

Smart Rate Design for a Smart Future

New Hampshire Energy Efficiency & Sustainable Energy Board Concord, NH

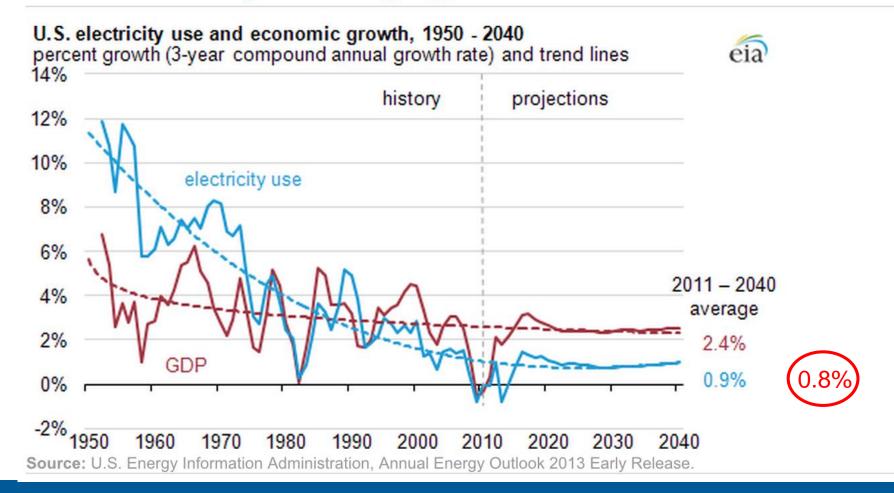
David Littell, Principal

The Regulatory Assistance Project (RAP)®

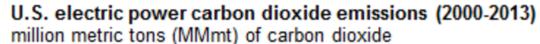
June 17, 2016

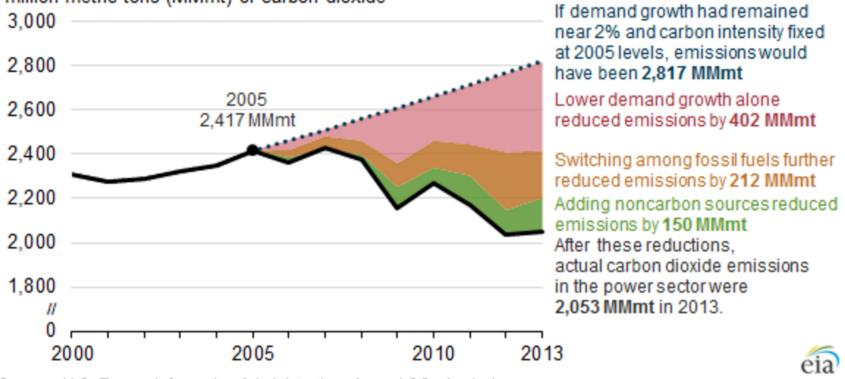
RAP Introduction

- The Regulatory Assistance Project (RAP) is a global, non-profit team of energy experts, mostly veteran regulators, advising current regulators on the long-term economic and environmental sustainability of the power and natural gas sectors. Funded philanthropically and by U.S. DOE, EPA (<u>www.raponline.org</u>)
 - *Non-advocacy; no interventions*
- David Littell, former Maine PUC and Maine DEP Commissioner

