kWh/yr = CAP_{EE} \times Loads \times [(1/IMEF_{BASE}) \times \%E_{MACHINE_B} - (1/IMEF_{EE}) \times \%E_{MACHINE_EE}]$					
0, 0	ΔMMBtugas/yr = CAPee × Loads × [(1/IMEFBASE) × (%EDHW_B + %EDRYER_B × %Dried) – (1/IMEFee) × (%EDHW_EE					
	+ %E _{DRYER_EE} × %Dried)] × 0.003412 / Eff _{GAS}					
Annual water savings	$\Delta Gallons/yr = CAP_{EE} \times (IWF_{BASE} - IWF_{EE}) \times Loads$					
Definitions	Unit = 1 clothes washer					
	CAP _{EE} = Rated capacity of the installed clothes washer (ft ³)					
	Loads = Washer loads per year (cycles/yr)					
	IMEF _{BASE} = Rated Integrated Modified Energy Factor for baseline model (ft ³ /kWh/cycle)					
	IMEF _{EE} = Rated Integrated Modified Energy Factor for ENERGY STAR® model (ft ³ /kWh/cycle)					
	%E _{MACHINE_B} = Percentage of baseline clothes washer system energy used for washer machine					
	%E _{MACHINE EE} = Percentage of ENERGY STAR® clothes washer system energy used for washer machine					
	%Е _{DHW_В} = Percentage of baseline clothes washer system energy used for water heating					
	%EDHW_EE = Percentage of ENERGY STAR® clothes washer system energy used for water heating					
	%Edryer_B = Percentage of baseline clothes washer system energy used for the clothes dryer					
	%E _{DRYER EE} = Percentage of ENERGY STAR® clothes washer system energy used for the clothes drye					
	%Dried = Percentage of washed loads that are dried in dryer (%)					
	Eff _{GAS} = Efficiency of existing gas-fired water heaters (%)					
	IWF _{BASE} = Rated integrated water factor for the baseline clothes washer (gallons/cycle/ft ³)					
	IWF _{EE} = Rated integrated water factor for the ENERGY STAR® clothes washer (gallons/cycle/ft ³					
	0.003412 = Conversion factor: 0.003412 MMBtu per kWh					
EFFICIENCY ASSUMPTIONS						
Baseline Efficiency	The baseline is a standard top loading clothes washer. The current federal standard requires a minimum					
,	IMEF of 1.29 and IWF of 8.4 for top loading machines. These standards are valid for clothes washers					
	manufactured on or after March 7, 2015. New standards become effective January 1, 2018.					
Efficient Measure	ENERGY STAR®-certified front loading clothes washer.					

 $^{^{\}rm 603}$ Demand savings algorithm assumes that the average load time is one hour.

Multifamily Common A	Multifamily Common Area Clothes Washer (MCW)												
PARAMETER VALUES (DEEMED)													
Measure	CAP _{EE} ⁶⁰⁴	Load	ds ⁶⁰⁵	IMEF	ASE 606	IMEFEE	607	Life (yrs) 608	Cost (\$)			
	3.81	96	7.2	1.29		2.38		11		Actual			
	%E _{MACHINE_B} 609	%E _{MACHINE}	_EE 610	%E _{DRYER_B} ⁶¹	.1 %	DRYER_EE 612	%E _D	%Е _{DHW_В} ⁶¹³		%E _{DHW_EE} 614			
ENERGY STAR® CW	8%	8%		61%		69%		31%		23%			
	Eff _{GAS} ⁶¹⁵	%Dried	616	IWF _{BASE} 617	'	IWF _{EE} 618							
	Actual or 62%	100%		8.4		3.7							
IMPACT FACTORS													
Program	ISR ⁶¹⁹	RRe ⁶²⁰	RF	R _D ⁶²¹	CFs	622	CFw ⁶²³	3	FR ⁶²⁴	SO ⁶²⁵			
Low Income Initiatives	100%	100%	10	00%	4.89	%%	6.3%		0%	0%			

⁶⁰⁴ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-13.

⁶⁰⁵ Assumed to be 3 times the average number of loads for a single family home with one clothes washer provided for every three apartments

⁶⁰⁶ Federal Standard for Top Loading units

⁶⁰⁷ ENERGYSTAR® criteria for Front Loading units

⁶⁰⁸ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-18.

⁶⁰⁹ Illinois Statewide TRM Effective 06/01/15.

⁶¹⁰ Ibid.

⁶¹¹ Ibid.

⁶¹² Ibid.

⁶¹³ Ibid.

⁶¹⁴ Ibid.

⁶¹⁵ EMT assumes 62 percent efficiency for existing natural gas-fired water heaters based on an autmospheric, storage tank water heater.

⁶¹⁶ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 40: consistent with implicit assumption used in the savings algorithm for clothes washers.

⁶¹⁷ Federal Standard for Top Loading units

⁶¹⁸ ENERGYSTAR® criteria for Front Loading units

⁶¹⁹ EMT assumes all units are installed (i.e. ISR = 100%).

⁶²⁰ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶²¹ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶²² Derived from summer peak demand NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, p. 45

⁶²³ Derived from winter peak demand Memo provided to supplement NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014

⁶²⁴ Program assumes no free ridership for Low Income Initiatives

⁶²⁵ Program not yet evaluated, assume default SO of 0%.

2.5 1.15 11 0			15.5.5								·
Multifamily Common			•								
Last Revised Date	8/1/2017 (nev	v mea	sure)								
MEASURE OVERVIEW											
Description		nis measure involves the purchase and installation of a new ENERGY STAR®-certified clothes dryer in									
	place of an ex	nce of an existing clothes dryer.									
Energy Impacts	Natural Gas	atural Gas									
Sector	Residential/Co	omme	rcial								
Program(s)	Low Income										
End-Use	Process										
Decision Type	Retrofit										
DEEMED GROSS ENERGY S.	•	SAVIN	GS)								
Demand savings	N/A										
Annual energy savings	Δ MMBtu _{GAS} /y	r = 1.2	12								
GROSS ENERGY SAVINGS A		INIT S	AVINGS)								
Demand savings	N/A ⁶²⁶										
Annual Energy savings	∆MMBtu _{GAS} /y	r = CA	P _{EE} × Load	ds × [(1/CE	F _{BASE})— (1	L/CEFEE)] ×	0.003412				
Definitions	Unit	= 1	clothes w	asher							
	CAPEE	= A\	verage ca	pacity of c	lothes dr	yer (lb)					
	Loads			ds per yea							
	CEFBASE				- .	r for basel					
	CEFEE				- .	r for ENER		model ((lb/kWh,	/cycle)	
	0.003412	= Cc	onversion	factor: 0.	003412 N	ЛМВtu per	kWh				
EFFICIENCY ASSUMPTIONS											
Baseline Efficiency	The baseline i	s a sta	ndard clo	thes drye	r. The cur	rent feder	al standar	d requir	res a mir	nimum Cl	F of 3.3
Efficient Measure	ENERGY STAR	®-certi	ified cloth	nes dryer.							
PARAMETER VALUES (DEE	MED)										
Measure	e CAP _{EE} ⁶²⁷	7	Load	ds ⁶²⁸	CEF _B ,	ASE ⁶²⁹	CEFEE	630	Life (y	rs) ⁶³¹	Cost (\$)
ENERGY STAR® CV			96	7.2	3.		3.8		13		Actual
IMPACT FACTORS				•		•					
Program	ISR ⁶³²	R	R _E ⁶³³	RR	634	CFs		CFw		FR ⁶³⁵	SO ⁶³⁶
Low Income Initiatives	100%	1	.00%	100	0%	N/A		N/A		0%	0%

⁶²⁶ All savings are attributed to Natural Gas

⁶²⁷ Average capacity of ENERGYSTAR® certified units as of August 15, 2017

⁶²⁸ Assumed to be 3 times the average number of loads for a single family home with one clothes washer provided for every three apartments

⁶²⁹ Federal Standard for gas units

⁶³⁰ Average combined energy factor for ENERGYSTAR® certified units as of August 15, 2017

⁶³¹ NMR Group, Inc., Efficiency Maine Appliance Rebate Program Evaluation Overall Report – FINAL, July 18, 2014, Table 2-18.

⁶³² EMT assumes all units are installed (i.e. ISR = 100%).

⁶³³ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

⁶³⁴ The measure has not yet been evaluated. Until the next program impact evaluation, EMT assumes 100 percent realization rate.

 $^{^{\}rm 635}\, \rm Program$ assumes no free ridership for Low Income Initiatives

⁶³⁶ Program not yet evaluated, assume default SO of 0%.

Commercial and Industrial Custom Program

Advanced Building, Co.	des AB – <x></x>									
Last Revised Date	7/1/2017	/1/2017								
MEASURE OVERVIEW										
Description	This measures	nis measures involve the various prescriptive criteria as outlined in Tier 2 of the New Construction								
	Guide publish	uide published by New Buildings Institute (NBI)								
Primary Energy Impact	Electricity & N	ectricity & Natural Gas or Propane or Fuel Oil								
Sector	Commercial a	ommercial and Industrial								
Program(s)	Maine Advanc	ced Building (N	1AB)							
End-Use	New Construc	tion > 100,000)ft²							
Project Type	New Construc	tion or comple	ete renovation	n with a change	of use					
GROSS ENERGY SAVINGS A	GORITHMS									
	Gross annual	thermal energy	y and demand	d savings project	tions for Advan	ced Building proj	ects are			
Annual Energy Savings	calculated usi	ng engineering	analysis and	project-specific	details pertain	ing to equipmen	t			
Allitual Ellergy Saviligs	performance	specifications,	operating par	rameters, and lo	oad shapes. Cal	culation of saving	gs for MAB			
	projects are d	eemed savings	based on sav	vings calculated	through NBI's I	New Construction	n Guide.			
EFFICIENCY ASSUMPTIONS										
Baseline Efficiency	Efficiency crit	eria for baselin	e equipment	in replacement	(replace on bu	rnout, natural re	placement)			
	and new cons	truction situati	ions are base	d on manufactu	rer's performai	nce specifications	and/or			
	independent	test data. Base	line efficiency	criteria for the	se projects mus	st meet or exceed	d any			
	applicable en	ergy codes.								
Efficient Measure						ect specific and m	ust meet			
	the specificat	ions outlined ir	n NBI's New C	Construction Gui	de.					
PARAMETER VALUES (DEEN	1ED)									
Measure	Parai	meters for Ene	rgy and Dema	and Deemed Sa	vings	Life (yrs) ⁶³⁷	Cost(\$) ⁶³⁸			
	All parai	meters require	d for energy a	and demand sav	ings are					
AB - <x></x>	determined	from NBI's Ne	w Construction	on Guide Tier 2 _l	prescriptive	20	Actual			
			criteria							
IMPACT FACTORS										
Measure	ISR ⁶³⁹	RRe ⁶⁴⁰	RR _D ⁶⁴¹	CFs	CFw	FR	SO			
AB - <x></x>	100%	100%	100%	Custom	Custom	0%	0%			

 $^{^{\}rm 637}$ Assumed average equivalent measure life of 20 years across all measures in a project.

⁶³⁸ Measure cost should be determined by the project engineer

 $^{^{\}rm 639}$ Program has 100% inspection rate, savings reflect as built

⁶⁴⁰ This program has not yet been evaluated. Until the next program impact evaluation, EMT assumes a 100% RR.

⁶⁴¹ Ibid

Custom - C&I Custo	Custom – C&I Custom Electric Projects, Codes CC <x>, CG<x>, CS<x>, CSolar</x></x></x>
	m Electric Projects, Codes CC <x>, CG<x>, CSS<x>, CSolar</x></x></x>
	10/1/2017
MEASURE OVERVIEW	C II C
Description	Small Custom projects are energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects with energy conservation measures that are not covered in the prescriptive incentive offerings. Small Custom project incentives are available for retrofit, replace on burnout, or new installation projects that result in cost-effective electric energy savings. Small Custom project incentives are available only for projects where the validated first-year energy savings, as determined by the Efficiency Maine custom review process, exceeds 35,714 kWh.
	Large Custom Large Custom projects are generally targeted for the nearly 500 electric customers in the state with average kW demand of over 400 kW. The program offers incentives for large custom energy efficiency that offset customer demand on the grid. Large Custom projects are designed to reduce kWh consumption or distribution system loading during peak summer demand periods from grid-connected businesses. Large Custom project incentives are available only for projects where the validated first-year energy savings, as determined by the Efficiency Maine custom review process, exceeds 714,280 kWh.
Primary Energy Impact	Electric
Sector	Commercial and Industrial
Program(s)	C&I Custom Program
End-Use	See Table 28
Project Type	New construction, Retrofit
GROSS ENERGY SAVIN	
Demand and Annual Energy Savings	Gross annual energy, summer peak demand, and winter peak demand savings projections for custom projects are calculated using engineering analysis and project-specific details pertaining to equipment performance specifications, operating parameters, and load shapes. Calculation of savings for custom projects typically involves one or more of the following methods: whole-building simulation models, weather-based bin analysis, other spreadsheet-based tools, and generally accepted engineering practice. See additional information in Appendix H, under "Determination of coincident peak demand impact."
EFFICIENCY ASSUMPT	IONS
Baseline Efficiency	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity.
	New Construction: Efficiency criteria for baseline equipment in replacement (replace on burnout, natural replacement) and new construction situations is based on manufacturer's performance specifications and/or independent test data for standard industry practice equipment. Baseline efficiency criteria for these projects must meet or exceed any applicable energy codes.
Efficient Measure	Efficiency criteria for the proposed energy-efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data.

 $^{^{642}}$ Although the program targets these larger customers, there is no minimum average demand requirement for participation.

