
Feasibility Studies – RE and DG at State Facilities

June 8, 2012

Tighe & Bond Acadia Engineers & Constructors Borrego Solar Systems

Project Goals

Evaluate all state-owned sites and facilities

Identify 3 to 10 projects

- Collectively reduce fossil fuel use by:
 - » 100,000 MMBTU; or
 - » Approximately 10% of current use

Combination of energy efficiency and renewable energy development

- Rooftop Solar PV
- Wind
- Hydroelectric
- Solar Thermal
- Geothermal

- Ground Mount Solar PV
- Tidal
- Biomass Thermal
- Large Scale Biomass
- Energy Efficiency Measures

Overview of Methodology

Tier 1

- Reviewed GIS and energy use data
- Identified facilities with high energy use and lands with significant natural resources

Tier 2

- List of potential projects developed based on results of Tier 1 analysis and criteria specific to energy efficiency measures and each renewable energy technology
- Ranking spreadsheet to score/rank potential projects completed based on quantitative and qualitative factors

Tier 3

Selected projects for comprehensive evaluations based on Tier
2 evaluations and feedback from NH OEP and other state
agencies

Tier 3 Projects

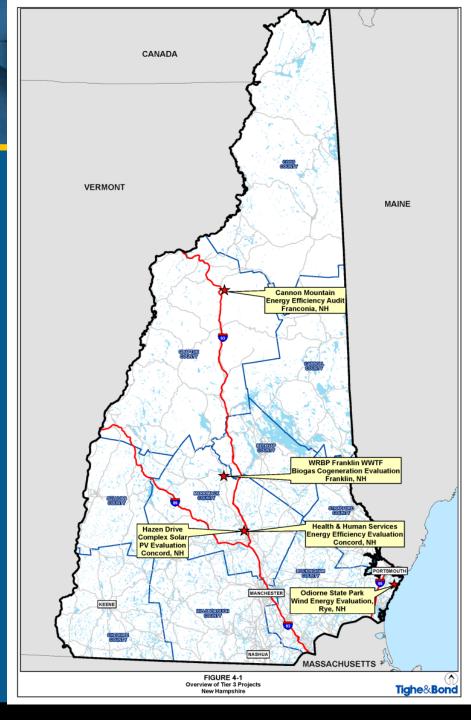
Health and Human Services

Energy Efficiency Evaluation

Cannon Mountain Ski Area

Energy Efficiency Evaluation

Hazen Drive Complex

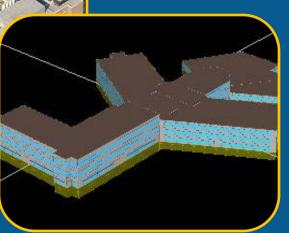

Rooftop Solar PV

WRBP Franklin WWTP

Biogas Cogeneration

Odiorne State Park/Other State Facilities

- Wind Turbine Generation



Energy Efficiency Audit at Health and Human Services Building

NEW HAMPSHIRE OFFICE OF ENERGY AND PLANNING

- Agency: NH DAS
- Technically Feasible? Yes
- Economically Feasible? Yes
- Recommended for Implementation? Yes

- HVAC equipment intensive and frequent schedules
- Lab spaces continuously ventilated at high rates, even unoccupied
- High heating set points throughout building
- Ambient CO₂ levels indicate intensive mechanical air exchange
- HVAC control system difficult to control/schedule
- Persistent roof leaks
- Wide variety of EEMs are recommended based on cost and effort required to implement

Energy Efficiency Audit at Cannon Mountain

- Agency: NH DRED
- Technically Feasible? Yes
- Economically Feasible? Yes
- Recommended for Implementation? Yes



- Large and aging distribution system
- Energy intensive ski lifts & snow making equipment
- Energy intensive electrical heaters
- No incentive for food service contractor to reduce high energy consumption
- Mechanical systems exceeded expected service life
- Wide variety of EEMs recommended based on cost and effort required to implement

Solar PV at Hazen Drive

NEW HAMPSHIRE OFFICE OF ENERGY AND PLANNING

- Agency: NH DAS
- Technically Feasible? Yes, structural deficiencies may be limiting factors
- Economically Feasible? No*
- Recommended for Implementation? No*

- Evaluation of 6 sites; narrowed down to 3
- System size driven by utility and NH PUC interconnection standards and incentive program system size limit of 100 kW
 - Health & Human Services: 121.7 kW
 - Division of Motor Vehicles: 127.9 kW
 - Morton Building: 131 kW

Not economically feasible

- System cost and kWh production within industry norms for economic viability
- Inability of state to monetize federal tax credit pivotal
- Value of revenue streams (avoided cost of kWh, available incentives, SREC's) inadequate

Biogas Cogeneration at Franklin Wastewater Treatment Plant

OFFICE OF ENERGY AND PLANNING

- Agency: NH DES/ WRBP
- Technically Feasible? Yes
- Economically Feasible? Yes, moderate returns
- Recommended for Implementation? Yes, with further study