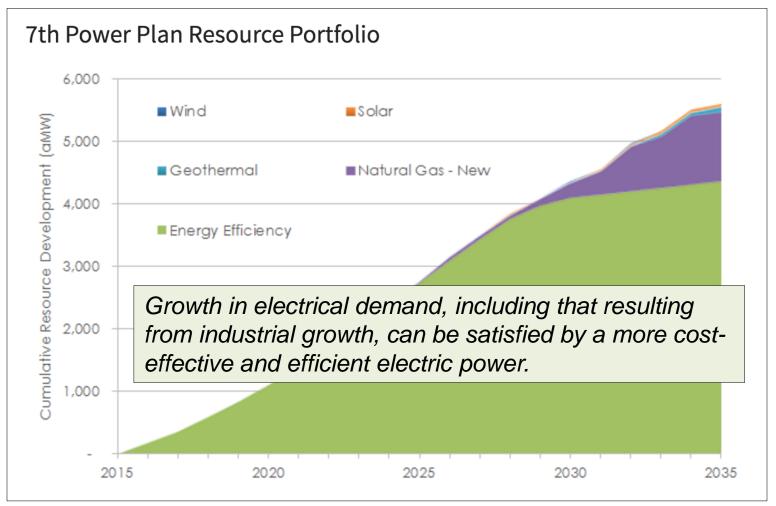

Outline

- Power Sector Transformation
- Smart Energy Technologies
- Smart Rate Design
- Demand Charges for Residential?
- Distributed Generation Rate Making and Value
- Smart Grid Cost Allocation Issues


Power Sector Transformation (PST)


- For 100 years, we've managed supply only
- We can now manage electricity demand too
- Further, "supply" *≠* centralized generation
- Likely will evolve into series of "markets"
- What role for regulators, the regulatory compact, in these uncharted waters?

U.S. economy and electricity demand growth are linked, but relationship is changing

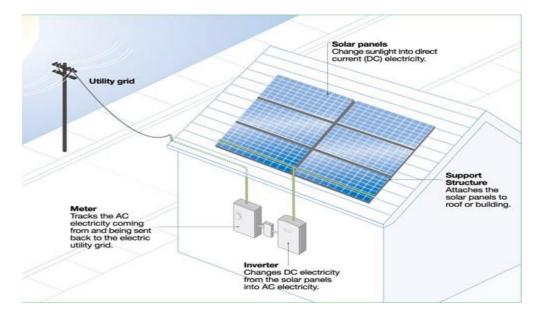

Lower electricity-related CO2 emissions reflect lower carbon intensity and electricity use

Source: U.S. Energy Information Administration, Annual CO₂ Analysis

Pacific Northwest Power & Conservation Council – 7th Power Plan (10 Feb 2016)

Smart Technology

Policies to Complement a Smart Future


- Grid technology to make smart rates work for consumers
- Revenue regulation to ensure utilities have a reasonable opportunity to earn a fair return
- Time-varying and dynamic rate designs

Smart Meters/Distributed Generation

Smart meters can power flows of DG in both directions on interval basis to determine billing (and value transactions)

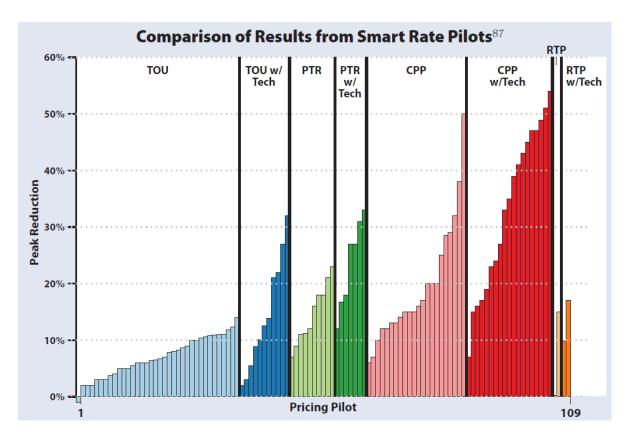
Enabling Technology and Services Real cost rates work best with enabling technology – "Set and Forget"

Carrier ᅙ	7:44 AM	
	Electricity	\$
0.40		
0.42		0.5
Rate: \$0.10/k	Wh 📕 🗖	
	uivalents this n 0 pounds of C	
Resources	Thermostat	Appliances

Summary	Rates			
Utility Messag				
No Message A	vailable.			
High P	rice Rate	Current		
Start	End Pricin			
Oct 10 7:25 AM	Oct 10 2:30 PM \$0.09/kV			
Low Pr	ice Rate	Next		
Start	End	Pricing		
Oct 10 2:30 PM	Oct 11 2:26 AM	\$0.01/kWh		