Custom – C&I Custon	Custom – C&I Custom Electric Projects, Codes CC <x>, CG<x>, CSS<x>, CSolar</x></x></x>											
PARAMETER VALUES												
Measure	Parameters	rameters for Energy and Demand Savings Calculations Life (yrs) ⁶⁴³ Cost (\$)										
All	determined	Ill parameters required for energy and demand savings are etermined from project-specific details documented in the project Table 28 Actual pplication forms.										
IMPACT FACTORS												
Program	ISR	RR_E	RR_D	CFs	CF _W	FR	SO					
C&I Custom	100%	96.5% ⁶⁴⁴	94.6% ⁶⁴⁵	Custom	Custom	8.2% ⁶⁴⁶	0.7% ⁶⁴⁷					

⁶⁴³ Measure life should be determined by the project engineer. The referenced table provides suggested measure life values for various custom projects.

⁶⁴⁴ Nexant, Large Customer Program Evaluation, April 7, 2017.

⁶⁴⁵ Nexant, Large Customer Program Evaluation, April 7, 2017.

 $^{^{646}}$ Nexant, Large Customer Program Evaluation, unpublished draft May 2016, page 27.

⁶⁴⁷ Ihid

	Custom – C&I Custom Natural Gas Projects, Codes CC <x>, CG<x>, CSS<x></x></x></x>
	m Natural Gas Projects, Codes CC <x>, CG<x>, CSS<x></x></x></x>
Last Revised Date	10/1/2017
MEASURE OVERVIEW	
Description	Small Custom thermal projects are energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects with energy conservation measures that are not covered in the prescriptive incentive offerings. Small Custom project incentives are available for retrofit, replace on burnout, or new installation projects that result in cost-effective thermal energy savings. Small Custom project incentives are available only for projects where the validated first-year energy savings, as determined by the Efficiency Maine custom review process, exceeds 400 MMBtu (4,000 therms). Large Custom Large Custom thermal projects are energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects with energy conservation measures that are not covered in the prescriptive incentive offerings. Large Custom project incentives are available for retrofit, replace on burnout, or new installation projects that result in cost-effective thermal energy savings. Large Custom project incentives are available only for projects where the validated first-year energy savings, as determined by the Efficiency Maine custom review process, exceeds 8,000 MMBtu (80,000 therms).
Primary Energy Impact	Natural gas
Sector	Commercial and Industrial
Program(s)	C&I Custom Incentive Program
End-Use	See Table 28
Project Type	New construction, Retrofit
GROSS ENERGY SAVIN	
Annual Energy Savings	Gross annual natural gas savings projections for custom projects are calculated using engineering analysis and project-specific details pertaining to equipment performance specifications, operating parameters, and load shapes. Calculation of savings for custom projects typically involves one or more of the following methods: whole-building simulation models, weather-based bin analysis, other spreadsheet-based tools, and generally accepted engineering practice.
EFFICIENCY ASSUMPT	IONS
Baseline Efficiency	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input and output capacity. New Construction: Efficiency criteria for baseline equipment in replacement (replace on burnout, natural replacement) and new construction situations is based on manufacturer's performance specifications and/or independent test data. Baseline efficiency criteria for these
Efficient Measure	projects must meet or exceed any applicable energy codes. Efficiency criteria for the proposed energy-efficient equipment are project specific and must
DADAMETED VALUE	be supported by manufacturer's performance specifications and/or independent test data.
PARAMETER VALUES	Decemeters for Energy Sovings Coloulations
Measure	Parameters for Energy Savings Calculations Life (yrs) ⁶⁴⁸ Cost (\$)

⁶⁴⁸ Measure life should be determined by the project engineer. The referenced table provides suggested measure life values for various custom projects.

Custom – C&I Custor	Custom – C&I Custom Natural Gas Projects, Codes CC <x>, CG<x>, CSS<x></x></x></x>											
All	determine	All parameters required for energy and demand savings are determined from project-specific details documented in the project application forms. Actual 28										
IMPACT FACTORS												
Program	ISR	ISR RR _E RR _D CF _S CF _W FR SO										
C&I Custom	100%	96.5% ⁶⁴⁹	94.6% ⁶⁵⁰	Custom	Custom	8.2% ⁶⁵¹	0.7%652					

 $^{\rm 649}$ Nexant, Large Customer Program Evaluation, April 7, 2017.

⁶⁵⁰ Nexant, Large Customer Program Evaluation, April 7, 2017.

⁶⁵¹ Nexant, Large Customer Program Evaluation, April 7, 2017. 652 Ibid.

Custom – C&I Custor	m Thermal Projects, Codes CC <x>, CG<x>, CSS<x></x></x></x>
Last Revised Date	10/1/2017
MEASURE OVERVIEW	10/1/201/
Description	Small Custom
	Small Custom thermal projects are energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects with energy conservation measures that are not covered in the prescriptive incentive offerings. Small Custom project incentives are available for retrofit, replace on burnout, or new installation projects that result in cost-effective thermal energy savings. Small Custom project incentives are available only for projects where the validated first-year energy savings, as determined by the Efficiency Maine custom review process, exceeds 400 MMBtu
	Large Custom thermal projects are energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects with energy conservation measures that are not covered in the prescriptive incentive offerings. Large Custom project incentives are available for retrofit, replace on burnout, or new installation projects that result in cost-effective thermal energy savings. Large Custom project incentives are available only for projects where the validated first-year energy savings, as determined by the Efficiency Maine custom review process, exceeds 8,000 MMBtu
Primary Energy	Heating oil, Natural gas, Propane, Kerosene, Biomass, Other
Impact	
Sector	Commercial and Industrial
Program(s)	C&I Custom Program
End-Use	See Table 28
Project Type	New construction, Retrofit
GROSS ENERGY SAVIN	GS ALGORITHMS
Annual Energy Savings	Gross annual thermal energy savings projections for custom projects are calculated using engineering analysis and project-specific details pertaining to equipment performance specifications, operating parameters, and load shapes. Calculation of savings for custom projects typically involves one or more of the following methods: whole-building simulation models, weather-based bin analysis, other spreadsheet-based tools, and generally accepted engineering practice.
EFFICIENCY ASSUMPTI	ONS
Baseline Efficiency	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity.
	New Construction: Efficiency criteria for baseline equipment in replacement (replace on burnout, natural replacement) and new construction situations is based on manufacturer's performance specifications and/or independent test data. Baseline efficiency criteria for these projects must meet or exceed any applicable energy codes.
Efficient Measure	Efficiency criteria for the proposed energy-efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data.
PARAMETER VALUES	and the second s

Custom – C&I Custor	Custom – C&I Custom Thermal Projects, Codes CC <x>, CG<x>, CSS<x></x></x></x>											
Measure	Parameters 1	Parameters for Energy and Demand Savings Calculations Life (yrs) ⁶⁵³ Cost (
All	determined	Il parameters required for energy and demand savings are etermined from project-specific details documented in the roject application forms.										
IMPACT FACTORS												
Program	ISR	RR_E	RR_D	CFs	CFw	FR	SO					
C&I Custom	100%	96.5% ⁶⁵⁴	94.6% ⁶⁵⁵	Custom	Custom	8.2% ⁶⁵⁶	0.7% ⁶⁵⁷					

653 Measure life should be determined by the project engineer. The referenced table provides suggested measure life values for various custom projects.

⁶⁵⁴ Nexant, Large Customer Program Evaluation, April 7, 2017.

⁶⁵⁵ Nexant, Large Customer Program Evaluation, April 7, 2017.

 $^{^{656}}$ Nexant, Large Customer Program Evaluation, unpublished draft May 2016, page 27.

⁶⁵⁷ Ihid

	10/1/2017									
MEASURE OVERVIEW										
Description	Distributed Generation									
	The program offers incentives cost effective custom distributed generation projects that									
	offset customer demand on the grid. Distributed Generation projects are designed to reduce									
	kWh consumption or distribution system loading during peak summer demand periods from									
	id-connected businesses. Distributed Generation project incentives are available only for									
	projects where the validated first-year energy savings, as determined by the Efficiency Maine									
	custom review process, exceeds 35,714 kWh.									
Primary Energy Impact										
Sector										
Program(s)	C&I Custom Program									
End-Use										
Project Type										
GROSS ENERGY SAVIN										
Demand and Annual	, , , , , , , , , , , , , , , , , , , ,									
Energy Savings	custom projects are calculated using engineering analysis and project-specific details									
	pertaining to equipment performance specifications, operating parameters, and load shapes.									
	Calculation of savings for custom projects typically involves one or more of the following									
	methods: whole-building simulation models, weather-based bin analysis, other spreadsheet-									
	based tools, and generally accepted engineering practice. See additional information in Appendix H, under "Determination of coincident peak demand impact."									
	Appendix n, under Determination of coincident peak demand impact.									
LEELCIENICY ACCUMINT	PAGE									
Pasolino Efficiency										
Baseline Efficiency	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the									
	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's									
	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output									
	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's									
	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output									
Baseline Efficiency	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity.									
	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity. Efficiency criteria for the proposed energy-efficient equipment are project specific and must									
Baseline Efficiency Efficient Measure	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity.									
Efficient Measure PARAMETER VALUES	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity. Efficiency criteria for the proposed energy-efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data.									
Baseline Efficiency Efficient Measure	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity. Efficiency criteria for the proposed energy-efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data. Parameters for Energy and Demand Savings Calculations Life (yrs) ⁶⁵⁸ Cost (\$)									
Efficient Measure PARAMETER VALUES Measure	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity. Efficiency criteria for the proposed energy-efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data. Parameters for Energy and Demand Savings Calculations Life (yrs) ⁶⁵⁸ Cost (\$) All parameters required for energy and demand savings are									
Efficient Measure PARAMETER VALUES	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity. Efficiency criteria for the proposed energy-efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data. Parameters for Energy and Demand Savings Calculations Life (yrs) ⁶⁵⁸ Cost (\$)									
Efficient Measure PARAMETER VALUES Measure	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity. Efficiency criteria for the proposed energy-efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data. Parameters for Energy and Demand Savings Calculations Life (yrs) ⁶⁵⁸ Cost (\$) All parameters required for energy and demand savings are determined from project-specific details documented in the project Table 28 Actual									
Efficient Measure PARAMETER VALUES Measure All	Retrofit: Efficiency criteria for the baseline equipment in retrofit situations is based on the operating efficiency of the existing equipment, which is determined from manufacturer's performance specification and/or actual recorded data related to input power and output capacity. Efficiency criteria for the proposed energy-efficient equipment are project specific and must be supported by manufacturer's performance specifications and/or independent test data. Parameters for Energy and Demand Savings Calculations Life (yrs) ⁶⁵⁸ Cost (\$) All parameters required for energy and demand savings are determined from project-specific details documented in the project Table 28 Actual									

⁶⁵⁸ Measure life should be determined by the project engineer. The referenced table provides suggested measure life values for various custom projects.

⁶⁵⁹ Nexant, Large Customer Program Evaluation, April 7, 2017.

⁶⁶⁰ Nexant, Large Customer Program Evaluation, April 7, 2017.

⁶⁶¹ Nexant, Large Customer Program Evaluation, unpublished draft May 2016, page 27.

⁶⁶² Ihid

Table 27 – Default Values Representing the Energy Content of Various Fuels

	Typical	Energy	Energy		Typical	Energy			
	Commercial	Content	Content		Industrial	Content			
Fuel	Unit	Btu/Unit	MMBtu/Unit		Units	MMBTU/Unit	Source	Source Location	
Petroleum Products									
Distillate Fuel (No. 1,							http://www.eia.gov/totalenergy/data/		
No. 2, No. 4, Fuel Oil	Gallon	137,452	0.1375		Barrel	5.773	monthly/pdf/mer.pdf	Table A3	
and Diesel)							, , , ,		
Jet Fuel	Gallon	127,500	0.1275		Barrel	5.355	http://www.eia.gov/totalenergy/data/	Table A1	
3001 401	Gallott	127,300	0.1273		Barrer	3.333	monthly/pdf/mer.pdf	14516 711	
Kerosene	Gallon	135,000	0.1350		Barrel	5.670	http://www.eia.gov/totalenergy/data/	Table A1	
	Gallott	155,000	0.1330		Barrer	3.070	monthly/pdf/mer.pdf	Table A1	
Liquefied Petroleum	Gallon	84,048	0.0840		Barrel	3.530	http://www.eia.gov/totalenergy/data/	Table A3	
Gases	Gallott	0 1,0 10	0.00.10		Barrer	3.330	monthly/pdf/mer.pdf	10010710	
Motor Gasoline	Gallon	120,405	0.1204		Barrel	5.057	http://www.eia.gov/totalenergy/data/	Table A3	
	Gallott	120,103	0.220		Barrer	3.037	monthly/pdf/mer.pdf	10010710	
Residual Fuel (No. 5	Gallon	149,690	0.1497		Barrel	6.287	http://www.eia.gov/totalenergy/data/	Table A1	
and No. 6 Fuel Oil)	Gallott	113,030	0.1137			0.207	monthly/pdf/mer.pdf	14516711	
Natural Gas (pipeline)	CCF	103,200	0.1032		Deca-	1.000	http://www.eia.gov/totalenergy/data/	Table A4	
rtatarar das (pipellite)	00.	100,200	0.2002		therm	2.000	monthly/pdf/mer.pdf		
Propane	Gallon	91,333	0.0913		Barrel	3.836	http://www.eia.gov/totalenergy/data/	Table A1	
-		0 = ,000	0.00 = 0			0.000	monthly/pdf/mer.pdf		
Other Gaseous Fuels ^a	T				ı	T			
Methane	CCF	84,100	0.0841		Deca-	1.000		Table 1.10	
		0 .,=00	0.00.1		therm				
Landfill Gas	CCF	49,000	0.0490		Deca-	1.000	http://www.eia.gov/renewable/	Table 1.10	
		,			therm		renewables/trends06.pdf		
Digester Gas	CCF	61,900	0.0619		Deca-	1.000		Table 1.10	
_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			therm				
Wood-Based Fuels ^a	I								
0% Moisture	Lb.	8,514	0.0085		Short Ton	17.029	Biomass Energy Data Book 2001		
10% Moisture	Lb.	7,663	0.0077		Short Ton	15.326	http://cta.ornl.gov.bedb - Entry is the	App. A -	
30% Moisture	Lb.	5,960	0.0060		Short Ton	11.920	average of hardwood and softwood	Page 202	
							values.		
50% Moisture	Lb.	4,257	0.0043		Short Ton	8.514	http://cta.ornl.gov/bedb/appendix_a/		
		,					The_Effect_of_Moisture_on_Heating_V		
							alues.pdf		

Fuel	Typical Commercial Unit	Energy Content Btu/Unit	Energy Content MMBtu/Unit	Typical Industrial Units	Energy Content MMBTU/Unit	Source	Source Location
Other Fuels					-		
Ethanol	Gallon	84,262	0.0843	Barrel	3.539	http://www.eia.gov/renewable/ renewables/trends06.pdf	Table 1.10
Biodiesel	Gallon	127,595	0.1276	Barrel	5.359	http://www.eia.gov/renewable/ renewables/trends06.pdf	Table 1.10
Black Liquor ^a	N/A	N/A	N/A	Short Ton	11.758	http://www.eia.gov/renewable/ renewables/trends06.pdf	Table 1.10
Electricity	kWh	3,412	0.0034	MWh	3.412	Definition of a kWh	

^a The energy content of some fuels can vary depending on various factors, including the actual fuel composition and the tree species and moisture content associated with wood-based fuels.