- Currently biogas produced during anaerobic digestion used to heat digesters and flared in summer
- Opportunity to use biogas to generate electricity and recover heat to serve existing heating load while reducing amount of biogas that is flared
- Evaluated 250 kW cogeneration system
- Offset electricity use and satisfy majority of heating load
- Approximately 6 year payback period if owned by DES
- Some issues require follow-up study

Wind at Odiorne State Park

- Agency: NH DRED
- Technically Feasible? Yes*
- Economically Feasible? No
- Recommended for Implementation? No*

- Evaluation chose 15 sites
 - Temple Mountain
 - Odiorne State Park
- Community-scale turbine sized to meet Science Center's load
- Complicated site permitting
- Unfavorable economics
 - High cost of project per kWh generated
 - Low cost of electricity
 - Unfavorable incentives
- Other sites identified in Tier 2 have potential for wind turbine development
- Wind in NH likely to be economically feasible at larger scale
 - Cost of project per kWh generated decreases with project size

Summary of All Tier 3 Projects

Project Site	Who Conducted Study	Type of Technology	Technically Feasible?	Economically Feasible?	State Investment (State-Owned) ^{1,2}	Average Annual Savings to the State ^{1,3} (State- Owned)	Payback Period ^{1,3,4} (State-Owned)	State Investment (Privately-Owned)	Average Annual Savings to the State (Privately-Owned)
Health & Human Services	Acadia Engineers & Constructors	Energy Efficiency Measures	Yes	Yes	Tier 1: \$88,770 Tier 2: \$256,500 Tier 3: \$1,132,490	Tier 1: \$52,350 Tier 2: \$129,100 Tier 3: \$255,460	Tier 1: 4 years (avg) Tier 2: 5 years (avg) Tier 3: 7 years (avg)	N/A	N/A
Cannon Mountain	Acadia Engineers & Constructors	Energy Efficiency Measures	Yes	Yes	Tier 1: \$30,990 Tier 2: \$294,950 Tier 3: \$1,638,000	Tier 1: \$22,070 Tier 2: \$20,600 Tier 3: \$194,200	Tier 1: 2 years (avg) Tier 2: 7 years (avg) Tier 3: 13 years (avg)	N/A	N/A
Hazen Drive	Borrego Solar Systems	Rooftop Solar PV	Yes	No	H&HS: \$383,119 DMV: \$386, 797 Morton : \$397, 286	H&HS : \$18,970 DMV : \$19,520 Morton : \$18,930	H&HS : 23 years DMV : 23 years Morton : 24 years	\$0.00	Not Feasible
Franklin WWTP	Tighe & Bond	Biogas Cogeneration	Yes	Yes	\$462,700	\$65,600	3 years	\$0.00	\$11,000
Odiorne State Park	Tighe & Bond	50 kW Wind Turbine	Yes	No	\$330,000	(\$10,450)	> 20 years	\$0.00	Not Feasible

Developed based on a simple cash flow for EEMs and based on a discounted cash flow life-cycle analysis for renewable energy projects; averaged over project life

Before financing

³ After financing for Franklin WWTP and Odiorne State Park

⁴ (avg) indicates average for multiple EEMs with payback periods varying from 0 to 15

Note: Data above taken from DRAFT report, subject to change prior to Final Report.

General Findings on New Hampshire Energy Market

- Implementation of energy efficiency measures is a significant opportunity, supported by ability to enter a performance contract
- State has abundant supply of renewable energy resources on state-owned land
- Opportunities for public-private ownership development models (PPA, EPC, leases) exist
 - Renewable energy market must be attractive to private developers
- Current NH renewable energy market conditions are not favorable for private developers

Renewable Portfolio Standards (RPS)

- RPS requirements need to be competitive to other states in ISO-NE region
 - NH has lower RPS requirement as a percentage of Utilities' peak load, lower alternative compliance payments
 - NH does not have protocol for REC sales or procurement
 - » Long-term contracts for purchase of RECs
 - » Floor price for REC market
 - Third-party generation reporting requirement induces additional cost to small projects
 - Perception of unsupported/insecure market with potential regulatory changes

Net Metering

- Net Metering policy results in project size dictated by on-site electricity load at single account
 - Other states allow excess generation to be allocated to offset consumption on other accounts
 - Interconnection location limited to the meter with the most load
- State currently developing "group net metering" policy which will likely address this

Summary

- NH has significant opportunities to implement energy efficiency measures at State facilities
- NH needs to better align its incentives in order to achieve RPS goals
- State needs to increase attractiveness of developing renewable projects in NH over other states to keep utility investment local
- Large wind, biomass and/or solar projects are most feasible way to achieve State's aggressive energy reduction goals

Comments/Questions?

Tighe&Bond ^{Committed to sustainability}

177 Corporate Drive Portsmouth, NH 03801-6825 603.433.8818 www.tighebond.com

90 Main Street Newmarket, NH 03857 603.200.0096 www.aeccon.com

1115 Westford Street, 2nd Floor Lowell, MA 01851 888.898.6273 www.borregosolar.com