Rate Design Issues

- Key issues for Rate Design and related issues nationally are:
 - Time-Varying Pricing (TOU, CPP, etc.)
 - Fixed Customer Charges
 - Demand Charges
 - Inclining Block Rates (IBR)
 - Net Energy Metering (NEM)
 - Decoupling efforts
 - Utility efforts to re-regulate


Smart Rates

Potential Reward Less Risk, More Risk, (Discount Lower Reward **Higher Reward** from Flat Rate) RTP VPP Increasing Reward PTR СРР Super Peak TOU тои Seasonal Rate Inclining Block Rate Risk Flat Rate (Variance in Price) Increasing Risk

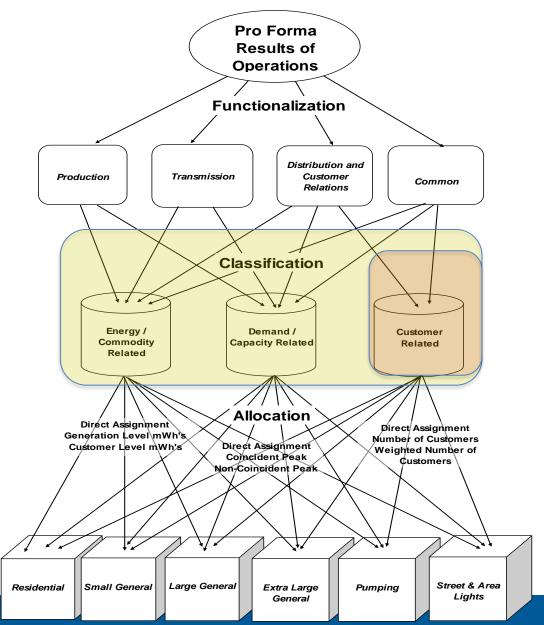
Conceptual Representation of the Risk-Reward Tradeoff in Time-Varying Rates⁸⁰

Smart Rates Can Reduce Total System Costs & Customer Bills

Smart rates can produce significant peak load reductions and shift energy consumption

A Declining Block Rate Design

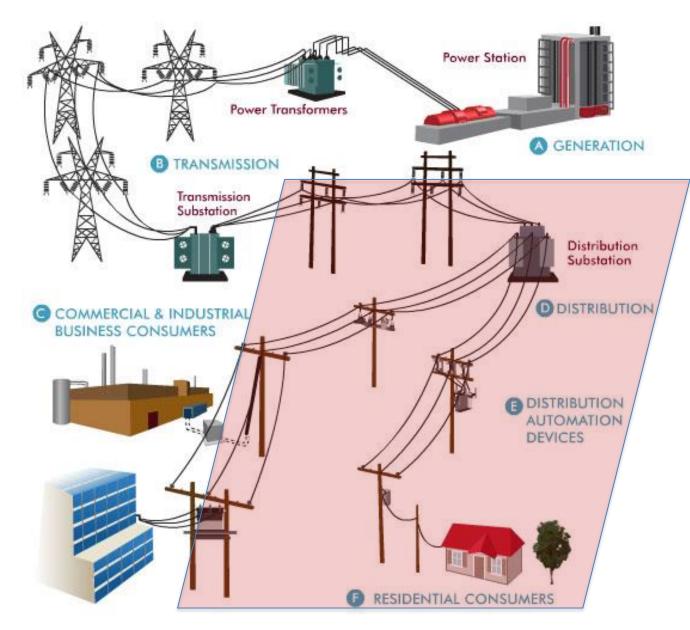
What does this rate design say?


An Inclining Block Rate Design

What does this rate design say?