The entries in the above table represent default values; alternate values may be accepted if sufficient supporting documentation of actual fuel composition, moisture content, etc. is provided.

For fuels not listed in the table, the applicant must provide documentation of fuel composition and energy content per unit of fuel.

Table 28 – Measure Life Reference for Custom Projects⁶⁶³

End-Use	Measure Category	New Construction	Retrofit
Custom Lighting	Equipment	15	13
Custom Lighting	Controls	10	9
	Chillers/Chiller Plant	20	N/A
	HVAC Equipment	15	13
Custom HVAC	EMS & HVAC Controls	15	10
Custominivite	Heating System Replacement/Upgrade	25	18
	Heating System Maintenance (e.g,. burner optimization, tune-up)	5	5
Custom Motors and VFDs	Equipment	15	13
Custom Compressed Air	Equipment	15	13
	Process Cooling or Heating	15	13
	Commercial Compressors	15	13
	Industrial Compressors	20	18
Custom Miscellaneous	Controls	10	9
	O&M	N/A	5
	Retro-commissioning	N/A	5
	Envelope	20	20
Custom Solar PV	Solar PV	20	20

⁶⁶³ ERS, Measure Life Study Prepared for the Massachusetts Joint Utilities, November 2005, Table 1-2. Efficiency Maine – Commercial TRM v2018.1

Appendix A: Glossary

Definitions are based primarily on the Northeast Energy Efficiency Partnerships (NEEP), Regional Evaluation, Measurement & Verification (EMV) Forum, Glossary of Terms, Version 2.0 (PAH Associates, March 2011), indicated below as: NEEP EMV Glossary.

Adjusted Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated adjusted for evaluation findings. It adjusts for such factors as data errors, installation and persistence rates, and hours of use, but does not adjust for free ridership or spillover. Adjusted Gross Savings can be calculated as an annual or lifetime value. [NEEP EMV Glossary, edited]

Actual: Actual means the project-specific value that is recorded in the Project Application/Documentation for this measure.

Algorithm: An equation or set of equations, more broadly a method, used to calculate a number. In this case, it is an estimate of energy use or energy savings tied to operation of a piece of equipment or a system of interacting pieces of equipment. An algorithm may include certain standard numerical assumptions about some relevant quantities, leaving the user to supply other data to calculate the use or savings for the particular measure or equipment. [NEEP EMV Glossary]

Annual Demand Savings: The maximum reduction in electric demand in a given year within defined boundaries. The demand reduction is typically the result of the installation of higher efficiency equipment, controls, or behavioral change. The term can be applied at various levels, from individual projects and energy-efficiency programs, to overall program portfolios. [NEEP EMV Glossary, edited]

Annual Energy Savings: The reduction in electricity usage (reported as ΔkWh) or in fossil-fuel use (reported as $\Delta MMBtu$) in a given year from the savings associated with an energy-saving measure, project, or program. [NEEP EMV Glossary, edited]

Average Annual Operating Hours: see Hours of Use.

Baseline Efficiency: The assumed efficiency condition of the baseline equipment that is being replaced by the subject energy-efficiency measure. It is used to determine the energy savings obtained by the more efficient measure. [NEEP EMV Glossary, edited]

Btu: A standard measure of heat energy, one Btu is required to raise the temperature of one pound of water one degree Fahrenheit from 58.5 to 59.5 degrees under standard pressure of 30 inches of mercury at or near its point of maximum density. [NEEP EMV Glossary, edited]

Coincident Demand: The demand of a device, circuit or building that occurs at the same time as the peak demand of a system load or some other peak of interest. The peak of interest should be specified. [NEEP EMV Glossary]

Coincidence Factor (CF): The ratio of the average hourly demand of a group of measures during a specified period of time to the sum of their individual maximum demands (or connected loads) within the same period. [NEEP EMV Glossary, edited]

Deemed Savings: An estimate of energy or demand savings for a single unit of an installed energy-efficiency measure that (a) has been developed from data sources and analytical methods that are widely considered acceptable for the measure and purpose, and (b) is applicable to the situation being evaluated. A measure with deemed savings will have the same savings per unit. Individual parameters used to calculate savings and/or savings calculation methods can also be deemed. [NEEP EMV Glossary, edited]

Delta Watts: The difference in the wattage between existing or baseline equipment and its more efficient replacement or installation at a specific time, expressed in watts or kilowatts. [NEEP EMV Glossary]

Demand: The time rate of energy flow. Demand usually refers to the amount of electric energy used by a customer or piece of equipment at a specific time, expressed in kilowatts (kW). [NEEP EMV Glossary]

Energy Star®: A joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy designed to reduce energy use and its impact on the environment. The ENERGY STAR® label is awarded to products that meet applicable energy-efficiency guidelines as well as to homes and commercial buildings that meet specified energy-efficiency standards. [NEEP EMV Glossary, edited]

Free rider: A program participant who would have implemented the program measure or practice in the absence of the program. A free rider can be: 1) total, in which the participant's activity would have completely replicated the program measure; 2) partial, in which the participant's activity would have partially replicated the program measure; or 3) deferred, in which the participant's activity would have completely replicated the program measure, but at a future time beyond the program's timeframe. [NEEP EMV Glossary, edited]

Free ridership Rate (FR): The percent of energy savings through an energy-efficiency program attributable to free riders. [NEEP EMV Glossary, edited]

Gross Savings: The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated and not adjusted for any factors. [NEEP EMV Glossary, edited]

Hours of Use (HOU) or Operating Hours: The average number of hours a measure is in use during a specified time period, typically a day or a year. [NEEP EMV Glossary]

Incremental Cost: The difference between the cost of existing or baseline equipment/service and the cost of energy-efficient equipment/service. [NEEP EMV Glossary]

In-Service Rate (ISR): The percentage of energy-efficiency measures adopted in response to program incentives that are actually installed and operating. The in-service rate is calculated by dividing the number of measures installed and operating by the number of incetnives offered by an efficiency program in a defined period of time. [NEEP EMV Glossary, edited]

Interactive Effects (IE) - The influence of one technology's application on the energy required to operate another application. An example is the reduced heat in a facility as a result of replacing incandescent lights with CFLs, and the resulting need to increase space heating from another source, usually oil or gas fired. [NEEP EMV Glossary]Kilowatt (kW): A measure of the rate of power used during a preset time period (e.g., minutes, hours, days or months) equal to 1,000 watts. [NEEP EMV Glossary]

Kilowatt-Hour (kWh): A common unit of electric energy; one kilowatt-hour is numerically equal to 1,000 watts used for one hour. [NEEP EMV Glossary]

Lifetime Energy Savings: The energy savings over the lifetime of an installed measure calculated by multiplying the measure's annual energy usage reduction by its expected lifetime. [NEEP EMV Glossary, edited]

Measure Life: The length of time that a measure is expected to be functional. Measure Life is a function of: (1) equipment life — meaning the number of years that a measure is installed and will operate until failure; and (2) measure persistence which takes into account business turnover, early retirement of installed equipment, and other reasons that measures might be removed or discontinued. Measure Life is sometimes referred to as expected useful life (EUL) [adapted from NEEP EMV Glossary, edited].

Meter-level Savings: Savings from energy-efficiency programs at the customer meter or premise level. [NEEP EMV Glossary, edited]

Net Present Value (NPV): Present value of benefits and costs that occur over the life of the measure taking the time value of money into account.

Net Savings: The savings that is attributable to an energy-efficiency program(which differs from gross savings because it includes the effects of the free ridership and/or spillover rates).

Net-to-Gross Ratio (NTGR or NTG): The ratio of net savings to gross savings. The NTGR may be determined from the free ridership and spillover rates (NTGR = 1 - FR + SO), if available, or it may be a distinct value relating gross savings to the net effect of the program with no separate specification of FR and SO values; it can be applied separately to either energy or demand savings.

Realization Rate (RR): The ratio of savings adjusted for data errors and for evaluated or verified results (verified) to initial estimates of project savings. RR_E (Energy Realization Rate) is applied to kWh and all fuels, while RR_D (Demand Realization Rate) is applied only to kW.

Seasonal Energy Efficiency Ratio (SEER): The total cooling output of a central AC unit in Btus during its normal usage period for cooling divided by the total electrical energy input in watt-hours during the same period, as determined using specified federal test procedures. [NEEP EMV Glossary]

Spillover (SO): Reductions in energy consumption and/or demand caused by the presence of an energy-efficiency program, beyond the program-related gross savings of the participants and without financial or technical assistance from the program. There can be participant and/or non-participant spillover. Participant spillover is the additional energy savings that occur when a program participant independently installs energy-efficiency measures or applies energy-saving practices in response to their participation in the efficiency

program. Non-participant spillover refers to energy savings that occur when someone who did not participate in a program still installs energy-efficiency measures or applies energy savings practices as a result of a program's influence. [NEEP EMV Glossary, edited]

Spillover Rate (SO): Estimate of energy savings attributable to spillover effects expressed as a percent of savings installed by participants through an energy efficiency program. [NEEP EMV Glossary]

Typical Meteorological Year 3: The TMY3s are data sets of hourly values of solar radiation and meteorological elements for a 1-year period published by the National Renewable Energy Laboratory. Their intended use is for computer simulations of solar energy conversion systems and building systems to facilitate performance comparisons of different system types, configurations, and locations in the United States and its territories. Because they represent typical rather than extreme conditions, they are not suited for designing systems to meet the worst-case conditions occurring at a location.

Waste Heat Factor (WHF): The interaction between a lighting measure's incidental heat output and installed HVAC systems.

	Appendix B: Energy Period Factors and Coincidence Factors
Appendix B: Energy Period Factors and	d Coincidence Factors

Coincidence factors are used to determine the average electric demand savings during the summer and winter on-peak periods as defined by the ISO-NE Forward Capacity Market (FCM). The on-peak demand periods are defined as follows: 664

- Summer On-Peak: 1:00 PM to 5:00 PM on non-holiday weekdays in June, July, and August.
- Winter On-Peak: 5:00 PM to 7:00 PM on non-holiday weekdays in December and January.

Energy period factors are used to allocate the annual energy savings into one of the four energy periods. This allocation is performed in order to apply the appropriate avoided cost values in the calculation of program benefits. The four energy periods are defined as follows 665:

- Winter Peak: 7:00 AM to 11:00 PM on non-holiday weekdays during October through May (8 months).
- Winter Off Peak: 11:00 PM to 7:00 AM on non-holiday weekdays and all hours on weekends and holidays during October through May (8 months).
- Summer Peak: 7:00 AM to 11:00 PM on non-holiday weekdays during June through September (4 months).
- <u>Summer Off Peak</u>: 11:00 PM to 7:00 AM on non-holiday weekdays and all hours on weekends and holidays during June through September (4 months).

Table 29 includes a listing of measure coincidence factors and energy period allocations.

Table 29 – Commercial Coincidence Factors and Energy Period Factors

		Coincidence Factor			Energy Period Factors				
					Wir	nter	Sum	mer	
		Winter On-	Summer On-	Footnote		Off		Off	Footnote
Measure	End-Use	Peak	Peak	Reference	Peak	Peak	Peak	Peak	Reference
Lighting Fixtures – Interior Spaces	Lighting	63.0%	76.0%	666	50.0%	19.0%	23.0%	9.0%	667
Lighting Fixtures – LED Exit Signs	Lighting	100.0%	100.0%	668	30.4%	36.2%	15.6%	17.9%	668
Lighting Fixtures – Exterior Spaces	Lighting	70.2%	3.7%	669	20.5%	50.6%	6.1%	22.8%	669

⁶⁶⁴ http://www.iso-ne.com/markets-operations/markets/demand-resources/about

⁶⁶⁵ http://www.efficiencymaine.com/docs/2015-AESC-Report-With-Appendices-Attached.pdf, p. 2-71.

⁶⁶⁶ KEMA, C&I Lighting Load Shape Project FINAL Report, July 2011.

⁶⁶⁷ Central Maine Power, Non-residential load profile for 3/1/08-2/28/09.

⁶⁶⁸ Values are based on continuous operation. For energy period factors, values may assume that energy savings are evenly distributed across all hours of the year.

⁶⁶⁹ Efficiency Vermont TRM 2012, Commercial Outdoor Lighting.

		Coincider		Energy Period Factors					
					Winter		Summer		
		Winter On-	Summer On-	Footnote		Off		Off	Footnote
Measure	End-Use	Peak	Peak	Reference	Peak	Peak	Peak	Peak	Reference
Lighting Fixtures with Integrated Controls	Lighting	63.0%	76.0%	670	50.0%	19.0%	23.0%	9.0%	667
Lighting Controls – Interior Spaces	Lighting	12.0%	18.0%	671	50.0%	19.0%	23.0%	9.0%	667
Lighting Fixtures – Refrigerated Spaces	Lighting	84.7%	90.8%	672	39.7%	26.7%	19.7%	13.9%	672
Lighting Controls – Refrigerated Spaces	Lighting	30.7%	30.7%	673	30.4%	36.2%	15.6%	17.9%	673
VFDs on Heating Hot Water Pumps & Electronically Commutated Hot Water Smart Pump & Electronically Commutated Supply Fan Motor (heating only)	Motors	73.7%	0.0%	674	53.6%	46.3%	0.0%	0.1%	675
Electronically Commutated Supply Fan Motor (heating only)	Motors	100.0%	0.0%	676	53.6%	46.3%	0.0%	0.1%	677
Electronically Commutated Supply Fan Motor (cooling only)	HVAC	0.0%	100.0%	678	17.0%	3.0%	62.0%	18.0%	679
Electronically Commutated Supply Fan Motor (heating and cooling)	HVAC	100.0%	100.0%	680	39.0%	30.5%	21.6%	8.9%	681
VFDs on Chilled Water Pumps	Motors	0.0%	86.5%	674	30.9%	18.1%	35.9%	15.1%	675
VFDs on Supply Fan	Motors	14.6%	48.7%	674	39.0%	30.5%	21.6%	8.9%	675
VFDs on Return Fan	Motors	21.0%	68.3%	674	39.0%	30.8%	21.4%	8.8%	675
VFDs on Exhaust Fan	Motors	73.7%	35.5%	674	44.4%	22.2%	16.0%	17.4%	675

⁶⁷⁰ Coincidence factors for interior lighting fixtures. KEMA, C&I Lighting Load Shape Project FINAL Report, July 2011.

⁶⁷¹ The Cadmus Group, Inc. (2012). Final Report, Small Business Direct Install Program: Pre/Post Occupancy Sensor Study.

⁶⁷² Efficiency Vermont TRM 2012, Grocery/Convenience Store Indoor Lighting.

⁶⁷³ US DOE, "Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting." Refrigerated cases were metered for 12 days to determine savings from occupancy sensors. Assumes that refrigerated freezers and refrigerated coolers will see the same amount of savings from sensors.

⁶⁷⁴ See Appendix D for evaluation adjusted coincidence factors.

⁶⁷⁵ Efficiency Vermont TRM 2012. Values used for VFDs on VFD Boiler Feedwater Pumps, 10 HP; VFD Chilled Water Pumps, <10 HP; VFD Supply Fans, <10 HP; VFD Returns Fans, <10 HP; and VFD Exhaust Fans, <10 HP

⁶⁷⁶ Coincidence factor embedded in deemed peak demand reduction.

⁶⁷⁷ Based on VFDs for Heating Hot Water Pumps

⁶⁷⁸ Coincidence factor embedded in deemed peak demand reduction.

⁶⁷⁹ Bsaed on Unitary Air Conditioners

⁶⁸⁰ Coincidence factor embedded in deemed peak demand reduction.

⁶⁸¹ Based on VFDs on Supply Fan

		Coincider	nce Factor		En				
					Wir	nter	Sum	mer	
		Winter On-	Summer On-	Footnote		Off		Off	Footnote
Measure	End-Use	Peak	Peak	Reference	Peak	Peak	Peak	Peak	Reference
Unitary Air Conditioners and Split Systems (< 11.25 tons)	HVAC	0.0%	37.2%	682	17.0%	3.0%	62.0%	18.0%	667
Unitary Air Conditioners and Split Systems (≥ 11.25 tons)	HVAC	0.0%	29.0%	682	17.0%	3.0%	62.0%	18.0%	667
Heat Pump Systems (< 11.25 tons)	HVAC	42.0%	35.7%	674	17.0%	3.0%	62.0%	18.0%	667
Heat Pump Systems (≥ 11.25 tons)	HVAC	42.0%	27.8%	674	17.0%	3.0%	62.0%	18.0%	667
Packaged Terminal Air Conditioners and Heat Pumps	HVAC	57.0%	37.2%	682	17.0%	3.0%	62.0%	18.0%	667
Demand Control Ventilation	HVAC	1.5%	77.7%	674	17.0%	3.0%	62.0%	18.0%	667
Ductless Heat Pump	HVAC	63.0%	20.0%	683	58.1%	38.8%	1.7%	1.4%	683
Variable Refrigerant Flow, New Construction	HVAC	42.0%	35.7%	674	17.0%	3.0%	62.0%	18.0%	667
Modulating Burner Controls for Boilers and Heaters (AF1)	HVAC	N/A	N/A	684	N/A	N/A	N/A	N/A	684
Boiler Stack Heat Exchanger (Boiler Economizer) (AF2)	HVAC	N/A	N/A	684	N/A	N/A	N/A	N/A	684
Boiler Reset/Lockout Controls (AF3)	HVAC	N/A	N/A	684	N/A	N/A	N/A	N/A	684
Oxygen Trim for Boilers and Heaters (AF4)	HVAC	N/A	N/A	684	N/A	N/A	N/A	N/A	684
Boiler Turbulator (AF5)	HVAC	N/A	N/A	684	N/A	N/A	N/A	N/A	684
Programmable Thermostat (AF6)	HVAC	N/A	N/A	684	N/A	N/A	N/A	N/A	684
Evaporator Fan Motor Control for Cooler/Freezer, Code R10	Refrigeration	33.8%	41.2%	674	29.1%	39.5%	13.7%	17.7%	685
Door Heater Controls for Cooler/Freezer, Code R20	Refrigeration	73.7%	95.9%	674	47.6%	52.4%	0.0%	0.0%	686

⁶⁸² KEMA, NEEP Unitary HVAC AC Load Shape Project Final Report, June 2011.

⁶⁸³ Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁶⁸⁴ Measure applicable to non-electric savings only.

⁶⁸⁵ Efficiency Vermont TRM 2012, Evaporator Fan Control.

⁶⁸⁶ Efficiency Vermont TRM 2012, Door Heater Control.

		Coincider		En	ergy Per	iod Facto	ors		
					Wir	nter	Sum	mer	
		Winter On-	Summer On-	Footnote		Off		Off	Footnote
Measure	End-Use	Peak	Peak	Reference	Peak	Peak	Peak	Peak	Reference
Zero Energy Doors for Coolers/Freezers, Code R30, R31	Refrigeration	73.7%	95.9%	674	30.4%	36.2%	15.6%	17.8%	667
H.E. Evaporative Fan Motors, Code R40, R41, R42	Refrigeration	73.7%	95.9%	674	30.4%	36.2%	15.6%	17.8%	667
Floating-Head Pressure Controls, Code R50, R51, R52	Refrigeration	73.7%	0.0%	674	33.3%	37.1%	12.8%	16.8%	687
Discus & Scroll Compressors, Code R60-R63, R70-R74	Refrigeration	50.9%	74.0%	674	33.0%	32.6%	17.0%	17.4%	688
Commercial Reach-in Cooler/Refrigerator and Freezers and Ice Makers, Code R80, R90	Refrigeration	50.9%	74.0%	674	33.0%	32.6%	17.0%	17.4%	689
New Vapor-Tight High Performance T8 Fluorescent Fixtures	Agriculture	63.0%	76.0%	674	50.0%	19.0%	23.0%	9.0%	667
Plate Heat Exchangers for Milk Processing	Agriculture	27.0%	16.1%	690	29.0%	16.4%	31.6%	23.0%	690
Adjustable Speed Drives for Dairy Vacuum Pumps	Agriculture	46.7%	27.5%	674	36.9%	30.1%	18.2%	14.8%	691
Scroll Compressors	Agriculture	67.4%	32.7%	674	43.6%	23.2%	21.7%	11.5%	692
Adjustable Speed Drives on Ventilation Fans, potato storage equipment	Agriculture	73.7%	0.0%	674	43.6%	23.2%	21.7%	11.5%	693
HVLS Fans	Agriculture	67.4%	32.6%	674	43.6%	23.2%	21.7%	11.5%	694
High-Efficiency Air Compressors, Codes C1-C4	Compressed Air	70.0%	91.1%	674	30.4%	36.1%	15.6%	17.9%	668

⁶⁸⁷ Efficiency Vermont TRM 2012, Floating-Head Pressure Control.

⁶⁸⁸ Efficiency Vermont TRM 2012, Commercial Refrigeration.

⁶⁸⁹ Efficiency Vermont TRM 2012, Commercial Refrigeration.

⁶⁹⁰ Efficiency Vermont TRM 2012, Farm Plate Cooler/Heat Recover Unit.

⁶⁹¹ Efficiency Vermont TRM 2012, VFD Milk Vacuum Pump.

⁶⁹² Efficiency Vermont TRM 2012, Dairy Farm Combined End Uses.

⁶⁹³ Savings are realized 24/7 Dec 1 – April 30.

⁶⁹⁴ Savings are realized 24/7 Dec 1 – April 30.

		Coincider	nce Factor		En	ergy Per	iod Facto	ors	
					Wir	nter	Sum	mer	
		Winter On-	Summer On-	Footnote		Off		Off	Footnote
Measure	End-Use	Peak	Peak	Reference	Peak	Peak	Peak	Peak	Reference
High-Efficiency Dryers, Codes C10-C16	Compressed Air	70.0%	91.1%	674	30.4%	36.1%	15.6%	17.9%	668
Receivers, Codes C20-C27	Compressed Air	70.0%	91.1%	674	30.4%	36.1%	15.6%	17.9%	668
Low Pressure Drop Filters, Codes C30-C33	Compressed Air	70.0%	91.1%	674	30.4%	36.1%	15.6%	17.9%	668
Air-Entraining Nozzles, Code C40	Compressed Air	70.0%	91.1%	674	30.4%	36.1%	15.6%	17.9%	668
Custom – Compressed Air	Compressed Air	Custom	Custom	695	44.3%	30.3%	15.2%	10.2%	696
Custom - Lighting	Lighting	Custom	Custom	695	44.3%	30.3%	15.2%	10.2%	696
Custom – VFD	Motors	Custom	Custom	695	44.3%	30.3%	15.2%	10.2%	696
Custom – HVAC	HVAC	Custom	Custom	695	44.3%	30.3%	15.2%	10.2%	696
Custom – Miscellaneous	All	Custom	Custom	695	44.3%	30.3%	15.2%	10.2%	696
Custom – Generic	Various	Custom	Custom	695	44.3%	30.3%	15.2%	10.2%	696
Custom – Continuous Process	Process	Custom	Custom	695	29.9%	36.7%	15.5%	17.9%	697
Custom – Single Shift Process	Process	Custom	Custom	695	66.7%	0%	33.3%	0%	698
Custom – Solar PV	Solar PV	0	36.3%	699	37.0%	19.0%	29.7%	14.3%	700
		Gas Equip	ment						
Natural Gas Heating Equipment	HVAC	N/A	N/A	684	N/A	N/A	N/A	N/A	684
Natural Gas Kitchen Equipment	Process	N/A	N/A	684	N/A	N/A	N/A	N/A	684
		Other Fuels E	quipment						
Oil/Propane Boilers and Furnaces	HVAC	N/A	N/A	684	N/A	N/A	N/A	N/A	684

⁶⁹⁵ Coincidence factors for custom projects are estimated for each project based on project-specific information.

⁶⁹⁶ Values based on CMP loadshape for "Process C&I."

⁶⁹⁷ Analysis performed by ERS. Winter peak % = (16 hours per day x 243 days during winter x 5 weekdays per week / 7 days per week – 10 holidays in winter) / 8,760 hours per year; Winter off-peak % = (243 days during winter x 24 hours per day – Winter peak hours) / 8,760 hours per year; Summer peak % = (16 hours per day 122 days during summer x 5 weekdays per week / 7 days per week – 2 holidays in summer) / 8,760 hours per year; Summer off-peak % = (122 days during summer x 24 hours per day – summer peak hours) / 8,760 hours per year.

⁶⁹⁸ Analysis performed by ERS. Assumes shift starts after 7 AM and ends before 11 PM in summer and winter on weekdays only. Winter peak % = 243 days in winter / 365 days per year; Summer peak % = 122 days in summer / 365 days per year.

⁶⁹⁹ Analysis performed by ERS. Factors based on TMY3 solar radiation averaged for Portland, Lewiston-Auburn, Bangor and Presque Isle.

⁷⁰⁰ Analysis performed by ERS. Factors based on TMY3 solar radiation averaged for Portland, Lewiston-Auburn, Bangor and Presque Isle.