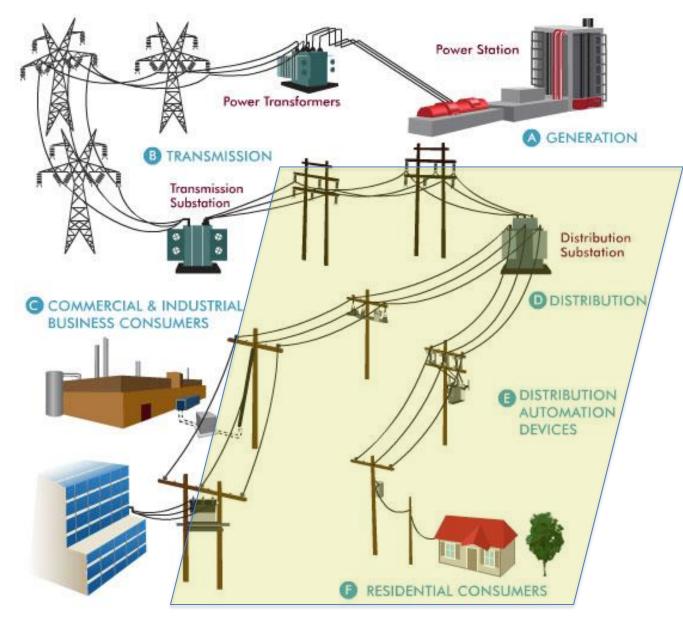
ELECTRIC COST OF SERVICE STUDY FLOWCHART

Rate Making's 2nd Half: After the Revenue **Requirement** is set – how the **RR** is allocated for Rates for each class

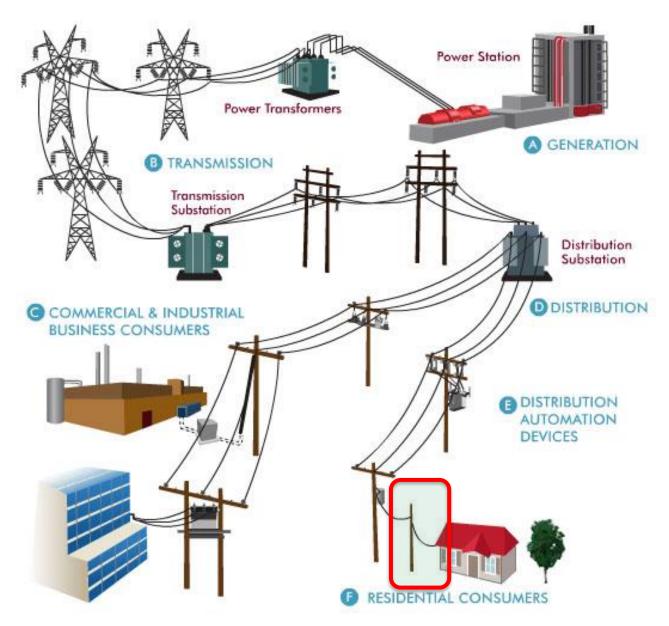


Energy solutions for a changing world

Pro Forma Results of Operations by Customer Group ¹⁷


Straight Fixed/ Variable

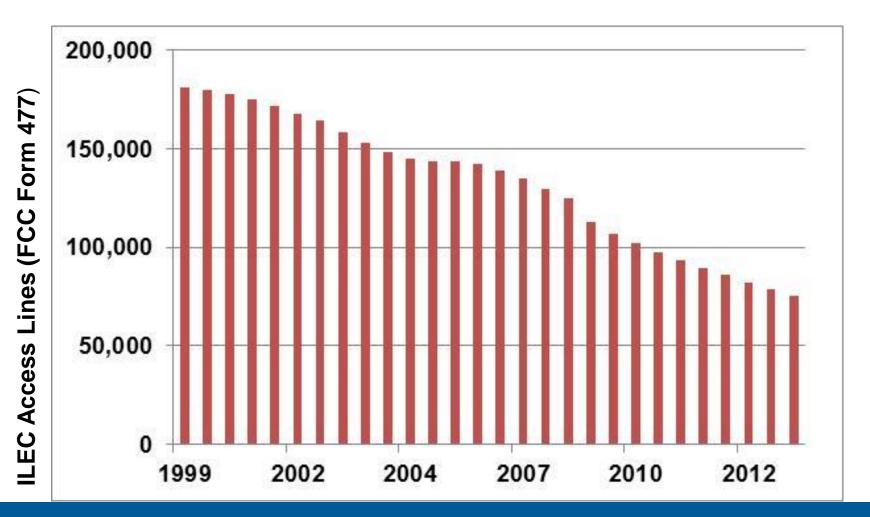
100% of Distribution System Classified as Customerrelated



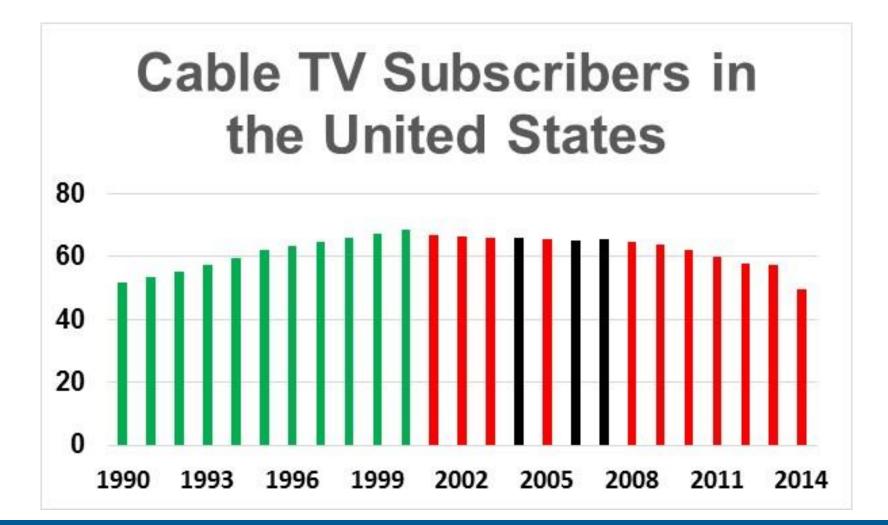
Minimum System Method

~50% of Distribution System Classified as Customerrelated

Basic Customer Method **ONLY** Customer-Specific **Facilities** Classified as Customerrelated


Comparing Methods

	Straight		Minimum		Basic	
	Fixed/		System		Customer	
Cost Category	Variable		Method		Method	
	\$/month/customer					
Poles	\$	10	\$	5	\$	-
Wires	\$	20	\$	10	\$	-
Transformers	\$	10	\$	5	\$	-
Services	\$	1	\$	1	\$	1
Meters	\$	1	\$	1	\$	1
Billing	\$	2	\$	2	\$	1
Customer Service	\$	2	\$	2	\$	1
Totals	\$4	16	\$2	26	\$	4

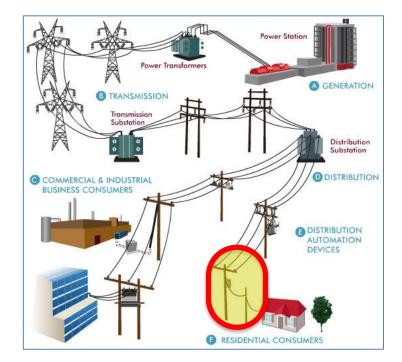

Other Competitive Industries?

Experience of Landline Phone Companies?

Cable TV Rates

Discussion / Q & A

Demand Charges


Basic Tariff For Large Commercial Customer

Rate Element	Price
Customer Charge \$/month	\$20.00
Demand Charge \$/kW/month	\$10.00
Energy Charge \$/kWh	\$0.08

- Old demand charges pre-dated interval metering
- Were used as a proxy for customer peak usage

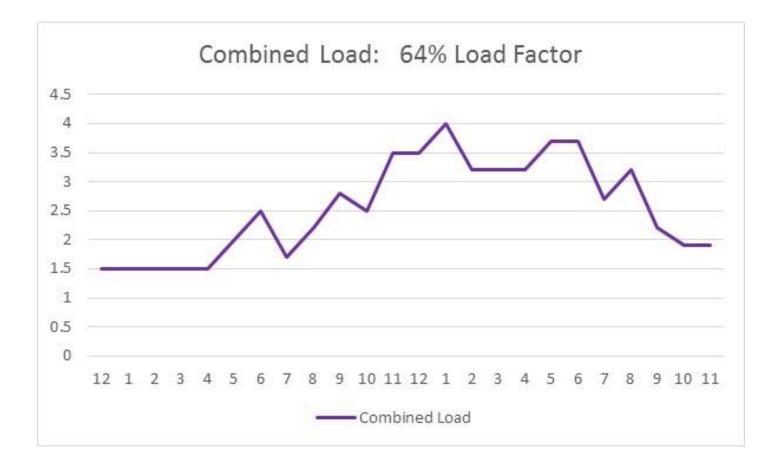
Problem #1: Very Few Costs Are Related to Small Customer-Specific Demand