	Appendix C: Carbon Dioxide Emission Factors
Appendix C: Carbon Dioxid	o Emission Eastors
Appendix C. Carbon Dioxid	e Ellission Factors

Table 30 – Emission Factors

Final Emission Factors										
Fuel	Emission Factor	Units								
	oal by Rank	1								
Anthracite	103.69	kg CO ₂ / MMBtu								
Bituminous	93.28	kg CO ₂ / MMBtu								
Sub-bituminous	97.17	kg CO ₂ / MMBtu								
Lignite	97.72	kg CO ₂ / MMBtu								
N	latural Gas									
Pipeline Natural Gas	53.06	kg CO ₂ / MMBtu								
	5.306	kg CO ₂ / therm								
Flared Natural Gas	54.71	kg CO ₂ / MMBtu								
	5.471	kg CO ₂ / therm								
Pet	roleum Fuels									
Middle Distillate Fuels (No. 1, No. 2, No. 4	73.15	kg CO ₂ / MMBtu								
fuel oil, diesel, home heating oil)	10.15	kg CO ₂ / gallon								
Jet Fuel (Jet A, JP-8)	70.88	kg CO ₂ / MMBtu								
	9.57	kg CO ₂ / gallon								
Kerosene	72.31	kg CO ₂ / MMBtu								
	9.76	kg CO ₂ / gallon								
Heavy Fuel Oil (No. 5, 6 fuel oil), bunker fuel	78.80	kg CO ₂ / MMBtu								
	11.80	kg CO ₂ / gallon								
Ethane	59.59	kg CO ₂ / MMBtu								
	4.14	kg CO ₂ / gallon								
Propane	63.07	kg CO ₂ / MMBtu								
- [5.74	kg CO ₂ / gallon								
Isobutane	65.07	kg CO ₂ / MMBtu								
	6.45	kg CO ₂ / gallon								
n-Butane	64.95	kg CO ₂ / MMBtu								
	6.69	kg CO ₂ / gallon								
Unspecified LPG	62.28	kg CO ₂ / MMBtu								
onspeciment in o	-	kg CO ₂ / gallon								
Refinery (Still) Gas	64.20	kg CO ₂ / MMBtu								
Hermery (Still) Sub-	9.17	kg CO ₂ / gallon								
Crude Oil	74.54	kg CO ₂ / MMBtu								
cidde on	10.29	kg CO ₂ / gallon								
Petroleum Coke	102.12	kg CO ₂ / MMBtu								
1 ctroicum coke	14.65	kg CO ₂ / gallon								
)ther Fuels	Ng CO2/ ganon								
Tires/Tire Derived Fuel	85.97	kg CO ₂ / MMBtu								
Waste Oil	9.98	kg CO ₂ / gallon								
Waste Oil Waste Oil Blended with Residual Fuel Oil	66.53	kg CO ₂ / MMBtu								
Waste Oil Blended with Residual Fuel Oil	71.28	kg CO ₂ / MMBtu								
Municipal Solid Waste	417.04	kg CO ₂ / short ton								
	417.04									
Municipal Solid Waste		kg CO ₂ / MMBtu								
Plastics Portion of MSW	2,539.80	kg CO ₂ / short ton								
Electricity ⁷⁰¹	1.029	Pounds per kWh								

 $^{^{701}\,\}mathrm{From}$ Avoided Energy Supply Cost in New England, 2015, Rick Hornby, et al.

	Appendix D: Parameter Values Reference Tables
Appendix D: Parameter Valu	es Reference Tables

Table 31 – Installed Measure Wattage and Cost Table (Wattsee, SAVEEE, Costee)

				C&	I Prescriptive	702		Small Business Direct Install ⁷⁰³					
Description	Note	Measure Code	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Installed Cost: High Efficiency	Installed Cost: Baseline	Measure Cost (Cost)	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Material Cost (Standard Tier)	Material Cost (Premium Tier)	Labor Hours	
LED Outdoor Replacement Lamp: Type B Low Output (250 - 5000 lm)	[2]	S6	N/A	N/A	N/A	N/A	N/A	22	N/A	\$35.00	N/A	0.75	
LED Outdoor Replacement Lamp: Type B Mid Output (>5000 - 10000 lm)	[2]	S6	N/A	N/A	N/A	N/A	N/A	44	N/A	\$67.50	N/A	0.75	
LED Outdoor Replacement Lamp: Type B High Output (>10000 lm)	[2]	S6	N/A	N/A	N/A	N/A	N/A	100	N/A	\$161.00	N/A	0.75	
LED Outdoor Replacement Lamp: Type C Low Output (250 - 5000 lm)	[2]	S6	N/A	N/A	N/A	N/A	N/A	42	N/A	\$123.00	N/A	0.75	
LED Outdoor Replacement Lamp: Type C Mid Output (>5000 - 10000 lm)	[2]	S6	N/A	N/A	N/A	N/A	N/A	55	N/A	\$150.50	N/A	0.75	
LED Outdoor Replacement Lamp: Type C High Output (>10000 lm)	[2]	S6	N/A	N/A	N/A	N/A	N/A	121	N/A	\$260.00	N/A	0.75	
LED Outdoor Retrofit Kits: <50W		S8	38	N/A	\$234.00	\$0.00	\$234.00	35	N/A	\$120.00	N/A	1.5	
LED Outdoor Retrofit Kits: ≥50 - <100W		S8	73	N/A	\$306.00	\$0.00	\$306.00	62	N/A	\$175.00	N/A	1.5	
LED Outdoor Retrofit Kits: ≥100 - <200W		S8	128	N/A	\$399.00	\$0.00	\$399.00	103	N/A	\$199.00	N/A	1.5	
LED Outdoor Retrofit Kits: ≥200W		S8	241	N/A	\$431.00	\$0.00	\$431.00	237	N/A	\$299.00	N/A	1.5	
LED Outdoor Parking Fixture: <50W		S11/S11R	40	179	\$330.00	\$215.00	\$115.00	45	170	\$93.68	\$135.00	1.5	
LED Outdoor Parking Fixture: 50W - 100W		S11/S11R	80	215	\$685.00	\$400.00	\$285.00	72	333	\$122.00	\$335.00	1.5	
LED Outdoor Parking Fixture: 100W - 250W		S11/S11R	156	289	\$926.30	\$565.00	\$361.30	100	230	\$365.00	\$425.00	1.5	
LED Outdoor Parking Fixture: >250W		S11/S11R	306	769	\$1,023.14	\$511.00	\$512.14	100	230	\$365.00	\$425.00	1.5	
LED Pole-Mounted Streetlight: <50W		S11/S11R	40	179	\$330.00	\$215.00	\$115.00	45	170	\$93.68	\$135.00	1.5	
LED Pole-Mounted Streetlight: 50W - 100W		S11/S11R	80	215	\$685.00	\$400.00	\$285.00	72	333	\$122.00	\$335.00	1.5	
LED Pole-Mounted Streetlight: 100W- 250W		S11/S11R	156	289	\$778.00	\$565.00	\$213.00	100	230	\$365.00	\$425.00	1.5	
LED Pole-Mounted Streetlight: >250W		S11/S11R	306	769	\$1,012.00	\$511.00	\$501.00	100	230	\$365.00	\$425.00	1.5	

⁷⁰² C&I Prescriptive parameter values are deemed based on analysis of program data. They represent expected weighted averages for each measure type.

⁷⁰³ Small Business Direct Install parameter values reflect specific products included in the program.

				C&	l Prescriptive	702		- P			Install ⁷⁰³	Small Business Direct Install ⁷⁰³					
Description	Note	Measure Code	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Installed Cost: High Efficiency	Installed Cost: Baseline	Measure Cost (Cost)	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Material Cost (Standard Tier)	Material Cost (Premium Tier)	Labor Hours					
LED Outdoor Wall Pack: <30W		S13/S13R	35	155	\$307.21	\$130.00	\$177.21	15	152	\$90.00	\$100.00	0.75					
LED Outdoor Wall Pack: 30 - 60W		S13/S13R	35	155	\$307.21	\$130.00	\$177.21	39	161	\$127.00	\$127.00	0.75					
LED Outdoor Wall Pack: 60 - 100W		S13/S13R	35	155	\$307.21	\$130.00	\$177.21	69	171	\$145.00	\$325.00	0.75					
LED Outdoor Wall Pack: >100W		S13/S13R	35	155	\$307.21	\$130.00	\$177.21	135	173	\$235.00	\$450.00	0.75					
LED Canopy/Parking Garage Fixture: <50W		S17/S17R	37	91	\$313.00	\$93.00	\$220.00	25	96	\$100.00	\$122.00	1.5					
LED Canopy/Parking Garage Fixture: ≥50 - <80W		S17/S17R	64	126	\$309.00	\$150.00	\$159.00	52	133	\$124.00	\$286.50	1.5					
LED Canopy/Parking Garage Fixture: ≥80 - 130W		S17/S17R	99	189	\$421.00	\$315.00	\$106.00	82	174	\$309.00	\$310.00	1.5					
LED Canopy/Parking Garage Fixture: ≥130W		S17/S17R	174	284	\$450.00	\$356.00	\$94.00	N/A	N/A	N/A	N/A	N/A					
LED 12W 5" Recessed Can Retrofit Kit	[1]	S21/S21R	12	N/A	\$111.10	\$60.00	\$51.10	10	N/A	\$12.50	N/A	0.18					
LED 12W 6-8" Recessed Can Retrofit Kit	[1]	S21/S21R	12	N/A	\$111.10	\$60.00	\$51.10	10	N/A	\$13.50	N/A	0.18					
LED 15W Surface-Mounted Downlight		S21R	N/A	N/A	N/A	N/A	N/A	16	N/A	\$19.99	N/A	0.18					
LED Flood/Spot: <50W		S23./S23R	29	99	\$238.00	\$110.00	\$128.00	13	109	\$35.00	\$45.00	1.5					
LED Flood/Spot: 50 - 100W		S23./S23R	72	118	\$564.00	\$210.00	\$354.00	50	101	\$175.00	\$295.00	1.5					
LED Flood/Spot: >100W		S23./S23R	134	154	\$696.00	\$310.00	\$386.00	111	180	\$299.00	\$497.75	1.5					
LED Refrigerated Caselight (Vertical) - 3' Fixture: Center		S30	38	N/A	\$175.68	\$0.00	\$175.68	19	N/A	\$55.00	N/A	1					
LED Refrigerated Caselight (Vertical) - 3' Fixture: End		S30	38	N/A	\$175.68	\$0.00	\$175.68	19	N/A	\$55.00	N/A	1					
LED Refrigerated Caselight (Vertical) - 4' Fixture: Center		S30	38	N/A	\$175.68	\$0.00	\$175.68	15	N/A	\$62.00	N/A	1					
LED Refrigerated Caselight (Vertical) - 4' Fixture: End		S30	38	N/A	\$175.68	\$0.00	\$175.68	7	N/A	\$62.00	N/A	1					

				ርጴ	I Prescriptive	Small Business Direct Install ⁷⁰³						
Description	Note	Measure Code	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Installed Cost: High Efficiency	Installed Cost: Baseline	Measure Cost (Cost)	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Material Cost (Standard Tier)	Material Cost (Premium Tier)	Labor Hours
LED Refrigerated Caselight (Vertical) - 5' Fixture: Center		S30	38	N/A	\$175.68	\$0.00	\$175.68	20	N/A	\$78.00	N/A	1
LED Refrigerated Caselight (Vertical) - 5' Fixture: End		S30	38	N/A	\$175.68	\$0.00	\$175.68	10	N/A	\$78.00	N/A	1
LED Refrigerated Caselight (Vertical) - 6' Fixture: Center		S30	38	N/A	\$175.68	\$0.00	\$175.68	22	N/A	\$85.99	N/A	1
LED Refrigerated Caselight (Vertical) - 6' Fixture: End		S30	38	N/A	\$175.68	\$0.00	\$175.68	22	N/A	\$85.99	N/A	1
LED Refrigerated Caselight (Horizontal) - 3' Fixture		S32	7.2	N/A	\$220.00	\$0.00	\$220.00	19	N/A	\$63.00	N/A	1
LED Refrigerated Caselight (Horizontal) - 4' Fixture		S32	9.6	N/A	\$220.00	\$0.00	\$220.00	22	N/A	\$68.00	N/A	1
LED Refrigerated Caselight (Horizontal) - 5' Fixture		S32	12	N/A	\$220.00	\$0.00	\$220.00	20	N/A	\$73.00	N/A	1
LED Refrigerated Caselight (Horizontal) - 6' Fixture		S32	14.4	N/A	\$220.00	\$0.00	\$220.00	30	N/A	\$79.00	N/A	1
7 Watt MR16 LED Flood		S40	7	N/A	N/A	N/A	N/A	7	N/A	\$7.00	N/A	0.18
7 Watt MR16 LED Spot		S40	7	N/A	N/A	N/A	N/A	7	N/A	\$7.00	N/A	0.18
9 Watt PAR20 LED Flood		S40	9	N/A	N/A	N/A	N/A	6	N/A	\$5.50	N/A	0.18
9 Watt PAR20 LED Spot		S40	9	N/A	N/A	N/A	N/A	6	N/A	\$5.50	N/A	0.18
12 Watt PAR30 LED Flood		S40	12	N/A	N/A	N/A	N/A	10	N/A	\$7.50	N/A	0.18
12 Watt PAR30 LED Spot		S40	12	N/A	N/A	N/A	N/A	10	N/A	\$7.50	N/A	0.18
22 Watt PAR38 LED Flood		S40	22	N/A	N/A	N/A	N/A	13	N/A	\$8.25	N/A	0.18
22 Watt PAR38 LED Spot		S40	22	N/A	N/A	N/A	N/A	13	N/A	\$8.28	N/A	0.18
LED BR30 Screw-In		S40	12	N/A	N/A	N/A	N/A	11	N/A	\$6.25	N/A	0.18
LED BR40 Screw-In		S40	22	N/A	N/A	N/A	N/A	17	N/A	\$8.25	N/A	0.18
		1										_
LED 2x2 Recessed Fixture: <40W	[1]	S51./S51R	31	N/A	\$159.41	\$60.00	\$99.41	35	N/A	\$46.50	\$58.00	0.5
LED 2x2 Recessed Fixture: ≥40W	[1]	S51./S51R	47	N/A	\$142.81	\$78.00	\$64.81	40	N/A	\$46.50	\$65.00	0.5
LED 2x4 Recessed Fixture: <50W	[1]	S51./S51R	39	N/A	\$169.75	\$72.00	\$97.75	40	N/A	\$75.00	\$80.00	0.5