- Most of the distribution system is shared, and sized to the group coincident peak (CP) demand.
- Only the customer's connection to the system is sized based on customer non-coincident peak (NCP) demand.

Lower Load-Factor Customers Can <u>Share</u> Capacity

- Morning loads
- Evening loads
- 24/7 loads

High School Stadium Lighting: A Caricature of the Problem


CP: None **NCP:** 1% Load Factor

Basic Issue #2: Individual Load Shapes Vary

Utility Sees the **Combined** Load of Many Customers With Different Shapes

Demand Charges Shift Costs to Occasional Users

- If the Demand Charge were \$10/kW:
 - Use 5 kW for 1 hour in a month => demand charge of \$50
 - Use 5 kW for 720 hours in a month => demand charge of \$50

A Cost-Based Residential Demand Charge Rate EdF (France) Base Rate

Typical Dwelling Units	Contract power-rating (kVA)	Subscription Including Tax \$/month		Price per kWh incl. tax \$/kWh		Incre- mental \$/kW / Month		
Apartments	3	\$	4.76	\$	0.154			
	6	\$	7.73	\$	0.154		\$	0.99
Small SF Home	9	\$	10.24	\$	0.154		\$	0.84
	12	\$	15.75	\$	0.154		\$	1.84
	15	\$	18.07	\$	0.154		\$	0.77
Large SF Home	18	\$	20.78	\$	0.154		\$	0.90
	24	\$	44.24	\$	0.154		\$	3.91
	30	\$	54.67	\$	0.154		\$	1.74
	36	\$	63.32	\$	0.154		\$	1.44

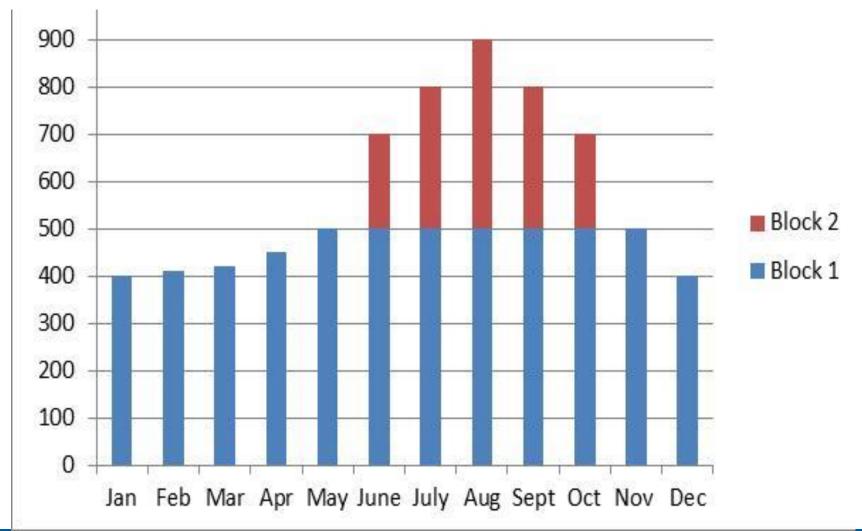
Discussion / Q & A

Inclining Block Rates (IBR)

- A common rate design globally
- Goals include
 - Allocation of low-cost resources
 - Recognition of load
 - Encouragement of conservation
 - Essential needs at affordable cost
 - Low-income benefits