			C&I Prescriptive ⁷⁰² Small Business Direct Install ⁷⁰³								ence rable	
Description	Note	Measure Code	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Installed Cost: High Efficiency	Installed Cost: Baseline	Measure Cost (Cost)	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Material Cost (Standard Tier)	Material Cost (Premium Tier)	Labor Hours
LED 2x4 Recessed Fixture: ≥50W	[1]	S51./S51R	64	N/A	\$179.13	\$90.00	\$89.13	50	N/A	\$85.50	\$95.00	0.5
LED 1x4 Recessed Fixture: <40W	[1]	S51./S51R	31	N/A	\$182.00	\$61.00	\$121.00	33	N/A	\$73.00	\$99.00	0.5
LED 1x4 Recessed Fixture: ≥40W	[1]	S51./S51R	47	N/A	\$200.00	\$84.00	\$116.00	40	N/A	\$112.00	\$120.00	0.5
												_
Integrated Retrofit Kit for LED 2x2 Interior Fixture <40W		S52.	28	N/A	\$115.33	\$0.00	\$115.33	22	N/A	\$78.75	N/A	0.75
Integrated Retrofit Kit for LED 2x2 Interior Fixture ≥40W		S52.	46	N/A	\$99.00	\$0.00	\$99.00	30	N/A	\$89.89	N/A	0.75
Integrated Retrofit Kit for LED 2x4 Interior Fixture <50W		S52.	36	N/A	\$153.92	\$0.00	\$153.92	30	N/A	\$97.50	N/A	0.75
Integrated Retrofit Kit for LED 2x4 Interior Fixture ≥50W		S52.	53	N/A	\$152.00	\$0.00	\$152.00	44	N/A	\$97.50	N/A	0.75
Integrated Retrofit Kit for LED 1x4 Interior Fixture <40W		S52.	26	N/A	\$171.00	\$0.00	\$171.00	30	N/A	\$93.50	N/A	0.75
Integrated Retrofit Kit for LED 1x4 Interior Fixture ≥40W		S52.	49	N/A	\$171.00	\$0.00	\$171.00	43	N/A	\$93.50	N/A	0.75
Linear Retrofit Kit for LED 2x2 Interior Fixture <40W		S52.	28	N/A	\$109.80	\$0.00	\$109.80	21	N/A	\$54.00	N/A	0.75
Linear Retrofit Kit for LED 2x2 Interior Fixture ≥40W		S52.	46	N/A	\$158.00	\$0.00	\$158.00	20	N/A	\$54.00	N/A	0.75
Linear Retrofit Kit for LED 2x4 Interior Fixture <50W		S52.	36	N/A	\$113.71	\$0.00	\$113.71	41	N/A	\$65.00	N/A	0.75
Linear Retrofit Kit for LED 2x4 Interior Fixture ≥50W		S52.	53	N/A	\$123.34	\$0.00	\$123.34	48	N/A	\$67.00	N/A	0.75
Linear Retrofit Kit for LED 1x4 Interior Fixture <40W		S52.	26	N/A	\$124.39	\$0.00	\$124.39	22	N/A	\$59.00	N/A	0.75
Linear Retrofit Kit for LED 1x4 Interior Fixture ≥40W		S52.	49	N/A	\$125.35	\$0.00	\$125.35	N/A	N/A	N/A	N/A	N/A
LED High/Low Bay Fixture: <100W	[1]	S61./S61R	74	N/A	\$329.04	\$274.00	\$55.04	67	N/A	\$144.00	\$144.00	1.5
LED High/Low Bay Fixture: ≥100 - <150W	[1]	S61./S61R	123	N/A	\$501.22	\$269.00	\$232.22	110	N/A	\$165.00	\$165.00	1.5
LED High/Low Bay Fixtures: ≥150 - <200W	[1]	S61./S61R	170	N/A	\$385.87	\$265.00	\$120.87	160	N/A	\$210.00	\$255.00	1.5
LED High/Low Bay Fixtures: ≥200 - <300W	[1]	S61./S61R	233	N/A	\$738.08	\$265.00	\$473.08	221	N/A	\$320.00	\$320.00	1.5

				C&	I Prescriptive	702		7 1,	Small Business Direct Install ⁷⁰³					
Description	Note	Measure Code	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Installed Cost: High Efficiency	Installed Cost: Baseline	Measure Cost (Cost)	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Material Cost (Standard Tier)	Material Cost (Premium Tier)	Labor Hours		
LED High/Low Bay Fixtures: ≥300W	[1]	S61./S61R	418	N/A	\$652.00	\$394.00	\$258.00	319	N/A	\$375.00	\$375.00	1.5		
LED High/Low Bay Retrofit Kit: <150W		S62	108	N/A	\$246.43	\$0.00	\$246.43	105	N/A	\$150.00	N/A	1.5		
LED High/Low Bay Retrofit Kit: ≥150W		S62	180	N/A	\$348.47	\$0.00	\$348.47	152	N/A	\$259.99	N/A	1.5		
LED High/Low Bay Replacement Lamps: <50W - Type A	[2]	S64	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
LED High/Low Bay Replacement Lamps: ≥50W - Type A	[2]	S64	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
LED High/Low Bay Replacement Lamps: <80W w/new driver - Type B & C	[2]	S64	N/A	N/A	N/A	N/A	N/A	52	N/A	\$75.00	N/A	1		
LED High/Low Bay Replacement Lamps: ≥80W w/new driver - Type B & C	[2]	S64	N/A	N/A	N/A	N/A	N/A	96	N/A	\$165.00	N/A	1		
LED High/Low Bay Replacement Lamps: <120W w/new driver - Type B & C	[2]	S64	N/A	N/A	N/A	N/A	N/A	96	N/A	\$165.00	N/A	1		
LED High/Low Bay Replacement Lamps: ≥120W w/new driver - Type B & C	[2]	S64	N/A	N/A	N/A	N/A	N/A	119	N/A	\$240.00	N/A	1		
Linear Ambient <50W (Strip)		S81./S81R	35	N/A	\$191.74	\$64	\$128	32	N/A	N/A	\$85.00	0.5		
Linear Ambient <50W (Wrap)		S81./S81R	35	N/A	\$191.54	\$64	\$128	41.1	N/A	N/A	\$49.00	0.5		
Linear Ambient 50-100W		S81./S81R	71	N/A	\$293.82	\$92	\$202	68	N/A	N/A	\$135.00	0.75		
Linear Ambient >100W		S81./S81R	122	N/A	\$430.44	\$113	\$317	N/A	N/A	N/A	N/A	N/A		
2' LED Lamp/Type A (1 lamp)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	9.0	N/A	\$7.44	N/A	0.25		
2' LED Lamp/Type A (2 lamps)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	18.0	N/A	\$14.88	N/A	0.33		
2' LED Lamp/Type A (3 lamps)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	27.0	N/A	\$22.32	N/A	0.42		
2' LED Lamp/Type A (4 lamps)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	36.0	N/A	\$29.76	N/A	0.50		
4' LED Lamp/Type A (1 lamp)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	15.0	N/A	\$6.25	N/A	0.25		
4' LED Lamp/Type A (2 lamps)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	20.0	N/A	\$12.50	N/A	0.33		
4' LED Lamp/Type A (3 lamps)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	45.0	N/A	\$18.75	N/A	0.42		

				C&	l Prescriptive	702	Small Business Direct Install ⁷⁰³						
Description	Note	Measure Code	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Installed Cost: High Efficiency	Installed Cost: Baseline	Measure Cost (Cost)	Wattage (Watts_EE)	Wattage Reduction (SAVE_EE)	Material Cost (Standard Tier)	Material Cost (Premium Tier)	Labor Hours	
4' LED Lamp/Type A (4 lamps)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	60.0	N/A	\$25.00	N/A	0.50	
2' LED Lamp/Type C Kit (1 Lamp & 1 external driver)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	10.0	N/A	\$14.50	N/A	0.25	
2' LED Lamp/Type C Kit (2 Lamps & 1 external driver)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	22.0	N/A	\$22.50	N/A	0.33	
2' LED Lamp/Type C Kit (3 Lamps & 1 external driver)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	30.0	N/A	\$32.04	N/A	0.42	
2' LED Lamp/Type C Kit (4 Lamps & 1external driver)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	40.0	N/A	\$42.50	N/A	0.50	
4' LED Lamp/Type C Kit (1 Lamp & 1 external driver)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	15.0	N/A	\$16.75	N/A	0.25	
4' LED Lamp/Type C Kit (2 Lamps & 1 external driver)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	30.0	N/A	\$28.25	N/A	0.33	
4' LED Lamp/Type C Kit (3 Lamps & 1 external driver)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	40.0	N/A	\$44.50	N/A	0.42	
4' LED Lamp/Type C Kit (4 Lamps & 1external driver)	[2]	S110R	N/A	N/A	N/A	N/A	N/A	50.0	N/A	\$58.00	N/A	0.50	
Cooler Case Mounted Occupancy Sensor For LED Fixtures		L50	N/A	N/A	\$68	\$0	\$68	N/A	N/A	\$60.00	N/A	0.55	
Fixture Mounted Occupancy Sensor		L60.1	N/A	N/A	\$68.86	\$0	\$68.9	N/A	N/A	\$27.00	N/A	0.55	
Remote Mounted Occupancy Sensor		L70.1	N/A	N/A	\$173.25	\$0	\$173.3	N/A	N/A	\$62.00	N/A	0.73	
Vacancy Sensor		L71.1	N/A	N/A	\$59	\$0	\$59	N/A	N/A	\$40.00	N/A	0.73	
Interior Occupancy Sensor Power Supply (power pack)		-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$29.00	N/A	0.73	
Photo cell		-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1-lamp HPT8 Ballast for Type A Lamps			N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$13.00	N/A	0.18	
2-lamp HPT8 Ballast for Type A Lamps			N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$13.00	N/A	0.18	
3-lamp HPT8 Ballast for Type A Lamps			N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$13.45	N/A	0.18	
4-lamp HPT8 Ballast for Type A Lamps			N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$14.07	N/A	0.18	

Note 1: Baseline cost is based on the installed cost (material plus labor) of a single standard-efficiency fixture (one-for-one).

Note 2: Because the existing lamp has an expected life of less than 1 year, the replacement cost of the existing lamp type is assumed for the installed cost: baseline.

Appendix D. Parameter	Values Reference Tables
ADDEIIGIA D. I GIGIIICICI	values iterefice rables

Table 32 – Existing Fixture Rated Wattage Table (Watts_{BASE})⁷⁰⁴

Existing Fixture Description	Wattage	Existing Fixture Description	Wattage
Existing Fixture Description	(Watts _{BASE})	Existing Fixture Description	(Watts _{BASE})
CFL - 11W	11	PSMH - 100W	118
CFL - 13W	13	PSMH - 150W	170
CFL - 27W	27	PSMH - 200W	219
Exit Sign - (2) 20W Incandescent	40	PSMH - 320W	349
Exit Sign - (2) 5W CFL	10	PSMH - 400W	435
Exit Sign - (2) 7.5W Incandescent	15	T12 - 1-Lamp 4' T12	41.7
Exit Sign - (2) 9W CFL	18	T12 - 1-Lamp 4' T12 HO	84
Halogen - 20W	20	T12 - 1-Lamp 5' T12 HO	97
Halogen - 50W	50	T12 - 1-Lamp 6' T12 HO	113
HPS - 100W	138	T12 - 2-Lamp 4' T12	70.7
HPS - 150W	188	T12 - 2-Lamp 4' T12 HO	131
HPS - 250W	295	T12 - 2-Lamp 5' T12 HO	170
HPS - 400W	465	T12 - 2-Lamp 6' T12 HO	193
HPS - 50W	65	T12 - 2-Lamp 8' T12	120.6
HPS - 70W	95	T12 - 2-Lamp 8' T12 HO	197.9
Incandescent - 100W	100	T12 - 2-Lamp U T12	72.5
Incandescent - 40W	40	T12 - 3-Lamp 4' T12	112.3
Incandescent - 60W	60	T12 - 4-Lamp 4' T12	141.2
Incandescent - 65W	65	T8 - 1-Lamp 4' T8	31
Incandescent - 75W	75	T8 - 1-Lamp 4' T8 HO	53
MH - 1000W	1075	T8 - 1-Lamp 5' T8 HO	62
MH - 100W	128	T8 - 1-Lamp 6' T8 HO	80
MH - 150W	190	T8 - 2-Lamp 4' T8	59
MH - 175W	215	T8 - 2-Lamp 4' T8 HO	100
MH - 200W	232	T8 - 2-Lamp 5' T8 HO	116
MH - 250W	288	T8 - 2-Lamp 6' T8 HO	136
MH - 400W	458	T8 - 2-Lamp U T8	60
LED MR16	7	T8 - 3-Lamp 4' T8	89
LED PAR20	9	T8 - 4-Lamp 4' T8	112
LED PAR30	12	LED A	10
LED PAR38	22	LED BR 30	12
		LED BR 40	22

⁷⁰⁴ Table also includes fixtures not included in Installed Measure table that may be selected as controlled fixtures for control measures.