Residential Inclining Block Rate

City of Palo Alto (California)					
Customer Charge	None				
First 300 kWh	\$0.096/kWh				
Next 300 kWh	\$0.130/kWh				
Over 600 kWh	\$0.174/kWh				


How an Inclining Block Rate Affects Most Consumption

	% of	% of kWh Sales	% of kWh Sales	
	Customers	To Customers	to Customers	
	Whose	Whose Usage	Whose Usage	
Usage	Usage Ends	Ends in This	Exceeds This	
Block	In This Block	Block	Block	
0 - 250	29%	8%	92%	
251 - 500	33%	23%	69%	
501 - 750	17%	20%	51%	
751 - 1,000	9%	15%	34%	
>1,000	12%	34%		
Average Mo	526			

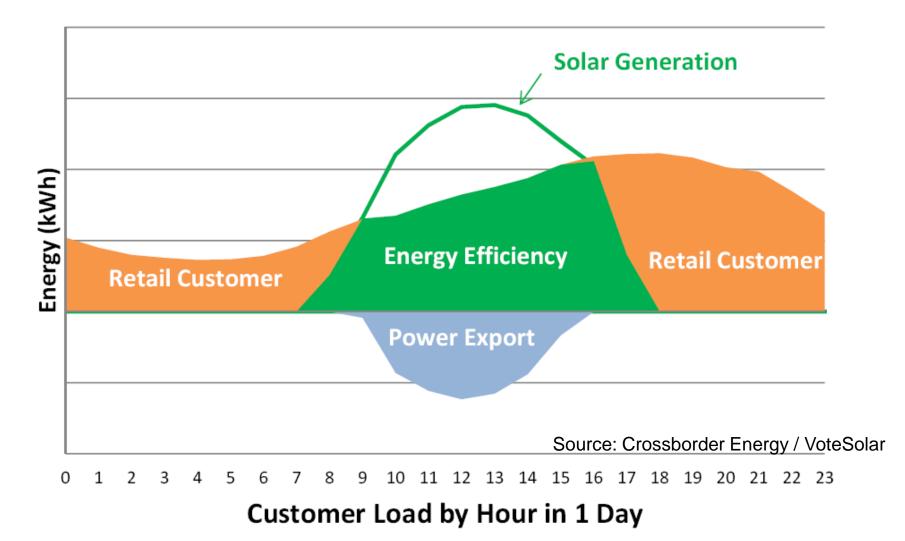
Seasonal + Inclining Block

Arizona Public Service Company (Arizona) Optional TOU Available							
	Winter	Summer					
0 – 400 kWh	\$0.0942	\$0.0969					
401 – 800 kWh	\$0.0942	\$0.1382					
801 – 3,000 kWh	\$0.0942	\$0.1617					
Over 3,000 kWh	\$0.0942	\$0.1726					

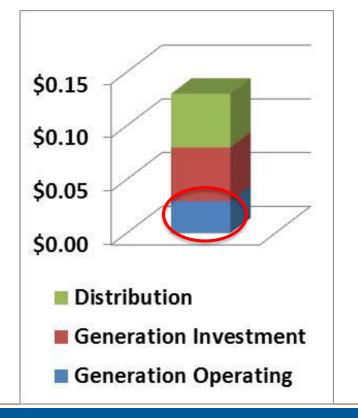
An Inclining Block Rate *Can be* a Seasonal Rate

Impact of Rate Design on Usage

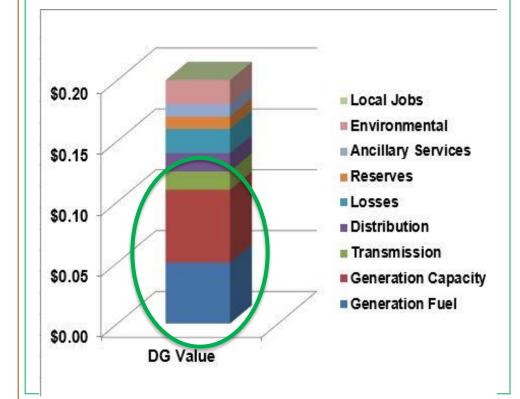
	Simple		High	
	Flat	Inclining	Fixed	Demand
	Rate	Block	Charge	Charge
Customer Charge	\$ 5.00	\$ 5.00	\$45.00	\$ 5.00
Demand Charge	None	None	None	\$8.00/kW
First 500 kWh	\$ 0.12	\$ 0.08	\$ 0.08	\$ 0.08
Over 500 kWh	\$ 0.12	\$ 0.15	\$ 0.08	\$ 0.08
Impact on Usage				
L			·	


Discussion / Q & A

All Kilowatt-Hours Are Not Equal


Issues With Home-Grown Electricity

Two Views of Cost Recovery


Traditional Utility View

• DG customer "uses" the grid and should pay for it;

Solar Advocate View

• Value of distributed resource is greater than the retail rate;

Traditional Ratemaking View

Critical View of Net Metering

Solar Advocate View of Net Metering

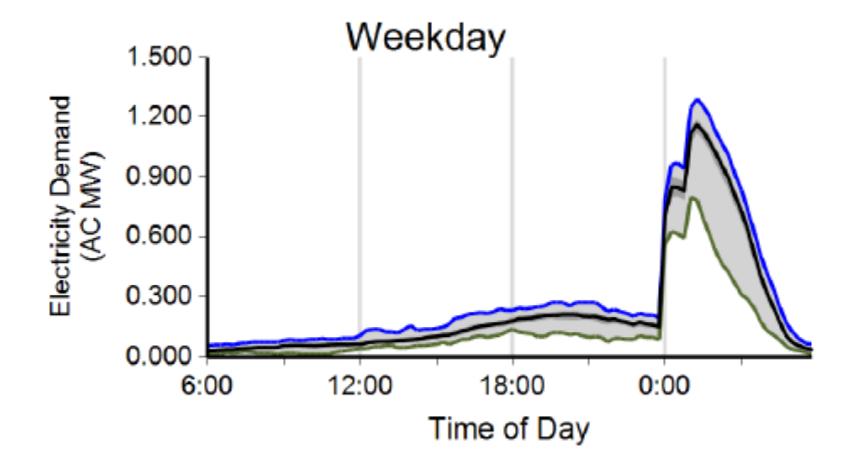
Long-Run Avoided Cost for

Smart Grid Cost Allocation

Cost Allocation of Smart Grid Costs: Smart Grid Benefits

- **Reliability** improvement: distribution automation
- **Peak load reduction** through Time of Use and Critical Peak Pricing
- **Loss reduction:** voltage control, power factor correction, phase balancing
- **Remote shut-off** and turn-on
- Reduced O&M expense for **meter reading**

Cost Allocation of Smart Grid Costs


Smart Grid Element	Pre-Smart Grid Element	"Traditional" FERC Account	Traditional Classification	Smart Grid Classification
				Demand /
Smart Meters	Meters	370	Customer	Energy / Customer
Distribution Control Devices	Station Equipment	362	Demand	Demand / Energy
Data Collection System	Meter Readers	902	Customer	Demand / Energy / Customer
Meter Data Management Syste	General Plant	391 - 397	Subtotal PTDC	Demand / Energy / Customer
Smart Grid Managers	Customer Accounts Supervision	901	Customer	Demand / Energy
Energy Storage Devices (Batteries; Ice Bear)	Installations on Customer Premises	371	Customer	Demand / Energy

Electric Vehicles

- Market for off-peak power
- Provide multiple ancillary services
- Potential Source of on-peak power (V2G)

San Diego's Off-Peak Charging

Water Heaters

- Peak load reduction
- Off-peak load augmentation

• Heat pump water heaters COP 3.3

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power sector. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

David Littell <u>dlittell@raponline.org</u>

The Regulatory Assistance Project (RAP)®

Beijing, China • Berlin, Germany • Brussels, Belgium • **Montpelier, Vermont USA** • New Delhi, India 50 State Street, Suite 3 • Montpelier, VT 05602 • *phone:* +1 802-223-8199 • *fax:* +1 802-223-8172

www.raponline.org