Table 33 – Baseline Lighting Power Density (Watt/ft²) by Space-Type⁷⁰⁵

Space Type	LPD _{BASE}	Space Type	LPD _{BASE}
Active Storage	0.8	Health Care (Operating Room)	2.2
Active Storage (For Health Care)	0.9	Health Care (Patient Room)	0.7
Atrium (Each Additional Floor)	0.2	Health Care (Pharmacy)	1.2
Atrium (First 3 Floors)	0.6	Health Care (Physical Therapy)	0.9
Audience/Seating Area	0.9	Health Care (Radiology)	0.4
Audience/Seating Area (For Convention Center)	0.7	Health Care (Recovery)	0.8
Audience/Seating Area (For Exercise Center)	0.3	Hotel/Motel Guest Rooms	1.1
Audience/Seating Area (For Gymnasium)	0.4	Inactive Storage	0.3
Audience/Seating Area (For Motion Picture Theater)	1.2	Inactive Storage (For Museum)	0.8
Audience/Seating Area (For Penitentiary)	0.7	Laboratory	1.4
Audience/Seating Area (For Performing Arts Theater)	2.6	Library (Card File and Cataloging)	1.1
Audience/Seating Area (For Religious Buildings)	1.7	Library (Reading Area)	1.2
Audience/Seating Area (For Sports Arenas)	0.4	Library (Stacks)	1.7
Audience/Seating Area (For Transportation)	0.5	Lobby	1.3
Automotive (Service/Repair)	0.7	Lobby (For Hotel)	1.1
Bank/Office (Banking Activity Area)	1.5	Lobby (For Motion Picture Theater)	1.1
Classroom/Lecture/Training	1.4	Lobby (For Performing Arts Center)	3.3
Classroom/Lecture/Training (For Penitentiary)	1.3	Lounge/Recreation	1.2
Conference/Meeting/Multipurpose	1.3	Lounge/Recreation (For Health Care)	0.8
Convention Center (Exhibit Space)	1.3	Manufacturing (Control Room)	0.5
Corridor/Transition	0.5	Manufacturing (Detailed Manufacturing)	2.1
Corridor/Transition (For Health Care)	1	Manufacturing (Equipment Room)	1.2
Corridor/Transition (For Manufacturing Facility)	0.5	Manufacturing (High Bay, >25 ft. Ceiling Height)	1.7
Courthouse/Police Station/Penitentiary (Confinement Cells)	0.9	Manufacturing (Low Bay, <25 ft. Ceiling Height)	1.2
Courthouse/Police Station/Penitentiary (Courtroom)	1.9	Museum (General Exhibition)	1
Courthouse/Police Station/Penitentiary (Judges' Chambers)	1.3	Museum (Restoration)	1.7
Dining Area	0.9	Office (Enclosed)	1.1
Dining Area (For Bar/Lounge/Leisure Dining)	1.4	Office (Open Plan)	1.1
Dining Area (For Family Dining)	2.1	Parking Garage (Garage Area)	0.2
Dining Area (For Hotel)	1.3	Post Office (Sorting Area)	1.2
Dining Area (For Motel)	1.2	Religious Buildings (Fellowship Hall)	0.9
Dining Area (For Penitentiary)	1.3	Religious Buildings (Worship Pulpit/Choir)	2.4
Dormitory Living Quarters	1.1	Restrooms	0.9
Dressing/Locker/Fitting Room	0.6	Retail (Mall Concourse)	1.7
Electrical/Mechanical	1.5	Retail (Sales Area)	1.7
Fire Stations (Engine Room)	0.8	Sales Area	1.7
Fire Stations (Sleeping Quarters)	0.3	Sports Arena (Court Sports Area)	2.3

 $^{^{705}}$ Lighting Power Allowance per IECC 2009, which is based on the ASHRAE 90.1 2007 technical requirements

Space Type	LPD _{BASE}	Space Type	LPD _{BASE}
Food Preparation	1.2	Sports Arena (Indoor Playing Field Area)	1.4
Gymnasium/Exercise Center (Exercise Area)	0.9	Sports Arena (Ring Sports Area)	2.7
Gymnasium/Exercise Center (Playing Area)	1.4	Stairs (Active)	0.6
Health Care (Emergency)	2.7	Transportation (Air/Tran/Bus - Baggage	1
		Area)	
Health Care (Exam/Treatment)	1.5	Transportation (Airport - Concourse)	0.6
Health Care (Laundry/Washing)	0.6	Transportation (Terminal - Ticket Counter)	1.5
Health Care (Medical Supply)	1.4	Warehouse (Fine Material Storage)	1.4
Health Care (Nursery)	0.6	Warehouse (Medium/Bulky Storage)	0.9
Health Care (Nurses' Station)	1	Workshop	1.9

Table 34 – Reference Lighting Annual Operating Hours by facility type⁷⁰⁶

Building Type	Proposed	Data Source
Agricultural	4698	WI 2015
College	3416	KEMA 2011
Convenience Store	6019	KEMA 2011
Garage/Repair	3521	KEMA 2011
Grocery	6019	KEMA 2011
Health	4007	KEMA 2011
Hospital	7666	NY 2016
K-12 School	2456	KEMA 2011
Lodging	4808	KEMA 2011
Manufacturing	4781	KEMA 2011
Nursing Home/Assisted Living/Health Care	5840	NY 2016
Office	3642	KEMA 2011
Other	4265	KEMA 2011
Restaurant	4089	KEMA 2011
Retail	4103	KEMA 2011
Warehouse	4009	KEMA 2011

⁷⁰⁶ WI 2005 refers to Wisconcin Technical Reference Manual, 2005; NY2016 refers to New York Technical Reference Manual, 2010; KEMA 2011 refers to KEMA C&I Lighting Load Shape Project FINAL Report, July 19, 2011.

Table 35 – Reference Lighting Annual Operating Hours by by facility and space type⁷⁰⁷

		Facility Type									
Space Type	Apartments	Assembly	Industry	Lodging	Medical	Office	Other	Restaurant	Retail	School(K-12)	Warehouse
Assembly	4,890	1,064	NA	NA	NA	NA	899	NA	NA	NA	NA
Break Room	NA	884	1,257	NA	1,200	1,829	1,682	NA	1,802	1,303	2,918
Cafeteria	NA	375	NA	NA	NA	NA	NA	NA	NA	2,356	1,775
Classroom	NA	596	NA	NA	NA	NA	172	NA	4,842	1,429	NA
Conference	4,035	488	1,671	NA	675	971	261	NA	1,018	1,221	1,277
Dining	1,448	NA	NA	NA	NA	NA	1,758	4,452	NA	NA	NA
Equipment	NA	707	780	NA	975	2,064	1,610	1,324	2,034	NA	NA
Gym	563	101	NA	NA	NA	NA	1,406	NA	6,566	2,545	NA
Hallway	8,528	1,424	2,995	NA	3,778	1,914	2,098	4,896	2,262	3,598	2,483
Kitchen	2,329	1,308	1,936	NA	3,818	2,037	308	5,081	1,737	1,626	1,925
Library/CPU	NA	1,782	NA	NA	NA	NA	NA	NA	NA	1,767	NA
Office (Closed)	1,929	678	1,620	NA	1,291	1,671	1,575	4,683	2,449	1,444	1,994
Office (Open)	3,020	2,734	2,334	8,760	2,455	2,378	2,223	NA	3,417	2,338	2,758
Other	4,366	2,213	1,215	NA	2,523	2,550	1,853	NA	3,263	2,111	2,202
Production	NA	NA	2,959	NA	NA	1,972	NA	NA	2,897	NA	3,351
Restroom	38	873	431	267	685	1,212	1,679	3,212	587	1,515	1,140
Retail	NA	3,184	2,632	NA	2,716	3,558	NA	NA	2,825	NA	NA
Storage	1,904	401	927	17	984	992	1,325	3,077	1,801	1,420	1,516
Warehouse	NA	NA	2,195	NA	NA	1,661	1,945	NA	2,550	NA	2,295

⁷⁰⁷ Based on results from Michigan Statewide Commercial and Industrial Lighting Hours-of-Use Study, EMI Consulting, June 6, 2014.

Table 36 – Savings Factors for Lighting Controls

Commercial/Industrial					
Space Type	% of Annual Lighting Energy Saved (SVG) ^A				
Break Room	20%				
Classrooms	30%				
Conference rooms	45%				
Cooler/Freezer Case	31%				
Corridors	15%				
Gymnasiums	35%				
Open offices	15%				
Other Type ^B	25%				
Private offices	30%				
Restrooms	40%				
Storage	55%				
Warehouses	50%				

A SVG values for Gymnasiums, Warehouses, and Storage areas are from IES Paper #43, An Analysis of Energy & Cost Savings Potential of Occupancy Sensors for Commercial Lighting Spaces. 8/16/2000. SVG for Cooler/Freezer case from US DOE, "Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting." Refrigerated cases were metered for 12 days to determine savings from occupancy sensors. Assumes that refrigerated freezers and refrigerated coolers will see the same amount of savings from sensors. The SVG value for the "other" category is a conservative estimate of savings intended to ensure reported savings are not overstated when the controls are installed in areas other than those specifically listed.

B Each industrial/manufacturing space has very specific occupancy patterns, and a literature search revealed no published values for typical savings resulting from controls in these spaces. When sensors are installed in these space types, the "other" category, reflecting the most conservative SVG value should be selected.

Table 37 – Ventilation Rates $(CFM/ft^2)^{708}$

Space Type	VentilationRate	Space Type	VentilationRate
Art classroom	0.38	Health club/weight rooms	0.26
Auditorium seating area	0.81	Kitchen (cooking)	0.27
Bank vaults/safe deposit	0.09	Laundry rooms within dwelling units	0.17
Banks or bank lobbies	0.17	Laundry rooms, central	0.17
Barbershop	0.25	Lecture classroom	0.55
Barracks sleeping areas	0.16	Lecture hall (fixed seats)	1.19
Bars, cocktail lounges	0.93	Legislative chambers	0.31
Beauty and nail salons	0.62	Libraries	0.17
Bedroom/living room	0.11	Lobbies	0.81
Booking/waiting	0.44	Lobbies/prefunction	0.29
Bowling alley (seating)	0.52	Main entry lobbies	0.11
Break rooms	0.19	Mall common areas	0.36
Cafeteria/fast-food dining	0.93	Media center	0.37
Cell	0.25	Multipurpose assembly	0.66
Classrooms (age 9 plus)	0.47	Multi-use assembly	0.81
Classrooms (ages 5–8)	0.37	Museums (children's)	0.42
Coffee stations	0.16	Museums/galleries	0.36
Coin-operated laundries	0.21	Music/theater/dance	0.41
Common corridors	0.06	Occupiable storage rooms for liquids or gels	0.13
Computer (not printing)	0.08	Occupiable storage rooms for dry materials	0.07
Computer lab	0.37	Office space	0.09
Conference/meeting	0.31	Pet shops (animal areas)	0.26
Corridors	0.06	Pharmacy (prep. area)	0.23
Courtrooms	0.41	Photo studios	0.17
Daycare (through age 4)	0.43	Places of religious worship	0.66
Daycare sickroom	0.43	Reception areas	0.21
Dayroom	0.21	Restaurant dining rooms	0.71
Disco/dance floors	2.06	Sales	0.23
Dwelling unit	0.07	Science laboratories	0.43
Electrical equipment rooms	0.06	Shipping/receiving	0.12
Elevator machine rooms	0.12	Sorting, packing, light assembly	0.17
Gambling casinos	1.08	Spectator areas	1.19
Game arcades	0.33	Sports arena (play area)	0.3

⁷⁰⁸ ASHRAE Standard 62.1 Outdoor Air Rates, Table 6-1 and Table E-1. The ventilation rates are the combined rates for CFM per person and CFM per area based on default values for occupancy.

Space Type	VentilationRate	Space Type	VentilationRate
General manufacturing (excludes	0.25	Stages, studios	0.76
heavy industrial and processes using chemicals)			
Guard stations	0.14	Storage rooms	0.12
Gym, stadium (play area)	0.3	Supermarket	0.12
Health Care: Patient Rooms	0.25	Swimming (pool & deck)	0.48
Health Care: Medical Procedure	0.30	Telephone closets	0
Health Care: Operating Rooms	0.60	Telephone/data entry	0.36
Health Care: Recovery and ICU	0.30	Transportation waiting	0.81
Heatlh Care: Autopsy Rooms	0.50	University/college laboratories	0.43
Health Care: Physical Therapy	0.30	Warehouses	0.06
Health club/aerobics room	0.86	Wood/metal shop	0.38

Table 38 – Refrigeration Bonus Factors

		Temperature				
Measures	Bonus Factor	Low (COP = 2.0)	Medium (COP = 3.5)	High (COP = 5.4)		
1110000100	Dollus Factor	(COF = 2.0)	(COF = 3.3)	(COF = 3.4)		
R10 Evaporator Fan Motor Controls						
R40/R41/R42 H.E. Evaporative Fan	(1 + 1 / COP) ^A	1.5	1.3	1.2		
Motors						
R20 Door Heater Controls						
R30/R31 Zero Energy Doors for	$(1 + 0.65 / COP)^B$	1.3	1.2	1.1		
Coolers/Freezers						

^A Based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of $-20^{\circ}F$, $20^{\circ}F$, and $45^{\circ}F$, respectively, and a condensing temperature of $90^{\circ}F$.

^B Based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of −20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F, and manufacturers assumption that 65% of heat generated by door enters the refrigerated case (1 + 0.65 / COP).

Interactive Effects Derivation

More efficient lighting provides the same amount of lumens with fewer watts. Halogen and incandescent bulbs generate a lot of heat in addition to light. The wattage that produces heat rather than light is referred to as waste heat. When cooling is called for, the waste heat generated by inefficient lights requires the cooling system to work harder. By replacing inefficient lights with efficient lights less waste heat is produced which reduces the load on the cooling system. The magnitude of the reduced cooling load is proportional to the magnitude of the wattage reduction of the lights. Conversely, when heating is called for, the reduction in waste heat from the replacement of inefficient lights with efficient lights increases the load on the heating system. To calculate the interactive factors several factors must be considered as define below.

Factors included in the calculation of Interactive Effects Factors:

IGC = Internal Gain Contribution (%) – This factor accounts for some portion of the wattage reduction not contributing to the interactive effects. Some waste heat escapes through ceiling and wall penetrations without contributing to internal gains that affect the load on HVAC systems.

%A =Applicability (%) – Interactive effects are only applicable if the waste heat reduction interacts with a HVAC system. Lights installed in unconditioned spaces do not contribute to interactive effects. Applicability is calculated as the product of % of bulbs installed in interior sockets and the % of buildings with mechanical cooling. (%A = %I*%A/C)

C_{HVAC} = Concurrency with Heating/Cooling – Waste heat only impacts HVAC systems when the lights and the systems are on concurrently. Cooling interactive effects only occur during the cooling season and heating interactive effects only occur during the heating season.

Eff_{HVAC} = Efficiency of the HVAC system – The change in consumption of the HVAC system is determined by the efficiency of the system.

Cooling Demand Interactive Effects Factor

The following formula is used to calculate the cooling demand interactive effects factor. Total demand reduction is calculated by multiplying the demand reduction from the lighting change by the cooling demand factor. The values used in the formula are defined in the table below.

$$IE_{COOL_D} = 1 + \frac{IGC \times \%A \times C_{HVAC}}{Eff_{HVAC}}$$

Cooling Energy Interactive Effects Factor

The following formula is used to calculate the cooling energy interactive effects factor. Total energy savings is calculated by multiplying the energy savings from the lighting change by the cooling energy factor. The values used in the formula are defined in the table below.

$$IE_{COOL_E} = 1 + \frac{IGC \times \%A \times C_{HVAC}}{Eff_{HVAC}}$$

Heating Energy Interactive Effects Factor

The following formula is used to calculate the heating energy interactive effects factor. Heating energy increased used (in MMBtu) is calculated by multiplying the energy savings from the lighting change (in kWh) by the heating energy factor. The values used in the formula are defined in the table below.

$$IE_{HEAT_E} = \frac{IGC \times \%A \times C_{HVAC}}{Eff_{HVAC}} \times 0.003412 \; MMBtu/kWh$$

Table 39. Interactive Effects Input Factors and resulting IE Factors

Input Factors	IGC		%A		Chvac		Eff _{HVAC}		Interactive Effects Factor	
	Value	Note	Value	Note	Value	Note	Value	Note	Term	Value
Residential Cooling Demand	75%	[709]	46%	[710]	100%	[711]	400%	[712]	IE _{COOL_D}	1.085
Residential Cooling Energy	75%	[709]	46%	[710]	25%	[713]	400%	[712]	IE _{COOL_E}	1.021
Residential Heating	75%	[709]	86%	[714]	50%	[715]	80.5%	[716]	IE _{HEAT_E}	0.00137
Commercial Cooling Demand	75%	[709]	77%	[717]	100%	[711]	400%	[712]	IE _{COOL_D}	1.144
Commercial Cooling Energy	75%	[709]	77%	[717]	42%	[718]	400%	[712]	IE _{COOL_E}	1.060
Commercial Heating	75%	[709]	100%	[719]	50%	[715]	80.5%	[716]	IE _{HEAT_E}	0.00159

⁷⁰⁹ Based on engineering judgment

⁷¹⁰ Per 2015 Maine Residential Baseline Study, 86% of bulbs are installed in locations that are conditioned. According to Portland Press Herald, http://www.pressherald.com/2014/05/26/put power rates on ice that s a cool idea/, in 2010, an estimated 79 percent of customers in ISO-New England region had room air conditioners. Of the 79 percent, 40 percent of homes have equivalent of whole home A/C (3 window A/Cs); 39 percent of homes have total cooling capacity equivalent of 1 or 2 window A/C units. The remaining 21 percent have no cooling equipment installed. Assuming that a window A/C unit cools 1/3 of a home that works out to be 53% of residential homes are mechanical cooled. (%A = 46% = 86%*53%)

⁷¹¹ Maximum demand reduction occurs when lights and cooling systems are on concurrently. Coincidence factors are then applied to determine coincidence with peak hours.

⁷¹² Cooling equipment efficiency is assumed to be 400% based on a SEER of 14 which is the current federal minimum efficiency standard.

⁷¹³ Cooling season is assumed to be 3 months for residential applications. (3/12 = 25%)

⁷¹⁴ Per 2015 Maine Residential Baseline Study 86% of bulbs are installed in locations that are conditioned. 100% of residences are heated. (%A = 86% = 86%*100%)

⁷¹⁵ Heating season is assumed to be 6 months. (6/12=50%)

⁷¹⁶ Per 2015 Maine Residential Baseline Study, the average heating system efficiency is 80.5%. It is assumed that commercial heating systems have a similar average efficiency.

⁷¹⁷ For commercial applications, it is assumed that all bulbs are installed in interior sockets. The C&I Prescriptive program tracks exterior lights separately and interactive effect factors are not applied to those measures. Based on the cooling system type saturation in the 2012 EMT Baseline Opportunities Study and assuming that window unit A/C cools 1/3 of the conditioned space, 77% of commercial space is mechanically cooled in Maine. (%A = 77% = 100% * 2.2%)

⁷¹⁸ Cooling season is assumed to be 5 months for commercial applications due to higher internal gains. (5/12=42%)

⁷¹⁹ For commercial applications, it is assumed that all bulbs are installed in interior sockets. The C&I Prescriptive program tracks exterior lights separately and interactive effect factors are not applied to those measures. It is assumed that 100% of commercial spaces are heated. (%A = 100% = 100%*100%)

Table 40 – Realization Rate Adjusted Coincidence Factors for Prescriptive Non-Lighting Measures⁷²⁰

					•		
Measure	Winter CF	Summer CF	Footnote	RR _D Winter	RR _D Summer	RR _D Adjsuted Winter CF	RR _D Adjusted Summer CF
SFA Prescriptive							
Variable Frequency							
Drives (VFD) for HVAC	19.8%	50.8%	721	73.7%	95.9%	14.6%	48.7%
SFP Prescriptive							
Variable Frequency							
Drives (VFD) for HVAC	19.8%	50.8%	721	73.7%	95.9%	14.6%	48.7%
RFA Prescriptive	,-	• -		,-		- / -	- ,-
Variable Frequency							
Drives (VFD) for HVAC	28.5%	71.2%	721	73.7%	95.9%	21.0%	68.3%
RFP Prescriptive							
Variable Frequency							
Drives (VFD) for HVAC	28.5%	71.2%	721	73.7%	95.9%	21.0%	68.3%
BEF Prescriptive							
Variable Frequency							
Drives (VFD) for HVAC	100.0%	37.0%	721	73.7%	95.9%	73.7%	35.5%
CWP Prescriptive							
Variable Frequency							
Drives (VFD) for HVAC	0.0%	90.2%	721	73.7%	95.9%	0.0%	86.5%
HHWP Prescriptive							
Variable Frequency	100.00/	0.00/	724	72 70/	05 00/	72 70/	0.00/
Drives (VFD) for HVAC	100.0%	0.0%	721	73.7%	95.9%	73.7%	0.0%
DCVE, DCVN Prescriptive HVAC:							
Demand Control							
Ventilation	2.0%	81.0%	722	73.7%	95.9%	1.5%	77.7%
VRF Prescriptive HVAC:	2.070	31.070	, , , ,	73.770	33.370	1.570	77.770
Variable Refrigerant							
Flow	57.0%	37.2%	723	73.7%	95.9%	42.0%	35.7%
AH1-AH3, WH Heat			-				
Pump Systems (< 11.25							
tons)	57.0%	37.2%	724	73.7%	95.9%	42.0%	35.7%

⁷²⁰ RR_D used to adjust Summer and Winter CF to account for BIP program evalution findings. Nexant, Business Incentive Program Impact Evaluation, unpublished draft, May 2017.

⁷²¹ Efficiency Vermont TRM 2012. Values used for VFDs on VFD Boiler Feedwater Pumps, 10 HP; VFD Chilled Water Pumps, < 10 HP; VFD Supply Fans, < 10 HP; VFD Returns Fans, < 10 HP; and VFD Exhaust Fans, < 10 HP.

⁷²² Central Maine Power, Non-residential load profile for 3/1/08-2/28/09.

⁷²³ KEMA, NEEP Unitary HVAC AC Load Shape Project Final Report, June 2011.

⁷²⁴ KEMA, NEEP Unitary HVAC AC Load Shape Project Final Report, June 2011.

	Winter	Summer		RR _D	RR _D	RR _D Adjsuted Winter	RR _D Adjusted Summer
Measure	CF	CF	Footnote	Winter	Summer	CF	CF
Heat Pump Systems							
(≥ 11.25 tons)	57.0%	29.0%	724	73.7%	95.9%	42.0%	27.8%
R10 Prescriptive							
Refrigeration:							
Evaporator Fan Motor							
Control for							
Cooler/Freezer	45.9%	43.0%	725	73.7%	95.9%	33.8%	41.2%
R20 Prescriptive							
Refrigeration: Door			726				
Heater Controls for	100.00/	100.00/		72.70/	05.00/	72 70/	05.00/
Cooler/Freezer	100.0%	100.0%		73.7%	95.9%	73.7%	95.9%
R30, R31 Prescriptive Refrigeration: Zero							
Energy Doors for			727				
Coolers/Freezers	100.0%	100.0%		73.7%	95.9%	73.7%	95.9%
R40, R41, R42	100.070	100.070		73.770	33.370	73.770	33.370
Prescriptive							
Refrigeration: High-							
Efficiency Evaporative							
Fan Motors	100.0%	100.0%	727	73.7%	95.9%	73.7%	95.9%
R50, R51, R52							
Prescriptive			728				
Refrigeration: Floating-			720				
Head Pressure Controls	100.0%	0.0%		73.7%	95.9%	73.7%	0.0%
R60, R61, R62, R63,							
R70, R71, R72, R73, R74							
Prescriptive			729				
Refrigeration: Discus &	00.001	0-1			0.7.054		
Scroll Compressors	69.0%	77.2%		73.7%	95.9%	50.9%	74.0%
R80 Prescriptive							
Refrigeration: ENERGY							
STAR® Reach-in Coolers							
and Freezers	69.0%	77.2%	729	73.7%	95.9%	50.9%	74.0%

⁷²⁵ Efficiency Vermont TRM 2012, Evaporator Fan Control.

⁷²⁶ Efficiency Vermont TRM 2012, Door Heater Control.

⁷²⁷ Values are based on continuous operation. For energy period factors, values may assume that energy savings are evenly distributed across all hours of the year.

⁷²⁸ Efficiency Vermont TRM 2012, Floating-Head Pressure Control.

 $^{^{729}}$ Efficiency Vermont TRM 2012, Commercial Refrigeration.

	Winter	C		DD.	DD.	RR _D Adjsuted	RR _D Adjusted
Measure	Winter CF	Summer CF	Footnote	RR _D Winter	RR _D Summer	Winter CF	Summer CF
R90 Prescriptive Refrigeration: ENERGY STAR® Commercial Ice Makers	69.0%	77.2%	729	73.7%	95.9%	50.9%	74.0%
VP <x> Prescriptive Agricultural: Adjustable Speed Drives for Dairy Vacuum Pumps</x>	63.4%	28.7%	730	73.7%	95.9%	46.7%	27.5%
AMSC <x> Prescriptive Agricultural: Scroll Compressors</x>	91.5%	34.1%	731	73.7%	95.9%	67.4%	32.7%
ASD <x> Prescriptive Agricultural: Adjustable Speed Drives on Ventilation Fans (Potato Storage Equipment)</x>	100.0%	0.0%	732	73.7%	95.9%	73.7%	0.0%
AOLSF Prescriptive Agricultural: High- Volume Low-Speed Fans	91.5%	34.0%	732	73.7%	96.0%	67.4%	32.6%
C1–C4 Prescriptive Compressed Air: High- Efficiency Air Compressors	95.0%	95.0%	733	73.7%	95.9%	70.0%	91.1%
C10–C16 Prescriptive Compressed Air: High- Efficiency Dryers	95.0%	95.0%	733	73.7%	95.9%	70.0%	91.1%
C20–C27 Prescriptive Compressed Air: Receivers	95.0%	95.0%	733	73.7%	95.9%	70.0%	91.1%
C30–C33 Prescriptive Compressed Air: Low Pressure Drop Filters	95.0%	95.0%	733	73.7%	95.9%	70.0%	91.1%
C40 Prescriptive Compressed Air: Air- Entraining Nozzles	95.0%	95.0%	733	73.7%	95.9%	70.0%	91.1%

-

 $^{^{730}}$ Efficiency Vermont TRM 2012, VFD Milk Vacuum Pump.

⁷³¹ Efficiency Vermont TRM 2012, Dairy Farm Combined End Uses.

⁷³² Savings are realized 24/7 Dec 1 – April 30.

⁷³³ Efficiency Vermont TRM 2012, page 13.

	Appendix D: Parameter Values Reference Tables		